quakequest/Projects/Android/jni/snd_mem.c
2019-05-30 06:57:57 +01:00

388 lines
10 KiB
C

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "quakedef.h"
#include "snd_main.h"
#include "snd_ogg.h"
#include "snd_wav.h"
#include "snd_modplug.h"
/*
====================
Snd_CreateRingBuffer
If "buffer" is NULL, the function allocates one buffer of "sampleframes" sample frames itself
(if "sampleframes" is 0, the function chooses the size).
====================
*/
snd_ringbuffer_t *Snd_CreateRingBuffer (const snd_format_t* format, unsigned int sampleframes, void* buffer)
{
snd_ringbuffer_t *ringbuffer;
// If the caller provides a buffer, it must give us its size
if (sampleframes == 0 && buffer != NULL)
return NULL;
ringbuffer = (snd_ringbuffer_t*)Mem_Alloc(snd_mempool, sizeof (*ringbuffer));
memset(ringbuffer, 0, sizeof(*ringbuffer));
memcpy(&ringbuffer->format, format, sizeof(ringbuffer->format));
// If we haven't been given a buffer
if (buffer == NULL)
{
unsigned int maxframes;
size_t memsize;
if (sampleframes == 0)
maxframes = (format->speed + 1) / 2; // Make the sound buffer large enough for containing 0.5 sec of sound
else
maxframes = sampleframes;
memsize = maxframes * format->width * format->channels;
ringbuffer->ring = (unsigned char *) Mem_Alloc(snd_mempool, memsize);
ringbuffer->maxframes = maxframes;
}
else
{
ringbuffer->ring = (unsigned char *) buffer;
ringbuffer->maxframes = sampleframes;
}
return ringbuffer;
}
/*
====================
Snd_CreateSndBuffer
====================
*/
snd_buffer_t *Snd_CreateSndBuffer (const unsigned char *samples, unsigned int sampleframes, const snd_format_t* in_format, unsigned int sb_speed)
{
size_t newsampleframes, memsize;
snd_buffer_t* sb;
newsampleframes = (size_t) ceil((double)sampleframes * (double)sb_speed / (double)in_format->speed);
memsize = newsampleframes * in_format->channels * in_format->width;
memsize += sizeof (*sb) - sizeof (sb->samples);
sb = (snd_buffer_t*)Mem_Alloc (snd_mempool, memsize);
sb->format.channels = in_format->channels;
sb->format.width = in_format->width;
sb->format.speed = sb_speed;
sb->maxframes = newsampleframes;
sb->nbframes = 0;
if (!Snd_AppendToSndBuffer (sb, samples, sampleframes, in_format))
{
Mem_Free (sb);
return NULL;
}
return sb;
}
/*
====================
Snd_AppendToSndBuffer
====================
*/
qboolean Snd_AppendToSndBuffer (snd_buffer_t* sb, const unsigned char *samples, unsigned int sampleframes, const snd_format_t* format)
{
size_t srclength, outcount;
unsigned char *out_data;
//Con_DPrintf("ResampleSfx: %d samples @ %dHz -> %d samples @ %dHz\n",
// sampleframes, format->speed, outcount, sb->format.speed);
// If the formats are incompatible
if (sb->format.channels != format->channels || sb->format.width != format->width)
{
Con_Print("AppendToSndBuffer: incompatible sound formats!\n");
return false;
}
outcount = (size_t) ((double)sampleframes * (double)sb->format.speed / (double)format->speed);
// If the sound buffer is too short
if (outcount > sb->maxframes - sb->nbframes)
{
Con_Print("AppendToSndBuffer: sound buffer too short!\n");
return false;
}
out_data = &sb->samples[sb->nbframes * sb->format.width * sb->format.channels];
srclength = sampleframes * format->channels;
// Trivial case (direct transfer)
if (format->speed == sb->format.speed)
{
if (format->width == 1)
{
size_t i;
for (i = 0; i < srclength; i++)
((signed char*)out_data)[i] = samples[i] - 128;
}
else // if (format->width == 2)
memcpy (out_data, samples, srclength * format->width);
}
// General case (linear interpolation with a fixed-point fractional
// step, 18-bit integer part and 14-bit fractional part)
// Can handle up to 2^18 (262144) samples per second (> 96KHz stereo)
# define FRACTIONAL_BITS 14
# define FRACTIONAL_MASK ((1 << FRACTIONAL_BITS) - 1)
# define INTEGER_BITS (sizeof(samplefrac)*8 - FRACTIONAL_BITS)
else
{
const unsigned int fracstep = (unsigned int)((double)format->speed / sb->format.speed * (1 << FRACTIONAL_BITS));
size_t remain_in = srclength, total_out = 0;
unsigned int samplefrac;
const unsigned char *in_ptr = samples;
unsigned char *out_ptr = out_data;
// Check that we can handle one second of that sound
if (format->speed * format->channels > (1 << INTEGER_BITS))
{
Con_Printf ("ResampleSfx: sound quality too high for resampling (%uHz, %u channel(s))\n",
format->speed, format->channels);
return 0;
}
// We work 1 sec at a time to make sure we don't accumulate any
// significant error when adding "fracstep" over several seconds, and
// also to be able to handle very long sounds.
while (total_out < outcount)
{
size_t tmpcount, interpolation_limit, i, j;
unsigned int srcsample;
samplefrac = 0;
// If more than 1 sec of sound remains to be converted
if (outcount - total_out > sb->format.speed)
{
tmpcount = sb->format.speed;
interpolation_limit = tmpcount; // all samples can be interpolated
}
else
{
tmpcount = outcount - total_out;
interpolation_limit = (int)ceil((double)(((remain_in / format->channels) - 1) << FRACTIONAL_BITS) / fracstep);
if (interpolation_limit > tmpcount)
interpolation_limit = tmpcount;
}
// 16 bit samples
if (format->width == 2)
{
const short* in_ptr_short;
// Interpolated part
for (i = 0; i < interpolation_limit; i++)
{
srcsample = (samplefrac >> FRACTIONAL_BITS) * format->channels;
in_ptr_short = &((const short*)in_ptr)[srcsample];
for (j = 0; j < format->channels; j++)
{
int a, b;
a = *in_ptr_short;
b = *(in_ptr_short + format->channels);
*((short*)out_ptr) = (((b - a) * (samplefrac & FRACTIONAL_MASK)) >> FRACTIONAL_BITS) + a;
in_ptr_short++;
out_ptr += sizeof (short);
}
samplefrac += fracstep;
}
// Non-interpolated part
for (/* nothing */; i < tmpcount; i++)
{
srcsample = (samplefrac >> FRACTIONAL_BITS) * format->channels;
in_ptr_short = &((const short*)in_ptr)[srcsample];
for (j = 0; j < format->channels; j++)
{
*((short*)out_ptr) = *in_ptr_short;
in_ptr_short++;
out_ptr += sizeof (short);
}
samplefrac += fracstep;
}
}
// 8 bit samples
else // if (format->width == 1)
{
const unsigned char* in_ptr_byte;
// Convert up to 1 sec of sound
for (i = 0; i < interpolation_limit; i++)
{
srcsample = (samplefrac >> FRACTIONAL_BITS) * format->channels;
in_ptr_byte = &((const unsigned char*)in_ptr)[srcsample];
for (j = 0; j < format->channels; j++)
{
int a, b;
a = *in_ptr_byte - 128;
b = *(in_ptr_byte + format->channels) - 128;
*((signed char*)out_ptr) = (((b - a) * (samplefrac & FRACTIONAL_MASK)) >> FRACTIONAL_BITS) + a;
in_ptr_byte++;
out_ptr += sizeof (signed char);
}
samplefrac += fracstep;
}
// Non-interpolated part
for (/* nothing */; i < tmpcount; i++)
{
srcsample = (samplefrac >> FRACTIONAL_BITS) * format->channels;
in_ptr_byte = &((const unsigned char*)in_ptr)[srcsample];
for (j = 0; j < format->channels; j++)
{
*((signed char*)out_ptr) = *in_ptr_byte - 128;
in_ptr_byte++;
out_ptr += sizeof (signed char);
}
samplefrac += fracstep;
}
}
// Update the counters and the buffer position
remain_in -= format->speed * format->channels;
in_ptr += format->speed * format->channels * format->width;
total_out += tmpcount;
}
}
sb->nbframes += outcount;
return true;
}
//=============================================================================
/*
==============
S_LoadSound
==============
*/
qboolean S_LoadSound (sfx_t *sfx, qboolean complain)
{
char namebuffer[MAX_QPATH + 16];
size_t len;
// See if already loaded
if (sfx->fetcher != NULL)
return true;
// If we weren't able to load it previously, no need to retry
// Note: S_PrecacheSound clears this flag to cause a retry
if (sfx->flags & SFXFLAG_FILEMISSING)
return false;
// No sound?
if (snd_renderbuffer == NULL)
return false;
// Initialize volume peak to 0; if ReplayGain is supported, the loader will change this away
sfx->volume_peak = 0.0;
if (developer_loading.integer)
Con_Printf("loading sound %s\n", sfx->name);
SCR_PushLoadingScreen(true, sfx->name, 1);
// LordHavoc: if the sound filename does not begin with sound/, try adding it
if (strncasecmp(sfx->name, "sound/", 6))
{
dpsnprintf (namebuffer, sizeof(namebuffer), "sound/%s", sfx->name);
len = strlen(namebuffer);
if (len >= 4 && !strcasecmp (namebuffer + len - 4, ".wav"))
{
if (S_LoadWavFile (namebuffer, sfx))
goto loaded;
memcpy (namebuffer + len - 3, "ogg", 4);
}
if (len >= 4 && !strcasecmp (namebuffer + len - 4, ".ogg"))
{
if (OGG_LoadVorbisFile (namebuffer, sfx))
goto loaded;
}
else
{
if (ModPlug_LoadModPlugFile (namebuffer, sfx))
goto loaded;
}
}
// LordHavoc: then try without the added sound/ as wav and ogg
dpsnprintf (namebuffer, sizeof(namebuffer), "%s", sfx->name);
len = strlen(namebuffer);
// request foo.wav: tries foo.wav, then foo.ogg
// request foo.ogg: tries foo.ogg only
// request foo.mod: tries foo.mod only
if (len >= 4 && !strcasecmp (namebuffer + len - 4, ".wav"))
{
if (S_LoadWavFile (namebuffer, sfx))
goto loaded;
memcpy (namebuffer + len - 3, "ogg", 4);
}
if (len >= 4 && !strcasecmp (namebuffer + len - 4, ".ogg"))
{
if (OGG_LoadVorbisFile (namebuffer, sfx))
goto loaded;
}
else
{
if (ModPlug_LoadModPlugFile (namebuffer, sfx))
goto loaded;
}
// Can't load the sound!
sfx->flags |= SFXFLAG_FILEMISSING;
if (complain)
Con_DPrintf("failed to load sound \"%s\"\n", sfx->name);
SCR_PopLoadingScreen(false);
return false;
loaded:
SCR_PopLoadingScreen(false);
return true;
}