quakequest/Projects/Android/jni/cl_particles.c
Simon c43b7c6a43 Handedness cvar
a few other items too
clean shutdown
2019-05-31 23:46:36 +01:00

3101 lines
132 KiB
C

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "quakedef.h"
#include "cl_collision.h"
#include "image.h"
#include "r_shadow.h"
// must match ptype_t values
particletype_t particletype[pt_total] =
{
{PBLEND_INVALID, PARTICLE_INVALID, false}, //pt_dead (should never happen)
{PBLEND_ALPHA, PARTICLE_BILLBOARD, false}, //pt_alphastatic
{PBLEND_ADD, PARTICLE_BILLBOARD, false}, //pt_static
{PBLEND_ADD, PARTICLE_SPARK, false}, //pt_spark
{PBLEND_ADD, PARTICLE_HBEAM, false}, //pt_beam
{PBLEND_ADD, PARTICLE_SPARK, false}, //pt_rain
{PBLEND_ADD, PARTICLE_ORIENTED_DOUBLESIDED, false}, //pt_raindecal
{PBLEND_ADD, PARTICLE_BILLBOARD, false}, //pt_snow
{PBLEND_ADD, PARTICLE_BILLBOARD, false}, //pt_bubble
{PBLEND_INVMOD, PARTICLE_BILLBOARD, false}, //pt_blood
{PBLEND_ADD, PARTICLE_BILLBOARD, false}, //pt_smoke
{PBLEND_INVMOD, PARTICLE_ORIENTED_DOUBLESIDED, false}, //pt_decal
{PBLEND_ALPHA, PARTICLE_BILLBOARD, false}, //pt_entityparticle
};
#define PARTICLEEFFECT_UNDERWATER 1
#define PARTICLEEFFECT_NOTUNDERWATER 2
typedef struct particleeffectinfo_s
{
int effectnameindex; // which effect this belongs to
// PARTICLEEFFECT_* bits
int flags;
// blood effects may spawn very few particles, so proper fraction-overflow
// handling is very important, this variable keeps track of the fraction
double particleaccumulator;
// the math is: countabsolute + requestedcount * countmultiplier * quality
// absolute number of particles to spawn, often used for decals
// (unaffected by quality and requestedcount)
float countabsolute;
// multiplier for the number of particles CL_ParticleEffect was told to
// spawn, most effects do not really have a count and hence use 1, so
// this is often the actual count to spawn, not merely a multiplier
float countmultiplier;
// if > 0 this causes the particle to spawn in an evenly spaced line from
// originmins to originmaxs (causing them to describe a trail, not a box)
float trailspacing;
// type of particle to spawn (defines some aspects of behavior)
ptype_t particletype;
// blending mode used on this particle type
pblend_t blendmode;
// orientation of this particle type (BILLBOARD, SPARK, BEAM, etc)
porientation_t orientation;
// range of colors to choose from in hex RRGGBB (like HTML color tags),
// randomly interpolated at spawn
unsigned int color[2];
// a random texture is chosen in this range (note the second value is one
// past the last choosable, so for example 8,16 chooses any from 8 up and
// including 15)
// if start and end of the range are the same, no randomization is done
int tex[2];
// range of size values randomly chosen when spawning, plus size increase over time
float size[3];
// range of alpha values randomly chosen when spawning, plus alpha fade
float alpha[3];
// how long the particle should live (note it is also removed if alpha drops to 0)
float time[2];
// how much gravity affects this particle (negative makes it fly up!)
float gravity;
// how much bounce the particle has when it hits a surface
// if negative the particle is removed on impact
float bounce;
// if in air this friction is applied
// if negative the particle accelerates
float airfriction;
// if in liquid (water/slime/lava) this friction is applied
// if negative the particle accelerates
float liquidfriction;
// these offsets are added to the values given to particleeffect(), and
// then an ellipsoid-shaped jitter is added as defined by these
// (they are the 3 radii)
float stretchfactor;
// stretch velocity factor (used for sparks)
float originoffset[3];
float relativeoriginoffset[3];
float velocityoffset[3];
float relativevelocityoffset[3];
float originjitter[3];
float velocityjitter[3];
float velocitymultiplier;
// an effect can also spawn a dlight
float lightradiusstart;
float lightradiusfade;
float lighttime;
float lightcolor[3];
qboolean lightshadow;
int lightcubemapnum;
float lightcorona[2];
unsigned int staincolor[2]; // note: 0x808080 = neutral (particle's own color), these are modding factors for the particle's original color!
int staintex[2];
float stainalpha[2];
float stainsize[2];
// other parameters
float rotate[4]; // min/max base angle, min/max rotation over time
}
particleeffectinfo_t;
char particleeffectname[MAX_PARTICLEEFFECTNAME][64];
int numparticleeffectinfo;
particleeffectinfo_t particleeffectinfo[MAX_PARTICLEEFFECTINFO];
static int particlepalette[256];
/*
0x000000,0x0f0f0f,0x1f1f1f,0x2f2f2f,0x3f3f3f,0x4b4b4b,0x5b5b5b,0x6b6b6b, // 0-7
0x7b7b7b,0x8b8b8b,0x9b9b9b,0xababab,0xbbbbbb,0xcbcbcb,0xdbdbdb,0xebebeb, // 8-15
0x0f0b07,0x170f0b,0x1f170b,0x271b0f,0x2f2313,0x372b17,0x3f2f17,0x4b371b, // 16-23
0x533b1b,0x5b431f,0x634b1f,0x6b531f,0x73571f,0x7b5f23,0x836723,0x8f6f23, // 24-31
0x0b0b0f,0x13131b,0x1b1b27,0x272733,0x2f2f3f,0x37374b,0x3f3f57,0x474767, // 32-39
0x4f4f73,0x5b5b7f,0x63638b,0x6b6b97,0x7373a3,0x7b7baf,0x8383bb,0x8b8bcb, // 40-47
0x000000,0x070700,0x0b0b00,0x131300,0x1b1b00,0x232300,0x2b2b07,0x2f2f07, // 48-55
0x373707,0x3f3f07,0x474707,0x4b4b0b,0x53530b,0x5b5b0b,0x63630b,0x6b6b0f, // 56-63
0x070000,0x0f0000,0x170000,0x1f0000,0x270000,0x2f0000,0x370000,0x3f0000, // 64-71
0x470000,0x4f0000,0x570000,0x5f0000,0x670000,0x6f0000,0x770000,0x7f0000, // 72-79
0x131300,0x1b1b00,0x232300,0x2f2b00,0x372f00,0x433700,0x4b3b07,0x574307, // 80-87
0x5f4707,0x6b4b0b,0x77530f,0x835713,0x8b5b13,0x975f1b,0xa3631f,0xaf6723, // 88-95
0x231307,0x2f170b,0x3b1f0f,0x4b2313,0x572b17,0x632f1f,0x733723,0x7f3b2b, // 96-103
0x8f4333,0x9f4f33,0xaf632f,0xbf772f,0xcf8f2b,0xdfab27,0xefcb1f,0xfff31b, // 104-111
0x0b0700,0x1b1300,0x2b230f,0x372b13,0x47331b,0x533723,0x633f2b,0x6f4733, // 112-119
0x7f533f,0x8b5f47,0x9b6b53,0xa77b5f,0xb7876b,0xc3937b,0xd3a38b,0xe3b397, // 120-127
0xab8ba3,0x9f7f97,0x937387,0x8b677b,0x7f5b6f,0x775363,0x6b4b57,0x5f3f4b, // 128-135
0x573743,0x4b2f37,0x43272f,0x371f23,0x2b171b,0x231313,0x170b0b,0x0f0707, // 136-143
0xbb739f,0xaf6b8f,0xa35f83,0x975777,0x8b4f6b,0x7f4b5f,0x734353,0x6b3b4b, // 144-151
0x5f333f,0x532b37,0x47232b,0x3b1f23,0x2f171b,0x231313,0x170b0b,0x0f0707, // 152-159
0xdbc3bb,0xcbb3a7,0xbfa39b,0xaf978b,0xa3877b,0x977b6f,0x876f5f,0x7b6353, // 160-167
0x6b5747,0x5f4b3b,0x533f33,0x433327,0x372b1f,0x271f17,0x1b130f,0x0f0b07, // 168-175
0x6f837b,0x677b6f,0x5f7367,0x576b5f,0x4f6357,0x475b4f,0x3f5347,0x374b3f, // 176-183
0x2f4337,0x2b3b2f,0x233327,0x1f2b1f,0x172317,0x0f1b13,0x0b130b,0x070b07, // 184-191
0xfff31b,0xefdf17,0xdbcb13,0xcbb70f,0xbba70f,0xab970b,0x9b8307,0x8b7307, // 192-199
0x7b6307,0x6b5300,0x5b4700,0x4b3700,0x3b2b00,0x2b1f00,0x1b0f00,0x0b0700, // 200-207
0x0000ff,0x0b0bef,0x1313df,0x1b1bcf,0x2323bf,0x2b2baf,0x2f2f9f,0x2f2f8f, // 208-215
0x2f2f7f,0x2f2f6f,0x2f2f5f,0x2b2b4f,0x23233f,0x1b1b2f,0x13131f,0x0b0b0f, // 216-223
0x2b0000,0x3b0000,0x4b0700,0x5f0700,0x6f0f00,0x7f1707,0x931f07,0xa3270b, // 224-231
0xb7330f,0xc34b1b,0xcf632b,0xdb7f3b,0xe3974f,0xe7ab5f,0xefbf77,0xf7d38b, // 232-239
0xa77b3b,0xb79b37,0xc7c337,0xe7e357,0x7fbfff,0xabe7ff,0xd7ffff,0x670000, // 240-247
0x8b0000,0xb30000,0xd70000,0xff0000,0xfff393,0xfff7c7,0xffffff,0x9f5b53 // 248-255
*/
int ramp1[8] = {0x6f, 0x6d, 0x6b, 0x69, 0x67, 0x65, 0x63, 0x61};
int ramp2[8] = {0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x68, 0x66};
int ramp3[8] = {0x6d, 0x6b, 6, 5, 4, 3};
//static int explosparkramp[8] = {0x4b0700, 0x6f0f00, 0x931f07, 0xb7330f, 0xcf632b, 0xe3974f, 0xffe7b5, 0xffffff};
// particletexture_t is a rectangle in the particlefonttexture
typedef struct particletexture_s
{
rtexture_t *texture;
float s1, t1, s2, t2;
}
particletexture_t;
static rtexturepool_t *particletexturepool;
static rtexture_t *particlefonttexture;
static particletexture_t particletexture[MAX_PARTICLETEXTURES];
skinframe_t *decalskinframe;
// texture numbers in particle font
static const int tex_smoke[8] = {0, 1, 2, 3, 4, 5, 6, 7};
static const int tex_bulletdecal[8] = {8, 9, 10, 11, 12, 13, 14, 15};
static const int tex_blooddecal[8] = {16, 17, 18, 19, 20, 21, 22, 23};
static const int tex_bloodparticle[8] = {24, 25, 26, 27, 28, 29, 30, 31};
static const int tex_rainsplash = 32;
static const int tex_particle = 63;
static const int tex_bubble = 62;
static const int tex_raindrop = 61;
static const int tex_beam = 60;
particleeffectinfo_t baselineparticleeffectinfo =
{
0, //int effectnameindex; // which effect this belongs to
// PARTICLEEFFECT_* bits
0, //int flags;
// blood effects may spawn very few particles, so proper fraction-overflow
// handling is very important, this variable keeps track of the fraction
0.0, //double particleaccumulator;
// the math is: countabsolute + requestedcount * countmultiplier * quality
// absolute number of particles to spawn, often used for decals
// (unaffected by quality and requestedcount)
0.0f, //float countabsolute;
// multiplier for the number of particles CL_ParticleEffect was told to
// spawn, most effects do not really have a count and hence use 1, so
// this is often the actual count to spawn, not merely a multiplier
0.0f, //float countmultiplier;
// if > 0 this causes the particle to spawn in an evenly spaced line from
// originmins to originmaxs (causing them to describe a trail, not a box)
0.0f, //float trailspacing;
// type of particle to spawn (defines some aspects of behavior)
pt_alphastatic, //ptype_t particletype;
// blending mode used on this particle type
PBLEND_ALPHA, //pblend_t blendmode;
// orientation of this particle type (BILLBOARD, SPARK, BEAM, etc)
PARTICLE_BILLBOARD, //porientation_t orientation;
// range of colors to choose from in hex RRGGBB (like HTML color tags),
// randomly interpolated at spawn
{0xFFFFFF, 0xFFFFFF}, //unsigned int color[2];
// a random texture is chosen in this range (note the second value is one
// past the last choosable, so for example 8,16 chooses any from 8 up and
// including 15)
// if start and end of the range are the same, no randomization is done
{63, 63 /* tex_particle */}, //int tex[2];
// range of size values randomly chosen when spawning, plus size increase over time
{1, 1, 0.0f}, //float size[3];
// range of alpha values randomly chosen when spawning, plus alpha fade
{0.0f, 256.0f, 256.0f}, //float alpha[3];
// how long the particle should live (note it is also removed if alpha drops to 0)
{16777216.0f, 16777216.0f}, //float time[2];
// how much gravity affects this particle (negative makes it fly up!)
0.0f, //float gravity;
// how much bounce the particle has when it hits a surface
// if negative the particle is removed on impact
0.0f, //float bounce;
// if in air this friction is applied
// if negative the particle accelerates
0.0f, //float airfriction;
// if in liquid (water/slime/lava) this friction is applied
// if negative the particle accelerates
0.0f, //float liquidfriction;
// these offsets are added to the values given to particleeffect(), and
// then an ellipsoid-shaped jitter is added as defined by these
// (they are the 3 radii)
1.0f, //float stretchfactor;
// stretch velocity factor (used for sparks)
{0.0f, 0.0f, 0.0f}, //float originoffset[3];
{0.0f, 0.0f, 0.0f}, //float relativeoriginoffset[3];
{0.0f, 0.0f, 0.0f}, //float velocityoffset[3];
{0.0f, 0.0f, 0.0f}, //float relativevelocityoffset[3];
{0.0f, 0.0f, 0.0f}, //float originjitter[3];
{0.0f, 0.0f, 0.0f}, //float velocityjitter[3];
0.0f, //float velocitymultiplier;
// an effect can also spawn a dlight
0.0f, //float lightradiusstart;
0.0f, //float lightradiusfade;
16777216.0f, //float lighttime;
{1.0f, 1.0f, 1.0f}, //float lightcolor[3];
true, //qboolean lightshadow;
0, //int lightcubemapnum;
{1.0f, 0.25f}, //float lightcorona[2];
{(unsigned int)-1, (unsigned int)-1}, //unsigned int staincolor[2]; // note: 0x808080 = neutral (particle's own color), these are modding factors for the particle's original color!
{-1, -1}, //int staintex[2];
{1.0f, 1.0f}, //float stainalpha[2];
{2.0f, 2.0f}, //float stainsize[2];
// other parameters
{0.0f, 360.0f, 0.0f, 0.0f}, //float rotate[4]; // min/max base angle, min/max rotation over time
};
cvar_t cl_particles = {CVAR_SAVE, "cl_particles", "1", "enables particle effects"};
cvar_t cl_particles_quality = {CVAR_SAVE, "cl_particles_quality", "1", "multiplies number of particles"};
cvar_t cl_particles_alpha = {CVAR_SAVE, "cl_particles_alpha", "1", "multiplies opacity of particles"};
cvar_t cl_particles_size = {CVAR_SAVE, "cl_particles_size", "1", "multiplies particle size"};
cvar_t cl_particles_quake = {CVAR_SAVE, "cl_particles_quake", "0", "makes particle effects look mostly like the ones in Quake"};
cvar_t cl_particles_blood = {CVAR_SAVE, "cl_particles_blood", "1", "enables blood effects"};
cvar_t cl_particles_blood_alpha = {CVAR_SAVE, "cl_particles_blood_alpha", "1", "opacity of blood, does not affect decals"};
cvar_t cl_particles_blood_decal_alpha = {CVAR_SAVE, "cl_particles_blood_decal_alpha", "1", "opacity of blood decal"};
cvar_t cl_particles_blood_decal_scalemin = {CVAR_SAVE, "cl_particles_blood_decal_scalemin", "1.5", "minimal random scale of decal"};
cvar_t cl_particles_blood_decal_scalemax = {CVAR_SAVE, "cl_particles_blood_decal_scalemax", "2", "maximal random scale of decal"};
cvar_t cl_particles_blood_bloodhack = {CVAR_SAVE, "cl_particles_blood_bloodhack", "1", "make certain quake particle() calls create blood effects instead"};
cvar_t cl_particles_bulletimpacts = {CVAR_SAVE, "cl_particles_bulletimpacts", "1", "enables bulletimpact effects"};
cvar_t cl_particles_explosions_sparks = {CVAR_SAVE, "cl_particles_explosions_sparks", "1", "enables sparks from explosions"};
cvar_t cl_particles_explosions_shell = {CVAR_SAVE, "cl_particles_explosions_shell", "0", "enables polygonal shell from explosions"};
cvar_t cl_particles_rain = {CVAR_SAVE, "cl_particles_rain", "1", "enables rain effects"};
cvar_t cl_particles_snow = {CVAR_SAVE, "cl_particles_snow", "1", "enables snow effects"};
cvar_t cl_particles_smoke = {CVAR_SAVE, "cl_particles_smoke", "1", "enables smoke (used by multiple effects)"};
cvar_t cl_particles_smoke_alpha = {CVAR_SAVE, "cl_particles_smoke_alpha", "0.5", "smoke brightness"};
cvar_t cl_particles_smoke_alphafade = {CVAR_SAVE, "cl_particles_smoke_alphafade", "0.55", "brightness fade per second"};
cvar_t cl_particles_sparks = {CVAR_SAVE, "cl_particles_sparks", "1", "enables sparks (used by multiple effects)"};
cvar_t cl_particles_bubbles = {CVAR_SAVE, "cl_particles_bubbles", "1", "enables bubbles (used by multiple effects)"};
cvar_t cl_particles_visculling = {CVAR_SAVE, "cl_particles_visculling", "0", "perform a costly check if each particle is visible before drawing"};
cvar_t cl_particles_collisions = {CVAR_SAVE, "cl_particles_collisions", "1", "allow costly collision detection on particles (sparks that bounce, particles not going through walls, blood hitting surfaces, etc)"};
cvar_t cl_decals = {CVAR_SAVE, "cl_decals", "1", "enables decals (bullet holes, blood, etc)"};
cvar_t cl_decals_visculling = {CVAR_SAVE, "cl_decals_visculling", "1", "perform a very cheap check if each decal is visible before drawing"};
cvar_t cl_decals_time = {CVAR_SAVE, "cl_decals_time", "20", "how long before decals start to fade away"};
cvar_t cl_decals_fadetime = {CVAR_SAVE, "cl_decals_fadetime", "1", "how long decals take to fade away"};
cvar_t cl_decals_newsystem = {CVAR_SAVE, "cl_decals_newsystem", "1", "enables new advanced decal system"};
cvar_t cl_decals_newsystem_intensitymultiplier = {CVAR_SAVE, "cl_decals_newsystem_intensitymultiplier", "2", "boosts intensity of decals (because the distance fade can make them hard to see otherwise)"};
cvar_t cl_decals_newsystem_immediatebloodstain = {CVAR_SAVE, "cl_decals_newsystem_immediatebloodstain", "2", "0: no on-spawn blood stains; 1: on-spawn blood stains for pt_blood; 2: always use on-spawn blood stains"};
cvar_t cl_decals_newsystem_bloodsmears = {CVAR_SAVE, "cl_decals_newsystem_bloodsmears", "1", "enable use of particle velocity as decal projection direction rather than surface normal"};
cvar_t cl_decals_models = {CVAR_SAVE, "cl_decals_models", "1", "enables decals on animated models (if newsystem is also 1)"};
cvar_t cl_decals_bias = {CVAR_SAVE, "cl_decals_bias", "0.125", "distance to bias decals from surface to prevent depth fighting"};
cvar_t cl_decals_max = {CVAR_SAVE, "cl_decals_max", "4096", "maximum number of decals allowed to exist in the world at once"};
static void CL_Particles_ParseEffectInfo(const char *textstart, const char *textend, const char *filename)
{
int arrayindex;
int argc;
int linenumber;
particleeffectinfo_t *info = NULL;
const char *text = textstart;
char argv[16][1024];
for (linenumber = 1;;linenumber++)
{
argc = 0;
for (arrayindex = 0;arrayindex < 16;arrayindex++)
argv[arrayindex][0] = 0;
for (;;)
{
if (!COM_ParseToken_Simple(&text, true, false, true))
return;
if (!strcmp(com_token, "\n"))
break;
if (argc < 16)
{
strlcpy(argv[argc], com_token, sizeof(argv[argc]));
argc++;
}
}
if (argc < 1)
continue;
#define checkparms(n) if (argc != (n)) {Con_Printf("%s:%i: error while parsing: %s given %i parameters, should be %i parameters\n", filename, linenumber, argv[0], argc, (n));break;}
#define readints(array, n) checkparms(n+1);for (arrayindex = 0;arrayindex < argc - 1;arrayindex++) array[arrayindex] = strtol(argv[1+arrayindex], NULL, 0)
#define readfloats(array, n) checkparms(n+1);for (arrayindex = 0;arrayindex < argc - 1;arrayindex++) array[arrayindex] = atof(argv[1+arrayindex])
#define readint(var) checkparms(2);var = strtol(argv[1], NULL, 0)
#define readfloat(var) checkparms(2);var = atof(argv[1])
#define readbool(var) checkparms(2);var = strtol(argv[1], NULL, 0) != 0
if (!strcmp(argv[0], "effect"))
{
int effectnameindex;
checkparms(2);
if (numparticleeffectinfo >= MAX_PARTICLEEFFECTINFO)
{
Con_Printf("%s:%i: too many effects!\n", filename, linenumber);
break;
}
for (effectnameindex = 1;effectnameindex < MAX_PARTICLEEFFECTNAME;effectnameindex++)
{
if (particleeffectname[effectnameindex][0])
{
if (!strcmp(particleeffectname[effectnameindex], argv[1]))
break;
}
else
{
strlcpy(particleeffectname[effectnameindex], argv[1], sizeof(particleeffectname[effectnameindex]));
break;
}
}
// if we run out of names, abort
if (effectnameindex == MAX_PARTICLEEFFECTNAME)
{
Con_Printf("%s:%i: too many effects!\n", filename, linenumber);
break;
}
info = particleeffectinfo + numparticleeffectinfo++;
// copy entire info from baseline, then fix up the nameindex
*info = baselineparticleeffectinfo;
info->effectnameindex = effectnameindex;
}
else if (info == NULL)
{
Con_Printf("%s:%i: command %s encountered before effect\n", filename, linenumber, argv[0]);
break;
}
else if (!strcmp(argv[0], "countabsolute")) {readfloat(info->countabsolute);}
else if (!strcmp(argv[0], "count")) {readfloat(info->countmultiplier);}
else if (!strcmp(argv[0], "type"))
{
checkparms(2);
if (!strcmp(argv[1], "alphastatic")) info->particletype = pt_alphastatic;
else if (!strcmp(argv[1], "static")) info->particletype = pt_static;
else if (!strcmp(argv[1], "spark")) info->particletype = pt_spark;
else if (!strcmp(argv[1], "beam")) info->particletype = pt_beam;
else if (!strcmp(argv[1], "rain")) info->particletype = pt_rain;
else if (!strcmp(argv[1], "raindecal")) info->particletype = pt_raindecal;
else if (!strcmp(argv[1], "snow")) info->particletype = pt_snow;
else if (!strcmp(argv[1], "bubble")) info->particletype = pt_bubble;
else if (!strcmp(argv[1], "blood")) {info->particletype = pt_blood;info->gravity = 1;}
else if (!strcmp(argv[1], "smoke")) info->particletype = pt_smoke;
else if (!strcmp(argv[1], "decal")) info->particletype = pt_decal;
else if (!strcmp(argv[1], "entityparticle")) info->particletype = pt_entityparticle;
else Con_Printf("%s:%i: unrecognized particle type %s\n", filename, linenumber, argv[1]);
info->blendmode = particletype[info->particletype].blendmode;
info->orientation = particletype[info->particletype].orientation;
}
else if (!strcmp(argv[0], "blend"))
{
checkparms(2);
if (!strcmp(argv[1], "alpha")) info->blendmode = PBLEND_ALPHA;
else if (!strcmp(argv[1], "add")) info->blendmode = PBLEND_ADD;
else if (!strcmp(argv[1], "invmod")) info->blendmode = PBLEND_INVMOD;
else Con_Printf("%s:%i: unrecognized blendmode %s\n", filename, linenumber, argv[1]);
}
else if (!strcmp(argv[0], "orientation"))
{
checkparms(2);
if (!strcmp(argv[1], "billboard")) info->orientation = PARTICLE_BILLBOARD;
else if (!strcmp(argv[1], "spark")) info->orientation = PARTICLE_SPARK;
else if (!strcmp(argv[1], "oriented")) info->orientation = PARTICLE_ORIENTED_DOUBLESIDED;
else if (!strcmp(argv[1], "beam")) info->orientation = PARTICLE_HBEAM;
else Con_Printf("%s:%i: unrecognized orientation %s\n", filename, linenumber, argv[1]);
}
else if (!strcmp(argv[0], "color")) {readints(info->color, 2);}
else if (!strcmp(argv[0], "tex")) {readints(info->tex, 2);}
else if (!strcmp(argv[0], "size")) {readfloats(info->size, 2);}
else if (!strcmp(argv[0], "sizeincrease")) {readfloat(info->size[2]);}
else if (!strcmp(argv[0], "alpha")) {readfloats(info->alpha, 3);}
else if (!strcmp(argv[0], "time")) {readfloats(info->time, 2);}
else if (!strcmp(argv[0], "gravity")) {readfloat(info->gravity);}
else if (!strcmp(argv[0], "bounce")) {readfloat(info->bounce);}
else if (!strcmp(argv[0], "airfriction")) {readfloat(info->airfriction);}
else if (!strcmp(argv[0], "liquidfriction")) {readfloat(info->liquidfriction);}
else if (!strcmp(argv[0], "originoffset")) {readfloats(info->originoffset, 3);}
else if (!strcmp(argv[0], "relativeoriginoffset")) {readfloats(info->relativeoriginoffset, 3);}
else if (!strcmp(argv[0], "velocityoffset")) {readfloats(info->velocityoffset, 3);}
else if (!strcmp(argv[0], "relativevelocityoffset")) {readfloats(info->relativevelocityoffset, 3);}
else if (!strcmp(argv[0], "originjitter")) {readfloats(info->originjitter, 3);}
else if (!strcmp(argv[0], "velocityjitter")) {readfloats(info->velocityjitter, 3);}
else if (!strcmp(argv[0], "velocitymultiplier")) {readfloat(info->velocitymultiplier);}
else if (!strcmp(argv[0], "lightradius")) {readfloat(info->lightradiusstart);}
else if (!strcmp(argv[0], "lightradiusfade")) {readfloat(info->lightradiusfade);}
else if (!strcmp(argv[0], "lighttime")) {readfloat(info->lighttime);}
else if (!strcmp(argv[0], "lightcolor")) {readfloats(info->lightcolor, 3);}
else if (!strcmp(argv[0], "lightshadow")) {readbool(info->lightshadow);}
else if (!strcmp(argv[0], "lightcubemapnum")) {readint(info->lightcubemapnum);}
else if (!strcmp(argv[0], "lightcorona")) {readints(info->lightcorona, 2);}
else if (!strcmp(argv[0], "underwater")) {checkparms(1);info->flags |= PARTICLEEFFECT_UNDERWATER;}
else if (!strcmp(argv[0], "notunderwater")) {checkparms(1);info->flags |= PARTICLEEFFECT_NOTUNDERWATER;}
else if (!strcmp(argv[0], "trailspacing")) {readfloat(info->trailspacing);if (info->trailspacing > 0) info->countmultiplier = 1.0f / info->trailspacing;}
else if (!strcmp(argv[0], "stretchfactor")) {readfloat(info->stretchfactor);}
else if (!strcmp(argv[0], "staincolor")) {readints(info->staincolor, 2);}
else if (!strcmp(argv[0], "stainalpha")) {readfloats(info->stainalpha, 2);}
else if (!strcmp(argv[0], "stainsize")) {readfloats(info->stainsize, 2);}
else if (!strcmp(argv[0], "staintex")) {readints(info->staintex, 2);}
else if (!strcmp(argv[0], "stainless")) {info->staintex[0] = -2; info->staincolor[0] = (unsigned int)-1; info->staincolor[1] = (unsigned int)-1; info->stainalpha[0] = 1; info->stainalpha[1] = 1; info->stainsize[0] = 2; info->stainsize[1] = 2; }
else if (!strcmp(argv[0], "rotate")) {readfloats(info->rotate, 4);}
else
Con_Printf("%s:%i: skipping unknown command %s\n", filename, linenumber, argv[0]);
#undef checkparms
#undef readints
#undef readfloats
#undef readint
#undef readfloat
}
}
int CL_ParticleEffectIndexForName(const char *name)
{
int i;
for (i = 1;i < MAX_PARTICLEEFFECTNAME && particleeffectname[i][0];i++)
if (!strcmp(particleeffectname[i], name))
return i;
return 0;
}
const char *CL_ParticleEffectNameForIndex(int i)
{
if (i < 1 || i >= MAX_PARTICLEEFFECTNAME)
return NULL;
return particleeffectname[i];
}
// MUST match effectnameindex_t in client.h
static const char *standardeffectnames[EFFECT_TOTAL] =
{
"",
"TE_GUNSHOT",
"TE_GUNSHOTQUAD",
"TE_SPIKE",
"TE_SPIKEQUAD",
"TE_SUPERSPIKE",
"TE_SUPERSPIKEQUAD",
"TE_WIZSPIKE",
"TE_KNIGHTSPIKE",
"TE_EXPLOSION",
"TE_EXPLOSIONQUAD",
"TE_TAREXPLOSION",
"TE_TELEPORT",
"TE_LAVASPLASH",
"TE_SMALLFLASH",
"TE_FLAMEJET",
"EF_FLAME",
"TE_BLOOD",
"TE_SPARK",
"TE_PLASMABURN",
"TE_TEI_G3",
"TE_TEI_SMOKE",
"TE_TEI_BIGEXPLOSION",
"TE_TEI_PLASMAHIT",
"EF_STARDUST",
"TR_ROCKET",
"TR_GRENADE",
"TR_BLOOD",
"TR_WIZSPIKE",
"TR_SLIGHTBLOOD",
"TR_KNIGHTSPIKE",
"TR_VORESPIKE",
"TR_NEHAHRASMOKE",
"TR_NEXUIZPLASMA",
"TR_GLOWTRAIL",
"SVC_PARTICLE"
};
static void CL_Particles_LoadEffectInfo(const char *customfile)
{
int i;
int filepass;
unsigned char *filedata;
fs_offset_t filesize;
char filename[MAX_QPATH];
numparticleeffectinfo = 0;
memset(particleeffectinfo, 0, sizeof(particleeffectinfo));
memset(particleeffectname, 0, sizeof(particleeffectname));
for (i = 0;i < EFFECT_TOTAL;i++)
strlcpy(particleeffectname[i], standardeffectnames[i], sizeof(particleeffectname[i]));
for (filepass = 0;;filepass++)
{
if (filepass == 0)
{
if (customfile)
strlcpy(filename, customfile, sizeof(filename));
else
strlcpy(filename, "effectinfo.txt", sizeof(filename));
}
else if (filepass == 1)
{
if (!cl.worldbasename[0] || customfile)
continue;
dpsnprintf(filename, sizeof(filename), "%s_effectinfo.txt", cl.worldnamenoextension);
}
else
break;
filedata = FS_LoadFile(filename, tempmempool, true, &filesize);
if (!filedata)
continue;
CL_Particles_ParseEffectInfo((const char *)filedata, (const char *)filedata + filesize, filename);
Mem_Free(filedata);
}
}
static void CL_Particles_LoadEffectInfo_f(void)
{
CL_Particles_LoadEffectInfo(Cmd_Argc() > 1 ? Cmd_Argv(1) : NULL);
}
/*
===============
CL_InitParticles
===============
*/
void CL_ReadPointFile_f (void);
void CL_Particles_Init (void)
{
Cmd_AddCommand ("pointfile", CL_ReadPointFile_f, "display point file produced by qbsp when a leak was detected in the map (a line leading through the leak hole, to an entity inside the level)");
Cmd_AddCommand ("cl_particles_reloadeffects", CL_Particles_LoadEffectInfo_f, "reloads effectinfo.txt and maps/levelname_effectinfo.txt (where levelname is the current map) if parameter is given, loads from custom file (no levelname_effectinfo are loaded in this case)");
Cvar_RegisterVariable (&cl_particles);
Cvar_RegisterVariable (&cl_particles_quality);
Cvar_RegisterVariable (&cl_particles_alpha);
Cvar_RegisterVariable (&cl_particles_size);
Cvar_RegisterVariable (&cl_particles_quake);
Cvar_RegisterVariable (&cl_particles_blood);
Cvar_RegisterVariable (&cl_particles_blood_alpha);
Cvar_RegisterVariable (&cl_particles_blood_decal_alpha);
Cvar_RegisterVariable (&cl_particles_blood_decal_scalemin);
Cvar_RegisterVariable (&cl_particles_blood_decal_scalemax);
Cvar_RegisterVariable (&cl_particles_blood_bloodhack);
Cvar_RegisterVariable (&cl_particles_explosions_sparks);
Cvar_RegisterVariable (&cl_particles_explosions_shell);
Cvar_RegisterVariable (&cl_particles_bulletimpacts);
Cvar_RegisterVariable (&cl_particles_rain);
Cvar_RegisterVariable (&cl_particles_snow);
Cvar_RegisterVariable (&cl_particles_smoke);
Cvar_RegisterVariable (&cl_particles_smoke_alpha);
Cvar_RegisterVariable (&cl_particles_smoke_alphafade);
Cvar_RegisterVariable (&cl_particles_sparks);
Cvar_RegisterVariable (&cl_particles_bubbles);
Cvar_RegisterVariable (&cl_particles_visculling);
Cvar_RegisterVariable (&cl_particles_collisions);
Cvar_RegisterVariable (&cl_decals);
Cvar_RegisterVariable (&cl_decals_visculling);
Cvar_RegisterVariable (&cl_decals_time);
Cvar_RegisterVariable (&cl_decals_fadetime);
Cvar_RegisterVariable (&cl_decals_newsystem);
Cvar_RegisterVariable (&cl_decals_newsystem_intensitymultiplier);
Cvar_RegisterVariable (&cl_decals_newsystem_immediatebloodstain);
Cvar_RegisterVariable (&cl_decals_newsystem_bloodsmears);
Cvar_RegisterVariable (&cl_decals_models);
Cvar_RegisterVariable (&cl_decals_bias);
Cvar_RegisterVariable (&cl_decals_max);
}
void CL_Particles_Shutdown (void)
{
}
void CL_SpawnDecalParticleForSurface(int hitent, const vec3_t org, const vec3_t normal, int color1, int color2, int texnum, float size, float alpha);
void CL_SpawnDecalParticleForPoint(const vec3_t org, float maxdist, float size, float alpha, int texnum, int color1, int color2);
// list of all 26 parameters:
// ptype - any of the pt_ enum values (pt_static, pt_blood, etc), see ptype_t near the top of this file
// pcolor1,pcolor2 - minimum and maximum ranges of color, randomly interpolated to decide particle color
// ptex - any of the tex_ values such as tex_smoke[rand()&7] or tex_particle
// psize - size of particle (or thickness for PARTICLE_SPARK and PARTICLE_*BEAM)
// palpha - opacity of particle as 0-255 (can be more than 255)
// palphafade - rate of fade per second (so 256 would mean a 256 alpha particle would fade to nothing in 1 second)
// ptime - how long the particle can live (note it is also removed if alpha drops to nothing)
// pgravity - how much effect gravity has on the particle (0-1)
// pbounce - how much bounce the particle has when it hits a surface (0-1), -1 makes a blood splat when it hits a surface, 0 does not even check for collisions
// px,py,pz - starting origin of particle
// pvx,pvy,pvz - starting velocity of particle
// pfriction - how much the particle slows down per second (0-1 typically, can slowdown faster than 1)
// blendmode - one of the PBLEND_ values
// orientation - one of the PARTICLE_ values
// staincolor1, staincolor2: minimum and maximum ranges of stain color, randomly interpolated to decide stain color (-1 to use none)
// staintex: any of the tex_ values such as tex_smoke[rand()&7] or tex_particle (-1 to use none)
// stainalpha: opacity of the stain as factor for alpha
// stainsize: size of the stain as factor for palpha
// angle: base rotation of the particle geometry around its center normal
// spin: rotation speed of the particle geometry around its center normal
particle_t *CL_NewParticle(const vec3_t sortorigin, unsigned short ptypeindex, int pcolor1, int pcolor2, int ptex, float psize, float psizeincrease, float palpha, float palphafade, float pgravity, float pbounce, float px, float py, float pz, float pvx, float pvy, float pvz, float pairfriction, float pliquidfriction, float originjitter, float velocityjitter, qboolean pqualityreduction, float lifetime, float stretch, pblend_t blendmode, porientation_t orientation, int staincolor1, int staincolor2, int staintex, float stainalpha, float stainsize, float angle, float spin, float tint[4])
{
int l1, l2, r, g, b;
particle_t *part;
vec3_t v;
if (!cl_particles.integer)
return NULL;
for (;cl.free_particle < cl.max_particles && cl.particles[cl.free_particle].typeindex;cl.free_particle++);
if (cl.free_particle >= cl.max_particles)
return NULL;
if (!lifetime)
lifetime = palpha / min(1, palphafade);
part = &cl.particles[cl.free_particle++];
if (cl.num_particles < cl.free_particle)
cl.num_particles = cl.free_particle;
memset(part, 0, sizeof(*part));
VectorCopy(sortorigin, part->sortorigin);
part->typeindex = ptypeindex;
part->blendmode = blendmode;
if(orientation == PARTICLE_HBEAM || orientation == PARTICLE_VBEAM)
{
particletexture_t *tex = &particletexture[ptex];
if(tex->t1 == 0 && tex->t2 == 1) // full height of texture?
part->orientation = PARTICLE_VBEAM;
else
part->orientation = PARTICLE_HBEAM;
}
else
part->orientation = orientation;
l2 = (int)lhrandom(0.5, 256.5);
l1 = 256 - l2;
part->color[0] = ((((pcolor1 >> 16) & 0xFF) * l1 + ((pcolor2 >> 16) & 0xFF) * l2) >> 8) & 0xFF;
part->color[1] = ((((pcolor1 >> 8) & 0xFF) * l1 + ((pcolor2 >> 8) & 0xFF) * l2) >> 8) & 0xFF;
part->color[2] = ((((pcolor1 >> 0) & 0xFF) * l1 + ((pcolor2 >> 0) & 0xFF) * l2) >> 8) & 0xFF;
if (vid.sRGB3D)
{
part->color[0] = (unsigned char)floor(Image_LinearFloatFromsRGB(part->color[0]) * 255.0f + 0.5f);
part->color[1] = (unsigned char)floor(Image_LinearFloatFromsRGB(part->color[1]) * 255.0f + 0.5f);
part->color[2] = (unsigned char)floor(Image_LinearFloatFromsRGB(part->color[2]) * 255.0f + 0.5f);
}
part->alpha = palpha;
part->alphafade = palphafade;
part->staintexnum = staintex;
if(staincolor1 >= 0 && staincolor2 >= 0)
{
l2 = (int)lhrandom(0.5, 256.5);
l1 = 256 - l2;
if(blendmode == PBLEND_INVMOD)
{
r = ((((staincolor1 >> 16) & 0xFF) * l1 + ((staincolor2 >> 16) & 0xFF) * l2) * (255 - part->color[0])) / 0x8000; // staincolor 0x808080 keeps color invariant
g = ((((staincolor1 >> 8) & 0xFF) * l1 + ((staincolor2 >> 8) & 0xFF) * l2) * (255 - part->color[1])) / 0x8000;
b = ((((staincolor1 >> 0) & 0xFF) * l1 + ((staincolor2 >> 0) & 0xFF) * l2) * (255 - part->color[2])) / 0x8000;
}
else
{
r = ((((staincolor1 >> 16) & 0xFF) * l1 + ((staincolor2 >> 16) & 0xFF) * l2) * part->color[0]) / 0x8000; // staincolor 0x808080 keeps color invariant
g = ((((staincolor1 >> 8) & 0xFF) * l1 + ((staincolor2 >> 8) & 0xFF) * l2) * part->color[1]) / 0x8000;
b = ((((staincolor1 >> 0) & 0xFF) * l1 + ((staincolor2 >> 0) & 0xFF) * l2) * part->color[2]) / 0x8000;
}
if(r > 0xFF) r = 0xFF;
if(g > 0xFF) g = 0xFF;
if(b > 0xFF) b = 0xFF;
}
else
{
r = part->color[0]; // -1 is shorthand for stain = particle color
g = part->color[1];
b = part->color[2];
}
part->staincolor[0] = r;
part->staincolor[1] = g;
part->staincolor[2] = b;
part->stainalpha = palpha * stainalpha;
part->stainsize = psize * stainsize;
if(tint)
{
if(blendmode != PBLEND_INVMOD) // invmod is immune to tinting
{
part->color[0] *= tint[0];
part->color[1] *= tint[1];
part->color[2] *= tint[2];
}
part->alpha *= tint[3];
part->alphafade *= tint[3];
part->stainalpha *= tint[3];
}
part->texnum = ptex;
part->size = psize;
part->sizeincrease = psizeincrease;
part->gravity = pgravity;
part->bounce = pbounce;
part->stretch = stretch;
VectorRandom(v);
part->org[0] = px + originjitter * v[0];
part->org[1] = py + originjitter * v[1];
part->org[2] = pz + originjitter * v[2];
part->vel[0] = pvx + velocityjitter * v[0];
part->vel[1] = pvy + velocityjitter * v[1];
part->vel[2] = pvz + velocityjitter * v[2];
part->time2 = 0;
part->airfriction = pairfriction;
part->liquidfriction = pliquidfriction;
part->die = cl.time + lifetime;
part->delayedspawn = cl.time;
// part->delayedcollisions = 0;
part->qualityreduction = pqualityreduction;
part->angle = angle;
part->spin = spin;
// if it is rain or snow, trace ahead and shut off collisions until an actual collision event needs to occur to improve performance
if (part->typeindex == pt_rain)
{
int i;
particle_t *part2;
float lifetime = part->die - cl.time;
vec3_t endvec;
trace_t trace;
// turn raindrop into simple spark and create delayedspawn splash effect
part->typeindex = pt_spark;
part->bounce = 0;
VectorMA(part->org, lifetime, part->vel, endvec);
trace = CL_TraceLine(part->org, endvec, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID | SUPERCONTENTS_BODY | SUPERCONTENTS_LIQUIDSMASK, true, false, NULL, false, false);
part->die = cl.time + lifetime * trace.fraction;
part2 = CL_NewParticle(endvec, pt_raindecal, pcolor1, pcolor2, tex_rainsplash, part->size, part->size * 20, part->alpha, part->alpha / 0.4, 0, 0, trace.endpos[0] + trace.plane.normal[0], trace.endpos[1] + trace.plane.normal[1], trace.endpos[2] + trace.plane.normal[2], trace.plane.normal[0], trace.plane.normal[1], trace.plane.normal[2], 0, 0, 0, 0, pqualityreduction, 0, 1, PBLEND_ADD, PARTICLE_ORIENTED_DOUBLESIDED, -1, -1, -1, 1, 1, 0, 0, NULL);
if (part2)
{
part2->delayedspawn = part->die;
part2->die += part->die - cl.time;
for (i = rand() & 7;i < 10;i++)
{
part2 = CL_NewParticle(endvec, pt_spark, pcolor1, pcolor2, tex_particle, 0.25f, 0, part->alpha * 2, part->alpha * 4, 1, 0, trace.endpos[0] + trace.plane.normal[0], trace.endpos[1] + trace.plane.normal[1], trace.endpos[2] + trace.plane.normal[2], trace.plane.normal[0] * 16, trace.plane.normal[1] * 16, trace.plane.normal[2] * 16 + cl.movevars_gravity * 0.04, 0, 0, 0, 32, pqualityreduction, 0, 1, PBLEND_ADD, PARTICLE_SPARK, -1, -1, -1, 1, 1, 0, 0, NULL);
if (part2)
{
part2->delayedspawn = part->die;
part2->die += part->die - cl.time;
}
}
}
}
#if 0
else if (part->bounce != 0 && part->gravity == 0 && part->typeindex != pt_snow)
{
float lifetime = part->alpha / (part->alphafade ? part->alphafade : 1);
vec3_t endvec;
trace_t trace;
VectorMA(part->org, lifetime, part->vel, endvec);
trace = CL_TraceLine(part->org, endvec, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID | SUPERCONTENTS_BODY, true, false, NULL, false);
part->delayedcollisions = cl.time + lifetime * trace.fraction - 0.1;
}
#endif
return part;
}
static void CL_ImmediateBloodStain(particle_t *part)
{
vec3_t v;
int staintex;
// blood creates a splash at spawn, not just at impact, this makes monsters bloody where they are shot
if (part->staintexnum >= 0 && cl_decals_newsystem.integer && cl_decals.integer)
{
VectorCopy(part->vel, v);
VectorNormalize(v);
staintex = part->staintexnum;
R_DecalSystem_SplatEntities(part->org, v, 1-part->staincolor[0]*(1.0f/255.0f), 1-part->staincolor[1]*(1.0f/255.0f), 1-part->staincolor[2]*(1.0f/255.0f), part->stainalpha*(1.0f/255.0f), particletexture[staintex].s1, particletexture[staintex].t1, particletexture[staintex].s2, particletexture[staintex].t2, part->stainsize);
}
// blood creates a splash at spawn, not just at impact, this makes monsters bloody where they are shot
if (part->typeindex == pt_blood && cl_decals_newsystem.integer && cl_decals.integer)
{
VectorCopy(part->vel, v);
VectorNormalize(v);
staintex = tex_blooddecal[rand()&7];
R_DecalSystem_SplatEntities(part->org, v, part->color[0]*(1.0f/255.0f), part->color[1]*(1.0f/255.0f), part->color[2]*(1.0f/255.0f), part->alpha*(1.0f/255.0f), particletexture[staintex].s1, particletexture[staintex].t1, particletexture[staintex].s2, particletexture[staintex].t2, part->size * 2);
}
}
void CL_SpawnDecalParticleForSurface(int hitent, const vec3_t org, const vec3_t normal, int color1, int color2, int texnum, float size, float alpha)
{
int l1, l2;
decal_t *decal;
entity_render_t *ent = &cl.entities[hitent].render;
unsigned char color[3];
if (!cl_decals.integer)
return;
if (!ent->allowdecals)
return;
l2 = (int)lhrandom(0.5, 256.5);
l1 = 256 - l2;
color[0] = ((((color1 >> 16) & 0xFF) * l1 + ((color2 >> 16) & 0xFF) * l2) >> 8) & 0xFF;
color[1] = ((((color1 >> 8) & 0xFF) * l1 + ((color2 >> 8) & 0xFF) * l2) >> 8) & 0xFF;
color[2] = ((((color1 >> 0) & 0xFF) * l1 + ((color2 >> 0) & 0xFF) * l2) >> 8) & 0xFF;
if (cl_decals_newsystem.integer)
{
if (vid.sRGB3D)
R_DecalSystem_SplatEntities(org, normal, Image_LinearFloatFromsRGB(color[0]), Image_LinearFloatFromsRGB(color[1]), Image_LinearFloatFromsRGB(color[2]), alpha*(1.0f/255.0f), particletexture[texnum].s1, particletexture[texnum].t1, particletexture[texnum].s2, particletexture[texnum].t2, size);
else
R_DecalSystem_SplatEntities(org, normal, color[0]*(1.0f/255.0f), color[1]*(1.0f/255.0f), color[2]*(1.0f/255.0f), alpha*(1.0f/255.0f), particletexture[texnum].s1, particletexture[texnum].t1, particletexture[texnum].s2, particletexture[texnum].t2, size);
return;
}
for (;cl.free_decal < cl.max_decals && cl.decals[cl.free_decal].typeindex;cl.free_decal++);
if (cl.free_decal >= cl.max_decals)
return;
decal = &cl.decals[cl.free_decal++];
if (cl.num_decals < cl.free_decal)
cl.num_decals = cl.free_decal;
memset(decal, 0, sizeof(*decal));
decal->decalsequence = cl.decalsequence++;
decal->typeindex = pt_decal;
decal->texnum = texnum;
VectorMA(org, cl_decals_bias.value, normal, decal->org);
VectorCopy(normal, decal->normal);
decal->size = size;
decal->alpha = alpha;
decal->time2 = cl.time;
decal->color[0] = color[0];
decal->color[1] = color[1];
decal->color[2] = color[2];
if (vid.sRGB3D)
{
decal->color[0] = (unsigned char)(Image_LinearFloatFromsRGB(decal->color[0]) * 256.0f);
decal->color[1] = (unsigned char)(Image_LinearFloatFromsRGB(decal->color[1]) * 256.0f);
decal->color[2] = (unsigned char)(Image_LinearFloatFromsRGB(decal->color[2]) * 256.0f);
}
decal->owner = hitent;
decal->clusterindex = -1000; // no vis culling unless we're sure
if (hitent)
{
// these relative things are only used to regenerate p->org and p->vel if decal->owner is not world (0)
decal->ownermodel = cl.entities[decal->owner].render.model;
Matrix4x4_Transform(&cl.entities[decal->owner].render.inversematrix, org, decal->relativeorigin);
Matrix4x4_Transform3x3(&cl.entities[decal->owner].render.inversematrix, normal, decal->relativenormal);
}
else
{
if(r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.PointInLeaf)
{
mleaf_t *leaf = r_refdef.scene.worldmodel->brush.PointInLeaf(r_refdef.scene.worldmodel, decal->org);
if(leaf)
decal->clusterindex = leaf->clusterindex;
}
}
}
void CL_SpawnDecalParticleForPoint(const vec3_t org, float maxdist, float size, float alpha, int texnum, int color1, int color2)
{
int i;
vec_t bestfrac;
vec3_t bestorg;
vec3_t bestnormal;
vec3_t org2;
int besthitent = 0, hitent;
trace_t trace;
bestfrac = 10;
for (i = 0;i < 32;i++)
{
VectorRandom(org2);
VectorMA(org, maxdist, org2, org2);
trace = CL_TraceLine(org, org2, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID | SUPERCONTENTS_SKY, true, false, &hitent, false, true);
// take the closest trace result that doesn't end up hitting a NOMARKS
// surface (sky for example)
if (bestfrac > trace.fraction && !(trace.hitq3surfaceflags & Q3SURFACEFLAG_NOMARKS))
{
bestfrac = trace.fraction;
besthitent = hitent;
VectorCopy(trace.endpos, bestorg);
VectorCopy(trace.plane.normal, bestnormal);
}
}
if (bestfrac < 1)
CL_SpawnDecalParticleForSurface(besthitent, bestorg, bestnormal, color1, color2, texnum, size, alpha);
}
static void CL_Sparks(const vec3_t originmins, const vec3_t originmaxs, const vec3_t velocitymins, const vec3_t velocitymaxs, float sparkcount);
static void CL_Smoke(const vec3_t originmins, const vec3_t originmaxs, const vec3_t velocitymins, const vec3_t velocitymaxs, float smokecount);
static void CL_ParticleEffect_Fallback(int effectnameindex, float count, const vec3_t originmins, const vec3_t originmaxs, const vec3_t velocitymins, const vec3_t velocitymaxs, entity_t *ent, int palettecolor, qboolean spawndlight, qboolean spawnparticles)
{
vec3_t center;
matrix4x4_t tempmatrix;
particle_t *part;
VectorLerp(originmins, 0.5, originmaxs, center);
Matrix4x4_CreateTranslate(&tempmatrix, center[0], center[1], center[2]);
if (effectnameindex == EFFECT_SVC_PARTICLE)
{
if (cl_particles.integer)
{
// bloodhack checks if this effect's color matches regular or lightning blood and if so spawns a blood effect instead
if (count == 1024)
CL_ParticleEffect(EFFECT_TE_EXPLOSION, 1, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 0);
else if (cl_particles_blood_bloodhack.integer && !cl_particles_quake.integer && (palettecolor == 73 || palettecolor == 225))
CL_ParticleEffect(EFFECT_TE_BLOOD, count / 2.0f, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 0);
else
{
count *= cl_particles_quality.value;
for (;count > 0;count--)
{
int k = particlepalette[(palettecolor & ~7) + (rand()&7)];
CL_NewParticle(center, pt_alphastatic, k, k, tex_particle, 1.5, 0, 255, 0, 0.05, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 0, 0, 8, 0, true, lhrandom(0.1, 0.5), 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
}
}
else if (effectnameindex == EFFECT_TE_WIZSPIKE)
CL_ParticleEffect(EFFECT_SVC_PARTICLE, 30*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 20);
else if (effectnameindex == EFFECT_TE_KNIGHTSPIKE)
CL_ParticleEffect(EFFECT_SVC_PARTICLE, 20*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 226);
else if (effectnameindex == EFFECT_TE_SPIKE)
{
if (cl_particles_bulletimpacts.integer)
{
if (cl_particles_quake.integer)
{
if (cl_particles_smoke.integer)
CL_ParticleEffect(EFFECT_SVC_PARTICLE, 10*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 0);
}
else
{
CL_Smoke(originmins, originmaxs, velocitymins, velocitymaxs, 4*count);
CL_Sparks(originmins, originmaxs, velocitymins, velocitymaxs, 15*count);
CL_NewParticle(center, pt_static, 0x808080,0x808080, tex_particle, 3, 0, 256, 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
// bullet hole
R_Stain(center, 16, 40, 40, 40, 64, 88, 88, 88, 64);
CL_SpawnDecalParticleForPoint(center, 6, 3, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
}
else if (effectnameindex == EFFECT_TE_SPIKEQUAD)
{
if (cl_particles_bulletimpacts.integer)
{
if (cl_particles_quake.integer)
{
if (cl_particles_smoke.integer)
CL_ParticleEffect(EFFECT_SVC_PARTICLE, 10*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 0);
}
else
{
CL_Smoke(originmins, originmaxs, velocitymins, velocitymaxs, 4*count);
CL_Sparks(originmins, originmaxs, velocitymins, velocitymaxs, 15*count);
CL_NewParticle(center, pt_static, 0x808080,0x808080, tex_particle, 3, 0, 256, 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
// bullet hole
R_Stain(center, 16, 40, 40, 40, 64, 88, 88, 88, 64);
CL_SpawnDecalParticleForPoint(center, 6, 3, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
CL_AllocLightFlash(NULL, &tempmatrix, 100, 0.15f, 0.15f, 1.5f, 500, 0.2, 0, -1, true, 1, 0.25, 1, 0, 0, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE);
}
else if (effectnameindex == EFFECT_TE_SUPERSPIKE)
{
if (cl_particles_bulletimpacts.integer)
{
if (cl_particles_quake.integer)
{
if (cl_particles_smoke.integer)
CL_ParticleEffect(EFFECT_SVC_PARTICLE, 20*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 0);
}
else
{
CL_Smoke(originmins, originmaxs, velocitymins, velocitymaxs, 8*count);
CL_Sparks(originmins, originmaxs, velocitymins, velocitymaxs, 30*count);
CL_NewParticle(center, pt_static, 0x808080,0x808080, tex_particle, 3, 0, 256, 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
// bullet hole
R_Stain(center, 16, 40, 40, 40, 64, 88, 88, 88, 64);
CL_SpawnDecalParticleForPoint(center, 6, 3, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
}
else if (effectnameindex == EFFECT_TE_SUPERSPIKEQUAD)
{
if (cl_particles_bulletimpacts.integer)
{
if (cl_particles_quake.integer)
{
if (cl_particles_smoke.integer)
CL_ParticleEffect(EFFECT_SVC_PARTICLE, 20*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 0);
}
else
{
CL_Smoke(originmins, originmaxs, velocitymins, velocitymaxs, 8*count);
CL_Sparks(originmins, originmaxs, velocitymins, velocitymaxs, 30*count);
CL_NewParticle(center, pt_static, 0x808080,0x808080, tex_particle, 3, 0, 256, 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
// bullet hole
R_Stain(center, 16, 40, 40, 40, 64, 88, 88, 88, 64);
CL_SpawnDecalParticleForPoint(center, 6, 3, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
CL_AllocLightFlash(NULL, &tempmatrix, 100, 0.15f, 0.15f, 1.5f, 500, 0.2, 0, -1, true, 1, 0.25, 1, 0, 0, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE);
}
else if (effectnameindex == EFFECT_TE_BLOOD)
{
if (!cl_particles_blood.integer)
return;
if (cl_particles_quake.integer)
CL_ParticleEffect(EFFECT_SVC_PARTICLE, 2*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 73);
else
{
static double bloodaccumulator = 0;
qboolean immediatebloodstain = (cl_decals_newsystem_immediatebloodstain.integer >= 1);
//CL_NewParticle(center, pt_alphastatic, 0x4f0000,0x7f0000, tex_particle, 2.5, 0, 256, 256, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), 0, 0, 0, 1, 4, 0, 0, true, 0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, NULL);
bloodaccumulator += count * 0.333 * cl_particles_quality.value;
for (;bloodaccumulator > 0;bloodaccumulator--)
{
part = CL_NewParticle(center, pt_blood, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], 8, 0, cl_particles_blood_alpha.value * 768, cl_particles_blood_alpha.value * 384, 1, -1, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 1, 4, 0, 64, true, 0, 1, PBLEND_INVMOD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
if (immediatebloodstain && part)
{
immediatebloodstain = false;
CL_ImmediateBloodStain(part);
}
}
}
}
else if (effectnameindex == EFFECT_TE_SPARK)
CL_Sparks(originmins, originmaxs, velocitymins, velocitymaxs, count);
else if (effectnameindex == EFFECT_TE_PLASMABURN)
{
// plasma scorch mark
R_Stain(center, 40, 40, 40, 40, 64, 88, 88, 88, 64);
CL_SpawnDecalParticleForPoint(center, 6, 6, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
CL_AllocLightFlash(NULL, &tempmatrix, 200, 1, 1, 1, 1000, 0.2, 0, -1, true, 1, 0.25, 1, 0, 0, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE);
}
else if (effectnameindex == EFFECT_TE_GUNSHOT)
{
if (cl_particles_bulletimpacts.integer)
{
if (cl_particles_quake.integer)
CL_ParticleEffect(EFFECT_SVC_PARTICLE, 20*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 0);
else
{
CL_Smoke(originmins, originmaxs, velocitymins, velocitymaxs, 4*count);
CL_Sparks(originmins, originmaxs, velocitymins, velocitymaxs, 20*count);
CL_NewParticle(center, pt_static, 0x808080,0x808080, tex_particle, 3, 0, 256, 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
// bullet hole
R_Stain(center, 16, 40, 40, 40, 64, 88, 88, 88, 64);
CL_SpawnDecalParticleForPoint(center, 6, 3, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
}
else if (effectnameindex == EFFECT_TE_GUNSHOTQUAD)
{
if (cl_particles_bulletimpacts.integer)
{
if (cl_particles_quake.integer)
CL_ParticleEffect(EFFECT_SVC_PARTICLE, 20*count, originmins, originmaxs, velocitymins, velocitymaxs, NULL, 0);
else
{
CL_Smoke(originmins, originmaxs, velocitymins, velocitymaxs, 4*count);
CL_Sparks(originmins, originmaxs, velocitymins, velocitymaxs, 20*count);
CL_NewParticle(center, pt_static, 0x808080,0x808080, tex_particle, 3, 0, 256, 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
// bullet hole
R_Stain(center, 16, 40, 40, 40, 64, 88, 88, 88, 64);
CL_SpawnDecalParticleForPoint(center, 6, 3, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
CL_AllocLightFlash(NULL, &tempmatrix, 100, 0.15f, 0.15f, 1.5f, 500, 0.2, 0, -1, true, 1, 0.25, 1, 0, 0, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE);
}
else if (effectnameindex == EFFECT_TE_EXPLOSION)
{
CL_ParticleExplosion(center);
CL_AllocLightFlash(NULL, &tempmatrix, 350, 4.0f, 2.0f, 0.50f, 700, 0.5, 0, -1, true, 1, 0.25, 0.25, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE);
}
else if (effectnameindex == EFFECT_TE_EXPLOSIONQUAD)
{
CL_ParticleExplosion(center);
CL_AllocLightFlash(NULL, &tempmatrix, 350, 2.5f, 2.0f, 4.0f, 700, 0.5, 0, -1, true, 1, 0.25, 0.25, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE);
}
else if (effectnameindex == EFFECT_TE_TAREXPLOSION)
{
if (cl_particles_quake.integer)
{
int i;
for (i = 0;i < 1024 * cl_particles_quality.value;i++)
{
if (i & 1)
CL_NewParticle(center, pt_alphastatic, particlepalette[66], particlepalette[71], tex_particle, 1.5f, 0, 255, 0, 0, 0, center[0], center[1], center[2], 0, 0, 0, -4, -4, 16, 256, true, (rand() & 1) ? 1.4 : 1.0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
else
CL_NewParticle(center, pt_alphastatic, particlepalette[150], particlepalette[155], tex_particle, 1.5f, 0, 255, 0, 0, 0, center[0], center[1], center[2], 0, 0, lhrandom(-256, 256), 0, 0, 16, 0, true, (rand() & 1) ? 1.4 : 1.0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
else
CL_ParticleExplosion(center);
CL_AllocLightFlash(NULL, &tempmatrix, 600, 1.6f, 0.8f, 2.0f, 1200, 0.5, 0, -1, true, 1, 0.25, 0.25, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE);
}
else if (effectnameindex == EFFECT_TE_SMALLFLASH)
CL_AllocLightFlash(NULL, &tempmatrix, 200, 2, 2, 2, 1000, 0.2, 0, -1, true, 1, 0.25, 0.25, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE);
else if (effectnameindex == EFFECT_TE_FLAMEJET)
{
count *= cl_particles_quality.value;
while (count-- > 0)
CL_NewParticle(center, pt_smoke, 0x6f0f00, 0xe3974f, tex_particle, 4, 0, lhrandom(64, 128), 384, -1, 1.1, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 1, 4, 0, 128, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
else if (effectnameindex == EFFECT_TE_LAVASPLASH)
{
float i, j, inc, vel;
vec3_t dir, org;
inc = 8 / cl_particles_quality.value;
for (i = -128;i < 128;i += inc)
{
for (j = -128;j < 128;j += inc)
{
dir[0] = j + lhrandom(0, inc);
dir[1] = i + lhrandom(0, inc);
dir[2] = 256;
org[0] = center[0] + dir[0];
org[1] = center[1] + dir[1];
org[2] = center[2] + lhrandom(0, 64);
vel = lhrandom(50, 120) / VectorLength(dir); // normalize and scale
CL_NewParticle(center, pt_alphastatic, particlepalette[224], particlepalette[231], tex_particle, 1.5f, 0, 255, 0, 0.05, 0, org[0], org[1], org[2], dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, true, lhrandom(2, 2.62), 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
}
else if (effectnameindex == EFFECT_TE_TELEPORT)
{
float i, j, k, inc, vel;
vec3_t dir;
if (cl_particles_quake.integer)
inc = 4 / cl_particles_quality.value;
else
inc = 8 / cl_particles_quality.value;
for (i = -16;i < 16;i += inc)
{
for (j = -16;j < 16;j += inc)
{
for (k = -24;k < 32;k += inc)
{
VectorSet(dir, i*8, j*8, k*8);
VectorNormalize(dir);
vel = lhrandom(50, 113);
if (cl_particles_quake.integer)
CL_NewParticle(center, pt_alphastatic, particlepalette[7], particlepalette[14], tex_particle, 1.5f, 0, 255, 0, 0, 0, center[0] + i + lhrandom(0, inc), center[1] + j + lhrandom(0, inc), center[2] + k + lhrandom(0, inc), dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, true, lhrandom(0.2, 0.34), 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
else
CL_NewParticle(center, pt_alphastatic, particlepalette[7], particlepalette[14], tex_particle, 1.5f, 0, inc * lhrandom(37, 63), inc * 187, 0, 0, center[0] + i + lhrandom(0, inc), center[1] + j + lhrandom(0, inc), center[2] + k + lhrandom(0, inc), dir[0] * vel, dir[1] * vel, dir[2] * vel, 0, 0, 0, 0, true, 0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
}
if (!cl_particles_quake.integer)
CL_NewParticle(center, pt_static, 0xffffff, 0xffffff, tex_particle, 30, 0, 256, 512, 0, 0, center[0], center[1], center[2], 0, 0, 0, 0, 0, 0, 0, false, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
CL_AllocLightFlash(NULL, &tempmatrix, 200, 2.0f, 2.0f, 2.0f, 400, 99.0f, 0, -1, true, 1, 0.25, 1, 0, 0, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE);
}
else if (effectnameindex == EFFECT_TE_TEI_G3)
CL_NewParticle(center, pt_beam, 0xFFFFFF, 0xFFFFFF, tex_beam, 8, 0, 256, 256, 0, 0, originmins[0], originmins[1], originmins[2], originmaxs[0], originmaxs[1], originmaxs[2], 0, 0, 0, 0, false, 0, 1, PBLEND_ADD, PARTICLE_HBEAM, -1, -1, -1, 1, 1, 0, 0, NULL);
else if (effectnameindex == EFFECT_TE_TEI_SMOKE)
{
if (cl_particles_smoke.integer)
{
count *= 0.25f * cl_particles_quality.value;
while (count-- > 0)
CL_NewParticle(center, pt_smoke, 0x202020, 0x404040, tex_smoke[rand()&7], 5, 0, 255, 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 0, 0, 1.5f, 6.0f, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
else if (effectnameindex == EFFECT_TE_TEI_BIGEXPLOSION)
{
CL_ParticleExplosion(center);
CL_AllocLightFlash(NULL, &tempmatrix, 500, 2.5f, 2.0f, 1.0f, 500, 9999, 0, -1, true, 1, 0.25, 0.5, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE);
}
else if (effectnameindex == EFFECT_TE_TEI_PLASMAHIT)
{
float f;
R_Stain(center, 40, 40, 40, 40, 64, 88, 88, 88, 64);
CL_SpawnDecalParticleForPoint(center, 6, 8, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
if (cl_particles_smoke.integer)
for (f = 0;f < count;f += 4.0f / cl_particles_quality.value)
CL_NewParticle(center, pt_smoke, 0x202020, 0x404040, tex_smoke[rand()&7], 5, 0, 255, 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 0, 0, 20, 155, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
if (cl_particles_sparks.integer)
for (f = 0;f < count;f += 1.0f / cl_particles_quality.value)
CL_NewParticle(center, pt_spark, 0x2030FF, 0x80C0FF, tex_particle, 2.0f, 0, lhrandom(64, 255), 512, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 0, 0, 0, 465, true, 0, 1, PBLEND_ADD, PARTICLE_SPARK, -1, -1, -1, 1, 1, 0, 0, NULL);
CL_AllocLightFlash(NULL, &tempmatrix, 500, 0.6f, 1.2f, 2.0f, 2000, 9999, 0, -1, true, 1, 0.25, 0.25, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE);
}
else if (effectnameindex == EFFECT_EF_FLAME)
{
if (!spawnparticles)
count = 0;
count *= 300 * cl_particles_quality.value;
while (count-- > 0)
CL_NewParticle(center, pt_smoke, 0x6f0f00, 0xe3974f, tex_particle, 4, 0, lhrandom(64, 128), 384, -1, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 1, 4, 16, 128, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
CL_AllocLightFlash(NULL, &tempmatrix, 200, 2.0f, 1.5f, 0.5f, 0, 0, 0, -1, true, 1, 0.25, 0.25, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE);
}
else if (effectnameindex == EFFECT_EF_STARDUST)
{
if (!spawnparticles)
count = 0;
count *= 200 * cl_particles_quality.value;
while (count-- > 0)
CL_NewParticle(center, pt_static, 0x903010, 0xFFD030, tex_particle, 4, 0, lhrandom(64, 128), 128, 1, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 0.2, 0.8, 16, 128, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
CL_AllocLightFlash(NULL, &tempmatrix, 200, 1.0f, 0.7f, 0.3f, 0, 0, 0, -1, true, 1, 0.25, 0.25, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE);
}
else if (!strncmp(particleeffectname[effectnameindex], "TR_", 3))
{
vec3_t dir, pos;
float len, dec, qd;
int smoke, blood, bubbles, r, color;
if (spawndlight && r_refdef.scene.numlights < MAX_DLIGHTS)
{
vec4_t light;
Vector4Set(light, 0, 0, 0, 0);
if (effectnameindex == EFFECT_TR_ROCKET)
Vector4Set(light, 3.0f, 1.5f, 0.5f, 200);
else if (effectnameindex == EFFECT_TR_VORESPIKE)
{
if (gamemode == GAME_PRYDON && !cl_particles_quake.integer)
Vector4Set(light, 0.3f, 0.6f, 1.2f, 100);
else
Vector4Set(light, 1.2f, 0.5f, 1.0f, 200);
}
else if (effectnameindex == EFFECT_TR_NEXUIZPLASMA)
Vector4Set(light, 0.75f, 1.5f, 3.0f, 200);
if (light[3])
{
matrix4x4_t tempmatrix;
Matrix4x4_CreateFromQuakeEntity(&tempmatrix, originmaxs[0], originmaxs[1], originmaxs[2], 0, 0, 0, light[3]);
R_RTLight_Update(&r_refdef.scene.templights[r_refdef.scene.numlights], false, &tempmatrix, light, -1, NULL, true, 1, 0.25, 0, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE);
r_refdef.scene.lights[r_refdef.scene.numlights] = &r_refdef.scene.templights[r_refdef.scene.numlights];r_refdef.scene.numlights++;
}
}
if (!spawnparticles)
return;
if (originmaxs[0] == originmins[0] && originmaxs[1] == originmins[1] && originmaxs[2] == originmins[2])
return;
VectorSubtract(originmaxs, originmins, dir);
len = VectorNormalizeLength(dir);
if (ent)
{
dec = -ent->persistent.trail_time;
ent->persistent.trail_time += len;
if (ent->persistent.trail_time < 0.01f)
return;
// if we skip out, leave it reset
ent->persistent.trail_time = 0.0f;
}
else
dec = 0;
// advance into this frame to reach the first puff location
VectorMA(originmins, dec, dir, pos);
len -= dec;
smoke = cl_particles.integer && cl_particles_smoke.integer;
blood = cl_particles.integer && cl_particles_blood.integer;
bubbles = cl_particles.integer && cl_particles_bubbles.integer && !cl_particles_quake.integer && (CL_PointSuperContents(pos) & (SUPERCONTENTS_WATER | SUPERCONTENTS_SLIME));
qd = 1.0f / cl_particles_quality.value;
while (len >= 0)
{
dec = 3;
if (blood)
{
if (effectnameindex == EFFECT_TR_BLOOD)
{
if (cl_particles_quake.integer)
{
color = particlepalette[67 + (rand()&3)];
CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0.05, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 3, 0, true, 2, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
else
{
dec = 16;
CL_NewParticle(center, pt_blood, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], 8, 0, qd * cl_particles_blood_alpha.value * 768.0f, qd * cl_particles_blood_alpha.value * 384.0f, 1, -1, pos[0], pos[1], pos[2], lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 1, 4, 0, 64, true, 0, 1, PBLEND_INVMOD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
else if (effectnameindex == EFFECT_TR_SLIGHTBLOOD)
{
if (cl_particles_quake.integer)
{
dec = 6;
color = particlepalette[67 + (rand()&3)];
CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0.05, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 3, 0, true, 2, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
else
{
dec = 32;
CL_NewParticle(center, pt_blood, 0xFFFFFF, 0xFFFFFF, tex_bloodparticle[rand()&7], 8, 0, qd * cl_particles_blood_alpha.value * 768.0f, qd * cl_particles_blood_alpha.value * 384.0f, 1, -1, pos[0], pos[1], pos[2], lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 1, 4, 0, 64, true, 0, 1, PBLEND_INVMOD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
}
if (smoke)
{
if (effectnameindex == EFFECT_TR_ROCKET)
{
if (cl_particles_quake.integer)
{
r = rand()&3;
color = particlepalette[ramp3[r]];
CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, -0.05, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 3, 0, true, 0.1372549*(6-r), 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
else
{
CL_NewParticle(center, pt_smoke, 0x303030, 0x606060, tex_smoke[rand()&7], 3, 0, cl_particles_smoke_alpha.value*62, cl_particles_smoke_alphafade.value*62, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
CL_NewParticle(center, pt_static, 0x801010, 0xFFA020, tex_smoke[rand()&7], 3, 0, cl_particles_smoke_alpha.value*288, cl_particles_smoke_alphafade.value*1400, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 20, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
else if (effectnameindex == EFFECT_TR_GRENADE)
{
if (cl_particles_quake.integer)
{
r = 2 + (rand()%5);
color = particlepalette[ramp3[r]];
CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, -0.05, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 3, 0, true, 0.1372549*(6-r), 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
else
{
CL_NewParticle(center, pt_smoke, 0x303030, 0x606060, tex_smoke[rand()&7], 3, 0, cl_particles_smoke_alpha.value*50, cl_particles_smoke_alphafade.value*75, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
else if (effectnameindex == EFFECT_TR_WIZSPIKE)
{
if (cl_particles_quake.integer)
{
dec = 6;
color = particlepalette[52 + (rand()&7)];
CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0, 0, pos[0], pos[1], pos[2], 30*dir[1], 30*-dir[0], 0, 0, 0, 0, 0, true, 0.5, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0, 0, pos[0], pos[1], pos[2], 30*-dir[1], 30*dir[0], 0, 0, 0, 0, 0, true, 0.5, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
else if (gamemode == GAME_GOODVSBAD2)
{
dec = 6;
CL_NewParticle(center, pt_static, 0x00002E, 0x000030, tex_particle, 6, 0, 128, 384, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
else
{
color = particlepalette[20 + (rand()&7)];
CL_NewParticle(center, pt_static, color, color, tex_particle, 2, 0, 64, 192, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
else if (effectnameindex == EFFECT_TR_KNIGHTSPIKE)
{
if (cl_particles_quake.integer)
{
dec = 6;
color = particlepalette[230 + (rand()&7)];
CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0, 0, pos[0], pos[1], pos[2], 30*dir[1], 30*-dir[0], 0, 0, 0, 0, 0, true, 0.5, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0, 0, pos[0], pos[1], pos[2], 30*-dir[1], 30*dir[0], 0, 0, 0, 0, 0, true, 0.5, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
else
{
color = particlepalette[226 + (rand()&7)];
CL_NewParticle(center, pt_static, color, color, tex_particle, 2, 0, 64, 192, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
else if (effectnameindex == EFFECT_TR_VORESPIKE)
{
if (cl_particles_quake.integer)
{
color = particlepalette[152 + (rand()&3)];
CL_NewParticle(center, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 8, 0, true, 0.3, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
else if (gamemode == GAME_GOODVSBAD2)
{
dec = 6;
CL_NewParticle(center, pt_alphastatic, particlepalette[0 + (rand()&255)], particlepalette[0 + (rand()&255)], tex_particle, 6, 0, 255, 384, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
else if (gamemode == GAME_PRYDON)
{
dec = 6;
CL_NewParticle(center, pt_static, 0x103040, 0x204050, tex_particle, 6, 0, 64, 192, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
else
CL_NewParticle(center, pt_static, 0x502030, 0x502030, tex_particle, 3, 0, 64, 192, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
else if (effectnameindex == EFFECT_TR_NEHAHRASMOKE)
{
dec = 7;
CL_NewParticle(center, pt_alphastatic, 0x303030, 0x606060, tex_smoke[rand()&7], 7, 0, 64, 320, 0, 0, pos[0], pos[1], pos[2], 0, 0, lhrandom(4, 12), 0, 0, 0, 4, false, 0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
else if (effectnameindex == EFFECT_TR_NEXUIZPLASMA)
{
dec = 4;
CL_NewParticle(center, pt_static, 0x283880, 0x283880, tex_particle, 4, 0, 255, 1024, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 16, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
else if (effectnameindex == EFFECT_TR_GLOWTRAIL)
CL_NewParticle(center, pt_alphastatic, particlepalette[palettecolor], particlepalette[palettecolor], tex_particle, 5, 0, 128, 320, 0, 0, pos[0], pos[1], pos[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
if (bubbles)
{
if (effectnameindex == EFFECT_TR_ROCKET)
CL_NewParticle(center, pt_bubble, 0x404040, 0x808080, tex_bubble, 2, 0, lhrandom(128, 512), 512, -0.25, 1.5, pos[0], pos[1], pos[2], 0, 0, 0, 0.0625, 0.25, 0, 16, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
else if (effectnameindex == EFFECT_TR_GRENADE)
CL_NewParticle(center, pt_bubble, 0x404040, 0x808080, tex_bubble, 2, 0, lhrandom(128, 512), 512, -0.25, 1.5, pos[0], pos[1], pos[2], 0, 0, 0, 0.0625, 0.25, 0, 16, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
// advance to next time and position
dec *= qd;
len -= dec;
VectorMA (pos, dec, dir, pos);
}
if (ent)
ent->persistent.trail_time = len;
}
else
Con_DPrintf("CL_ParticleEffect_Fallback: no fallback found for effect %s\n", particleeffectname[effectnameindex]);
}
// this is also called on point effects with spawndlight = true and
// spawnparticles = true
// it is called CL_ParticleTrail because most code does not want to supply
// these parameters, only trail handling does
void CL_ParticleTrail(int effectnameindex, float pcount, const vec3_t originmins, const vec3_t originmaxs, const vec3_t velocitymins, const vec3_t velocitymaxs, entity_t *ent, int palettecolor, qboolean spawndlight, qboolean spawnparticles, float tintmins[4], float tintmaxs[4])
{
qboolean found = false;
char vabuf[1024];
if (effectnameindex < 1 || effectnameindex >= MAX_PARTICLEEFFECTNAME || !particleeffectname[effectnameindex][0])
{
Con_DPrintf("Unknown effect number %i received from server\n", effectnameindex);
return; // no such effect
}
if (!cl_particles_quake.integer && particleeffectinfo[0].effectnameindex)
{
int effectinfoindex;
int supercontents;
int tex, staintex;
particleeffectinfo_t *info;
vec3_t center;
vec3_t traildir;
vec3_t trailpos;
vec3_t rvec;
vec3_t angles;
vec3_t velocity;
vec3_t forward;
vec3_t right;
vec3_t up;
vec_t traillen;
vec_t trailstep;
qboolean underwater;
qboolean immediatebloodstain;
particle_t *part;
float avgtint[4], tint[4], tintlerp;
// note this runs multiple effects with the same name, each one spawns only one kind of particle, so some effects need more than one
VectorLerp(originmins, 0.5, originmaxs, center);
supercontents = CL_PointSuperContents(center);
underwater = (supercontents & (SUPERCONTENTS_WATER | SUPERCONTENTS_SLIME)) != 0;
VectorSubtract(originmaxs, originmins, traildir);
traillen = VectorLength(traildir);
VectorNormalize(traildir);
if(tintmins)
{
Vector4Lerp(tintmins, 0.5, tintmaxs, avgtint);
}
else
{
Vector4Set(avgtint, 1, 1, 1, 1);
}
for (effectinfoindex = 0, info = particleeffectinfo;effectinfoindex < MAX_PARTICLEEFFECTINFO && info->effectnameindex;effectinfoindex++, info++)
{
if (info->effectnameindex == effectnameindex)
{
found = true;
if ((info->flags & PARTICLEEFFECT_UNDERWATER) && !underwater)
continue;
if ((info->flags & PARTICLEEFFECT_NOTUNDERWATER) && underwater)
continue;
// spawn a dlight if requested
if (info->lightradiusstart > 0 && spawndlight)
{
matrix4x4_t tempmatrix;
if (info->trailspacing > 0)
Matrix4x4_CreateTranslate(&tempmatrix, originmaxs[0], originmaxs[1], originmaxs[2]);
else
Matrix4x4_CreateTranslate(&tempmatrix, center[0], center[1], center[2]);
if (info->lighttime > 0 && info->lightradiusfade > 0)
{
// light flash (explosion, etc)
// called when effect starts
CL_AllocLightFlash(NULL, &tempmatrix, info->lightradiusstart, info->lightcolor[0]*avgtint[0]*avgtint[3], info->lightcolor[1]*avgtint[1]*avgtint[3], info->lightcolor[2]*avgtint[2]*avgtint[3], info->lightradiusfade, info->lighttime, info->lightcubemapnum, -1, info->lightshadow, info->lightcorona[0], info->lightcorona[1], 0, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE);
}
else if (r_refdef.scene.numlights < MAX_DLIGHTS)
{
// glowing entity
// called by CL_LinkNetworkEntity
Matrix4x4_Scale(&tempmatrix, info->lightradiusstart, 1);
rvec[0] = info->lightcolor[0]*avgtint[0]*avgtint[3];
rvec[1] = info->lightcolor[1]*avgtint[1]*avgtint[3];
rvec[2] = info->lightcolor[2]*avgtint[2]*avgtint[3];
R_RTLight_Update(&r_refdef.scene.templights[r_refdef.scene.numlights], false, &tempmatrix, rvec, -1, info->lightcubemapnum > 0 ? va(vabuf, sizeof(vabuf), "cubemaps/%i", info->lightcubemapnum) : NULL, info->lightshadow, info->lightcorona[0], info->lightcorona[1], 0, 1, 1, LIGHTFLAG_NORMALMODE | LIGHTFLAG_REALTIMEMODE);
r_refdef.scene.lights[r_refdef.scene.numlights] = &r_refdef.scene.templights[r_refdef.scene.numlights];r_refdef.scene.numlights++;
}
}
if (!spawnparticles)
continue;
// spawn particles
tex = info->tex[0];
if (info->tex[1] > info->tex[0])
{
tex = (int)lhrandom(info->tex[0], info->tex[1]);
tex = min(tex, info->tex[1] - 1);
}
if(info->staintex[0] < 0)
staintex = info->staintex[0];
else
{
staintex = (int)lhrandom(info->staintex[0], info->staintex[1]);
staintex = min(staintex, info->staintex[1] - 1);
}
if (info->particletype == pt_decal)
{
VectorMAM(0.5f, velocitymins, 0.5f, velocitymaxs, velocity);
AnglesFromVectors(angles, velocity, NULL, false);
AngleVectors(angles, forward, right, up);
VectorMAMAMAM(1.0f, center, info->relativeoriginoffset[0], forward, info->relativeoriginoffset[1], right, info->relativeoriginoffset[2], up, trailpos);
CL_SpawnDecalParticleForPoint(trailpos, info->originjitter[0], lhrandom(info->size[0], info->size[1]), lhrandom(info->alpha[0], info->alpha[1])*avgtint[3], tex, info->color[0], info->color[1]);
}
else if (info->orientation == PARTICLE_HBEAM)
{
AnglesFromVectors(angles, traildir, NULL, false);
AngleVectors(angles, forward, right, up);
VectorMAMAM(info->relativeoriginoffset[0], forward, info->relativeoriginoffset[1], right, info->relativeoriginoffset[2], up, trailpos);
CL_NewParticle(center, info->particletype, info->color[0], info->color[1], tex, lhrandom(info->size[0], info->size[1]), info->size[2], lhrandom(info->alpha[0], info->alpha[1]), info->alpha[2], 0, 0, originmins[0] + trailpos[0], originmins[1] + trailpos[1], originmins[2] + trailpos[2], originmaxs[0], originmaxs[1], originmaxs[2], 0, 0, 0, 0, false, lhrandom(info->time[0], info->time[1]), info->stretchfactor, info->blendmode, info->orientation, info->staincolor[0], info->staincolor[1], staintex, lhrandom(info->stainalpha[0], info->stainalpha[1]), lhrandom(info->stainsize[0], info->stainsize[1]), 0, 0, tintmins ? avgtint : NULL);
}
else
{
if (!cl_particles.integer)
continue;
switch (info->particletype)
{
case pt_smoke: if (!cl_particles_smoke.integer) continue;break;
case pt_spark: if (!cl_particles_sparks.integer) continue;break;
case pt_bubble: if (!cl_particles_bubbles.integer) continue;break;
case pt_blood: if (!cl_particles_blood.integer) continue;break;
case pt_rain: if (!cl_particles_rain.integer) continue;break;
case pt_snow: if (!cl_particles_snow.integer) continue;break;
default: break;
}
VectorCopy(originmins, trailpos);
if (info->trailspacing > 0)
{
info->particleaccumulator += traillen / info->trailspacing * cl_particles_quality.value;
trailstep = info->trailspacing / cl_particles_quality.value;
immediatebloodstain = false;
AnglesFromVectors(angles, traildir, NULL, false);
AngleVectors(angles, forward, right, up);
VectorMAMAMAM(1.0f, trailpos, info->relativeoriginoffset[0], forward, info->relativeoriginoffset[1], right, info->relativeoriginoffset[2], up, trailpos);
VectorMAMAM(info->relativevelocityoffset[0], forward, info->relativevelocityoffset[1], right, info->relativevelocityoffset[2], up, velocity);
}
else
{
info->particleaccumulator += info->countabsolute + pcount * info->countmultiplier * cl_particles_quality.value;
trailstep = 0;
immediatebloodstain =
((cl_decals_newsystem_immediatebloodstain.integer >= 1) && (info->particletype == pt_blood))
||
((cl_decals_newsystem_immediatebloodstain.integer >= 2) && staintex);
VectorMAM(0.5f, velocitymins, 0.5f, velocitymaxs, velocity);
AnglesFromVectors(angles, velocity, NULL, false);
AngleVectors(angles, forward, right, up);
VectorMAMAMAM(1.0f, trailpos, info->relativeoriginoffset[0], traildir, info->relativeoriginoffset[1], right, info->relativeoriginoffset[2], up, trailpos);
VectorMAMAM(info->relativevelocityoffset[0], traildir, info->relativevelocityoffset[1], right, info->relativevelocityoffset[2], up, velocity);
}
info->particleaccumulator = bound(0, info->particleaccumulator, 16384);
for (;info->particleaccumulator >= 1;info->particleaccumulator--)
{
if (info->tex[1] > info->tex[0])
{
tex = (int)lhrandom(info->tex[0], info->tex[1]);
tex = min(tex, info->tex[1] - 1);
}
if (!trailstep)
{
trailpos[0] = lhrandom(originmins[0], originmaxs[0]);
trailpos[1] = lhrandom(originmins[1], originmaxs[1]);
trailpos[2] = lhrandom(originmins[2], originmaxs[2]);
}
if(tintmins)
{
tintlerp = lhrandom(0, 1);
Vector4Lerp(tintmins, tintlerp, tintmaxs, tint);
}
VectorRandom(rvec);
part = CL_NewParticle(center, info->particletype, info->color[0], info->color[1], tex, lhrandom(info->size[0], info->size[1]), info->size[2], lhrandom(info->alpha[0], info->alpha[1]), info->alpha[2], info->gravity, info->bounce, trailpos[0] + info->originoffset[0] + info->originjitter[0] * rvec[0], trailpos[1] + info->originoffset[1] + info->originjitter[1] * rvec[1], trailpos[2] + info->originoffset[2] + info->originjitter[2] * rvec[2], lhrandom(velocitymins[0], velocitymaxs[0]) * info->velocitymultiplier + info->velocityoffset[0] + info->velocityjitter[0] * rvec[0] + velocity[0], lhrandom(velocitymins[1], velocitymaxs[1]) * info->velocitymultiplier + info->velocityoffset[1] + info->velocityjitter[1] * rvec[1] + velocity[1], lhrandom(velocitymins[2], velocitymaxs[2]) * info->velocitymultiplier + info->velocityoffset[2] + info->velocityjitter[2] * rvec[2] + velocity[2], info->airfriction, info->liquidfriction, 0, 0, info->countabsolute <= 0, lhrandom(info->time[0], info->time[1]), info->stretchfactor, info->blendmode, info->orientation, info->staincolor[0], info->staincolor[1], staintex, lhrandom(info->stainalpha[0], info->stainalpha[1]), lhrandom(info->stainsize[0], info->stainsize[1]), lhrandom(info->rotate[0], info->rotate[1]), lhrandom(info->rotate[2], info->rotate[3]), tintmins ? tint : NULL);
if (immediatebloodstain && part)
{
immediatebloodstain = false;
CL_ImmediateBloodStain(part);
}
if (trailstep)
VectorMA(trailpos, trailstep, traildir, trailpos);
}
}
}
}
}
if (!found)
CL_ParticleEffect_Fallback(effectnameindex, pcount, originmins, originmaxs, velocitymins, velocitymaxs, ent, palettecolor, spawndlight, spawnparticles);
}
void CL_ParticleEffect(int effectnameindex, float pcount, const vec3_t originmins, const vec3_t originmaxs, const vec3_t velocitymins, const vec3_t velocitymaxs, entity_t *ent, int palettecolor)
{
CL_ParticleTrail(effectnameindex, pcount, originmins, originmaxs, velocitymins, velocitymaxs, ent, palettecolor, true, true, NULL, NULL);
}
/*
===============
CL_EntityParticles
===============
*/
void CL_EntityParticles (const entity_t *ent)
{
int i, j;
vec_t pitch, yaw, dist = 64, beamlength = 16;
vec3_t org, v;
static vec3_t avelocities[NUMVERTEXNORMALS];
if (!cl_particles.integer) return;
if (cl.time <= cl.oldtime) return; // don't spawn new entity particles while paused
Matrix4x4_OriginFromMatrix(&ent->render.matrix, org);
if (!avelocities[0][0])
for (i = 0;i < NUMVERTEXNORMALS;i++)
for (j = 0;j < 3;j++)
avelocities[i][j] = lhrandom(0, 2.55);
for (i = 0;i < NUMVERTEXNORMALS;i++)
{
yaw = cl.time * avelocities[i][0];
pitch = cl.time * avelocities[i][1];
v[0] = org[0] + m_bytenormals[i][0] * dist + (cos(pitch)*cos(yaw)) * beamlength;
v[1] = org[1] + m_bytenormals[i][1] * dist + (cos(pitch)*sin(yaw)) * beamlength;
v[2] = org[2] + m_bytenormals[i][2] * dist + (-sin(pitch)) * beamlength;
CL_NewParticle(org, pt_entityparticle, particlepalette[0x6f], particlepalette[0x6f], tex_particle, 1, 0, 255, 0, 0, 0, v[0], v[1], v[2], 0, 0, 0, 0, 0, 0, 0, true, 0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
void CL_ReadPointFile_f (void)
{
double org[3], leakorg[3];
vec3_t vecorg;
int r, c, s;
char *pointfile = NULL, *pointfilepos, *t, tchar;
char name[MAX_QPATH];
if (!cl.worldmodel)
return;
dpsnprintf(name, sizeof(name), "%s.pts", cl.worldnamenoextension);
pointfile = (char *)FS_LoadFile(name, tempmempool, true, NULL);
if (!pointfile)
{
Con_Printf("Could not open %s\n", name);
return;
}
Con_Printf("Reading %s...\n", name);
VectorClear(leakorg);
c = 0;
s = 0;
pointfilepos = pointfile;
while (*pointfilepos)
{
while (*pointfilepos == '\n' || *pointfilepos == '\r')
pointfilepos++;
if (!*pointfilepos)
break;
t = pointfilepos;
while (*t && *t != '\n' && *t != '\r')
t++;
tchar = *t;
*t = 0;
#if _MSC_VER >= 1400
#define sscanf sscanf_s
#endif
r = sscanf (pointfilepos,"%lf %lf %lf", &org[0], &org[1], &org[2]);
VectorCopy(org, vecorg);
*t = tchar;
pointfilepos = t;
if (r != 3)
break;
if (c == 0)
VectorCopy(org, leakorg);
c++;
if (cl.num_particles < cl.max_particles - 3)
{
s++;
CL_NewParticle(vecorg, pt_alphastatic, particlepalette[(-c)&15], particlepalette[(-c)&15], tex_particle, 2, 0, 255, 0, 0, 0, org[0], org[1], org[2], 0, 0, 0, 0, 0, 0, 0, true, 1<<30, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
Mem_Free(pointfile);
VectorCopy(leakorg, vecorg);
Con_Printf("%i points read (%i particles spawned)\nLeak at %f %f %f\n", c, s, leakorg[0], leakorg[1], leakorg[2]);
CL_NewParticle(vecorg, pt_beam, 0xFF0000, 0xFF0000, tex_beam, 64, 0, 255, 0, 0, 0, org[0] - 4096, org[1], org[2], org[0] + 4096, org[1], org[2], 0, 0, 0, 0, false, 1<<30, 1, PBLEND_ADD, PARTICLE_HBEAM, -1, -1, -1, 1, 1, 0, 0, NULL);
CL_NewParticle(vecorg, pt_beam, 0x00FF00, 0x00FF00, tex_beam, 64, 0, 255, 0, 0, 0, org[0], org[1] - 4096, org[2], org[0], org[1] + 4096, org[2], 0, 0, 0, 0, false, 1<<30, 1, PBLEND_ADD, PARTICLE_HBEAM, -1, -1, -1, 1, 1, 0, 0, NULL);
CL_NewParticle(vecorg, pt_beam, 0x0000FF, 0x0000FF, tex_beam, 64, 0, 255, 0, 0, 0, org[0], org[1], org[2] - 4096, org[0], org[1], org[2] + 4096, 0, 0, 0, 0, false, 1<<30, 1, PBLEND_ADD, PARTICLE_HBEAM, -1, -1, -1, 1, 1, 0, 0, NULL);
}
/*
===============
CL_ParseParticleEffect
Parse an effect out of the server message
===============
*/
void CL_ParseParticleEffect (void)
{
vec3_t org, dir;
int i, count, msgcount, color;
MSG_ReadVector(&cl_message, org, cls.protocol);
for (i=0 ; i<3 ; i++)
dir[i] = MSG_ReadChar(&cl_message) * (1.0 / 16.0);
msgcount = MSG_ReadByte(&cl_message);
color = MSG_ReadByte(&cl_message);
if (msgcount == 255)
count = 1024;
else
count = msgcount;
CL_ParticleEffect(EFFECT_SVC_PARTICLE, count, org, org, dir, dir, NULL, color);
}
/*
===============
CL_ParticleExplosion
===============
*/
void CL_ParticleExplosion (const vec3_t org)
{
int i;
trace_t trace;
//vec3_t v;
//vec3_t v2;
R_Stain(org, 96, 40, 40, 40, 64, 88, 88, 88, 64);
CL_SpawnDecalParticleForPoint(org, 40, 48, 255, tex_bulletdecal[rand()&7], 0xFFFFFF, 0xFFFFFF);
if (cl_particles_quake.integer)
{
for (i = 0;i < 1024;i++)
{
int r, color;
r = rand()&3;
if (i & 1)
{
color = particlepalette[ramp1[r]];
CL_NewParticle(org, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0, 0, org[0], org[1], org[2], 0, 0, 0, -4, -4, 16, 256, true, 0.1006 * (8 - r), 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
else
{
color = particlepalette[ramp2[r]];
CL_NewParticle(org, pt_alphastatic, color, color, tex_particle, 1.5f, 0, 255, 0, 0, 0, org[0], org[1], org[2], 0, 0, 0, 1, 1, 16, 256, true, 0.0669 * (8 - r), 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
}
else
{
i = CL_PointSuperContents(org);
if (i & (SUPERCONTENTS_SLIME | SUPERCONTENTS_WATER))
{
if (cl_particles.integer && cl_particles_bubbles.integer)
for (i = 0;i < 128 * cl_particles_quality.value;i++)
CL_NewParticle(org, pt_bubble, 0x404040, 0x808080, tex_bubble, 2, 0, lhrandom(128, 255), 128, -0.125, 1.5, org[0], org[1], org[2], 0, 0, 0, 0.0625, 0.25, 16, 96, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
else
{
if (cl_particles.integer && cl_particles_sparks.integer && cl_particles_explosions_sparks.integer)
{
for (i = 0;i < 512 * cl_particles_quality.value;i++)
{
int k = 0;
vec3_t v, v2;
do
{
VectorRandom(v2);
VectorMA(org, 128, v2, v);
trace = CL_TraceLine(org, v, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, true, false, NULL, false, false);
}
while (k < 16 && trace.fraction < 0.1f);
VectorSubtract(trace.endpos, org, v2);
VectorScale(v2, 2.0f, v2);
CL_NewParticle(org, pt_spark, 0x903010, 0xFFD030, tex_particle, 1.0f, 0, lhrandom(0, 255), 512, 0, 0, org[0], org[1], org[2], v2[0], v2[1], v2[2], 0, 0, 0, 0, true, 0, 1, PBLEND_ADD, PARTICLE_SPARK, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
}
}
if (cl_particles_explosions_shell.integer)
R_NewExplosion(org);
}
/*
===============
CL_ParticleExplosion2
===============
*/
void CL_ParticleExplosion2 (const vec3_t org, int colorStart, int colorLength)
{
int i, k;
if (!cl_particles.integer) return;
for (i = 0;i < 512 * cl_particles_quality.value;i++)
{
k = particlepalette[colorStart + (i % colorLength)];
if (cl_particles_quake.integer)
CL_NewParticle(org, pt_alphastatic, k, k, tex_particle, 1, 0, 255, 0, 0, 0, org[0], org[1], org[2], 0, 0, 0, -4, -4, 16, 256, true, 0.3, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
else
CL_NewParticle(org, pt_alphastatic, k, k, tex_particle, lhrandom(0.5, 1.5), 0, 255, 512, 0, 0, org[0], org[1], org[2], 0, 0, 0, lhrandom(1.5, 3), lhrandom(1.5, 3), 8, 192, true, 0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
static void CL_Sparks(const vec3_t originmins, const vec3_t originmaxs, const vec3_t velocitymins, const vec3_t velocitymaxs, float sparkcount)
{
vec3_t center;
VectorMAM(0.5f, originmins, 0.5f, originmaxs, center);
if (cl_particles_sparks.integer)
{
sparkcount *= cl_particles_quality.value;
while(sparkcount-- > 0)
CL_NewParticle(center, pt_spark, particlepalette[0x68], particlepalette[0x6f], tex_particle, 0.5f, 0, lhrandom(64, 255), 512, 1, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]) + cl.movevars_gravity * 0.1f, 0, 0, 0, 64, true, 0, 1, PBLEND_ADD, PARTICLE_SPARK, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
static void CL_Smoke(const vec3_t originmins, const vec3_t originmaxs, const vec3_t velocitymins, const vec3_t velocitymaxs, float smokecount)
{
vec3_t center;
VectorMAM(0.5f, originmins, 0.5f, originmaxs, center);
if (cl_particles_smoke.integer)
{
smokecount *= cl_particles_quality.value;
while(smokecount-- > 0)
CL_NewParticle(center, pt_smoke, 0x101010, 0x101010, tex_smoke[rand()&7], 2, 2, 255, 256, 0, 0, lhrandom(originmins[0], originmaxs[0]), lhrandom(originmins[1], originmaxs[1]), lhrandom(originmins[2], originmaxs[2]), lhrandom(velocitymins[0], velocitymaxs[0]), lhrandom(velocitymins[1], velocitymaxs[1]), lhrandom(velocitymins[2], velocitymaxs[2]), 0, 0, 0, smokecount > 0 ? 16 : 0, true, 0, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
void CL_ParticleCube (const vec3_t mins, const vec3_t maxs, const vec3_t dir, int count, int colorbase, vec_t gravity, vec_t randomvel)
{
vec3_t center;
int k;
if (!cl_particles.integer) return;
VectorMAM(0.5f, mins, 0.5f, maxs, center);
count = (int)(count * cl_particles_quality.value);
while (count--)
{
k = particlepalette[colorbase + (rand()&3)];
CL_NewParticle(center, pt_alphastatic, k, k, tex_particle, 2, 0, 255, 128, gravity, 0, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(mins[2], maxs[2]), dir[0], dir[1], dir[2], 0, 0, 0, randomvel, true, 0, 1, PBLEND_ALPHA, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
}
void CL_ParticleRain (const vec3_t mins, const vec3_t maxs, const vec3_t dir, int count, int colorbase, int type)
{
int k;
float minz, maxz, lifetime = 30;
vec3_t org;
if (!cl_particles.integer) return;
if (dir[2] < 0) // falling
{
minz = maxs[2] + dir[2] * 0.1;
maxz = maxs[2];
if (cl.worldmodel)
lifetime = (maxz - cl.worldmodel->normalmins[2]) / max(1, -dir[2]);
}
else // rising??
{
minz = mins[2];
maxz = maxs[2] + dir[2] * 0.1;
if (cl.worldmodel)
lifetime = (cl.worldmodel->normalmaxs[2] - minz) / max(1, dir[2]);
}
count = (int)(count * cl_particles_quality.value);
switch(type)
{
case 0:
if (!cl_particles_rain.integer) break;
count *= 4; // ick, this should be in the mod or maps?
while(count--)
{
k = particlepalette[colorbase + (rand()&3)];
VectorSet(org, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz));
if (gamemode == GAME_GOODVSBAD2)
CL_NewParticle(org, pt_rain, k, k, tex_particle, 20, 0, lhrandom(32, 64), 0, 0, -1, org[0], org[1], org[2], dir[0], dir[1], dir[2], 0, 0, 0, 0, true, lifetime, 1, PBLEND_ADD, PARTICLE_SPARK, -1, -1, -1, 1, 1, 0, 0, NULL);
else
CL_NewParticle(org, pt_rain, k, k, tex_particle, 0.5, 0, lhrandom(32, 64), 0, 0, -1, org[0], org[1], org[2], dir[0], dir[1], dir[2], 0, 0, 0, 0, true, lifetime, 1, PBLEND_ADD, PARTICLE_SPARK, -1, -1, -1, 1, 1, 0, 0, NULL);
}
break;
case 1:
if (!cl_particles_snow.integer) break;
while(count--)
{
k = particlepalette[colorbase + (rand()&3)];
VectorSet(org, lhrandom(mins[0], maxs[0]), lhrandom(mins[1], maxs[1]), lhrandom(minz, maxz));
if (gamemode == GAME_GOODVSBAD2)
CL_NewParticle(org, pt_snow, k, k, tex_particle, 20, 0, lhrandom(64, 128), 0, 0, -1, org[0], org[1], org[2], dir[0], dir[1], dir[2], 0, 0, 0, 0, true, lifetime, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
else
CL_NewParticle(org, pt_snow, k, k, tex_particle, 1, 0, lhrandom(64, 128), 0, 0, -1, org[0], org[1], org[2], dir[0], dir[1], dir[2], 0, 0, 0, 0, true, lifetime, 1, PBLEND_ADD, PARTICLE_BILLBOARD, -1, -1, -1, 1, 1, 0, 0, NULL);
}
break;
default:
Con_Printf ("CL_ParticleRain: unknown type %i (0 = rain, 1 = snow)\n", type);
}
}
cvar_t r_drawparticles = {0, "r_drawparticles", "1", "enables drawing of particles"};
static cvar_t r_drawparticles_drawdistance = {CVAR_SAVE, "r_drawparticles_drawdistance", "2000", "particles further than drawdistance*size will not be drawn"};
static cvar_t r_drawparticles_nearclip_min = {CVAR_SAVE, "r_drawparticles_nearclip_min", "4", "particles closer than drawnearclip_min will not be drawn"};
static cvar_t r_drawparticles_nearclip_max = {CVAR_SAVE, "r_drawparticles_nearclip_max", "4", "particles closer than drawnearclip_min will be faded"};
cvar_t r_drawdecals = {0, "r_drawdecals", "1", "enables drawing of decals"};
static cvar_t r_drawdecals_drawdistance = {CVAR_SAVE, "r_drawdecals_drawdistance", "500", "decals further than drawdistance*size will not be drawn"};
#define PARTICLETEXTURESIZE 64
#define PARTICLEFONTSIZE (PARTICLETEXTURESIZE*8)
static unsigned char shadebubble(float dx, float dy, vec3_t light)
{
float dz, f, dot;
vec3_t normal;
dz = 1 - (dx*dx+dy*dy);
if (dz > 0) // it does hit the sphere
{
f = 0;
// back side
normal[0] = dx;normal[1] = dy;normal[2] = dz;
VectorNormalize(normal);
dot = DotProduct(normal, light);
if (dot > 0.5) // interior reflection
f += ((dot * 2) - 1);
else if (dot < -0.5) // exterior reflection
f += ((dot * -2) - 1);
// front side
normal[0] = dx;normal[1] = dy;normal[2] = -dz;
VectorNormalize(normal);
dot = DotProduct(normal, light);
if (dot > 0.5) // interior reflection
f += ((dot * 2) - 1);
else if (dot < -0.5) // exterior reflection
f += ((dot * -2) - 1);
f *= 128;
f += 16; // just to give it a haze so you can see the outline
f = bound(0, f, 255);
return (unsigned char) f;
}
else
return 0;
}
int particlefontwidth, particlefontheight, particlefontcellwidth, particlefontcellheight, particlefontrows, particlefontcols;
static void CL_Particle_PixelCoordsForTexnum(int texnum, int *basex, int *basey, int *width, int *height)
{
*basex = (texnum % particlefontcols) * particlefontcellwidth;
*basey = ((texnum / particlefontcols) % particlefontrows) * particlefontcellheight;
*width = particlefontcellwidth;
*height = particlefontcellheight;
}
static void setuptex(int texnum, unsigned char *data, unsigned char *particletexturedata)
{
int basex, basey, w, h, y;
CL_Particle_PixelCoordsForTexnum(texnum, &basex, &basey, &w, &h);
if(w != PARTICLETEXTURESIZE || h != PARTICLETEXTURESIZE)
Sys_Error("invalid particle texture size for autogenerating");
for (y = 0;y < PARTICLETEXTURESIZE;y++)
memcpy(particletexturedata + ((basey + y) * PARTICLEFONTSIZE + basex) * 4, data + y * PARTICLETEXTURESIZE * 4, PARTICLETEXTURESIZE * 4);
}
static void particletextureblotch(unsigned char *data, float radius, float red, float green, float blue, float alpha)
{
int x, y;
float cx, cy, dx, dy, f, iradius;
unsigned char *d;
cx = (lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius) + lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius)) * 0.5f;
cy = (lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius) + lhrandom(radius + 1, PARTICLETEXTURESIZE - 2 - radius)) * 0.5f;
iradius = 1.0f / radius;
alpha *= (1.0f / 255.0f);
for (y = 0;y < PARTICLETEXTURESIZE;y++)
{
for (x = 0;x < PARTICLETEXTURESIZE;x++)
{
dx = (x - cx);
dy = (y - cy);
f = (1.0f - sqrt(dx * dx + dy * dy) * iradius) * alpha;
if (f > 0)
{
if (f > 1)
f = 1;
d = data + (y * PARTICLETEXTURESIZE + x) * 4;
d[0] += (int)(f * (blue - d[0]));
d[1] += (int)(f * (green - d[1]));
d[2] += (int)(f * (red - d[2]));
}
}
}
}
#if 0
static void particletextureclamp(unsigned char *data, int minr, int ming, int minb, int maxr, int maxg, int maxb)
{
int i;
for (i = 0;i < PARTICLETEXTURESIZE*PARTICLETEXTURESIZE;i++, data += 4)
{
data[0] = bound(minb, data[0], maxb);
data[1] = bound(ming, data[1], maxg);
data[2] = bound(minr, data[2], maxr);
}
}
#endif
static void particletextureinvert(unsigned char *data)
{
int i;
for (i = 0;i < PARTICLETEXTURESIZE*PARTICLETEXTURESIZE;i++, data += 4)
{
data[0] = 255 - data[0];
data[1] = 255 - data[1];
data[2] = 255 - data[2];
}
}
// Those loops are in a separate function to work around an optimization bug in Mac OS X's GCC
static void R_InitBloodTextures (unsigned char *particletexturedata)
{
int i, j, k, m;
size_t datasize = PARTICLETEXTURESIZE*PARTICLETEXTURESIZE*4;
unsigned char *data = (unsigned char *)Mem_Alloc(tempmempool, datasize);
// blood particles
for (i = 0;i < 8;i++)
{
memset(data, 255, datasize);
for (k = 0;k < 24;k++)
particletextureblotch(data, PARTICLETEXTURESIZE/16, 96, 0, 0, 160);
//particletextureclamp(data, 32, 32, 32, 255, 255, 255);
particletextureinvert(data);
setuptex(tex_bloodparticle[i], data, particletexturedata);
}
// blood decals
for (i = 0;i < 8;i++)
{
memset(data, 255, datasize);
m = 8;
for (j = 1;j < 10;j++)
for (k = min(j, m - 1);k < m;k++)
particletextureblotch(data, (float)j*PARTICLETEXTURESIZE/64.0f, 96, 0, 0, 320 - j * 8);
//particletextureclamp(data, 32, 32, 32, 255, 255, 255);
particletextureinvert(data);
setuptex(tex_blooddecal[i], data, particletexturedata);
}
Mem_Free(data);
}
//uncomment this to make engine save out particle font to a tga file when run
//#define DUMPPARTICLEFONT
static void R_InitParticleTexture (void)
{
int x, y, d, i, k, m;
int basex, basey, w, h;
float dx, dy, f, s1, t1, s2, t2;
vec3_t light;
char *buf;
fs_offset_t filesize;
char texturename[MAX_QPATH];
skinframe_t *sf;
// a note: decals need to modulate (multiply) the background color to
// properly darken it (stain), and they need to be able to alpha fade,
// this is a very difficult challenge because it means fading to white
// (no change to background) rather than black (darkening everything
// behind the whole decal polygon), and to accomplish this the texture is
// inverted (dark red blood on white background becomes brilliant cyan
// and white on black background) so we can alpha fade it to black, then
// we invert it again during the blendfunc to make it work...
#ifndef DUMPPARTICLEFONT
decalskinframe = R_SkinFrame_LoadExternal("particles/particlefont.tga", TEXF_ALPHA | TEXF_FORCELINEAR | TEXF_RGBMULTIPLYBYALPHA, false);
if (decalskinframe)
{
particlefonttexture = decalskinframe->base;
// TODO maybe allow custom grid size?
particlefontwidth = image_width;
particlefontheight = image_height;
particlefontcellwidth = image_width / 8;
particlefontcellheight = image_height / 8;
particlefontcols = 8;
particlefontrows = 8;
}
else
#endif
{
unsigned char *particletexturedata = (unsigned char *)Mem_Alloc(tempmempool, PARTICLEFONTSIZE*PARTICLEFONTSIZE*4);
size_t datasize = PARTICLETEXTURESIZE*PARTICLETEXTURESIZE*4;
unsigned char *data = (unsigned char *)Mem_Alloc(tempmempool, datasize);
unsigned char *noise1 = (unsigned char *)Mem_Alloc(tempmempool, PARTICLETEXTURESIZE*2*PARTICLETEXTURESIZE*2);
unsigned char *noise2 = (unsigned char *)Mem_Alloc(tempmempool, PARTICLETEXTURESIZE*2*PARTICLETEXTURESIZE*2);
particlefontwidth = particlefontheight = PARTICLEFONTSIZE;
particlefontcellwidth = particlefontcellheight = PARTICLETEXTURESIZE;
particlefontcols = 8;
particlefontrows = 8;
memset(particletexturedata, 255, PARTICLEFONTSIZE*PARTICLEFONTSIZE*4);
// smoke
for (i = 0;i < 8;i++)
{
memset(data, 255, datasize);
do
{
fractalnoise(noise1, PARTICLETEXTURESIZE*2, PARTICLETEXTURESIZE/8);
fractalnoise(noise2, PARTICLETEXTURESIZE*2, PARTICLETEXTURESIZE/4);
m = 0;
for (y = 0;y < PARTICLETEXTURESIZE;y++)
{
dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1);
for (x = 0;x < PARTICLETEXTURESIZE;x++)
{
dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1);
d = (noise2[y*PARTICLETEXTURESIZE*2+x] - 128) * 3 + 192;
if (d > 0)
d = (int)(d * (1-(dx*dx+dy*dy)));
d = (d * noise1[y*PARTICLETEXTURESIZE*2+x]) >> 7;
d = bound(0, d, 255);
data[(y*PARTICLETEXTURESIZE+x)*4+3] = (unsigned char) d;
if (m < d)
m = d;
}
}
}
while (m < 224);
setuptex(tex_smoke[i], data, particletexturedata);
}
// rain splash
memset(data, 255, datasize);
for (y = 0;y < PARTICLETEXTURESIZE;y++)
{
dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1);
for (x = 0;x < PARTICLETEXTURESIZE;x++)
{
dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1);
f = 255.0f * (1.0 - 4.0f * fabs(10.0f - sqrt(dx*dx+dy*dy)));
data[(y*PARTICLETEXTURESIZE+x)*4+3] = (int) (bound(0.0f, f, 255.0f));
}
}
setuptex(tex_rainsplash, data, particletexturedata);
// normal particle
memset(data, 255, datasize);
for (y = 0;y < PARTICLETEXTURESIZE;y++)
{
dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1);
for (x = 0;x < PARTICLETEXTURESIZE;x++)
{
dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1);
d = (int)(256 * (1 - (dx*dx+dy*dy)));
d = bound(0, d, 255);
data[(y*PARTICLETEXTURESIZE+x)*4+3] = (unsigned char) d;
}
}
setuptex(tex_particle, data, particletexturedata);
// rain
memset(data, 255, datasize);
light[0] = 1;light[1] = 1;light[2] = 1;
VectorNormalize(light);
for (y = 0;y < PARTICLETEXTURESIZE;y++)
{
dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1);
// stretch upper half of bubble by +50% and shrink lower half by -50%
// (this gives an elongated teardrop shape)
if (dy > 0.5f)
dy = (dy - 0.5f) * 2.0f;
else
dy = (dy - 0.5f) / 1.5f;
for (x = 0;x < PARTICLETEXTURESIZE;x++)
{
dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1);
// shrink bubble width to half
dx *= 2.0f;
data[(y*PARTICLETEXTURESIZE+x)*4+3] = shadebubble(dx, dy, light);
}
}
setuptex(tex_raindrop, data, particletexturedata);
// bubble
memset(data, 255, datasize);
light[0] = 1;light[1] = 1;light[2] = 1;
VectorNormalize(light);
for (y = 0;y < PARTICLETEXTURESIZE;y++)
{
dy = (y - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1);
for (x = 0;x < PARTICLETEXTURESIZE;x++)
{
dx = (x - 0.5f*PARTICLETEXTURESIZE) / (PARTICLETEXTURESIZE*0.5f-1);
data[(y*PARTICLETEXTURESIZE+x)*4+3] = shadebubble(dx, dy, light);
}
}
setuptex(tex_bubble, data, particletexturedata);
// Blood particles and blood decals
R_InitBloodTextures (particletexturedata);
// bullet decals
for (i = 0;i < 8;i++)
{
memset(data, 255, datasize);
for (k = 0;k < 12;k++)
particletextureblotch(data, PARTICLETEXTURESIZE/16, 0, 0, 0, 128);
for (k = 0;k < 3;k++)
particletextureblotch(data, PARTICLETEXTURESIZE/2, 0, 0, 0, 160);
//particletextureclamp(data, 64, 64, 64, 255, 255, 255);
particletextureinvert(data);
setuptex(tex_bulletdecal[i], data, particletexturedata);
}
#ifdef DUMPPARTICLEFONT
Image_WriteTGABGRA ("particles/particlefont.tga", PARTICLEFONTSIZE, PARTICLEFONTSIZE, particletexturedata);
#endif
decalskinframe = R_SkinFrame_LoadInternalBGRA("particlefont", TEXF_ALPHA | TEXF_FORCELINEAR | TEXF_RGBMULTIPLYBYALPHA, particletexturedata, PARTICLEFONTSIZE, PARTICLEFONTSIZE, false);
particlefonttexture = decalskinframe->base;
Mem_Free(particletexturedata);
Mem_Free(data);
Mem_Free(noise1);
Mem_Free(noise2);
}
for (i = 0;i < MAX_PARTICLETEXTURES;i++)
{
CL_Particle_PixelCoordsForTexnum(i, &basex, &basey, &w, &h);
particletexture[i].texture = particlefonttexture;
particletexture[i].s1 = (basex + 1) / (float)particlefontwidth;
particletexture[i].t1 = (basey + 1) / (float)particlefontheight;
particletexture[i].s2 = (basex + w - 1) / (float)particlefontwidth;
particletexture[i].t2 = (basey + h - 1) / (float)particlefontheight;
}
#ifndef DUMPPARTICLEFONT
particletexture[tex_beam].texture = loadtextureimage(particletexturepool, "particles/nexbeam.tga", false, TEXF_ALPHA | TEXF_FORCELINEAR | TEXF_RGBMULTIPLYBYALPHA, true, vid.sRGB3D);
if (!particletexture[tex_beam].texture)
#endif
{
unsigned char noise3[64][64], data2[64][16][4];
// nexbeam
fractalnoise(&noise3[0][0], 64, 4);
m = 0;
for (y = 0;y < 64;y++)
{
dy = (y - 0.5f*64) / (64*0.5f-1);
for (x = 0;x < 16;x++)
{
dx = (x - 0.5f*16) / (16*0.5f-2);
d = (int)((1 - sqrt(fabs(dx))) * noise3[y][x]);
data2[y][x][0] = data2[y][x][1] = data2[y][x][2] = (unsigned char) bound(0, d, 255);
data2[y][x][3] = 255;
}
}
#ifdef DUMPPARTICLEFONT
Image_WriteTGABGRA ("particles/nexbeam.tga", 64, 64, &data2[0][0][0]);
#endif
particletexture[tex_beam].texture = R_LoadTexture2D(particletexturepool, "nexbeam", 16, 64, &data2[0][0][0], TEXTYPE_BGRA, TEXF_ALPHA | TEXF_FORCELINEAR | TEXF_RGBMULTIPLYBYALPHA, -1, NULL);
}
particletexture[tex_beam].s1 = 0;
particletexture[tex_beam].t1 = 0;
particletexture[tex_beam].s2 = 1;
particletexture[tex_beam].t2 = 1;
// now load an texcoord/texture override file
buf = (char *) FS_LoadFile("particles/particlefont.txt", tempmempool, false, &filesize);
if(buf)
{
const char *bufptr;
bufptr = buf;
for(;;)
{
if(!COM_ParseToken_Simple(&bufptr, true, false, true))
break;
if(!strcmp(com_token, "\n"))
continue; // empty line
i = atoi(com_token);
texturename[0] = 0;
s1 = 0;
t1 = 0;
s2 = 1;
t2 = 1;
if (COM_ParseToken_Simple(&bufptr, true, false, true) && strcmp(com_token, "\n"))
{
strlcpy(texturename, com_token, sizeof(texturename));
s1 = atof(com_token);
if (COM_ParseToken_Simple(&bufptr, true, false, true) && strcmp(com_token, "\n"))
{
texturename[0] = 0;
t1 = atof(com_token);
if (COM_ParseToken_Simple(&bufptr, true, false, true) && strcmp(com_token, "\n"))
{
s2 = atof(com_token);
if (COM_ParseToken_Simple(&bufptr, true, false, true) && strcmp(com_token, "\n"))
{
t2 = atof(com_token);
strlcpy(texturename, "particles/particlefont.tga", sizeof(texturename));
if (COM_ParseToken_Simple(&bufptr, true, false, true) && strcmp(com_token, "\n"))
strlcpy(texturename, com_token, sizeof(texturename));
}
}
}
else
s1 = 0;
}
if (!texturename[0])
{
Con_Printf("particles/particlefont.txt: syntax should be texnum x1 y1 x2 y2 texturename or texnum x1 y1 x2 y2 or texnum texturename\n");
continue;
}
if (i < 0 || i >= MAX_PARTICLETEXTURES)
{
Con_Printf("particles/particlefont.txt: texnum %i outside valid range (0 to %i)\n", i, MAX_PARTICLETEXTURES);
continue;
}
sf = R_SkinFrame_LoadExternal(texturename, TEXF_ALPHA | TEXF_FORCELINEAR | TEXF_RGBMULTIPLYBYALPHA, true); // note: this loads as sRGB if sRGB is active!
if(!sf)
{
// R_SkinFrame_LoadExternal already complained
continue;
}
particletexture[i].texture = sf->base;
particletexture[i].s1 = s1;
particletexture[i].t1 = t1;
particletexture[i].s2 = s2;
particletexture[i].t2 = t2;
}
Mem_Free(buf);
}
}
static void r_part_start(void)
{
int i;
// generate particlepalette for convenience from the main one
for (i = 0;i < 256;i++)
particlepalette[i] = palette_rgb[i][0] * 65536 + palette_rgb[i][1] * 256 + palette_rgb[i][2];
particletexturepool = R_AllocTexturePool();
R_InitParticleTexture ();
CL_Particles_LoadEffectInfo(NULL);
}
static void r_part_shutdown(void)
{
R_FreeTexturePool(&particletexturepool);
}
static void r_part_newmap(void)
{
if (decalskinframe)
R_SkinFrame_MarkUsed(decalskinframe);
CL_Particles_LoadEffectInfo(NULL);
}
unsigned short particle_elements[MESHQUEUE_TRANSPARENT_BATCHSIZE*6];
float particle_vertex3f[MESHQUEUE_TRANSPARENT_BATCHSIZE*12], particle_texcoord2f[MESHQUEUE_TRANSPARENT_BATCHSIZE*8], particle_color4f[MESHQUEUE_TRANSPARENT_BATCHSIZE*16];
void R_Particles_Init (void)
{
int i;
for (i = 0;i < MESHQUEUE_TRANSPARENT_BATCHSIZE;i++)
{
particle_elements[i*6+0] = i*4+0;
particle_elements[i*6+1] = i*4+1;
particle_elements[i*6+2] = i*4+2;
particle_elements[i*6+3] = i*4+0;
particle_elements[i*6+4] = i*4+2;
particle_elements[i*6+5] = i*4+3;
}
Cvar_RegisterVariable(&r_drawparticles);
Cvar_RegisterVariable(&r_drawparticles_drawdistance);
Cvar_RegisterVariable(&r_drawparticles_nearclip_min);
Cvar_RegisterVariable(&r_drawparticles_nearclip_max);
Cvar_RegisterVariable(&r_drawdecals);
Cvar_RegisterVariable(&r_drawdecals_drawdistance);
R_RegisterModule("R_Particles", r_part_start, r_part_shutdown, r_part_newmap, NULL, NULL);
}
static void R_DrawDecal_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
{
int surfacelistindex;
const decal_t *d;
float *v3f, *t2f, *c4f;
particletexture_t *tex;
vec_t right[3], up[3], size, ca;
float alphascale = (1.0f / 65536.0f) * cl_particles_alpha.value;
RSurf_ActiveWorldEntity();
r_refdef.stats[r_stat_drawndecals] += numsurfaces;
// R_Mesh_ResetTextureState();
GL_DepthMask(false);
GL_DepthRange(0, 1);
GL_PolygonOffset(0, 0);
GL_DepthTest(true);
GL_CullFace(GL_NONE);
// generate all the vertices at once
for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++)
{
d = cl.decals + surfacelist[surfacelistindex];
// calculate color
c4f = particle_color4f + 16*surfacelistindex;
ca = d->alpha * alphascale;
// ensure alpha multiplier saturates properly
if (ca > 1.0f / 256.0f)
ca = 1.0f / 256.0f;
if (r_refdef.fogenabled)
ca *= RSurf_FogVertex(d->org);
Vector4Set(c4f, d->color[0] * ca, d->color[1] * ca, d->color[2] * ca, 1);
Vector4Copy(c4f, c4f + 4);
Vector4Copy(c4f, c4f + 8);
Vector4Copy(c4f, c4f + 12);
// calculate vertex positions
size = d->size * cl_particles_size.value;
VectorVectors(d->normal, right, up);
VectorScale(right, size, right);
VectorScale(up, size, up);
v3f = particle_vertex3f + 12*surfacelistindex;
v3f[ 0] = d->org[0] - right[0] - up[0];
v3f[ 1] = d->org[1] - right[1] - up[1];
v3f[ 2] = d->org[2] - right[2] - up[2];
v3f[ 3] = d->org[0] - right[0] + up[0];
v3f[ 4] = d->org[1] - right[1] + up[1];
v3f[ 5] = d->org[2] - right[2] + up[2];
v3f[ 6] = d->org[0] + right[0] + up[0];
v3f[ 7] = d->org[1] + right[1] + up[1];
v3f[ 8] = d->org[2] + right[2] + up[2];
v3f[ 9] = d->org[0] + right[0] - up[0];
v3f[10] = d->org[1] + right[1] - up[1];
v3f[11] = d->org[2] + right[2] - up[2];
// calculate texcoords
tex = &particletexture[d->texnum];
t2f = particle_texcoord2f + 8*surfacelistindex;
t2f[0] = tex->s1;t2f[1] = tex->t2;
t2f[2] = tex->s1;t2f[3] = tex->t1;
t2f[4] = tex->s2;t2f[5] = tex->t1;
t2f[6] = tex->s2;t2f[7] = tex->t2;
}
// now render the decals all at once
// (this assumes they all use one particle font texture!)
GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
R_SetupShader_Generic(particletexture[63].texture, NULL, GL_MODULATE, 1, false, false, true);
R_Mesh_PrepareVertices_Generic_Arrays(numsurfaces * 4, particle_vertex3f, particle_color4f, particle_texcoord2f);
R_Mesh_Draw(0, numsurfaces * 4, 0, numsurfaces * 2, NULL, NULL, 0, particle_elements, NULL, 0);
}
void R_DrawDecals (void)
{
int i;
int drawdecals = r_drawdecals.integer;
decal_t *decal;
float frametime;
float decalfade;
float drawdist2;
int killsequence = cl.decalsequence - max(0, cl_decals_max.integer);
frametime = bound(0, cl.time - cl.decals_updatetime, 1);
cl.decals_updatetime = bound(cl.time - 1, cl.decals_updatetime + frametime, cl.time + 1);
// LordHavoc: early out conditions
if (!cl.num_decals)
return;
decalfade = frametime * 256 / cl_decals_fadetime.value;
drawdist2 = r_drawdecals_drawdistance.value * r_refdef.view.quality;
drawdist2 = drawdist2*drawdist2;
for (i = 0, decal = cl.decals;i < cl.num_decals;i++, decal++)
{
if (!decal->typeindex)
continue;
if (killsequence - decal->decalsequence > 0)
goto killdecal;
if (cl.time > decal->time2 + cl_decals_time.value)
{
decal->alpha -= decalfade;
if (decal->alpha <= 0)
goto killdecal;
}
if (decal->owner)
{
if (cl.entities[decal->owner].render.model == decal->ownermodel)
{
Matrix4x4_Transform(&cl.entities[decal->owner].render.matrix, decal->relativeorigin, decal->org);
Matrix4x4_Transform3x3(&cl.entities[decal->owner].render.matrix, decal->relativenormal, decal->normal);
}
else
goto killdecal;
}
if(cl_decals_visculling.integer && decal->clusterindex > -1000 && !CHECKPVSBIT(r_refdef.viewcache.world_pvsbits, decal->clusterindex))
continue;
if (!drawdecals)
continue;
if (DotProduct(r_refdef.view.origin, decal->normal) > DotProduct(decal->org, decal->normal) && VectorDistance2(decal->org, r_refdef.view.origin) < drawdist2 * (decal->size * decal->size))
R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, decal->org, R_DrawDecal_TransparentCallback, NULL, i, NULL);
continue;
killdecal:
decal->typeindex = 0;
if (cl.free_decal > i)
cl.free_decal = i;
}
// reduce cl.num_decals if possible
while (cl.num_decals > 0 && cl.decals[cl.num_decals - 1].typeindex == 0)
cl.num_decals--;
if (cl.num_decals == cl.max_decals && cl.max_decals < MAX_DECALS)
{
decal_t *olddecals = cl.decals;
cl.max_decals = min(cl.max_decals * 2, MAX_DECALS);
cl.decals = (decal_t *) Mem_Alloc(cls.levelmempool, cl.max_decals * sizeof(decal_t));
memcpy(cl.decals, olddecals, cl.num_decals * sizeof(decal_t));
Mem_Free(olddecals);
}
r_refdef.stats[r_stat_totaldecals] = cl.num_decals;
}
static void R_DrawParticle_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
{
vec3_t vecorg, vecvel, baseright, baseup;
int surfacelistindex;
int batchstart, batchcount;
const particle_t *p;
pblend_t blendmode;
rtexture_t *texture;
float *v3f, *t2f, *c4f;
particletexture_t *tex;
float up2[3], v[3], right[3], up[3], fog, ifog, size, len, lenfactor, alpha;
// float ambient[3], diffuse[3], diffusenormal[3];
float palpha, spintime, spinrad, spincos, spinsin, spinm1, spinm2, spinm3, spinm4;
vec4_t colormultiplier;
float minparticledist_start, minparticledist_end;
qboolean dofade;
RSurf_ActiveWorldEntity();
Vector4Set(colormultiplier, r_refdef.view.colorscale * (1.0 / 256.0f), r_refdef.view.colorscale * (1.0 / 256.0f), r_refdef.view.colorscale * (1.0 / 256.0f), cl_particles_alpha.value * (1.0 / 256.0f));
r_refdef.stats[r_stat_particles] += numsurfaces;
// R_Mesh_ResetTextureState();
GL_DepthMask(false);
GL_DepthRange(0, 1);
GL_PolygonOffset(0, 0);
GL_DepthTest(true);
GL_CullFace(GL_NONE);
spintime = r_refdef.scene.time;
minparticledist_start = DotProduct(r_refdef.view.origin, r_refdef.view.forward) + r_drawparticles_nearclip_min.value;
minparticledist_end = DotProduct(r_refdef.view.origin, r_refdef.view.forward) + r_drawparticles_nearclip_max.value;
dofade = (minparticledist_start < minparticledist_end);
// first generate all the vertices at once
for (surfacelistindex = 0, v3f = particle_vertex3f, t2f = particle_texcoord2f, c4f = particle_color4f;surfacelistindex < numsurfaces;surfacelistindex++, v3f += 3*4, t2f += 2*4, c4f += 4*4)
{
p = cl.particles + surfacelist[surfacelistindex];
blendmode = (pblend_t)p->blendmode;
palpha = p->alpha;
if(dofade && p->orientation != PARTICLE_VBEAM && p->orientation != PARTICLE_HBEAM)
palpha *= min(1, (DotProduct(p->org, r_refdef.view.forward) - minparticledist_start) / (minparticledist_end - minparticledist_start));
alpha = palpha * colormultiplier[3];
// ensure alpha multiplier saturates properly
if (alpha > 1.0f)
alpha = 1.0f;
switch (blendmode)
{
case PBLEND_INVALID:
case PBLEND_INVMOD:
// additive and modulate can just fade out in fog (this is correct)
if (r_refdef.fogenabled)
alpha *= RSurf_FogVertex(p->org);
// collapse alpha into color for these blends (so that the particlefont does not need alpha on most textures)
alpha *= 1.0f / 256.0f;
c4f[0] = p->color[0] * alpha;
c4f[1] = p->color[1] * alpha;
c4f[2] = p->color[2] * alpha;
c4f[3] = 0;
break;
case PBLEND_ADD:
// additive and modulate can just fade out in fog (this is correct)
if (r_refdef.fogenabled)
alpha *= RSurf_FogVertex(p->org);
// collapse alpha into color for these blends (so that the particlefont does not need alpha on most textures)
c4f[0] = p->color[0] * colormultiplier[0] * alpha;
c4f[1] = p->color[1] * colormultiplier[1] * alpha;
c4f[2] = p->color[2] * colormultiplier[2] * alpha;
c4f[3] = 0;
break;
case PBLEND_ALPHA:
c4f[0] = p->color[0] * colormultiplier[0];
c4f[1] = p->color[1] * colormultiplier[1];
c4f[2] = p->color[2] * colormultiplier[2];
c4f[3] = alpha;
// note: lighting is not cheap!
if (particletype[p->typeindex].lighting)
{
vecorg[0] = p->org[0];
vecorg[1] = p->org[1];
vecorg[2] = p->org[2];
R_LightPoint(c4f, vecorg, LP_LIGHTMAP | LP_RTWORLD | LP_DYNLIGHT);
}
// mix in the fog color
if (r_refdef.fogenabled)
{
fog = RSurf_FogVertex(p->org);
ifog = 1 - fog;
c4f[0] = c4f[0] * fog + r_refdef.fogcolor[0] * ifog;
c4f[1] = c4f[1] * fog + r_refdef.fogcolor[1] * ifog;
c4f[2] = c4f[2] * fog + r_refdef.fogcolor[2] * ifog;
}
// for premultiplied alpha we have to apply the alpha to the color (after fog of course)
VectorScale(c4f, alpha, c4f);
break;
}
// copy the color into the other three vertices
Vector4Copy(c4f, c4f + 4);
Vector4Copy(c4f, c4f + 8);
Vector4Copy(c4f, c4f + 12);
size = p->size * cl_particles_size.value;
tex = &particletexture[p->texnum];
switch(p->orientation)
{
// case PARTICLE_INVALID:
case PARTICLE_BILLBOARD:
if (p->angle + p->spin)
{
spinrad = (p->angle + p->spin * (spintime - p->delayedspawn)) * (float)(M_PI / 180.0f);
spinsin = sin(spinrad) * size;
spincos = cos(spinrad) * size;
spinm1 = -p->stretch * spincos;
spinm2 = -spinsin;
spinm3 = spinsin;
spinm4 = -p->stretch * spincos;
VectorMAM(spinm1, r_refdef.view.left, spinm2, r_refdef.view.up, right);
VectorMAM(spinm3, r_refdef.view.left, spinm4, r_refdef.view.up, up);
}
else
{
VectorScale(r_refdef.view.left, -size * p->stretch, right);
VectorScale(r_refdef.view.up, size, up);
}
v3f[ 0] = p->org[0] - right[0] - up[0];
v3f[ 1] = p->org[1] - right[1] - up[1];
v3f[ 2] = p->org[2] - right[2] - up[2];
v3f[ 3] = p->org[0] - right[0] + up[0];
v3f[ 4] = p->org[1] - right[1] + up[1];
v3f[ 5] = p->org[2] - right[2] + up[2];
v3f[ 6] = p->org[0] + right[0] + up[0];
v3f[ 7] = p->org[1] + right[1] + up[1];
v3f[ 8] = p->org[2] + right[2] + up[2];
v3f[ 9] = p->org[0] + right[0] - up[0];
v3f[10] = p->org[1] + right[1] - up[1];
v3f[11] = p->org[2] + right[2] - up[2];
t2f[0] = tex->s1;t2f[1] = tex->t2;
t2f[2] = tex->s1;t2f[3] = tex->t1;
t2f[4] = tex->s2;t2f[5] = tex->t1;
t2f[6] = tex->s2;t2f[7] = tex->t2;
break;
case PARTICLE_ORIENTED_DOUBLESIDED:
vecvel[0] = p->vel[0];
vecvel[1] = p->vel[1];
vecvel[2] = p->vel[2];
VectorVectors(vecvel, baseright, baseup);
if (p->angle + p->spin)
{
spinrad = (p->angle + p->spin * (spintime - p->delayedspawn)) * (float)(M_PI / 180.0f);
spinsin = sin(spinrad) * size;
spincos = cos(spinrad) * size;
spinm1 = p->stretch * spincos;
spinm2 = -spinsin;
spinm3 = spinsin;
spinm4 = p->stretch * spincos;
VectorMAM(spinm1, baseright, spinm2, baseup, right);
VectorMAM(spinm3, baseright, spinm4, baseup, up);
}
else
{
VectorScale(baseright, size * p->stretch, right);
VectorScale(baseup, size, up);
}
v3f[ 0] = p->org[0] - right[0] - up[0];
v3f[ 1] = p->org[1] - right[1] - up[1];
v3f[ 2] = p->org[2] - right[2] - up[2];
v3f[ 3] = p->org[0] - right[0] + up[0];
v3f[ 4] = p->org[1] - right[1] + up[1];
v3f[ 5] = p->org[2] - right[2] + up[2];
v3f[ 6] = p->org[0] + right[0] + up[0];
v3f[ 7] = p->org[1] + right[1] + up[1];
v3f[ 8] = p->org[2] + right[2] + up[2];
v3f[ 9] = p->org[0] + right[0] - up[0];
v3f[10] = p->org[1] + right[1] - up[1];
v3f[11] = p->org[2] + right[2] - up[2];
t2f[0] = tex->s1;t2f[1] = tex->t2;
t2f[2] = tex->s1;t2f[3] = tex->t1;
t2f[4] = tex->s2;t2f[5] = tex->t1;
t2f[6] = tex->s2;t2f[7] = tex->t2;
break;
case PARTICLE_SPARK:
len = VectorLength(p->vel);
VectorNormalize2(p->vel, up);
lenfactor = p->stretch * 0.04 * len;
if(lenfactor < size * 0.5)
lenfactor = size * 0.5;
VectorMA(p->org, -lenfactor, up, v);
VectorMA(p->org, lenfactor, up, up2);
R_CalcBeam_Vertex3f(v3f, v, up2, size);
t2f[0] = tex->s1;t2f[1] = tex->t2;
t2f[2] = tex->s1;t2f[3] = tex->t1;
t2f[4] = tex->s2;t2f[5] = tex->t1;
t2f[6] = tex->s2;t2f[7] = tex->t2;
break;
case PARTICLE_VBEAM:
R_CalcBeam_Vertex3f(v3f, p->org, p->vel, size);
VectorSubtract(p->vel, p->org, up);
VectorNormalize(up);
v[0] = DotProduct(p->org, up) * (1.0f / 64.0f) * p->stretch;
v[1] = DotProduct(p->vel, up) * (1.0f / 64.0f) * p->stretch;
t2f[0] = tex->s2;t2f[1] = v[0];
t2f[2] = tex->s1;t2f[3] = v[0];
t2f[4] = tex->s1;t2f[5] = v[1];
t2f[6] = tex->s2;t2f[7] = v[1];
break;
case PARTICLE_HBEAM:
R_CalcBeam_Vertex3f(v3f, p->org, p->vel, size);
VectorSubtract(p->vel, p->org, up);
VectorNormalize(up);
v[0] = DotProduct(p->org, up) * (1.0f / 64.0f) * p->stretch;
v[1] = DotProduct(p->vel, up) * (1.0f / 64.0f) * p->stretch;
t2f[0] = v[0];t2f[1] = tex->t1;
t2f[2] = v[0];t2f[3] = tex->t2;
t2f[4] = v[1];t2f[5] = tex->t2;
t2f[6] = v[1];t2f[7] = tex->t1;
break;
}
}
// now render batches of particles based on blendmode and texture
blendmode = PBLEND_INVALID;
texture = NULL;
batchstart = 0;
batchcount = 0;
R_Mesh_PrepareVertices_Generic_Arrays(numsurfaces * 4, particle_vertex3f, particle_color4f, particle_texcoord2f);
for (surfacelistindex = 0;surfacelistindex < numsurfaces;)
{
p = cl.particles + surfacelist[surfacelistindex];
if (texture != particletexture[p->texnum].texture)
{
texture = particletexture[p->texnum].texture;
R_SetupShader_Generic(texture, NULL, GL_MODULATE, 1, false, false, false);
}
if (p->blendmode == PBLEND_INVMOD)
{
// inverse modulate blend - group these
GL_BlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR);
// iterate until we find a change in settings
batchstart = surfacelistindex++;
for (;surfacelistindex < numsurfaces;surfacelistindex++)
{
p = cl.particles + surfacelist[surfacelistindex];
if (p->blendmode != PBLEND_INVMOD || texture != particletexture[p->texnum].texture)
break;
}
}
else
{
// additive or alpha blend - group these
// (we can group these because we premultiplied the texture alpha)
GL_BlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
// iterate until we find a change in settings
batchstart = surfacelistindex++;
for (;surfacelistindex < numsurfaces;surfacelistindex++)
{
p = cl.particles + surfacelist[surfacelistindex];
if (p->blendmode == PBLEND_INVMOD || texture != particletexture[p->texnum].texture)
break;
}
}
batchcount = surfacelistindex - batchstart;
R_Mesh_Draw(batchstart * 4, batchcount * 4, batchstart * 2, batchcount * 2, NULL, NULL, 0, particle_elements, NULL, 0);
}
}
void R_DrawParticles (void)
{
int i, a;
int drawparticles = r_drawparticles.integer;
float minparticledist_start;
particle_t *p;
float gravity, frametime, f, dist, oldorg[3], decaldir[3];
float drawdist2;
int hitent;
trace_t trace;
qboolean update;
frametime = bound(0, cl.time - cl.particles_updatetime, 1);
cl.particles_updatetime = bound(cl.time - 1, cl.particles_updatetime + frametime, cl.time + 1);
// LordHavoc: early out conditions
if (!cl.num_particles)
return;
minparticledist_start = DotProduct(r_refdef.view.origin, r_refdef.view.forward) + r_drawparticles_nearclip_min.value;
gravity = frametime * cl.movevars_gravity;
update = frametime > 0;
drawdist2 = r_drawparticles_drawdistance.value * r_refdef.view.quality;
drawdist2 = drawdist2*drawdist2;
for (i = 0, p = cl.particles;i < cl.num_particles;i++, p++)
{
if (!p->typeindex)
{
if (cl.free_particle > i)
cl.free_particle = i;
continue;
}
if (update)
{
if (p->delayedspawn > cl.time)
continue;
p->size += p->sizeincrease * frametime;
p->alpha -= p->alphafade * frametime;
if (p->alpha <= 0 || p->die <= cl.time)
goto killparticle;
if (p->orientation != PARTICLE_VBEAM && p->orientation != PARTICLE_HBEAM && frametime > 0)
{
if (p->liquidfriction && cl_particles_collisions.integer && (CL_PointSuperContents(p->org) & SUPERCONTENTS_LIQUIDSMASK))
{
if (p->typeindex == pt_blood)
p->size += frametime * 8;
else
p->vel[2] -= p->gravity * gravity;
f = 1.0f - min(p->liquidfriction * frametime, 1);
VectorScale(p->vel, f, p->vel);
}
else
{
p->vel[2] -= p->gravity * gravity;
if (p->airfriction)
{
f = 1.0f - min(p->airfriction * frametime, 1);
VectorScale(p->vel, f, p->vel);
}
}
VectorCopy(p->org, oldorg);
VectorMA(p->org, frametime, p->vel, p->org);
// if (p->bounce && cl.time >= p->delayedcollisions)
if (p->bounce && cl_particles_collisions.integer && VectorLength(p->vel))
{
trace = CL_TraceLine(oldorg, p->org, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID | SUPERCONTENTS_BODY | ((p->typeindex == pt_rain || p->typeindex == pt_snow) ? SUPERCONTENTS_LIQUIDSMASK : 0), true, false, &hitent, false, false);
// if the trace started in or hit something of SUPERCONTENTS_NODROP
// or if the trace hit something flagged as NOIMPACT
// then remove the particle
if (trace.hitq3surfaceflags & Q3SURFACEFLAG_NOIMPACT || ((trace.startsupercontents | trace.hitsupercontents) & SUPERCONTENTS_NODROP) || (trace.startsupercontents & SUPERCONTENTS_SOLID))
goto killparticle;
VectorCopy(trace.endpos, p->org);
// react if the particle hit something
if (trace.fraction < 1)
{
VectorCopy(trace.endpos, p->org);
if (p->staintexnum >= 0)
{
// blood - splash on solid
if (!(trace.hitq3surfaceflags & Q3SURFACEFLAG_NOMARKS))
{
R_Stain(p->org, 16,
p->staincolor[0], p->staincolor[1], p->staincolor[2], (int)(p->stainalpha * p->stainsize * (1.0f / 160.0f)),
p->staincolor[0], p->staincolor[1], p->staincolor[2], (int)(p->stainalpha * p->stainsize * (1.0f / 160.0f)));
if (cl_decals.integer)
{
// create a decal for the blood splat
a = 0xFFFFFF ^ (p->staincolor[0]*65536+p->staincolor[1]*256+p->staincolor[2]);
if (cl_decals_newsystem_bloodsmears.integer)
{
VectorCopy(p->vel, decaldir);
VectorNormalize(decaldir);
}
else
VectorCopy(trace.plane.normal, decaldir);
CL_SpawnDecalParticleForSurface(hitent, p->org, decaldir, a, a, p->staintexnum, p->stainsize, p->stainalpha); // staincolor needs to be inverted for decals!
}
}
}
if (p->typeindex == pt_blood)
{
// blood - splash on solid
if (trace.hitq3surfaceflags & Q3SURFACEFLAG_NOMARKS)
goto killparticle;
if(p->staintexnum == -1) // staintex < -1 means no stains at all
{
R_Stain(p->org, 16, 64, 16, 16, (int)(p->alpha * p->size * (1.0f / 80.0f)), 64, 32, 32, (int)(p->alpha * p->size * (1.0f / 80.0f)));
if (cl_decals.integer)
{
// create a decal for the blood splat
if (cl_decals_newsystem_bloodsmears.integer)
{
VectorCopy(p->vel, decaldir);
VectorNormalize(decaldir);
}
else
VectorCopy(trace.plane.normal, decaldir);
CL_SpawnDecalParticleForSurface(hitent, p->org, decaldir, p->color[0] * 65536 + p->color[1] * 256 + p->color[2], p->color[0] * 65536 + p->color[1] * 256 + p->color[2], tex_blooddecal[rand()&7], p->size * lhrandom(cl_particles_blood_decal_scalemin.value, cl_particles_blood_decal_scalemax.value), cl_particles_blood_decal_alpha.value * 768);
}
}
goto killparticle;
}
else if (p->bounce < 0)
{
// bounce -1 means remove on impact
goto killparticle;
}
else
{
// anything else - bounce off solid
dist = DotProduct(p->vel, trace.plane.normal) * -p->bounce;
VectorMA(p->vel, dist, trace.plane.normal, p->vel);
}
}
}
if (VectorLength2(p->vel) < 0.03)
{
if(p->orientation == PARTICLE_SPARK) // sparks are virtually invisible if very slow, so rather let them go off
goto killparticle;
VectorClear(p->vel);
}
}
if (p->typeindex != pt_static)
{
switch (p->typeindex)
{
case pt_entityparticle:
// particle that removes itself after one rendered frame
if (p->time2)
goto killparticle;
else
p->time2 = 1;
break;
case pt_blood:
a = CL_PointSuperContents(p->org);
if (a & (SUPERCONTENTS_SOLID | SUPERCONTENTS_LAVA | SUPERCONTENTS_NODROP))
goto killparticle;
break;
case pt_bubble:
a = CL_PointSuperContents(p->org);
if (!(a & (SUPERCONTENTS_WATER | SUPERCONTENTS_SLIME)))
goto killparticle;
break;
case pt_rain:
a = CL_PointSuperContents(p->org);
if (a & (SUPERCONTENTS_SOLID | SUPERCONTENTS_BODY | SUPERCONTENTS_LIQUIDSMASK))
goto killparticle;
break;
case pt_snow:
if (cl.time > p->time2)
{
// snow flutter
p->time2 = cl.time + (rand() & 3) * 0.1;
p->vel[0] = p->vel[0] * 0.9f + lhrandom(-32, 32);
p->vel[1] = p->vel[0] * 0.9f + lhrandom(-32, 32);
}
a = CL_PointSuperContents(p->org);
if (a & (SUPERCONTENTS_SOLID | SUPERCONTENTS_BODY | SUPERCONTENTS_LIQUIDSMASK))
goto killparticle;
break;
default:
break;
}
}
}
else if (p->delayedspawn > cl.time)
continue;
if (!drawparticles)
continue;
// don't render particles too close to the view (they chew fillrate)
// also don't render particles behind the view (useless)
// further checks to cull to the frustum would be too slow here
switch(p->typeindex)
{
case pt_beam:
// beams have no culling
R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, p->sortorigin, R_DrawParticle_TransparentCallback, NULL, i, NULL);
break;
default:
if(cl_particles_visculling.integer)
if (!r_refdef.viewcache.world_novis)
if(r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.PointInLeaf)
{
mleaf_t *leaf = r_refdef.scene.worldmodel->brush.PointInLeaf(r_refdef.scene.worldmodel, p->org);
if(leaf)
if(!CHECKPVSBIT(r_refdef.viewcache.world_pvsbits, leaf->clusterindex))
continue;
}
// anything else just has to be in front of the viewer and visible at this distance
if (DotProduct(p->org, r_refdef.view.forward) >= minparticledist_start && VectorDistance2(p->org, r_refdef.view.origin) < drawdist2 * (p->size * p->size))
R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, p->sortorigin, R_DrawParticle_TransparentCallback, NULL, i, NULL);
break;
}
continue;
killparticle:
p->typeindex = 0;
if (cl.free_particle > i)
cl.free_particle = i;
}
// reduce cl.num_particles if possible
while (cl.num_particles > 0 && cl.particles[cl.num_particles - 1].typeindex == 0)
cl.num_particles--;
if (cl.num_particles == cl.max_particles && cl.max_particles < MAX_PARTICLES)
{
particle_t *oldparticles = cl.particles;
cl.max_particles = min(cl.max_particles * 2, MAX_PARTICLES);
cl.particles = (particle_t *) Mem_Alloc(cls.levelmempool, cl.max_particles * sizeof(particle_t));
memcpy(cl.particles, oldparticles, cl.num_particles * sizeof(particle_t));
Mem_Free(oldparticles);
}
}