quakequest/Projects/Android/jni/darkplaces/image.c
2021-02-02 22:53:37 +00:00

1588 lines
43 KiB
C

#include "quakedef.h"
#include "image.h"
#include "jpeg.h"
#include "image_png.h"
#include "r_shadow.h"
int image_width;
int image_height;
static void Image_CopyAlphaFromBlueBGRA(unsigned char *outpixels, const unsigned char *inpixels, int w, int h)
{
int i, n;
n = w * h;
for(i = 0; i < n; ++i)
outpixels[4*i+3] = inpixels[4*i]; // blue channel
}
#if 1
// written by LordHavoc in a readable way, optimized by Vic, further optimized by LordHavoc (the non-special index case), readable version preserved below this
void Image_CopyMux(unsigned char *outpixels, const unsigned char *inpixels, int inputwidth, int inputheight, qboolean inputflipx, qboolean inputflipy, qboolean inputflipdiagonal, int numoutputcomponents, int numinputcomponents, int *outputinputcomponentindices)
{
int index, c, x, y;
const unsigned char *in, *line;
int row_inc = (inputflipy ? -inputwidth : inputwidth) * numinputcomponents, col_inc = (inputflipx ? -1 : 1) * numinputcomponents;
int row_ofs = (inputflipy ? (inputheight - 1) * inputwidth * numinputcomponents : 0), col_ofs = (inputflipx ? (inputwidth - 1) * numinputcomponents : 0);
for (c = 0; c < numoutputcomponents; c++)
if (outputinputcomponentindices[c] & 0x80000000)
break;
if (c < numoutputcomponents)
{
// special indices used
if (inputflipdiagonal)
{
for (x = 0, line = inpixels + col_ofs; x < inputwidth; x++, line += col_inc)
for (y = 0, in = line + row_ofs; y < inputheight; y++, in += row_inc, outpixels += numoutputcomponents)
for (c = 0; c < numoutputcomponents; c++)
outpixels[c] = ((index = outputinputcomponentindices[c]) & 0x80000000) ? index : in[index];
}
else
{
for (y = 0, line = inpixels + row_ofs; y < inputheight; y++, line += row_inc)
for (x = 0, in = line + col_ofs; x < inputwidth; x++, in += col_inc, outpixels += numoutputcomponents)
for (c = 0; c < numoutputcomponents; c++)
outpixels[c] = ((index = outputinputcomponentindices[c]) & 0x80000000) ? index : in[index];
}
}
else
{
// special indices not used
if (inputflipdiagonal)
{
for (x = 0, line = inpixels + col_ofs; x < inputwidth; x++, line += col_inc)
for (y = 0, in = line + row_ofs; y < inputheight; y++, in += row_inc, outpixels += numoutputcomponents)
for (c = 0; c < numoutputcomponents; c++)
outpixels[c] = in[outputinputcomponentindices[c]];
}
else
{
for (y = 0, line = inpixels + row_ofs; y < inputheight; y++, line += row_inc)
for (x = 0, in = line + col_ofs; x < inputwidth; x++, in += col_inc, outpixels += numoutputcomponents)
for (c = 0; c < numoutputcomponents; c++)
outpixels[c] = in[outputinputcomponentindices[c]];
}
}
}
#else
// intentionally readable version
void Image_CopyMux(unsigned char *outpixels, const unsigned char *inpixels, int inputwidth, int inputheight, qboolean inputflipx, qboolean inputflipy, qboolean inputflipdiagonal, int numoutputcomponents, int numinputcomponents, int *outputinputcomponentindices)
{
int index, c, x, y;
const unsigned char *in, *inrow, *incolumn;
if (inputflipdiagonal)
{
for (x = 0;x < inputwidth;x++)
{
for (y = 0;y < inputheight;y++)
{
in = inpixels + ((inputflipy ? inputheight - 1 - y : y) * inputwidth + (inputflipx ? inputwidth - 1 - x : x)) * numinputcomponents;
for (c = 0;c < numoutputcomponents;c++)
{
index = outputinputcomponentindices[c];
if (index & 0x80000000)
*outpixels++ = index;
else
*outpixels++ = in[index];
}
}
}
}
else
{
for (y = 0;y < inputheight;y++)
{
for (x = 0;x < inputwidth;x++)
{
in = inpixels + ((inputflipy ? inputheight - 1 - y : y) * inputwidth + (inputflipx ? inputwidth - 1 - x : x)) * numinputcomponents;
for (c = 0;c < numoutputcomponents;c++)
{
index = outputinputcomponentindices[c];
if (index & 0x80000000)
*outpixels++ = index;
else
*outpixels++ = in[index];
}
}
}
}
}
#endif
void Image_GammaRemapRGB(const unsigned char *in, unsigned char *out, int pixels, const unsigned char *gammar, const unsigned char *gammag, const unsigned char *gammab)
{
while (pixels--)
{
out[0] = gammar[in[0]];
out[1] = gammag[in[1]];
out[2] = gammab[in[2]];
in += 3;
out += 3;
}
}
// note: pal must be 32bit color
void Image_Copy8bitBGRA(const unsigned char *in, unsigned char *out, int pixels, const unsigned int *pal)
{
int *iout = (int *)out;
while (pixels >= 8)
{
iout[0] = pal[in[0]];
iout[1] = pal[in[1]];
iout[2] = pal[in[2]];
iout[3] = pal[in[3]];
iout[4] = pal[in[4]];
iout[5] = pal[in[5]];
iout[6] = pal[in[6]];
iout[7] = pal[in[7]];
in += 8;
iout += 8;
pixels -= 8;
}
if (pixels & 4)
{
iout[0] = pal[in[0]];
iout[1] = pal[in[1]];
iout[2] = pal[in[2]];
iout[3] = pal[in[3]];
in += 4;
iout += 4;
}
if (pixels & 2)
{
iout[0] = pal[in[0]];
iout[1] = pal[in[1]];
in += 2;
iout += 2;
}
if (pixels & 1)
iout[0] = pal[in[0]];
}
/*
=================================================================
PCX Loading
=================================================================
*/
typedef struct pcx_s
{
char manufacturer;
char version;
char encoding;
char bits_per_pixel;
unsigned short xmin,ymin,xmax,ymax;
unsigned short hres,vres;
unsigned char palette[48];
char reserved;
char color_planes;
unsigned short bytes_per_line;
unsigned short palette_type;
char filler[58];
} pcx_t;
/*
============
LoadPCX
============
*/
static unsigned char* LoadPCX_BGRA (const unsigned char *f, int filesize, int *miplevel)
{
pcx_t pcx;
unsigned char *a, *b, *image_buffer, *pbuf;
const unsigned char *palette, *fin, *enddata;
int x, y, x2, dataByte;
if (filesize < (int)sizeof(pcx) + 768)
{
Con_Print("Bad pcx file\n");
return NULL;
}
fin = f;
memcpy(&pcx, fin, sizeof(pcx));
fin += sizeof(pcx);
// LordHavoc: big-endian support ported from QF newtree
pcx.xmax = LittleShort (pcx.xmax);
pcx.xmin = LittleShort (pcx.xmin);
pcx.ymax = LittleShort (pcx.ymax);
pcx.ymin = LittleShort (pcx.ymin);
pcx.hres = LittleShort (pcx.hres);
pcx.vres = LittleShort (pcx.vres);
pcx.bytes_per_line = LittleShort (pcx.bytes_per_line);
pcx.palette_type = LittleShort (pcx.palette_type);
image_width = pcx.xmax + 1 - pcx.xmin;
image_height = pcx.ymax + 1 - pcx.ymin;
if (pcx.manufacturer != 0x0a || pcx.version != 5 || pcx.encoding != 1 || pcx.bits_per_pixel != 8 || image_width > 32768 || image_height > 32768 || image_width <= 0 || image_height <= 0)
{
Con_Print("Bad pcx file\n");
return NULL;
}
palette = f + filesize - 768;
image_buffer = (unsigned char *)Mem_Alloc(tempmempool, image_width*image_height*4);
if (!image_buffer)
{
Con_Printf("LoadPCX: not enough memory for %i by %i image\n", image_width, image_height);
return NULL;
}
pbuf = image_buffer + image_width*image_height*3;
enddata = palette;
for (y = 0;y < image_height && fin < enddata;y++)
{
a = pbuf + y * image_width;
for (x = 0;x < image_width && fin < enddata;)
{
dataByte = *fin++;
if(dataByte >= 0xC0)
{
if (fin >= enddata)
break;
x2 = x + (dataByte & 0x3F);
dataByte = *fin++;
if (x2 > image_width)
x2 = image_width; // technically an error
while(x < x2)
a[x++] = dataByte;
}
else
a[x++] = dataByte;
}
while(x < image_width)
a[x++] = 0;
}
a = image_buffer;
b = pbuf;
for(x = 0;x < image_width*image_height;x++)
{
y = *b++ * 3;
*a++ = palette[y+2];
*a++ = palette[y+1];
*a++ = palette[y];
*a++ = 255;
}
return image_buffer;
}
/*
============
LoadPCX
============
*/
qboolean LoadPCX_QWSkin(const unsigned char *f, int filesize, unsigned char *pixels, int outwidth, int outheight)
{
pcx_t pcx;
unsigned char *a;
const unsigned char *fin, *enddata;
int x, y, x2, dataByte, pcxwidth, pcxheight;
if (filesize < (int)sizeof(pcx) + 768)
return false;
image_width = outwidth;
image_height = outheight;
fin = f;
memcpy(&pcx, fin, sizeof(pcx));
fin += sizeof(pcx);
// LordHavoc: big-endian support ported from QF newtree
pcx.xmax = LittleShort (pcx.xmax);
pcx.xmin = LittleShort (pcx.xmin);
pcx.ymax = LittleShort (pcx.ymax);
pcx.ymin = LittleShort (pcx.ymin);
pcx.hres = LittleShort (pcx.hres);
pcx.vres = LittleShort (pcx.vres);
pcx.bytes_per_line = LittleShort (pcx.bytes_per_line);
pcx.palette_type = LittleShort (pcx.palette_type);
pcxwidth = pcx.xmax + 1 - pcx.xmin;
pcxheight = pcx.ymax + 1 - pcx.ymin;
if (pcx.manufacturer != 0x0a || pcx.version != 5 || pcx.encoding != 1 || pcx.bits_per_pixel != 8 || pcxwidth > 4096 || pcxheight > 4096 || pcxwidth <= 0 || pcxheight <= 0)
return false;
enddata = f + filesize - 768;
for (y = 0;y < outheight && fin < enddata;y++)
{
a = pixels + y * outwidth;
// pad the output with blank lines if needed
if (y >= pcxheight)
{
memset(a, 0, outwidth);
continue;
}
for (x = 0;x < pcxwidth;)
{
if (fin >= enddata)
return false;
dataByte = *fin++;
if(dataByte >= 0xC0)
{
x2 = x + (dataByte & 0x3F);
if (fin >= enddata)
return false;
if (x2 > pcxwidth)
return false;
dataByte = *fin++;
for (;x < x2;x++)
if (x < outwidth)
a[x] = dataByte;
}
else
{
if (x < outwidth) // truncate to destination width
a[x] = dataByte;
x++;
}
}
while(x < outwidth)
a[x++] = 0;
}
return true;
}
/*
=========================================================
TARGA LOADING
=========================================================
*/
typedef struct _TargaHeader
{
unsigned char id_length, colormap_type, image_type;
unsigned short colormap_index, colormap_length;
unsigned char colormap_size;
unsigned short x_origin, y_origin, width, height;
unsigned char pixel_size, attributes;
}
TargaHeader;
static void PrintTargaHeader(TargaHeader *t)
{
Con_Printf("TargaHeader:\nuint8 id_length = %i;\nuint8 colormap_type = %i;\nuint8 image_type = %i;\nuint16 colormap_index = %i;\nuint16 colormap_length = %i;\nuint8 colormap_size = %i;\nuint16 x_origin = %i;\nuint16 y_origin = %i;\nuint16 width = %i;\nuint16 height = %i;\nuint8 pixel_size = %i;\nuint8 attributes = %i;\n", t->id_length, t->colormap_type, t->image_type, t->colormap_index, t->colormap_length, t->colormap_size, t->x_origin, t->y_origin, t->width, t->height, t->pixel_size, t->attributes);
}
/*
=============
LoadTGA
=============
*/
unsigned char *LoadTGA_BGRA (const unsigned char *f, int filesize, int *miplevel)
{
int x, y, pix_inc, row_inci, runlen, alphabits;
unsigned char *image_buffer;
unsigned int *pixbufi;
const unsigned char *fin, *enddata;
TargaHeader targa_header;
unsigned int palettei[256];
union
{
unsigned int i;
unsigned char b[4];
}
bgra;
if (filesize < 19)
return NULL;
enddata = f + filesize;
targa_header.id_length = f[0];
targa_header.colormap_type = f[1];
targa_header.image_type = f[2];
targa_header.colormap_index = f[3] + f[4] * 256;
targa_header.colormap_length = f[5] + f[6] * 256;
targa_header.colormap_size = f[7];
targa_header.x_origin = f[8] + f[9] * 256;
targa_header.y_origin = f[10] + f[11] * 256;
targa_header.width = image_width = f[12] + f[13] * 256;
targa_header.height = image_height = f[14] + f[15] * 256;
targa_header.pixel_size = f[16];
targa_header.attributes = f[17];
if (image_width > 32768 || image_height > 32768 || image_width <= 0 || image_height <= 0)
{
Con_Print("LoadTGA: invalid size\n");
PrintTargaHeader(&targa_header);
return NULL;
}
// advance to end of header
fin = f + 18;
// skip TARGA image comment (usually 0 bytes)
fin += targa_header.id_length;
// read/skip the colormap if present (note: according to the TARGA spec it
// can be present even on truecolor or greyscale images, just not used by
// the image data)
if (targa_header.colormap_type)
{
if (targa_header.colormap_length > 256)
{
Con_Print("LoadTGA: only up to 256 colormap_length supported\n");
PrintTargaHeader(&targa_header);
return NULL;
}
if (targa_header.colormap_index)
{
Con_Print("LoadTGA: colormap_index not supported\n");
PrintTargaHeader(&targa_header);
return NULL;
}
if (targa_header.colormap_size == 24)
{
for (x = 0;x < targa_header.colormap_length;x++)
{
bgra.b[0] = *fin++;
bgra.b[1] = *fin++;
bgra.b[2] = *fin++;
bgra.b[3] = 255;
palettei[x] = bgra.i;
}
}
else if (targa_header.colormap_size == 32)
{
memcpy(palettei, fin, targa_header.colormap_length*4);
fin += targa_header.colormap_length * 4;
}
else
{
Con_Print("LoadTGA: Only 32 and 24 bit colormap_size supported\n");
PrintTargaHeader(&targa_header);
return NULL;
}
}
// check our pixel_size restrictions according to image_type
switch (targa_header.image_type & ~8)
{
case 2:
if (targa_header.pixel_size != 24 && targa_header.pixel_size != 32)
{
Con_Print("LoadTGA: only 24bit and 32bit pixel sizes supported for type 2 and type 10 images\n");
PrintTargaHeader(&targa_header);
return NULL;
}
break;
case 3:
// set up a palette to make the loader easier
for (x = 0;x < 256;x++)
{
bgra.b[0] = bgra.b[1] = bgra.b[2] = x;
bgra.b[3] = 255;
palettei[x] = bgra.i;
}
// fall through to colormap case
case 1:
if (targa_header.pixel_size != 8)
{
Con_Print("LoadTGA: only 8bit pixel size for type 1, 3, 9, and 11 images supported\n");
PrintTargaHeader(&targa_header);
return NULL;
}
break;
default:
Con_Printf("LoadTGA: Only type 1, 2, 3, 9, 10, and 11 targa RGB images supported, image_type = %i\n", targa_header.image_type);
PrintTargaHeader(&targa_header);
return NULL;
}
if (targa_header.attributes & 0x10)
{
Con_Print("LoadTGA: origin must be in top left or bottom left, top right and bottom right are not supported\n");
return NULL;
}
// number of attribute bits per pixel, we only support 0 or 8
alphabits = targa_header.attributes & 0x0F;
if (alphabits != 8 && alphabits != 0)
{
Con_Print("LoadTGA: only 0 or 8 attribute (alpha) bits supported\n");
return NULL;
}
image_buffer = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
if (!image_buffer)
{
Con_Printf("LoadTGA: not enough memory for %i by %i image\n", image_width, image_height);
return NULL;
}
// If bit 5 of attributes isn't set, the image has been stored from bottom to top
if ((targa_header.attributes & 0x20) == 0)
{
pixbufi = (unsigned int*)image_buffer + (image_height - 1)*image_width;
row_inci = -image_width*2;
}
else
{
pixbufi = (unsigned int*)image_buffer;
row_inci = 0;
}
pix_inc = 1;
if ((targa_header.image_type & ~8) == 2)
pix_inc = (targa_header.pixel_size + 7) / 8;
switch (targa_header.image_type)
{
case 1: // colormapped, uncompressed
case 3: // greyscale, uncompressed
if (fin + image_width * image_height * pix_inc > enddata)
break;
for (y = 0;y < image_height;y++, pixbufi += row_inci)
for (x = 0;x < image_width;x++)
*pixbufi++ = palettei[*fin++];
break;
case 2:
// BGR or BGRA, uncompressed
if (fin + image_width * image_height * pix_inc > enddata)
break;
if (targa_header.pixel_size == 32 && alphabits)
{
for (y = 0;y < image_height;y++)
memcpy(pixbufi + y * (image_width + row_inci), fin + y * image_width * pix_inc, image_width*4);
}
else
{
for (y = 0;y < image_height;y++, pixbufi += row_inci)
{
for (x = 0;x < image_width;x++, fin += pix_inc)
{
bgra.b[0] = fin[0];
bgra.b[1] = fin[1];
bgra.b[2] = fin[2];
bgra.b[3] = 255;
*pixbufi++ = bgra.i;
}
}
}
break;
case 9: // colormapped, RLE
case 11: // greyscale, RLE
for (y = 0;y < image_height;y++, pixbufi += row_inci)
{
for (x = 0;x < image_width;)
{
if (fin >= enddata)
break; // error - truncated file
runlen = *fin++;
if (runlen & 0x80)
{
// RLE - all pixels the same color
runlen += 1 - 0x80;
if (fin + pix_inc > enddata)
break; // error - truncated file
if (x + runlen > image_width)
break; // error - line exceeds width
bgra.i = palettei[*fin++];
for (;runlen--;x++)
*pixbufi++ = bgra.i;
}
else
{
// uncompressed - all pixels different color
runlen++;
if (fin + pix_inc * runlen > enddata)
break; // error - truncated file
if (x + runlen > image_width)
break; // error - line exceeds width
for (;runlen--;x++)
*pixbufi++ = palettei[*fin++];
}
}
if (x != image_width)
{
// pixbufi is useless now
Con_Printf("LoadTGA: corrupt file\n");
break;
}
}
break;
case 10:
// BGR or BGRA, RLE
if (targa_header.pixel_size == 32 && alphabits)
{
for (y = 0;y < image_height;y++, pixbufi += row_inci)
{
for (x = 0;x < image_width;)
{
if (fin >= enddata)
break; // error - truncated file
runlen = *fin++;
if (runlen & 0x80)
{
// RLE - all pixels the same color
runlen += 1 - 0x80;
if (fin + pix_inc > enddata)
break; // error - truncated file
if (x + runlen > image_width)
break; // error - line exceeds width
bgra.b[0] = fin[0];
bgra.b[1] = fin[1];
bgra.b[2] = fin[2];
bgra.b[3] = fin[3];
fin += pix_inc;
for (;runlen--;x++)
*pixbufi++ = bgra.i;
}
else
{
// uncompressed - all pixels different color
runlen++;
if (fin + pix_inc * runlen > enddata)
break; // error - truncated file
if (x + runlen > image_width)
break; // error - line exceeds width
for (;runlen--;x++)
{
bgra.b[0] = fin[0];
bgra.b[1] = fin[1];
bgra.b[2] = fin[2];
bgra.b[3] = fin[3];
fin += pix_inc;
*pixbufi++ = bgra.i;
}
}
}
if (x != image_width)
{
// pixbufi is useless now
Con_Printf("LoadTGA: corrupt file\n");
break;
}
}
}
else
{
for (y = 0;y < image_height;y++, pixbufi += row_inci)
{
for (x = 0;x < image_width;)
{
if (fin >= enddata)
break; // error - truncated file
runlen = *fin++;
if (runlen & 0x80)
{
// RLE - all pixels the same color
runlen += 1 - 0x80;
if (fin + pix_inc > enddata)
break; // error - truncated file
if (x + runlen > image_width)
break; // error - line exceeds width
bgra.b[0] = fin[0];
bgra.b[1] = fin[1];
bgra.b[2] = fin[2];
bgra.b[3] = 255;
fin += pix_inc;
for (;runlen--;x++)
*pixbufi++ = bgra.i;
}
else
{
// uncompressed - all pixels different color
runlen++;
if (fin + pix_inc * runlen > enddata)
break; // error - truncated file
if (x + runlen > image_width)
break; // error - line exceeds width
for (;runlen--;x++)
{
bgra.b[0] = fin[0];
bgra.b[1] = fin[1];
bgra.b[2] = fin[2];
bgra.b[3] = 255;
fin += pix_inc;
*pixbufi++ = bgra.i;
}
}
}
if (x != image_width)
{
// pixbufi is useless now
Con_Printf("LoadTGA: corrupt file\n");
break;
}
}
}
break;
default:
// unknown image_type
break;
}
return image_buffer;
}
typedef struct q2wal_s
{
char name[32];
unsigned width, height;
unsigned offsets[MIPLEVELS]; // four mip maps stored
char animname[32]; // next frame in animation chain
int flags;
int contents;
int value;
} q2wal_t;
static unsigned char *LoadWAL_BGRA (const unsigned char *f, int filesize, int *miplevel)
{
unsigned char *image_buffer;
const q2wal_t *inwal = (const q2wal_t *)f;
if (filesize < (int) sizeof(q2wal_t))
{
Con_Print("LoadWAL: invalid WAL file\n");
return NULL;
}
image_width = LittleLong(inwal->width);
image_height = LittleLong(inwal->height);
if (image_width > 32768 || image_height > 32768 || image_width <= 0 || image_height <= 0)
{
Con_Printf("LoadWAL: invalid size %ix%i\n", image_width, image_height);
return NULL;
}
if (filesize < (int) sizeof(q2wal_t) + (int) LittleLong(inwal->offsets[0]) + image_width * image_height)
{
Con_Print("LoadWAL: invalid WAL file\n");
return NULL;
}
image_buffer = (unsigned char *)Mem_Alloc(tempmempool, image_width * image_height * 4);
if (!image_buffer)
{
Con_Printf("LoadWAL: not enough memory for %i by %i image\n", image_width, image_height);
return NULL;
}
Image_Copy8bitBGRA(f + LittleLong(inwal->offsets[0]), image_buffer, image_width * image_height, palette_bgra_complete);
return image_buffer;
}
void Image_StripImageExtension (const char *in, char *out, size_t size_out)
{
const char *ext;
if (size_out == 0)
return;
ext = FS_FileExtension(in);
if (ext && (!strcmp(ext, "tga") || !strcmp(ext, "pcx") || !strcmp(ext, "lmp") || !strcmp(ext, "png") || !strcmp(ext, "jpg")))
FS_StripExtension(in, out, size_out);
else
strlcpy(out, in, size_out);
}
static unsigned char image_linearfromsrgb[256];
static unsigned char image_srgbfromlinear_lightmap[256];
void Image_MakeLinearColorsFromsRGB(unsigned char *pout, const unsigned char *pin, int numpixels)
{
int i;
// this math from http://www.opengl.org/registry/specs/EXT/texture_sRGB.txt
if (!image_linearfromsrgb[255])
for (i = 0;i < 256;i++)
image_linearfromsrgb[i] = (unsigned char)floor(Image_LinearFloatFromsRGB(i) * 255.0f + 0.5f);
for (i = 0;i < numpixels;i++)
{
pout[i*4+0] = image_linearfromsrgb[pin[i*4+0]];
pout[i*4+1] = image_linearfromsrgb[pin[i*4+1]];
pout[i*4+2] = image_linearfromsrgb[pin[i*4+2]];
pout[i*4+3] = pin[i*4+3];
}
}
void Image_MakesRGBColorsFromLinear_Lightmap(unsigned char *pout, const unsigned char *pin, int numpixels)
{
int i;
// this math from http://www.opengl.org/registry/specs/EXT/texture_sRGB.txt
if (!image_srgbfromlinear_lightmap[255])
for (i = 0;i < 256;i++)
image_srgbfromlinear_lightmap[i] = (unsigned char)floor(bound(0.0f, Image_sRGBFloatFromLinear_Lightmap(i), 1.0f) * 255.0f + 0.5f);
for (i = 0;i < numpixels;i++)
{
pout[i*4+0] = image_srgbfromlinear_lightmap[pin[i*4+0]];
pout[i*4+1] = image_srgbfromlinear_lightmap[pin[i*4+1]];
pout[i*4+2] = image_srgbfromlinear_lightmap[pin[i*4+2]];
pout[i*4+3] = pin[i*4+3];
}
}
typedef struct imageformat_s
{
const char *formatstring;
unsigned char *(*loadfunc)(const unsigned char *f, int filesize, int *miplevel);
}
imageformat_t;
// GAME_TENEBRAE only
imageformat_t imageformats_tenebrae[] =
{
{"override/%s.tga", LoadTGA_BGRA},
{"override/%s.png", PNG_LoadImage_BGRA},
{"override/%s.jpg", JPEG_LoadImage_BGRA},
{"override/%s.pcx", LoadPCX_BGRA},
{"%s.tga", LoadTGA_BGRA},
{"%s.png", PNG_LoadImage_BGRA},
{"%s.jpg", JPEG_LoadImage_BGRA},
{"%s.pcx", LoadPCX_BGRA},
{NULL, NULL}
};
imageformat_t imageformats_nopath[] =
{
{"override/%s.tga", LoadTGA_BGRA},
{"override/%s.png", PNG_LoadImage_BGRA},
{"override/%s.jpg", JPEG_LoadImage_BGRA},
{"textures/%s.tga", LoadTGA_BGRA},
{"textures/%s.png", PNG_LoadImage_BGRA},
{"textures/%s.jpg", JPEG_LoadImage_BGRA},
{"%s.tga", LoadTGA_BGRA},
{"%s.png", PNG_LoadImage_BGRA},
{"%s.jpg", JPEG_LoadImage_BGRA},
{"%s.pcx", LoadPCX_BGRA},
{NULL, NULL}
};
// GAME_DELUXEQUAKE only
// VorteX: the point why i use such messy texture paths is
// that GtkRadiant can't detect normal/gloss textures
// and exclude them from texture browser
// so i just use additional folder to store this textures
imageformat_t imageformats_dq[] =
{
{"%s.tga", LoadTGA_BGRA},
{"%s.jpg", JPEG_LoadImage_BGRA},
{"texturemaps/%s.tga", LoadTGA_BGRA},
{"texturemaps/%s.jpg", JPEG_LoadImage_BGRA},
{NULL, NULL}
};
imageformat_t imageformats_textures[] =
{
{"%s.tga", LoadTGA_BGRA},
{"%s.png", PNG_LoadImage_BGRA},
{"%s.jpg", JPEG_LoadImage_BGRA},
{"%s.pcx", LoadPCX_BGRA},
{"%s.wal", LoadWAL_BGRA},
{NULL, NULL}
};
imageformat_t imageformats_gfx[] =
{
{"%s.tga", LoadTGA_BGRA},
{"%s.png", PNG_LoadImage_BGRA},
{"%s.jpg", JPEG_LoadImage_BGRA},
{"%s.pcx", LoadPCX_BGRA},
{NULL, NULL}
};
imageformat_t imageformats_other[] =
{
{"%s.tga", LoadTGA_BGRA},
{"%s.png", PNG_LoadImage_BGRA},
{"%s.jpg", JPEG_LoadImage_BGRA},
{"%s.pcx", LoadPCX_BGRA},
{NULL, NULL}
};
int fixtransparentpixels(unsigned char *data, int w, int h);
unsigned char *loadimagepixelsbgra (const char *filename, qboolean complain, qboolean allowFixtrans, qboolean convertsRGB, int *miplevel)
{
fs_offset_t filesize;
imageformat_t *firstformat, *format;
unsigned char *f, *data = NULL, *data2 = NULL;
char basename[MAX_QPATH], name[MAX_QPATH], name2[MAX_QPATH], *c;
char vabuf[1024];
//if (developer_memorydebug.integer)
// Mem_CheckSentinelsGlobal();
if (developer_texturelogging.integer)
Log_Printf("textures.log", "%s\n", filename);
Image_StripImageExtension(filename, basename, sizeof(basename)); // strip filename extensions to allow replacement by other types
// replace *'s with #, so commandline utils don't get confused when dealing with the external files
for (c = basename;*c;c++)
if (*c == '*')
*c = '#';
name[0] = 0;
if (strchr(basename, '/'))
{
int i;
for (i = 0;i < (int)sizeof(name)-1 && basename[i] != '/';i++)
name[i] = basename[i];
name[i] = 0;
}
if (gamemode == GAME_TENEBRAE)
firstformat = imageformats_tenebrae;
else if (gamemode == GAME_DELUXEQUAKE)
firstformat = imageformats_dq;
else if (!strcasecmp(name, "textures"))
firstformat = imageformats_textures;
else if (!strcasecmp(name, "gfx"))
firstformat = imageformats_gfx;
else if (!strchr(basename, '/'))
firstformat = imageformats_nopath;
else
firstformat = imageformats_other;
// now try all the formats in the selected list
for (format = firstformat;format->formatstring;format++)
{
dpsnprintf (name, sizeof(name), format->formatstring, basename);
f = FS_LoadFile(name, tempmempool, true, &filesize);
if (f)
{
int mymiplevel = miplevel ? *miplevel : 0;
data = format->loadfunc(f, (int)filesize, &mymiplevel);
Mem_Free(f);
if (data)
{
if(format->loadfunc == JPEG_LoadImage_BGRA) // jpeg can't do alpha, so let's simulate it by loading another jpeg
{
dpsnprintf (name2, sizeof(name2), format->formatstring, va(vabuf, sizeof(vabuf), "%s_alpha", basename));
f = FS_LoadFile(name2, tempmempool, true, &filesize);
if(f)
{
int mymiplevel2 = miplevel ? *miplevel : 0;
data2 = format->loadfunc(f, (int)filesize, &mymiplevel2);
if(data2 && mymiplevel == mymiplevel2)
Image_CopyAlphaFromBlueBGRA(data, data2, image_width, image_height);
else
Con_Printf("loadimagepixelsrgba: corrupt or invalid alpha image %s_alpha\n", basename);
if(data2)
Mem_Free(data2);
Mem_Free(f);
}
}
if (developer_loading.integer)
Con_DPrintf("loaded image %s (%dx%d)\n", name, image_width, image_height);
if(miplevel)
*miplevel = mymiplevel;
//if (developer_memorydebug.integer)
// Mem_CheckSentinelsGlobal();
if(allowFixtrans && r_fixtrans_auto.integer)
{
int n = fixtransparentpixels(data, image_width, image_height);
if(n)
{
Con_Printf("- had to fix %s (%d pixels changed)\n", name, n);
if(r_fixtrans_auto.integer >= 2)
{
char outfilename[MAX_QPATH], buf[MAX_QPATH];
Image_StripImageExtension(name, buf, sizeof(buf));
dpsnprintf(outfilename, sizeof(outfilename), "fixtrans/%s.tga", buf);
Image_WriteTGABGRA(outfilename, image_width, image_height, data);
Con_Printf("- %s written.\n", outfilename);
}
}
}
if (convertsRGB)
Image_MakeLinearColorsFromsRGB(data, data, image_width * image_height);
return data;
}
else
Con_DPrintf("Error loading image %s (file loaded but decode failed)\n", name);
}
}
if (complain)
{
Con_Printf("Couldn't load %s using ", filename);
for (format = firstformat;format->formatstring;format++)
{
dpsnprintf (name, sizeof(name), format->formatstring, basename);
Con_Printf(format == firstformat ? "\"%s\"" : (format[1].formatstring ? ", \"%s\"" : " or \"%s\".\n"), format->formatstring);
}
}
// texture loading can take a while, so make sure we're sending keepalives
CL_KeepaliveMessage(false);
//if (developer_memorydebug.integer)
// Mem_CheckSentinelsGlobal();
return NULL;
}
extern cvar_t gl_picmip;
rtexture_t *loadtextureimage (rtexturepool_t *pool, const char *filename, qboolean complain, int flags, qboolean allowFixtrans, qboolean sRGB)
{
unsigned char *data;
rtexture_t *rt;
int miplevel = R_PicmipForFlags(flags);
if (!(data = loadimagepixelsbgra (filename, complain, allowFixtrans, false, &miplevel)))
return 0;
rt = R_LoadTexture2D(pool, filename, image_width, image_height, data, sRGB ? TEXTYPE_SRGB_BGRA : TEXTYPE_BGRA, flags, miplevel, NULL);
Mem_Free(data);
return rt;
}
int fixtransparentpixels(unsigned char *data, int w, int h)
{
int const FIXTRANS_NEEDED = 1;
int const FIXTRANS_HAS_L = 2;
int const FIXTRANS_HAS_R = 4;
int const FIXTRANS_HAS_U = 8;
int const FIXTRANS_HAS_D = 16;
int const FIXTRANS_FIXED = 32;
unsigned char *fixMask = (unsigned char *) Mem_Alloc(tempmempool, w * h);
int fixPixels = 0;
int changedPixels = 0;
int x, y;
#define FIXTRANS_PIXEL (y*w+x)
#define FIXTRANS_PIXEL_U (((y+h-1)%h)*w+x)
#define FIXTRANS_PIXEL_D (((y+1)%h)*w+x)
#define FIXTRANS_PIXEL_L (y*w+((x+w-1)%w))
#define FIXTRANS_PIXEL_R (y*w+((x+1)%w))
memset(fixMask, 0, w * h);
for(y = 0; y < h; ++y)
for(x = 0; x < w; ++x)
{
if(data[FIXTRANS_PIXEL * 4 + 3] == 0)
{
fixMask[FIXTRANS_PIXEL] |= FIXTRANS_NEEDED;
++fixPixels;
}
else
{
fixMask[FIXTRANS_PIXEL_D] |= FIXTRANS_HAS_U;
fixMask[FIXTRANS_PIXEL_U] |= FIXTRANS_HAS_D;
fixMask[FIXTRANS_PIXEL_R] |= FIXTRANS_HAS_L;
fixMask[FIXTRANS_PIXEL_L] |= FIXTRANS_HAS_R;
}
}
if(fixPixels == w * h)
return 0; // sorry, can't do anything about this
while(fixPixels)
{
for(y = 0; y < h; ++y)
for(x = 0; x < w; ++x)
if(fixMask[FIXTRANS_PIXEL] & FIXTRANS_NEEDED)
{
unsigned int sumR = 0, sumG = 0, sumB = 0, sumA = 0, sumRA = 0, sumGA = 0, sumBA = 0, cnt = 0;
unsigned char r, g, b, a, r0, g0, b0;
if(fixMask[FIXTRANS_PIXEL] & FIXTRANS_HAS_U)
{
r = data[FIXTRANS_PIXEL_U * 4 + 2];
g = data[FIXTRANS_PIXEL_U * 4 + 1];
b = data[FIXTRANS_PIXEL_U * 4 + 0];
a = data[FIXTRANS_PIXEL_U * 4 + 3];
sumR += r; sumG += g; sumB += b; sumA += a; sumRA += r*a; sumGA += g*a; sumBA += b*a; ++cnt;
}
if(fixMask[FIXTRANS_PIXEL] & FIXTRANS_HAS_D)
{
r = data[FIXTRANS_PIXEL_D * 4 + 2];
g = data[FIXTRANS_PIXEL_D * 4 + 1];
b = data[FIXTRANS_PIXEL_D * 4 + 0];
a = data[FIXTRANS_PIXEL_D * 4 + 3];
sumR += r; sumG += g; sumB += b; sumA += a; sumRA += r*a; sumGA += g*a; sumBA += b*a; ++cnt;
}
if(fixMask[FIXTRANS_PIXEL] & FIXTRANS_HAS_L)
{
r = data[FIXTRANS_PIXEL_L * 4 + 2];
g = data[FIXTRANS_PIXEL_L * 4 + 1];
b = data[FIXTRANS_PIXEL_L * 4 + 0];
a = data[FIXTRANS_PIXEL_L * 4 + 3];
sumR += r; sumG += g; sumB += b; sumA += a; sumRA += r*a; sumGA += g*a; sumBA += b*a; ++cnt;
}
if(fixMask[FIXTRANS_PIXEL] & FIXTRANS_HAS_R)
{
r = data[FIXTRANS_PIXEL_R * 4 + 2];
g = data[FIXTRANS_PIXEL_R * 4 + 1];
b = data[FIXTRANS_PIXEL_R * 4 + 0];
a = data[FIXTRANS_PIXEL_R * 4 + 3];
sumR += r; sumG += g; sumB += b; sumA += a; sumRA += r*a; sumGA += g*a; sumBA += b*a; ++cnt;
}
if(!cnt)
continue;
r0 = data[FIXTRANS_PIXEL * 4 + 2];
g0 = data[FIXTRANS_PIXEL * 4 + 1];
b0 = data[FIXTRANS_PIXEL * 4 + 0];
if(sumA)
{
// there is a surrounding non-alpha pixel
r = (sumRA + sumA / 2) / sumA;
g = (sumGA + sumA / 2) / sumA;
b = (sumBA + sumA / 2) / sumA;
}
else
{
// need to use a "regular" average
r = (sumR + cnt / 2) / cnt;
g = (sumG + cnt / 2) / cnt;
b = (sumB + cnt / 2) / cnt;
}
if(r != r0 || g != g0 || b != b0)
++changedPixels;
data[FIXTRANS_PIXEL * 4 + 2] = r;
data[FIXTRANS_PIXEL * 4 + 1] = g;
data[FIXTRANS_PIXEL * 4 + 0] = b;
fixMask[FIXTRANS_PIXEL] |= FIXTRANS_FIXED;
}
for(y = 0; y < h; ++y)
for(x = 0; x < w; ++x)
if(fixMask[FIXTRANS_PIXEL] & FIXTRANS_FIXED)
{
fixMask[FIXTRANS_PIXEL] &= ~(FIXTRANS_NEEDED | FIXTRANS_FIXED);
fixMask[FIXTRANS_PIXEL_D] |= FIXTRANS_HAS_U;
fixMask[FIXTRANS_PIXEL_U] |= FIXTRANS_HAS_D;
fixMask[FIXTRANS_PIXEL_R] |= FIXTRANS_HAS_L;
fixMask[FIXTRANS_PIXEL_L] |= FIXTRANS_HAS_R;
--fixPixels;
}
}
return changedPixels;
}
void Image_FixTransparentPixels_f(void)
{
const char *filename, *filename_pattern;
fssearch_t *search;
int i, n;
char outfilename[MAX_QPATH], buf[MAX_QPATH];
unsigned char *data;
if(Cmd_Argc() != 2)
{
Con_Printf("Usage: %s imagefile\n", Cmd_Argv(0));
return;
}
filename_pattern = Cmd_Argv(1);
search = FS_Search(filename_pattern, true, true);
if(!search)
return;
for(i = 0; i < search->numfilenames; ++i)
{
filename = search->filenames[i];
Con_Printf("Processing %s... ", filename);
Image_StripImageExtension(filename, buf, sizeof(buf));
dpsnprintf(outfilename, sizeof(outfilename), "fixtrans/%s.tga", buf);
if(!(data = loadimagepixelsbgra(filename, true, false, false, NULL)))
return;
if((n = fixtransparentpixels(data, image_width, image_height)))
{
Image_WriteTGABGRA(outfilename, image_width, image_height, data);
Con_Printf("%s written (%d pixels changed).\n", outfilename, n);
}
else
Con_Printf("unchanged.\n");
Mem_Free(data);
}
FS_FreeSearch(search);
}
qboolean Image_WriteTGABGR_preflipped (const char *filename, int width, int height, const unsigned char *data)
{
qboolean ret;
unsigned char buffer[18];
const void *buffers[2];
fs_offset_t sizes[2];
memset (buffer, 0, 18);
buffer[2] = 2; // uncompressed type
buffer[12] = (width >> 0) & 0xFF;
buffer[13] = (width >> 8) & 0xFF;
buffer[14] = (height >> 0) & 0xFF;
buffer[15] = (height >> 8) & 0xFF;
buffer[16] = 24; // pixel size
buffers[0] = buffer;
sizes[0] = 18;
buffers[1] = data;
sizes[1] = width*height*3;
ret = FS_WriteFileInBlocks(filename, buffers, sizes, 2);
return ret;
}
qboolean Image_WriteTGABGRA (const char *filename, int width, int height, const unsigned char *data)
{
int y;
unsigned char *buffer, *out;
const unsigned char *in, *end;
qboolean ret;
buffer = (unsigned char *)Mem_Alloc(tempmempool, width*height*4 + 18);
memset (buffer, 0, 18);
buffer[2] = 2; // uncompressed type
buffer[12] = (width >> 0) & 0xFF;
buffer[13] = (width >> 8) & 0xFF;
buffer[14] = (height >> 0) & 0xFF;
buffer[15] = (height >> 8) & 0xFF;
for (y = 3;y < width*height*4;y += 4)
if (data[y] < 255)
break;
if (y < width*height*4)
{
// save the alpha channel
buffer[16] = 32; // pixel size
buffer[17] = 8; // 8 bits of alpha
// flip upside down
out = buffer + 18;
for (y = height - 1;y >= 0;y--)
{
memcpy(out, data + y * width * 4, width * 4);
out += width*4;
}
}
else
{
// save only the color channels
buffer[16] = 24; // pixel size
buffer[17] = 0; // 8 bits of alpha
// truncate bgra to bgr and flip upside down
out = buffer + 18;
for (y = height - 1;y >= 0;y--)
{
in = data + y * width * 4;
end = in + width * 4;
for (;in < end;in += 4)
{
*out++ = in[0];
*out++ = in[1];
*out++ = in[2];
}
}
}
ret = FS_WriteFile (filename, buffer, out - buffer);
Mem_Free(buffer);
return ret;
}
static void Image_Resample32LerpLine (const unsigned char *in, unsigned char *out, int inwidth, int outwidth)
{
int j, xi, oldx = 0, f, fstep, endx, lerp;
fstep = (int) (inwidth*65536.0f/outwidth);
endx = (inwidth-1);
for (j = 0,f = 0;j < outwidth;j++, f += fstep)
{
xi = f >> 16;
if (xi != oldx)
{
in += (xi - oldx) * 4;
oldx = xi;
}
if (xi < endx)
{
lerp = f & 0xFFFF;
*out++ = (unsigned char) ((((in[4] - in[0]) * lerp) >> 16) + in[0]);
*out++ = (unsigned char) ((((in[5] - in[1]) * lerp) >> 16) + in[1]);
*out++ = (unsigned char) ((((in[6] - in[2]) * lerp) >> 16) + in[2]);
*out++ = (unsigned char) ((((in[7] - in[3]) * lerp) >> 16) + in[3]);
}
else // last pixel of the line has no pixel to lerp to
{
*out++ = in[0];
*out++ = in[1];
*out++ = in[2];
*out++ = in[3];
}
}
}
#define LERPBYTE(i) r = resamplerow1[i];out[i] = (unsigned char) ((((resamplerow2[i] - r) * lerp) >> 16) + r)
static void Image_Resample32Lerp(const void *indata, int inwidth, int inheight, void *outdata, int outwidth, int outheight)
{
int i, j, r, yi, oldy, f, fstep, lerp, endy = (inheight-1), inwidth4 = inwidth*4, outwidth4 = outwidth*4;
unsigned char *out;
const unsigned char *inrow;
unsigned char *resamplerow1;
unsigned char *resamplerow2;
out = (unsigned char *)outdata;
fstep = (int) (inheight*65536.0f/outheight);
resamplerow1 = (unsigned char *)Mem_Alloc(tempmempool, outwidth*4*2);
resamplerow2 = resamplerow1 + outwidth*4;
inrow = (const unsigned char *)indata;
oldy = 0;
Image_Resample32LerpLine (inrow, resamplerow1, inwidth, outwidth);
Image_Resample32LerpLine (inrow + inwidth4, resamplerow2, inwidth, outwidth);
for (i = 0, f = 0;i < outheight;i++,f += fstep)
{
yi = f >> 16;
if (yi < endy)
{
lerp = f & 0xFFFF;
if (yi != oldy)
{
inrow = (unsigned char *)indata + inwidth4*yi;
if (yi == oldy+1)
memcpy(resamplerow1, resamplerow2, outwidth4);
else
Image_Resample32LerpLine (inrow, resamplerow1, inwidth, outwidth);
Image_Resample32LerpLine (inrow + inwidth4, resamplerow2, inwidth, outwidth);
oldy = yi;
}
j = outwidth - 4;
while(j >= 0)
{
LERPBYTE( 0);
LERPBYTE( 1);
LERPBYTE( 2);
LERPBYTE( 3);
LERPBYTE( 4);
LERPBYTE( 5);
LERPBYTE( 6);
LERPBYTE( 7);
LERPBYTE( 8);
LERPBYTE( 9);
LERPBYTE(10);
LERPBYTE(11);
LERPBYTE(12);
LERPBYTE(13);
LERPBYTE(14);
LERPBYTE(15);
out += 16;
resamplerow1 += 16;
resamplerow2 += 16;
j -= 4;
}
if (j & 2)
{
LERPBYTE( 0);
LERPBYTE( 1);
LERPBYTE( 2);
LERPBYTE( 3);
LERPBYTE( 4);
LERPBYTE( 5);
LERPBYTE( 6);
LERPBYTE( 7);
out += 8;
resamplerow1 += 8;
resamplerow2 += 8;
}
if (j & 1)
{
LERPBYTE( 0);
LERPBYTE( 1);
LERPBYTE( 2);
LERPBYTE( 3);
out += 4;
resamplerow1 += 4;
resamplerow2 += 4;
}
resamplerow1 -= outwidth4;
resamplerow2 -= outwidth4;
}
else
{
if (yi != oldy)
{
inrow = (unsigned char *)indata + inwidth4*yi;
if (yi == oldy+1)
memcpy(resamplerow1, resamplerow2, outwidth4);
else
Image_Resample32LerpLine (inrow, resamplerow1, inwidth, outwidth);
oldy = yi;
}
memcpy(out, resamplerow1, outwidth4);
}
}
Mem_Free(resamplerow1);
resamplerow1 = NULL;
resamplerow2 = NULL;
}
static void Image_Resample32Nolerp(const void *indata, int inwidth, int inheight, void *outdata, int outwidth, int outheight)
{
int i, j;
unsigned frac, fracstep;
// relies on int being 4 bytes
int *inrow, *out;
out = (int *)outdata;
fracstep = inwidth*0x10000/outwidth;
for (i = 0;i < outheight;i++)
{
inrow = (int *)indata + inwidth*(i*inheight/outheight);
frac = fracstep >> 1;
j = outwidth - 4;
while (j >= 0)
{
out[0] = inrow[frac >> 16];frac += fracstep;
out[1] = inrow[frac >> 16];frac += fracstep;
out[2] = inrow[frac >> 16];frac += fracstep;
out[3] = inrow[frac >> 16];frac += fracstep;
out += 4;
j -= 4;
}
if (j & 2)
{
out[0] = inrow[frac >> 16];frac += fracstep;
out[1] = inrow[frac >> 16];frac += fracstep;
out += 2;
}
if (j & 1)
{
out[0] = inrow[frac >> 16];frac += fracstep;
out += 1;
}
}
}
/*
================
Image_Resample
================
*/
void Image_Resample32(const void *indata, int inwidth, int inheight, int indepth, void *outdata, int outwidth, int outheight, int outdepth, int quality)
{
if (indepth != 1 || outdepth != 1)
{
Con_Printf ("Image_Resample: 3D resampling not supported\n");
return;
}
if (quality)
Image_Resample32Lerp(indata, inwidth, inheight, outdata, outwidth, outheight);
else
Image_Resample32Nolerp(indata, inwidth, inheight, outdata, outwidth, outheight);
}
// in can be the same as out
void Image_MipReduce32(const unsigned char *in, unsigned char *out, int *width, int *height, int *depth, int destwidth, int destheight, int destdepth)
{
const unsigned char *inrow;
int x, y, nextrow;
if (*depth != 1 || destdepth != 1)
{
Con_Printf ("Image_Resample: 3D resampling not supported\n");
if (*width > destwidth)
*width >>= 1;
if (*height > destheight)
*height >>= 1;
if (*depth > destdepth)
*depth >>= 1;
return;
}
// note: if given odd width/height this discards the last row/column of
// pixels, rather than doing a proper box-filter scale down
inrow = in;
nextrow = *width * 4;
if (*width > destwidth)
{
*width >>= 1;
if (*height > destheight)
{
// reduce both
*height >>= 1;
for (y = 0;y < *height;y++, inrow += nextrow * 2)
{
for (in = inrow, x = 0;x < *width;x++)
{
out[0] = (unsigned char) ((in[0] + in[4] + in[nextrow ] + in[nextrow+4]) >> 2);
out[1] = (unsigned char) ((in[1] + in[5] + in[nextrow+1] + in[nextrow+5]) >> 2);
out[2] = (unsigned char) ((in[2] + in[6] + in[nextrow+2] + in[nextrow+6]) >> 2);
out[3] = (unsigned char) ((in[3] + in[7] + in[nextrow+3] + in[nextrow+7]) >> 2);
out += 4;
in += 8;
}
}
}
else
{
// reduce width
for (y = 0;y < *height;y++, inrow += nextrow)
{
for (in = inrow, x = 0;x < *width;x++)
{
out[0] = (unsigned char) ((in[0] + in[4]) >> 1);
out[1] = (unsigned char) ((in[1] + in[5]) >> 1);
out[2] = (unsigned char) ((in[2] + in[6]) >> 1);
out[3] = (unsigned char) ((in[3] + in[7]) >> 1);
out += 4;
in += 8;
}
}
}
}
else
{
if (*height > destheight)
{
// reduce height
*height >>= 1;
for (y = 0;y < *height;y++, inrow += nextrow * 2)
{
for (in = inrow, x = 0;x < *width;x++)
{
out[0] = (unsigned char) ((in[0] + in[nextrow ]) >> 1);
out[1] = (unsigned char) ((in[1] + in[nextrow+1]) >> 1);
out[2] = (unsigned char) ((in[2] + in[nextrow+2]) >> 1);
out[3] = (unsigned char) ((in[3] + in[nextrow+3]) >> 1);
out += 4;
in += 4;
}
}
}
else
Con_Printf ("Image_MipReduce: desired size already achieved\n");
}
}
void Image_HeightmapToNormalmap_BGRA(const unsigned char *inpixels, unsigned char *outpixels, int width, int height, int clamp, float bumpscale)
{
int x, y, x1, x2, y1, y2;
const unsigned char *b, *row[3];
int p[5];
unsigned char *out;
float ibumpscale, n[3];
ibumpscale = (255.0f * 6.0f) / bumpscale;
out = outpixels;
for (y = 0, y1 = height-1;y < height;y1 = y, y++)
{
y2 = y + 1;if (y2 >= height) y2 = 0;
row[0] = inpixels + (y1 * width) * 4;
row[1] = inpixels + (y * width) * 4;
row[2] = inpixels + (y2 * width) * 4;
for (x = 0, x1 = width-1;x < width;x1 = x, x++)
{
x2 = x + 1;if (x2 >= width) x2 = 0;
// left, right
b = row[1] + x1 * 4;p[0] = (b[0] + b[1] + b[2]);
b = row[1] + x2 * 4;p[1] = (b[0] + b[1] + b[2]);
// above, below
b = row[0] + x * 4;p[2] = (b[0] + b[1] + b[2]);
b = row[2] + x * 4;p[3] = (b[0] + b[1] + b[2]);
// center
b = row[1] + x * 4;p[4] = (b[0] + b[1] + b[2]);
// calculate a normal from the slopes
n[0] = p[0] - p[1];
n[1] = p[3] - p[2];
n[2] = ibumpscale;
VectorNormalize(n);
// turn it into a dot3 rgb vector texture
out[2] = (int)(128.0f + n[0] * 127.0f);
out[1] = (int)(128.0f + n[1] * 127.0f);
out[0] = (int)(128.0f + n[2] * 127.0f);
out[3] = (p[4]) / 3;
out += 4;
}
}
}