quakequest/Projects/Android/jni/model_brush.c

8072 lines
313 KiB
C
Raw Normal View History

2019-05-30 05:57:57 +00:00
/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "quakedef.h"
#include "image.h"
#include "r_shadow.h"
#include "polygon.h"
#include "curves.h"
#include "wad.h"
//cvar_t r_subdivide_size = {CVAR_SAVE, "r_subdivide_size", "128", "how large water polygons should be (smaller values produce more polygons which give better warping effects)"};
cvar_t mod_bsp_portalize = {0, "mod_bsp_portalize", "1", "enables portal generation from BSP tree (may take several seconds per map), used by r_drawportals, r_useportalculling, r_shadow_realtime_world_compileportalculling, sv_cullentities_portal"};
cvar_t r_novis = {0, "r_novis", "0", "draws whole level, see also sv_cullentities_pvs 0"};
cvar_t r_nosurftextures = {0, "r_nosurftextures", "0", "pretends there was no texture lump found in the q1bsp/hlbsp loading (useful for debugging this rare case)"};
cvar_t r_subdivisions_tolerance = {0, "r_subdivisions_tolerance", "4", "maximum error tolerance on curve subdivision for rendering purposes (in other words, the curves will be given as many polygons as necessary to represent curves at this quality)"};
cvar_t r_subdivisions_mintess = {0, "r_subdivisions_mintess", "0", "minimum number of subdivisions (values above 0 will smooth curves that don't need it)"};
cvar_t r_subdivisions_maxtess = {0, "r_subdivisions_maxtess", "1024", "maximum number of subdivisions (prevents curves beyond a certain detail level, limits smoothing)"};
cvar_t r_subdivisions_maxvertices = {0, "r_subdivisions_maxvertices", "65536", "maximum vertices allowed per subdivided curve"};
cvar_t r_subdivisions_collision_tolerance = {0, "r_subdivisions_collision_tolerance", "15", "maximum error tolerance on curve subdivision for collision purposes (usually a larger error tolerance than for rendering)"};
cvar_t r_subdivisions_collision_mintess = {0, "r_subdivisions_collision_mintess", "0", "minimum number of subdivisions (values above 0 will smooth curves that don't need it)"};
cvar_t r_subdivisions_collision_maxtess = {0, "r_subdivisions_collision_maxtess", "1024", "maximum number of subdivisions (prevents curves beyond a certain detail level, limits smoothing)"};
cvar_t r_subdivisions_collision_maxvertices = {0, "r_subdivisions_collision_maxvertices", "4225", "maximum vertices allowed per subdivided curve"};
cvar_t r_trippy = {0, "r_trippy", "0", "easter egg"};
cvar_t mod_noshader_default_offsetmapping = {CVAR_SAVE, "mod_noshader_default_offsetmapping", "1", "use offsetmapping by default on all surfaces that are not using q3 shader files"};
cvar_t mod_obj_orientation = {0, "mod_obj_orientation", "1", "fix orientation of OBJ models to the usual conventions (if zero, use coordinates as is)"};
cvar_t mod_q3bsp_curves_collisions = {0, "mod_q3bsp_curves_collisions", "1", "enables collisions with curves (SLOW)"};
cvar_t mod_q3bsp_curves_collisions_stride = {0, "mod_q3bsp_curves_collisions_stride", "16", "collisions against curves: optimize performance by doing a combined collision check for this triangle amount first (-1 avoids any box tests)"};
cvar_t mod_q3bsp_curves_stride = {0, "mod_q3bsp_curves_stride", "16", "particle effect collisions against curves: optimize performance by doing a combined collision check for this triangle amount first (-1 avoids any box tests)"};
cvar_t mod_q3bsp_optimizedtraceline = {0, "mod_q3bsp_optimizedtraceline", "1", "whether to use optimized traceline code for line traces (as opposed to tracebox code)"};
cvar_t mod_q3bsp_debugtracebrush = {0, "mod_q3bsp_debugtracebrush", "0", "selects different tracebrush bsp recursion algorithms (for debugging purposes only)"};
cvar_t mod_q3bsp_lightmapmergepower = {CVAR_SAVE, "mod_q3bsp_lightmapmergepower", "4", "merges the quake3 128x128 lightmap textures into larger lightmap group textures to speed up rendering, 1 = 256x256, 2 = 512x512, 3 = 1024x1024, 4 = 2048x2048, 5 = 4096x4096, ..."};
cvar_t mod_q3bsp_nolightmaps = {CVAR_SAVE, "mod_q3bsp_nolightmaps", "0", "do not load lightmaps in Q3BSP maps (to save video RAM, but be warned: it looks ugly)"};
cvar_t mod_q3bsp_tracelineofsight_brushes = {0, "mod_q3bsp_tracelineofsight_brushes", "0", "enables culling of entities behind detail brushes, curves, etc"};
cvar_t mod_q3bsp_sRGBlightmaps = {0, "mod_q3bsp_sRGBlightmaps", "0", "treat lightmaps from Q3 maps as sRGB when vid_sRGB is active"};
cvar_t mod_q3shader_default_offsetmapping = {CVAR_SAVE, "mod_q3shader_default_offsetmapping", "1", "use offsetmapping by default on all surfaces that are using q3 shader files"};
cvar_t mod_q3shader_default_offsetmapping_scale = {CVAR_SAVE, "mod_q3shader_default_offsetmapping_scale", "1", "default scale used for offsetmapping"};
cvar_t mod_q3shader_default_offsetmapping_bias = {CVAR_SAVE, "mod_q3shader_default_offsetmapping_bias", "0", "default bias used for offsetmapping"};
cvar_t mod_q3shader_default_polygonfactor = {0, "mod_q3shader_default_polygonfactor", "0", "biases depth values of 'polygonoffset' shaders to prevent z-fighting artifacts"};
cvar_t mod_q3shader_default_polygonoffset = {0, "mod_q3shader_default_polygonoffset", "-2", "biases depth values of 'polygonoffset' shaders to prevent z-fighting artifacts"};
cvar_t mod_q3shader_force_addalpha = {0, "mod_q3shader_force_addalpha", "0", "treat GL_ONE GL_ONE (or add) blendfunc as GL_SRC_ALPHA GL_ONE for compatibility with older DarkPlaces releases"};
cvar_t mod_q3shader_force_terrain_alphaflag = {0, "mod_q3shader_force_terrain_alphaflag", "0", "for multilayered terrain shaders force TEXF_ALPHA flag on both layers"};
cvar_t mod_q1bsp_polygoncollisions = {0, "mod_q1bsp_polygoncollisions", "0", "disables use of precomputed cliphulls and instead collides with polygons (uses Bounding Interval Hierarchy optimizations)"};
cvar_t mod_collision_bih = {0, "mod_collision_bih", "1", "enables use of generated Bounding Interval Hierarchy tree instead of compiled bsp tree in collision code"};
cvar_t mod_recalculatenodeboxes = {0, "mod_recalculatenodeboxes", "1", "enables use of generated node bounding boxes based on BSP tree portal reconstruction, rather than the node boxes supplied by the map compiler"};
static texture_t mod_q1bsp_texture_solid;
static texture_t mod_q1bsp_texture_sky;
static texture_t mod_q1bsp_texture_lava;
static texture_t mod_q1bsp_texture_slime;
static texture_t mod_q1bsp_texture_water;
void Mod_BrushInit(void)
{
// Cvar_RegisterVariable(&r_subdivide_size);
Cvar_RegisterVariable(&mod_bsp_portalize);
Cvar_RegisterVariable(&r_novis);
Cvar_RegisterVariable(&r_nosurftextures);
Cvar_RegisterVariable(&r_subdivisions_tolerance);
Cvar_RegisterVariable(&r_subdivisions_mintess);
Cvar_RegisterVariable(&r_subdivisions_maxtess);
Cvar_RegisterVariable(&r_subdivisions_maxvertices);
Cvar_RegisterVariable(&r_subdivisions_collision_tolerance);
Cvar_RegisterVariable(&r_subdivisions_collision_mintess);
Cvar_RegisterVariable(&r_subdivisions_collision_maxtess);
Cvar_RegisterVariable(&r_subdivisions_collision_maxvertices);
Cvar_RegisterVariable(&r_trippy);
Cvar_RegisterVariable(&mod_noshader_default_offsetmapping);
Cvar_RegisterVariable(&mod_obj_orientation);
Cvar_RegisterVariable(&mod_q3bsp_curves_collisions);
Cvar_RegisterVariable(&mod_q3bsp_curves_collisions_stride);
Cvar_RegisterVariable(&mod_q3bsp_curves_stride);
Cvar_RegisterVariable(&mod_q3bsp_optimizedtraceline);
Cvar_RegisterVariable(&mod_q3bsp_debugtracebrush);
Cvar_RegisterVariable(&mod_q3bsp_lightmapmergepower);
Cvar_RegisterVariable(&mod_q3bsp_nolightmaps);
Cvar_RegisterVariable(&mod_q3bsp_sRGBlightmaps);
Cvar_RegisterVariable(&mod_q3bsp_tracelineofsight_brushes);
Cvar_RegisterVariable(&mod_q3shader_default_offsetmapping);
Cvar_RegisterVariable(&mod_q3shader_default_offsetmapping_scale);
Cvar_RegisterVariable(&mod_q3shader_default_offsetmapping_bias);
Cvar_RegisterVariable(&mod_q3shader_default_polygonfactor);
Cvar_RegisterVariable(&mod_q3shader_default_polygonoffset);
Cvar_RegisterVariable(&mod_q3shader_force_addalpha);
Cvar_RegisterVariable(&mod_q3shader_force_terrain_alphaflag);
Cvar_RegisterVariable(&mod_q1bsp_polygoncollisions);
Cvar_RegisterVariable(&mod_collision_bih);
Cvar_RegisterVariable(&mod_recalculatenodeboxes);
// these games were made for older DP engines and are no longer
// maintained; use this hack to show their textures properly
if(gamemode == GAME_NEXUIZ)
Cvar_SetQuick(&mod_q3shader_force_addalpha, "1");
memset(&mod_q1bsp_texture_solid, 0, sizeof(mod_q1bsp_texture_solid));
strlcpy(mod_q1bsp_texture_solid.name, "solid" , sizeof(mod_q1bsp_texture_solid.name));
mod_q1bsp_texture_solid.surfaceflags = 0;
mod_q1bsp_texture_solid.supercontents = SUPERCONTENTS_SOLID;
mod_q1bsp_texture_sky = mod_q1bsp_texture_solid;
strlcpy(mod_q1bsp_texture_sky.name, "sky", sizeof(mod_q1bsp_texture_sky.name));
mod_q1bsp_texture_sky.surfaceflags = Q3SURFACEFLAG_SKY | Q3SURFACEFLAG_NOIMPACT | Q3SURFACEFLAG_NOMARKS | Q3SURFACEFLAG_NODLIGHT | Q3SURFACEFLAG_NOLIGHTMAP;
mod_q1bsp_texture_sky.supercontents = SUPERCONTENTS_SKY | SUPERCONTENTS_NODROP;
mod_q1bsp_texture_lava = mod_q1bsp_texture_solid;
strlcpy(mod_q1bsp_texture_lava.name, "*lava", sizeof(mod_q1bsp_texture_lava.name));
mod_q1bsp_texture_lava.surfaceflags = Q3SURFACEFLAG_NOMARKS;
mod_q1bsp_texture_lava.supercontents = SUPERCONTENTS_LAVA | SUPERCONTENTS_NODROP;
mod_q1bsp_texture_slime = mod_q1bsp_texture_solid;
strlcpy(mod_q1bsp_texture_slime.name, "*slime", sizeof(mod_q1bsp_texture_slime.name));
mod_q1bsp_texture_slime.surfaceflags = Q3SURFACEFLAG_NOMARKS;
mod_q1bsp_texture_slime.supercontents = SUPERCONTENTS_SLIME;
mod_q1bsp_texture_water = mod_q1bsp_texture_solid;
strlcpy(mod_q1bsp_texture_water.name, "*water", sizeof(mod_q1bsp_texture_water.name));
mod_q1bsp_texture_water.surfaceflags = Q3SURFACEFLAG_NOMARKS;
mod_q1bsp_texture_water.supercontents = SUPERCONTENTS_WATER;
}
static mleaf_t *Mod_Q1BSP_PointInLeaf(dp_model_t *model, const vec3_t p)
{
mnode_t *node;
if (model == NULL)
return NULL;
// LordHavoc: modified to start at first clip node,
// in other words: first node of the (sub)model
node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode;
while (node->plane)
node = node->children[(node->plane->type < 3 ? p[node->plane->type] : DotProduct(p,node->plane->normal)) < node->plane->dist];
return (mleaf_t *)node;
}
static void Mod_Q1BSP_AmbientSoundLevelsForPoint(dp_model_t *model, const vec3_t p, unsigned char *out, int outsize)
{
int i;
mleaf_t *leaf;
leaf = Mod_Q1BSP_PointInLeaf(model, p);
if (leaf)
{
i = min(outsize, (int)sizeof(leaf->ambient_sound_level));
if (i)
{
memcpy(out, leaf->ambient_sound_level, i);
out += i;
outsize -= i;
}
}
if (outsize)
memset(out, 0, outsize);
}
static int Mod_Q1BSP_FindBoxClusters(dp_model_t *model, const vec3_t mins, const vec3_t maxs, int maxclusters, int *clusterlist)
{
int numclusters = 0;
int nodestackindex = 0;
mnode_t *node, *nodestack[1024];
if (!model->brush.num_pvsclusters)
return -1;
node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode;
for (;;)
{
#if 1
if (node->plane)
{
// node - recurse down the BSP tree
int sides = BoxOnPlaneSide(mins, maxs, node->plane);
if (sides < 3)
{
if (sides == 0)
return -1; // ERROR: NAN bounding box!
// box is on one side of plane, take that path
node = node->children[sides-1];
}
else
{
// box crosses plane, take one path and remember the other
if (nodestackindex < 1024)
nodestack[nodestackindex++] = node->children[0];
node = node->children[1];
}
continue;
}
else
{
// leaf - add clusterindex to list
if (numclusters < maxclusters)
clusterlist[numclusters] = ((mleaf_t *)node)->clusterindex;
numclusters++;
}
#else
if (BoxesOverlap(mins, maxs, node->mins, node->maxs))
{
if (node->plane)
{
if (nodestackindex < 1024)
nodestack[nodestackindex++] = node->children[0];
node = node->children[1];
continue;
}
else
{
// leaf - add clusterindex to list
if (numclusters < maxclusters)
clusterlist[numclusters] = ((mleaf_t *)node)->clusterindex;
numclusters++;
}
}
#endif
// try another path we didn't take earlier
if (nodestackindex == 0)
break;
node = nodestack[--nodestackindex];
}
// return number of clusters found (even if more than the maxclusters)
return numclusters;
}
static int Mod_Q1BSP_BoxTouchingPVS(dp_model_t *model, const unsigned char *pvs, const vec3_t mins, const vec3_t maxs)
{
int nodestackindex = 0;
mnode_t *node, *nodestack[1024];
if (!model->brush.num_pvsclusters)
return true;
node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode;
for (;;)
{
#if 1
if (node->plane)
{
// node - recurse down the BSP tree
int sides = BoxOnPlaneSide(mins, maxs, node->plane);
if (sides < 3)
{
if (sides == 0)
return -1; // ERROR: NAN bounding box!
// box is on one side of plane, take that path
node = node->children[sides-1];
}
else
{
// box crosses plane, take one path and remember the other
if (nodestackindex < 1024)
nodestack[nodestackindex++] = node->children[0];
node = node->children[1];
}
continue;
}
else
{
// leaf - check cluster bit
int clusterindex = ((mleaf_t *)node)->clusterindex;
if (CHECKPVSBIT(pvs, clusterindex))
{
// it is visible, return immediately with the news
return true;
}
}
#else
if (BoxesOverlap(mins, maxs, node->mins, node->maxs))
{
if (node->plane)
{
if (nodestackindex < 1024)
nodestack[nodestackindex++] = node->children[0];
node = node->children[1];
continue;
}
else
{
// leaf - check cluster bit
int clusterindex = ((mleaf_t *)node)->clusterindex;
if (CHECKPVSBIT(pvs, clusterindex))
{
// it is visible, return immediately with the news
return true;
}
}
}
#endif
// nothing to see here, try another path we didn't take earlier
if (nodestackindex == 0)
break;
node = nodestack[--nodestackindex];
}
// it is not visible
return false;
}
static int Mod_Q1BSP_BoxTouchingLeafPVS(dp_model_t *model, const unsigned char *pvs, const vec3_t mins, const vec3_t maxs)
{
int nodestackindex = 0;
mnode_t *node, *nodestack[1024];
if (!model->brush.num_leafs)
return true;
node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode;
for (;;)
{
#if 1
if (node->plane)
{
// node - recurse down the BSP tree
int sides = BoxOnPlaneSide(mins, maxs, node->plane);
if (sides < 3)
{
if (sides == 0)
return -1; // ERROR: NAN bounding box!
// box is on one side of plane, take that path
node = node->children[sides-1];
}
else
{
// box crosses plane, take one path and remember the other
if (nodestackindex < 1024)
nodestack[nodestackindex++] = node->children[0];
node = node->children[1];
}
continue;
}
else
{
// leaf - check cluster bit
int clusterindex = ((mleaf_t *)node) - model->brush.data_leafs;
if (CHECKPVSBIT(pvs, clusterindex))
{
// it is visible, return immediately with the news
return true;
}
}
#else
if (BoxesOverlap(mins, maxs, node->mins, node->maxs))
{
if (node->plane)
{
if (nodestackindex < 1024)
nodestack[nodestackindex++] = node->children[0];
node = node->children[1];
continue;
}
else
{
// leaf - check cluster bit
int clusterindex = ((mleaf_t *)node) - model->brush.data_leafs;
if (CHECKPVSBIT(pvs, clusterindex))
{
// it is visible, return immediately with the news
return true;
}
}
}
#endif
// nothing to see here, try another path we didn't take earlier
if (nodestackindex == 0)
break;
node = nodestack[--nodestackindex];
}
// it is not visible
return false;
}
static int Mod_Q1BSP_BoxTouchingVisibleLeafs(dp_model_t *model, const unsigned char *visibleleafs, const vec3_t mins, const vec3_t maxs)
{
int nodestackindex = 0;
mnode_t *node, *nodestack[1024];
if (!model->brush.num_leafs)
return true;
node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode;
for (;;)
{
#if 1
if (node->plane)
{
// node - recurse down the BSP tree
int sides = BoxOnPlaneSide(mins, maxs, node->plane);
if (sides < 3)
{
if (sides == 0)
return -1; // ERROR: NAN bounding box!
// box is on one side of plane, take that path
node = node->children[sides-1];
}
else
{
// box crosses plane, take one path and remember the other
if (nodestackindex < 1024)
nodestack[nodestackindex++] = node->children[0];
node = node->children[1];
}
continue;
}
else
{
// leaf - check if it is visible
if (visibleleafs[(mleaf_t *)node - model->brush.data_leafs])
{
// it is visible, return immediately with the news
return true;
}
}
#else
if (BoxesOverlap(mins, maxs, node->mins, node->maxs))
{
if (node->plane)
{
if (nodestackindex < 1024)
nodestack[nodestackindex++] = node->children[0];
node = node->children[1];
continue;
}
else
{
// leaf - check if it is visible
if (visibleleafs[(mleaf_t *)node - model->brush.data_leafs])
{
// it is visible, return immediately with the news
return true;
}
}
}
#endif
// nothing to see here, try another path we didn't take earlier
if (nodestackindex == 0)
break;
node = nodestack[--nodestackindex];
}
// it is not visible
return false;
}
typedef struct findnonsolidlocationinfo_s
{
vec3_t center;
vec3_t absmin, absmax;
vec_t radius;
vec3_t nudge;
vec_t bestdist;
dp_model_t *model;
}
findnonsolidlocationinfo_t;
static void Mod_Q1BSP_FindNonSolidLocation_r_Triangle(findnonsolidlocationinfo_t *info, msurface_t *surface, int k)
{
int i, *tri;
float dist, f, vert[3][3], edge[3][3], facenormal[3], edgenormal[3][3], point[3];
tri = (info->model->surfmesh.data_element3i + 3 * surface->num_firsttriangle) + k * 3;
VectorCopy((info->model->surfmesh.data_vertex3f + tri[0] * 3), vert[0]);
VectorCopy((info->model->surfmesh.data_vertex3f + tri[1] * 3), vert[1]);
VectorCopy((info->model->surfmesh.data_vertex3f + tri[2] * 3), vert[2]);
VectorSubtract(vert[1], vert[0], edge[0]);
VectorSubtract(vert[2], vert[1], edge[1]);
CrossProduct(edge[1], edge[0], facenormal);
if (facenormal[0] || facenormal[1] || facenormal[2])
{
VectorNormalize(facenormal);
f = DotProduct(info->center, facenormal) - DotProduct(vert[0], facenormal);
if (f <= info->bestdist && f >= -info->bestdist)
{
VectorSubtract(vert[0], vert[2], edge[2]);
VectorNormalize(edge[0]);
VectorNormalize(edge[1]);
VectorNormalize(edge[2]);
CrossProduct(facenormal, edge[0], edgenormal[0]);
CrossProduct(facenormal, edge[1], edgenormal[1]);
CrossProduct(facenormal, edge[2], edgenormal[2]);
// face distance
if (DotProduct(info->center, edgenormal[0]) < DotProduct(vert[0], edgenormal[0])
&& DotProduct(info->center, edgenormal[1]) < DotProduct(vert[1], edgenormal[1])
&& DotProduct(info->center, edgenormal[2]) < DotProduct(vert[2], edgenormal[2]))
{
// we got lucky, the center is within the face
dist = DotProduct(info->center, facenormal) - DotProduct(vert[0], facenormal);
if (dist < 0)
{
dist = -dist;
if (info->bestdist > dist)
{
info->bestdist = dist;
VectorScale(facenormal, (info->radius - -dist), info->nudge);
}
}
else
{
if (info->bestdist > dist)
{
info->bestdist = dist;
VectorScale(facenormal, (info->radius - dist), info->nudge);
}
}
}
else
{
// check which edge or vertex the center is nearest
for (i = 0;i < 3;i++)
{
f = DotProduct(info->center, edge[i]);
if (f >= DotProduct(vert[0], edge[i])
&& f <= DotProduct(vert[1], edge[i]))
{
// on edge
VectorMA(info->center, -f, edge[i], point);
dist = sqrt(DotProduct(point, point));
if (info->bestdist > dist)
{
info->bestdist = dist;
VectorScale(point, (info->radius / dist), info->nudge);
}
// skip both vertex checks
// (both are further away than this edge)
i++;
}
else
{
// not on edge, check first vertex of edge
VectorSubtract(info->center, vert[i], point);
dist = sqrt(DotProduct(point, point));
if (info->bestdist > dist)
{
info->bestdist = dist;
VectorScale(point, (info->radius / dist), info->nudge);
}
}
}
}
}
}
}
static void Mod_Q1BSP_FindNonSolidLocation_r_Leaf(findnonsolidlocationinfo_t *info, mleaf_t *leaf)
{
int surfacenum, k, *mark;
msurface_t *surface;
for (surfacenum = 0, mark = leaf->firstleafsurface;surfacenum < leaf->numleafsurfaces;surfacenum++, mark++)
{
surface = info->model->data_surfaces + *mark;
if (surface->texture->supercontents & SUPERCONTENTS_SOLID)
{
if(surface->deprecatedq3num_bboxstride > 0)
{
int i, cnt, tri;
cnt = (surface->num_triangles + surface->deprecatedq3num_bboxstride - 1) / surface->deprecatedq3num_bboxstride;
for(i = 0; i < cnt; ++i)
{
if(BoxesOverlap(surface->deprecatedq3data_bbox6f + i * 6, surface->deprecatedq3data_bbox6f + i * 6 + 3, info->absmin, info->absmax))
{
for(k = 0; k < surface->deprecatedq3num_bboxstride; ++k)
{
tri = i * surface->deprecatedq3num_bboxstride + k;
if(tri >= surface->num_triangles)
break;
Mod_Q1BSP_FindNonSolidLocation_r_Triangle(info, surface, tri);
}
}
}
}
else
{
for (k = 0;k < surface->num_triangles;k++)
{
Mod_Q1BSP_FindNonSolidLocation_r_Triangle(info, surface, k);
}
}
}
}
}
static void Mod_Q1BSP_FindNonSolidLocation_r(findnonsolidlocationinfo_t *info, mnode_t *node)
{
if (node->plane)
{
float f = PlaneDiff(info->center, node->plane);
if (f >= -info->bestdist)
Mod_Q1BSP_FindNonSolidLocation_r(info, node->children[0]);
if (f <= info->bestdist)
Mod_Q1BSP_FindNonSolidLocation_r(info, node->children[1]);
}
else
{
if (((mleaf_t *)node)->numleafsurfaces)
Mod_Q1BSP_FindNonSolidLocation_r_Leaf(info, (mleaf_t *)node);
}
}
static void Mod_Q1BSP_FindNonSolidLocation(dp_model_t *model, const vec3_t in, vec3_t out, float radius)
{
int i;
findnonsolidlocationinfo_t info;
if (model == NULL)
{
VectorCopy(in, out);
return;
}
VectorCopy(in, info.center);
info.radius = radius;
info.model = model;
i = 0;
do
{
VectorClear(info.nudge);
info.bestdist = radius;
VectorCopy(info.center, info.absmin);
VectorCopy(info.center, info.absmax);
info.absmin[0] -= info.radius + 1;
info.absmin[1] -= info.radius + 1;
info.absmin[2] -= info.radius + 1;
info.absmax[0] += info.radius + 1;
info.absmax[1] += info.radius + 1;
info.absmax[2] += info.radius + 1;
Mod_Q1BSP_FindNonSolidLocation_r(&info, model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode);
VectorAdd(info.center, info.nudge, info.center);
}
while (info.bestdist < radius && ++i < 10);
VectorCopy(info.center, out);
}
int Mod_Q1BSP_SuperContentsFromNativeContents(dp_model_t *model, int nativecontents)
{
switch(nativecontents)
{
case CONTENTS_EMPTY:
return 0;
case CONTENTS_SOLID:
return SUPERCONTENTS_SOLID | SUPERCONTENTS_OPAQUE;
case CONTENTS_WATER:
return SUPERCONTENTS_WATER;
case CONTENTS_SLIME:
return SUPERCONTENTS_SLIME;
case CONTENTS_LAVA:
return SUPERCONTENTS_LAVA | SUPERCONTENTS_NODROP;
case CONTENTS_SKY:
return SUPERCONTENTS_SKY | SUPERCONTENTS_NODROP | SUPERCONTENTS_OPAQUE; // to match behaviour of Q3 maps, let sky count as opaque
}
return 0;
}
int Mod_Q1BSP_NativeContentsFromSuperContents(dp_model_t *model, int supercontents)
{
if (supercontents & (SUPERCONTENTS_SOLID | SUPERCONTENTS_BODY))
return CONTENTS_SOLID;
if (supercontents & SUPERCONTENTS_SKY)
return CONTENTS_SKY;
if (supercontents & SUPERCONTENTS_LAVA)
return CONTENTS_LAVA;
if (supercontents & SUPERCONTENTS_SLIME)
return CONTENTS_SLIME;
if (supercontents & SUPERCONTENTS_WATER)
return CONTENTS_WATER;
return CONTENTS_EMPTY;
}
typedef struct RecursiveHullCheckTraceInfo_s
{
// the hull we're tracing through
const hull_t *hull;
// the trace structure to fill in
trace_t *trace;
// start, end, and end - start (in model space)
double start[3];
double end[3];
double dist[3];
}
RecursiveHullCheckTraceInfo_t;
// 1/32 epsilon to keep floating point happy
#define DIST_EPSILON (0.03125)
#define HULLCHECKSTATE_EMPTY 0
#define HULLCHECKSTATE_SOLID 1
#define HULLCHECKSTATE_DONE 2
extern cvar_t collision_prefernudgedfraction;
static int Mod_Q1BSP_RecursiveHullCheck(RecursiveHullCheckTraceInfo_t *t, int num, double p1f, double p2f, double p1[3], double p2[3])
{
// status variables, these don't need to be saved on the stack when
// recursing... but are because this should be thread-safe
// (note: tracing against a bbox is not thread-safe, yet)
int ret;
mplane_t *plane;
double t1, t2;
// variables that need to be stored on the stack when recursing
mclipnode_t *node;
int side;
double midf, mid[3];
// LordHavoc: a goto! everyone flee in terror... :)
loc0:
// check for empty
if (num < 0)
{
num = Mod_Q1BSP_SuperContentsFromNativeContents(NULL, num);
if (!t->trace->startfound)
{
t->trace->startfound = true;
t->trace->startsupercontents |= num;
}
if (num & SUPERCONTENTS_LIQUIDSMASK)
t->trace->inwater = true;
if (num == 0)
t->trace->inopen = true;
if (num & SUPERCONTENTS_SOLID)
t->trace->hittexture = &mod_q1bsp_texture_solid;
else if (num & SUPERCONTENTS_SKY)
t->trace->hittexture = &mod_q1bsp_texture_sky;
else if (num & SUPERCONTENTS_LAVA)
t->trace->hittexture = &mod_q1bsp_texture_lava;
else if (num & SUPERCONTENTS_SLIME)
t->trace->hittexture = &mod_q1bsp_texture_slime;
else
t->trace->hittexture = &mod_q1bsp_texture_water;
t->trace->hitq3surfaceflags = t->trace->hittexture->surfaceflags;
t->trace->hitsupercontents = num;
if (num & t->trace->hitsupercontentsmask)
{
// if the first leaf is solid, set startsolid
if (t->trace->allsolid)
t->trace->startsolid = true;
#if COLLISIONPARANOID >= 3
Con_Print("S");
#endif
return HULLCHECKSTATE_SOLID;
}
else
{
t->trace->allsolid = false;
#if COLLISIONPARANOID >= 3
Con_Print("E");
#endif
return HULLCHECKSTATE_EMPTY;
}
}
// find the point distances
node = t->hull->clipnodes + num;
plane = t->hull->planes + node->planenum;
if (plane->type < 3)
{
t1 = p1[plane->type] - plane->dist;
t2 = p2[plane->type] - plane->dist;
}
else
{
t1 = DotProduct (plane->normal, p1) - plane->dist;
t2 = DotProduct (plane->normal, p2) - plane->dist;
}
if (t1 < 0)
{
if (t2 < 0)
{
#if COLLISIONPARANOID >= 3
Con_Print("<");
#endif
num = node->children[1];
goto loc0;
}
side = 1;
}
else
{
if (t2 >= 0)
{
#if COLLISIONPARANOID >= 3
Con_Print(">");
#endif
num = node->children[0];
goto loc0;
}
side = 0;
}
// the line intersects, find intersection point
// LordHavoc: this uses the original trace for maximum accuracy
#if COLLISIONPARANOID >= 3
Con_Print("M");
#endif
if (plane->type < 3)
{
t1 = t->start[plane->type] - plane->dist;
t2 = t->end[plane->type] - plane->dist;
}
else
{
t1 = DotProduct (plane->normal, t->start) - plane->dist;
t2 = DotProduct (plane->normal, t->end) - plane->dist;
}
midf = t1 / (t1 - t2);
midf = bound(p1f, midf, p2f);
VectorMA(t->start, midf, t->dist, mid);
// recurse both sides, front side first
ret = Mod_Q1BSP_RecursiveHullCheck(t, node->children[side], p1f, midf, p1, mid);
// if this side is not empty, return what it is (solid or done)
if (ret != HULLCHECKSTATE_EMPTY)
return ret;
ret = Mod_Q1BSP_RecursiveHullCheck(t, node->children[side ^ 1], midf, p2f, mid, p2);
// if other side is not solid, return what it is (empty or done)
if (ret != HULLCHECKSTATE_SOLID)
return ret;
// front is air and back is solid, this is the impact point...
if (side)
{
t->trace->plane.dist = -plane->dist;
VectorNegate (plane->normal, t->trace->plane.normal);
}
else
{
t->trace->plane.dist = plane->dist;
VectorCopy (plane->normal, t->trace->plane.normal);
}
// calculate the true fraction
t1 = DotProduct(t->trace->plane.normal, t->start) - t->trace->plane.dist;
t2 = DotProduct(t->trace->plane.normal, t->end) - t->trace->plane.dist;
midf = t1 / (t1 - t2);
t->trace->realfraction = bound(0, midf, 1);
// calculate the return fraction which is nudged off the surface a bit
midf = (t1 - DIST_EPSILON) / (t1 - t2);
t->trace->fraction = bound(0, midf, 1);
if (collision_prefernudgedfraction.integer)
t->trace->realfraction = t->trace->fraction;
#if COLLISIONPARANOID >= 3
Con_Print("D");
#endif
return HULLCHECKSTATE_DONE;
}
//#if COLLISIONPARANOID < 2
static int Mod_Q1BSP_RecursiveHullCheckPoint(RecursiveHullCheckTraceInfo_t *t, int num)
{
mplane_t *plane;
mclipnode_t *nodes = t->hull->clipnodes;
mplane_t *planes = t->hull->planes;
vec3_t point;
VectorCopy(t->start, point);
while (num >= 0)
{
plane = planes + nodes[num].planenum;
num = nodes[num].children[(plane->type < 3 ? point[plane->type] : DotProduct(plane->normal, point)) < plane->dist];
}
num = Mod_Q1BSP_SuperContentsFromNativeContents(NULL, num);
t->trace->startsupercontents |= num;
if (num & SUPERCONTENTS_LIQUIDSMASK)
t->trace->inwater = true;
if (num == 0)
t->trace->inopen = true;
if (num & t->trace->hitsupercontentsmask)
{
t->trace->allsolid = t->trace->startsolid = true;
return HULLCHECKSTATE_SOLID;
}
else
{
t->trace->allsolid = t->trace->startsolid = false;
return HULLCHECKSTATE_EMPTY;
}
}
//#endif
static void Mod_Q1BSP_TracePoint(struct model_s *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, int hitsupercontentsmask)
{
RecursiveHullCheckTraceInfo_t rhc;
memset(&rhc, 0, sizeof(rhc));
memset(trace, 0, sizeof(trace_t));
rhc.trace = trace;
rhc.trace->fraction = 1;
rhc.trace->realfraction = 1;
rhc.trace->allsolid = true;
rhc.hull = &model->brushq1.hulls[0]; // 0x0x0
VectorCopy(start, rhc.start);
VectorCopy(start, rhc.end);
Mod_Q1BSP_RecursiveHullCheckPoint(&rhc, rhc.hull->firstclipnode);
}
static void Mod_Q1BSP_TraceLineAgainstSurfaces(struct model_s *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask);
static void Mod_Q1BSP_TraceLine(struct model_s *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask)
{
RecursiveHullCheckTraceInfo_t rhc;
if (VectorCompare(start, end))
{
Mod_Q1BSP_TracePoint(model, frameblend, skeleton, trace, start, hitsupercontentsmask);
return;
}
// sometimes we want to traceline against polygons so we can report the texture that was hit rather than merely a contents, but using this method breaks one of negke's maps so it must be a cvar check...
if (sv_gameplayfix_q1bsptracelinereportstexture.integer)
{
Mod_Q1BSP_TraceLineAgainstSurfaces(model, frameblend, skeleton, trace, start, end, hitsupercontentsmask);
return;
}
memset(&rhc, 0, sizeof(rhc));
memset(trace, 0, sizeof(trace_t));
rhc.trace = trace;
rhc.trace->hitsupercontentsmask = hitsupercontentsmask;
rhc.trace->fraction = 1;
rhc.trace->realfraction = 1;
rhc.trace->allsolid = true;
rhc.hull = &model->brushq1.hulls[0]; // 0x0x0
VectorCopy(start, rhc.start);
VectorCopy(end, rhc.end);
VectorSubtract(rhc.end, rhc.start, rhc.dist);
#if COLLISIONPARANOID >= 2
Con_Printf("t(%f %f %f,%f %f %f)", rhc.start[0], rhc.start[1], rhc.start[2], rhc.end[0], rhc.end[1], rhc.end[2]);
Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end);
{
double test[3];
trace_t testtrace;
VectorLerp(rhc.start, rhc.trace->fraction, rhc.end, test);
memset(&testtrace, 0, sizeof(trace_t));
rhc.trace = &testtrace;
rhc.trace->hitsupercontentsmask = hitsupercontentsmask;
rhc.trace->fraction = 1;
rhc.trace->realfraction = 1;
rhc.trace->allsolid = true;
VectorCopy(test, rhc.start);
VectorCopy(test, rhc.end);
VectorClear(rhc.dist);
Mod_Q1BSP_RecursiveHullCheckPoint(&rhc, rhc.hull->firstclipnode);
//Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, test, test);
if (!trace->startsolid && testtrace.startsolid)
Con_Printf(" - ended in solid!\n");
}
Con_Print("\n");
#else
if (VectorLength2(rhc.dist))
Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end);
else
Mod_Q1BSP_RecursiveHullCheckPoint(&rhc, rhc.hull->firstclipnode);
#endif
}
static void Mod_Q1BSP_TraceBox(struct model_s *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t boxmins, const vec3_t boxmaxs, const vec3_t end, int hitsupercontentsmask)
{
// this function currently only supports same size start and end
double boxsize[3];
RecursiveHullCheckTraceInfo_t rhc;
if (VectorCompare(boxmins, boxmaxs))
{
if (VectorCompare(start, end))
Mod_Q1BSP_TracePoint(model, frameblend, skeleton, trace, start, hitsupercontentsmask);
else
Mod_Q1BSP_TraceLine(model, frameblend, skeleton, trace, start, end, hitsupercontentsmask);
return;
}
memset(&rhc, 0, sizeof(rhc));
memset(trace, 0, sizeof(trace_t));
rhc.trace = trace;
rhc.trace->hitsupercontentsmask = hitsupercontentsmask;
rhc.trace->fraction = 1;
rhc.trace->realfraction = 1;
rhc.trace->allsolid = true;
VectorSubtract(boxmaxs, boxmins, boxsize);
if (boxsize[0] < 3)
rhc.hull = &model->brushq1.hulls[0]; // 0x0x0
else if (model->brush.ishlbsp)
{
// LordHavoc: this has to have a minor tolerance (the .1) because of
// minor float precision errors from the box being transformed around
if (boxsize[0] < 32.1)
{
if (boxsize[2] < 54) // pick the nearest of 36 or 72
rhc.hull = &model->brushq1.hulls[3]; // 32x32x36
else
rhc.hull = &model->brushq1.hulls[1]; // 32x32x72
}
else
rhc.hull = &model->brushq1.hulls[2]; // 64x64x64
}
else
{
// LordHavoc: this has to have a minor tolerance (the .1) because of
// minor float precision errors from the box being transformed around
if (boxsize[0] < 32.1)
rhc.hull = &model->brushq1.hulls[1]; // 32x32x56
else
rhc.hull = &model->brushq1.hulls[2]; // 64x64x88
}
VectorMAMAM(1, start, 1, boxmins, -1, rhc.hull->clip_mins, rhc.start);
VectorMAMAM(1, end, 1, boxmins, -1, rhc.hull->clip_mins, rhc.end);
VectorSubtract(rhc.end, rhc.start, rhc.dist);
#if COLLISIONPARANOID >= 2
Con_Printf("t(%f %f %f,%f %f %f,%i %f %f %f)", rhc.start[0], rhc.start[1], rhc.start[2], rhc.end[0], rhc.end[1], rhc.end[2], rhc.hull - model->brushq1.hulls, rhc.hull->clip_mins[0], rhc.hull->clip_mins[1], rhc.hull->clip_mins[2]);
Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end);
{
double test[3];
trace_t testtrace;
VectorLerp(rhc.start, rhc.trace->fraction, rhc.end, test);
memset(&testtrace, 0, sizeof(trace_t));
rhc.trace = &testtrace;
rhc.trace->hitsupercontentsmask = hitsupercontentsmask;
rhc.trace->fraction = 1;
rhc.trace->realfraction = 1;
rhc.trace->allsolid = true;
VectorCopy(test, rhc.start);
VectorCopy(test, rhc.end);
VectorClear(rhc.dist);
Mod_Q1BSP_RecursiveHullCheckPoint(&rhc, rhc.hull->firstclipnode);
//Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, test, test);
if (!trace->startsolid && testtrace.startsolid)
Con_Printf(" - ended in solid!\n");
}
Con_Print("\n");
#else
if (VectorLength2(rhc.dist))
Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end);
else
Mod_Q1BSP_RecursiveHullCheckPoint(&rhc, rhc.hull->firstclipnode);
#endif
}
static int Mod_Q1BSP_PointSuperContents(struct model_s *model, int frame, const vec3_t point)
{
int num = model->brushq1.hulls[0].firstclipnode;
mplane_t *plane;
mclipnode_t *nodes = model->brushq1.hulls[0].clipnodes;
mplane_t *planes = model->brushq1.hulls[0].planes;
while (num >= 0)
{
plane = planes + nodes[num].planenum;
num = nodes[num].children[(plane->type < 3 ? point[plane->type] : DotProduct(plane->normal, point)) < plane->dist];
}
return Mod_Q1BSP_SuperContentsFromNativeContents(NULL, num);
}
void Collision_ClipTrace_Box(trace_t *trace, const vec3_t cmins, const vec3_t cmaxs, const vec3_t start, const vec3_t mins, const vec3_t maxs, const vec3_t end, int hitsupercontentsmask, int boxsupercontents, int boxq3surfaceflags, const texture_t *boxtexture)
{
#if 1
colbrushf_t cbox;
colplanef_t cbox_planes[6];
cbox.isaabb = true;
cbox.hasaabbplanes = true;
cbox.supercontents = boxsupercontents;
cbox.numplanes = 6;
cbox.numpoints = 0;
cbox.numtriangles = 0;
cbox.planes = cbox_planes;
cbox.points = NULL;
cbox.elements = NULL;
cbox.markframe = 0;
cbox.mins[0] = 0;
cbox.mins[1] = 0;
cbox.mins[2] = 0;
cbox.maxs[0] = 0;
cbox.maxs[1] = 0;
cbox.maxs[2] = 0;
cbox_planes[0].normal[0] = 1;cbox_planes[0].normal[1] = 0;cbox_planes[0].normal[2] = 0;cbox_planes[0].dist = cmaxs[0] - mins[0];
cbox_planes[1].normal[0] = -1;cbox_planes[1].normal[1] = 0;cbox_planes[1].normal[2] = 0;cbox_planes[1].dist = maxs[0] - cmins[0];
cbox_planes[2].normal[0] = 0;cbox_planes[2].normal[1] = 1;cbox_planes[2].normal[2] = 0;cbox_planes[2].dist = cmaxs[1] - mins[1];
cbox_planes[3].normal[0] = 0;cbox_planes[3].normal[1] = -1;cbox_planes[3].normal[2] = 0;cbox_planes[3].dist = maxs[1] - cmins[1];
cbox_planes[4].normal[0] = 0;cbox_planes[4].normal[1] = 0;cbox_planes[4].normal[2] = 1;cbox_planes[4].dist = cmaxs[2] - mins[2];
cbox_planes[5].normal[0] = 0;cbox_planes[5].normal[1] = 0;cbox_planes[5].normal[2] = -1;cbox_planes[5].dist = maxs[2] - cmins[2];
cbox_planes[0].q3surfaceflags = boxq3surfaceflags;cbox_planes[0].texture = boxtexture;
cbox_planes[1].q3surfaceflags = boxq3surfaceflags;cbox_planes[1].texture = boxtexture;
cbox_planes[2].q3surfaceflags = boxq3surfaceflags;cbox_planes[2].texture = boxtexture;
cbox_planes[3].q3surfaceflags = boxq3surfaceflags;cbox_planes[3].texture = boxtexture;
cbox_planes[4].q3surfaceflags = boxq3surfaceflags;cbox_planes[4].texture = boxtexture;
cbox_planes[5].q3surfaceflags = boxq3surfaceflags;cbox_planes[5].texture = boxtexture;
memset(trace, 0, sizeof(trace_t));
trace->hitsupercontentsmask = hitsupercontentsmask;
trace->fraction = 1;
trace->realfraction = 1;
Collision_TraceLineBrushFloat(trace, start, end, &cbox, &cbox);
#else
RecursiveHullCheckTraceInfo_t rhc;
static hull_t box_hull;
static mclipnode_t box_clipnodes[6];
static mplane_t box_planes[6];
// fill in a default trace
memset(&rhc, 0, sizeof(rhc));
memset(trace, 0, sizeof(trace_t));
//To keep everything totally uniform, bounding boxes are turned into small
//BSP trees instead of being compared directly.
// create a temp hull from bounding box sizes
box_planes[0].dist = cmaxs[0] - mins[0];
box_planes[1].dist = cmins[0] - maxs[0];
box_planes[2].dist = cmaxs[1] - mins[1];
box_planes[3].dist = cmins[1] - maxs[1];
box_planes[4].dist = cmaxs[2] - mins[2];
box_planes[5].dist = cmins[2] - maxs[2];
#if COLLISIONPARANOID >= 3
Con_Printf("box_planes %f:%f %f:%f %f:%f\ncbox %f %f %f:%f %f %f\nbox %f %f %f:%f %f %f\n", box_planes[0].dist, box_planes[1].dist, box_planes[2].dist, box_planes[3].dist, box_planes[4].dist, box_planes[5].dist, cmins[0], cmins[1], cmins[2], cmaxs[0], cmaxs[1], cmaxs[2], mins[0], mins[1], mins[2], maxs[0], maxs[1], maxs[2]);
#endif
if (box_hull.clipnodes == NULL)
{
int i, side;
//Set up the planes and clipnodes so that the six floats of a bounding box
//can just be stored out and get a proper hull_t structure.
box_hull.clipnodes = box_clipnodes;
box_hull.planes = box_planes;
box_hull.firstclipnode = 0;
box_hull.lastclipnode = 5;
for (i = 0;i < 6;i++)
{
box_clipnodes[i].planenum = i;
side = i&1;
box_clipnodes[i].children[side] = CONTENTS_EMPTY;
if (i != 5)
box_clipnodes[i].children[side^1] = i + 1;
else
box_clipnodes[i].children[side^1] = CONTENTS_SOLID;
box_planes[i].type = i>>1;
box_planes[i].normal[i>>1] = 1;
}
}
// trace a line through the generated clipping hull
//rhc.boxsupercontents = boxsupercontents;
rhc.hull = &box_hull;
rhc.trace = trace;
rhc.trace->hitsupercontentsmask = hitsupercontentsmask;
rhc.trace->fraction = 1;
rhc.trace->realfraction = 1;
rhc.trace->allsolid = true;
VectorCopy(start, rhc.start);
VectorCopy(end, rhc.end);
VectorSubtract(rhc.end, rhc.start, rhc.dist);
Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end);
//VectorMA(rhc.start, rhc.trace->fraction, rhc.dist, rhc.trace->endpos);
if (rhc.trace->startsupercontents)
rhc.trace->startsupercontents = boxsupercontents;
#endif
}
void Collision_ClipTrace_Point(trace_t *trace, const vec3_t cmins, const vec3_t cmaxs, const vec3_t start, int hitsupercontentsmask, int boxsupercontents, int boxq3surfaceflags, const texture_t *boxtexture)
{
memset(trace, 0, sizeof(trace_t));
trace->fraction = 1;
trace->realfraction = 1;
if (BoxesOverlap(start, start, cmins, cmaxs))
{
trace->startsupercontents |= boxsupercontents;
if (hitsupercontentsmask & boxsupercontents)
{
trace->startsolid = true;
trace->allsolid = true;
}
}
}
static qboolean Mod_Q1BSP_TraceLineOfSight(struct model_s *model, const vec3_t start, const vec3_t end)
{
trace_t trace;
Mod_Q1BSP_TraceLine(model, NULL, NULL, &trace, start, end, SUPERCONTENTS_VISBLOCKERMASK);
return trace.fraction == 1;
}
static int Mod_Q1BSP_LightPoint_RecursiveBSPNode(dp_model_t *model, vec3_t ambientcolor, vec3_t diffusecolor, vec3_t diffusenormal, const mnode_t *node, float x, float y, float startz, float endz)
{
int side;
float front, back;
float mid, distz = endz - startz;
loc0:
if (!node->plane)
return false; // didn't hit anything
switch (node->plane->type)
{
case PLANE_X:
node = node->children[x < node->plane->dist];
goto loc0;
case PLANE_Y:
node = node->children[y < node->plane->dist];
goto loc0;
case PLANE_Z:
side = startz < node->plane->dist;
if ((endz < node->plane->dist) == side)
{
node = node->children[side];
goto loc0;
}
// found an intersection
mid = node->plane->dist;
break;
default:
back = front = x * node->plane->normal[0] + y * node->plane->normal[1];
front += startz * node->plane->normal[2];
back += endz * node->plane->normal[2];
side = front < node->plane->dist;
if ((back < node->plane->dist) == side)
{
node = node->children[side];
goto loc0;
}
// found an intersection
mid = startz + distz * (front - node->plane->dist) / (front - back);
break;
}
// go down front side
if (node->children[side]->plane && Mod_Q1BSP_LightPoint_RecursiveBSPNode(model, ambientcolor, diffusecolor, diffusenormal, node->children[side], x, y, startz, mid))
return true; // hit something
else
{
// check for impact on this node
if (node->numsurfaces)
{
unsigned int i;
int dsi, dti, lmwidth, lmheight;
float ds, dt;
msurface_t *surface;
unsigned char *lightmap;
int maps, line3, size3;
float dsfrac;
float dtfrac;
float scale, w, w00, w01, w10, w11;
surface = model->data_surfaces + node->firstsurface;
for (i = 0;i < node->numsurfaces;i++, surface++)
{
if (!(surface->texture->basematerialflags & MATERIALFLAG_WALL) || !surface->lightmapinfo || !surface->lightmapinfo->samples)
continue; // no lightmaps
// location we want to sample in the lightmap
ds = ((x * surface->lightmapinfo->texinfo->vecs[0][0] + y * surface->lightmapinfo->texinfo->vecs[0][1] + mid * surface->lightmapinfo->texinfo->vecs[0][2] + surface->lightmapinfo->texinfo->vecs[0][3]) - surface->lightmapinfo->texturemins[0]) * 0.0625f;
dt = ((x * surface->lightmapinfo->texinfo->vecs[1][0] + y * surface->lightmapinfo->texinfo->vecs[1][1] + mid * surface->lightmapinfo->texinfo->vecs[1][2] + surface->lightmapinfo->texinfo->vecs[1][3]) - surface->lightmapinfo->texturemins[1]) * 0.0625f;
// check the bounds
dsi = (int)ds;
dti = (int)dt;
lmwidth = ((surface->lightmapinfo->extents[0]>>4)+1);
lmheight = ((surface->lightmapinfo->extents[1]>>4)+1);
// is it in bounds?
if (dsi >= 0 && dsi < lmwidth-1 && dti >= 0 && dti < lmheight-1)
{
// calculate bilinear interpolation factors
// and also multiply by fixedpoint conversion factors
dsfrac = ds - dsi;
dtfrac = dt - dti;
w00 = (1 - dsfrac) * (1 - dtfrac) * (1.0f / 32768.0f);
w01 = ( dsfrac) * (1 - dtfrac) * (1.0f / 32768.0f);
w10 = (1 - dsfrac) * ( dtfrac) * (1.0f / 32768.0f);
w11 = ( dsfrac) * ( dtfrac) * (1.0f / 32768.0f);
// values for pointer math
line3 = lmwidth * 3; // LordHavoc: *3 for colored lighting
size3 = lmwidth * lmheight * 3; // LordHavoc: *3 for colored lighting
// look up the pixel
lightmap = surface->lightmapinfo->samples + dti * line3 + dsi*3; // LordHavoc: *3 for colored lighting
// bilinear filter each lightmap style, and sum them
for (maps = 0;maps < MAXLIGHTMAPS && surface->lightmapinfo->styles[maps] != 255;maps++)
{
scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[maps]];
w = w00 * scale;VectorMA(ambientcolor, w, lightmap , ambientcolor);
w = w01 * scale;VectorMA(ambientcolor, w, lightmap + 3 , ambientcolor);
w = w10 * scale;VectorMA(ambientcolor, w, lightmap + line3 , ambientcolor);
w = w11 * scale;VectorMA(ambientcolor, w, lightmap + line3 + 3, ambientcolor);
lightmap += size3;
}
return true; // success
}
}
}
// go down back side
node = node->children[side ^ 1];
startz = mid;
distz = endz - startz;
goto loc0;
}
}
static void Mod_Q1BSP_LightPoint(dp_model_t *model, const vec3_t p, vec3_t ambientcolor, vec3_t diffusecolor, vec3_t diffusenormal)
{
// pretend lighting is coming down from above (due to lack of a lightgrid to know primary lighting direction)
VectorSet(diffusenormal, 0, 0, 1);
if (!model->brushq1.lightdata)
{
VectorSet(ambientcolor, 1, 1, 1);
VectorSet(diffusecolor, 0, 0, 0);
return;
}
Mod_Q1BSP_LightPoint_RecursiveBSPNode(model, ambientcolor, diffusecolor, diffusenormal, model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode, p[0], p[1], p[2] + 0.125, p[2] - 65536);
}
static const texture_t *Mod_Q1BSP_TraceLineAgainstSurfacesFindTextureOnNode(RecursiveHullCheckTraceInfo_t *t, const dp_model_t *model, const mnode_t *node, double mid[3])
{
unsigned int i;
int j;
int k;
const msurface_t *surface;
float normal[3];
float v0[3];
float v1[3];
float edgedir[3];
float edgenormal[3];
float p[4];
float midf;
float t1;
float t2;
VectorCopy(mid, p);
p[3] = 1;
surface = model->data_surfaces + node->firstsurface;
for (i = 0;i < node->numsurfaces;i++, surface++)
{
// skip surfaces whose bounding box does not include the point
// if (!BoxesOverlap(mid, mid, surface->mins, surface->maxs))
// continue;
// skip faces with contents we don't care about
if (!(t->trace->hitsupercontentsmask & surface->texture->supercontents))
continue;
// get the surface normal - since it is flat we know any vertex normal will suffice
VectorCopy(model->surfmesh.data_normal3f + 3 * surface->num_firstvertex, normal);
// skip backfaces
if (DotProduct(t->dist, normal) > 0)
continue;
// iterate edges and see if the point is outside one of them
for (j = 0, k = surface->num_vertices - 1;j < surface->num_vertices;k = j, j++)
{
VectorCopy(model->surfmesh.data_vertex3f + 3 * (surface->num_firstvertex + k), v0);
VectorCopy(model->surfmesh.data_vertex3f + 3 * (surface->num_firstvertex + j), v1);
VectorSubtract(v0, v1, edgedir);
CrossProduct(edgedir, normal, edgenormal);
if (DotProduct(edgenormal, p) > DotProduct(edgenormal, v0))
break;
}
// if the point is outside one of the edges, it is not within the surface
if (j < surface->num_vertices)
continue;
// we hit a surface, this is the impact point...
VectorCopy(normal, t->trace->plane.normal);
t->trace->plane.dist = DotProduct(normal, p);
// calculate the true fraction
t1 = DotProduct(t->start, t->trace->plane.normal) - t->trace->plane.dist;
t2 = DotProduct(t->end, t->trace->plane.normal) - t->trace->plane.dist;
midf = t1 / (t1 - t2);
t->trace->realfraction = midf;
// calculate the return fraction which is nudged off the surface a bit
midf = (t1 - DIST_EPSILON) / (t1 - t2);
t->trace->fraction = bound(0, midf, 1);
if (collision_prefernudgedfraction.integer)
t->trace->realfraction = t->trace->fraction;
t->trace->hittexture = surface->texture->currentframe;
t->trace->hitq3surfaceflags = t->trace->hittexture->surfaceflags;
t->trace->hitsupercontents = t->trace->hittexture->supercontents;
return surface->texture->currentframe;
}
return NULL;
}
static int Mod_Q1BSP_TraceLineAgainstSurfacesRecursiveBSPNode(RecursiveHullCheckTraceInfo_t *t, const dp_model_t *model, const mnode_t *node, const double p1[3], const double p2[3])
{
const mplane_t *plane;
double t1, t2;
int side;
double midf, mid[3];
const mleaf_t *leaf;
while (node->plane)
{
plane = node->plane;
if (plane->type < 3)
{
t1 = p1[plane->type] - plane->dist;
t2 = p2[plane->type] - plane->dist;
}
else
{
t1 = DotProduct (plane->normal, p1) - plane->dist;
t2 = DotProduct (plane->normal, p2) - plane->dist;
}
if (t1 < 0)
{
if (t2 < 0)
{
node = node->children[1];
continue;
}
side = 1;
}
else
{
if (t2 >= 0)
{
node = node->children[0];
continue;
}
side = 0;
}
// the line intersects, find intersection point
// LordHavoc: this uses the original trace for maximum accuracy
if (plane->type < 3)
{
t1 = t->start[plane->type] - plane->dist;
t2 = t->end[plane->type] - plane->dist;
}
else
{
t1 = DotProduct (plane->normal, t->start) - plane->dist;
t2 = DotProduct (plane->normal, t->end) - plane->dist;
}
midf = t1 / (t1 - t2);
VectorMA(t->start, midf, t->dist, mid);
// recurse both sides, front side first, return if we hit a surface
if (Mod_Q1BSP_TraceLineAgainstSurfacesRecursiveBSPNode(t, model, node->children[side], p1, mid) == HULLCHECKSTATE_DONE)
return HULLCHECKSTATE_DONE;
// test each surface on the node
Mod_Q1BSP_TraceLineAgainstSurfacesFindTextureOnNode(t, model, node, mid);
if (t->trace->hittexture)
return HULLCHECKSTATE_DONE;
// recurse back side
return Mod_Q1BSP_TraceLineAgainstSurfacesRecursiveBSPNode(t, model, node->children[side ^ 1], mid, p2);
}
leaf = (const mleaf_t *)node;
side = Mod_Q1BSP_SuperContentsFromNativeContents(NULL, leaf->contents);
if (!t->trace->startfound)
{
t->trace->startfound = true;
t->trace->startsupercontents |= side;
}
if (side & SUPERCONTENTS_LIQUIDSMASK)
t->trace->inwater = true;
if (side == 0)
t->trace->inopen = true;
if (side & t->trace->hitsupercontentsmask)
{
// if the first leaf is solid, set startsolid
if (t->trace->allsolid)
t->trace->startsolid = true;
return HULLCHECKSTATE_SOLID;
}
else
{
t->trace->allsolid = false;
return HULLCHECKSTATE_EMPTY;
}
}
static void Mod_Q1BSP_TraceLineAgainstSurfaces(struct model_s *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask)
{
RecursiveHullCheckTraceInfo_t rhc;
memset(&rhc, 0, sizeof(rhc));
memset(trace, 0, sizeof(trace_t));
rhc.trace = trace;
rhc.trace->hitsupercontentsmask = hitsupercontentsmask;
rhc.trace->fraction = 1;
rhc.trace->realfraction = 1;
rhc.trace->allsolid = true;
rhc.hull = &model->brushq1.hulls[0]; // 0x0x0
VectorCopy(start, rhc.start);
VectorCopy(end, rhc.end);
VectorSubtract(rhc.end, rhc.start, rhc.dist);
Mod_Q1BSP_TraceLineAgainstSurfacesRecursiveBSPNode(&rhc, model, model->brush.data_nodes + rhc.hull->firstclipnode, rhc.start, rhc.end);
VectorMA(rhc.start, rhc.trace->fraction, rhc.dist, rhc.trace->endpos);
}
static void Mod_Q1BSP_DecompressVis(const unsigned char *in, const unsigned char *inend, unsigned char *out, unsigned char *outend)
{
int c;
unsigned char *outstart = out;
while (out < outend)
{
if (in == inend)
{
Con_Printf("Mod_Q1BSP_DecompressVis: input underrun on model \"%s\" (decompressed %i of %i output bytes)\n", loadmodel->name, (int)(out - outstart), (int)(outend - outstart));
return;
}
c = *in++;
if (c)
*out++ = c;
else
{
if (in == inend)
{
Con_Printf("Mod_Q1BSP_DecompressVis: input underrun (during zero-run) on model \"%s\" (decompressed %i of %i output bytes)\n", loadmodel->name, (int)(out - outstart), (int)(outend - outstart));
return;
}
for (c = *in++;c > 0;c--)
{
if (out == outend)
{
Con_Printf("Mod_Q1BSP_DecompressVis: output overrun on model \"%s\" (decompressed %i of %i output bytes)\n", loadmodel->name, (int)(out - outstart), (int)(outend - outstart));
return;
}
*out++ = 0;
}
}
}
}
/*
=============
R_Q1BSP_LoadSplitSky
A sky texture is 256*128, with the right side being a masked overlay
==============
*/
static void R_Q1BSP_LoadSplitSky (unsigned char *src, int width, int height, int bytesperpixel)
{
int x, y;
int w = width/2;
int h = height;
unsigned int *solidpixels = (unsigned int *)Mem_Alloc(tempmempool, w*h*sizeof(unsigned char[4]));
unsigned int *alphapixels = (unsigned int *)Mem_Alloc(tempmempool, w*h*sizeof(unsigned char[4]));
// allocate a texture pool if we need it
if (loadmodel->texturepool == NULL && cls.state != ca_dedicated)
loadmodel->texturepool = R_AllocTexturePool();
if (bytesperpixel == 4)
{
for (y = 0;y < h;y++)
{
for (x = 0;x < w;x++)
{
solidpixels[y*w+x] = ((unsigned *)src)[y*width+x+w];
alphapixels[y*w+x] = ((unsigned *)src)[y*width+x];
}
}
}
else
{
// make an average value for the back to avoid
// a fringe on the top level
int p, r, g, b;
union
{
unsigned int i;
unsigned char b[4];
}
bgra;
r = g = b = 0;
for (y = 0;y < h;y++)
{
for (x = 0;x < w;x++)
{
p = src[x*width+y+w];
r += palette_rgb[p][0];
g += palette_rgb[p][1];
b += palette_rgb[p][2];
}
}
bgra.b[2] = r/(w*h);
bgra.b[1] = g/(w*h);
bgra.b[0] = b/(w*h);
bgra.b[3] = 0;
for (y = 0;y < h;y++)
{
for (x = 0;x < w;x++)
{
solidpixels[y*w+x] = palette_bgra_complete[src[y*width+x+w]];
p = src[y*width+x];
alphapixels[y*w+x] = p ? palette_bgra_complete[p] : bgra.i;
}
}
}
loadmodel->brush.solidskyskinframe = R_SkinFrame_LoadInternalBGRA("sky_solidtexture", 0 , (unsigned char *) solidpixels, w, h, vid.sRGB3D);
loadmodel->brush.alphaskyskinframe = R_SkinFrame_LoadInternalBGRA("sky_alphatexture", TEXF_ALPHA, (unsigned char *) alphapixels, w, h, vid.sRGB3D);
Mem_Free(solidpixels);
Mem_Free(alphapixels);
}
static void Mod_Q1BSP_LoadTextures(sizebuf_t *sb)
{
int i, j, k, num, max, altmax, mtwidth, mtheight, doffset, incomplete, nummiptex = 0;
skinframe_t *skinframe;
texture_t *tx, *tx2, *anims[10], *altanims[10];
texture_t backuptex;
unsigned char *data, *mtdata;
const char *s;
char mapname[MAX_QPATH], name[MAX_QPATH];
unsigned char zeroopaque[4], zerotrans[4];
sizebuf_t miptexsb;
char vabuf[1024];
Vector4Set(zeroopaque, 0, 0, 0, 255);
Vector4Set(zerotrans, 0, 0, 0, 128);
loadmodel->data_textures = NULL;
// add two slots for notexture walls and notexture liquids
if (sb->cursize)
{
nummiptex = MSG_ReadLittleLong(sb);
loadmodel->num_textures = nummiptex + 2;
loadmodel->num_texturesperskin = loadmodel->num_textures;
}
else
{
loadmodel->num_textures = 2;
loadmodel->num_texturesperskin = loadmodel->num_textures;
}
loadmodel->data_textures = (texture_t *)Mem_Alloc(loadmodel->mempool, loadmodel->num_textures * sizeof(texture_t));
// fill out all slots with notexture
if (cls.state != ca_dedicated)
skinframe = R_SkinFrame_LoadMissing();
else
skinframe = NULL;
for (i = 0, tx = loadmodel->data_textures;i < loadmodel->num_textures;i++, tx++)
{
strlcpy(tx->name, "NO TEXTURE FOUND", sizeof(tx->name));
tx->width = 16;
tx->height = 16;
if (cls.state != ca_dedicated)
{
tx->numskinframes = 1;
tx->skinframerate = 1;
tx->skinframes[0] = skinframe;
tx->currentskinframe = tx->skinframes[0];
}
tx->basematerialflags = MATERIALFLAG_WALL;
if (i == loadmodel->num_textures - 1)
{
tx->basematerialflags |= MATERIALFLAG_WATERSCROLL | MATERIALFLAG_LIGHTBOTHSIDES | MATERIALFLAG_NOSHADOW;
tx->supercontents = mod_q1bsp_texture_water.supercontents;
tx->surfaceflags = mod_q1bsp_texture_water.surfaceflags;
}
else
{
tx->supercontents = mod_q1bsp_texture_solid.supercontents;
tx->surfaceflags = mod_q1bsp_texture_solid.surfaceflags;
}
tx->currentframe = tx;
// clear water settings
tx->reflectmin = 0;
tx->reflectmax = 1;
tx->refractfactor = 1;
Vector4Set(tx->refractcolor4f, 1, 1, 1, 1);
tx->reflectfactor = 1;
Vector4Set(tx->reflectcolor4f, 1, 1, 1, 1);
tx->r_water_wateralpha = 1;
tx->offsetmapping = OFFSETMAPPING_DEFAULT;
tx->offsetscale = 1;
tx->offsetbias = 0;
tx->specularscalemod = 1;
tx->specularpowermod = 1;
tx->transparentsort = TRANSPARENTSORT_DISTANCE;
// WHEN ADDING DEFAULTS HERE, REMEMBER TO PUT DEFAULTS IN ALL LOADERS
// JUST GREP FOR "specularscalemod = 1".
}
if (!sb->cursize)
{
Con_Printf("%s: no miptex lump to load textures from\n", loadmodel->name);
return;
}
s = loadmodel->name;
if (!strncasecmp(s, "maps/", 5))
s += 5;
FS_StripExtension(s, mapname, sizeof(mapname));
// just to work around bounds checking when debugging with it (array index out of bounds error thing)
// LordHavoc: mostly rewritten map texture loader
for (i = 0;i < nummiptex;i++)
{
doffset = MSG_ReadLittleLong(sb);
if (r_nosurftextures.integer)
continue;
if (doffset == -1)
{
Con_DPrintf("%s: miptex #%i missing\n", loadmodel->name, i);
continue;
}
MSG_InitReadBuffer(&miptexsb, sb->data + doffset, sb->cursize - doffset);
// copy name, but only up to 16 characters
// (the output buffer can hold more than this, but the input buffer is
// only 16)
for (j = 0;j < 16;j++)
name[j] = MSG_ReadByte(&miptexsb);
name[j] = 0;
// pretty up the buffer (replacing any trailing garbage with 0)
for (j = strlen(name);j < 16;j++)
name[j] = 0;
if (!name[0])
{
dpsnprintf(name, sizeof(name), "unnamed%i", i);
Con_DPrintf("%s: warning: renaming unnamed texture to %s\n", loadmodel->name, name);
}
mtwidth = MSG_ReadLittleLong(&miptexsb);
mtheight = MSG_ReadLittleLong(&miptexsb);
mtdata = NULL;
j = MSG_ReadLittleLong(&miptexsb);
if (j)
{
// texture included
if (j < 40 || j + mtwidth * mtheight > miptexsb.cursize)
{
Con_Printf("%s: Texture \"%s\" is corrupt or incomplete\n", loadmodel->name, name);
continue;
}
mtdata = miptexsb.data + j;
}
if ((mtwidth & 15) || (mtheight & 15))
Con_DPrintf("%s: warning: texture \"%s\" is not 16 aligned\n", loadmodel->name, name);
// LordHavoc: force all names to lowercase
for (j = 0;name[j];j++)
if (name[j] >= 'A' && name[j] <= 'Z')
name[j] += 'a' - 'A';
// LordHavoc: backup the texture_t because q3 shader loading overwrites it
backuptex = loadmodel->data_textures[i];
if (name[0] && Mod_LoadTextureFromQ3Shader(loadmodel->data_textures + i, name, false, false, 0))
continue;
loadmodel->data_textures[i] = backuptex;
tx = loadmodel->data_textures + i;
strlcpy(tx->name, name, sizeof(tx->name));
tx->width = mtwidth;
tx->height = mtheight;
if (tx->name[0] == '*')
{
if (!strncmp(tx->name, "*lava", 5))
{
tx->supercontents = mod_q1bsp_texture_lava.supercontents;
tx->surfaceflags = mod_q1bsp_texture_lava.surfaceflags;
}
else if (!strncmp(tx->name, "*slime", 6))
{
tx->supercontents = mod_q1bsp_texture_slime.supercontents;
tx->surfaceflags = mod_q1bsp_texture_slime.surfaceflags;
}
else
{
tx->supercontents = mod_q1bsp_texture_water.supercontents;
tx->surfaceflags = mod_q1bsp_texture_water.surfaceflags;
}
}
else if (!strncmp(tx->name, "sky", 3))
{
tx->supercontents = mod_q1bsp_texture_sky.supercontents;
tx->surfaceflags = mod_q1bsp_texture_sky.surfaceflags;
// for the surface traceline we need to hit this surface as a solid...
tx->supercontents |= SUPERCONTENTS_SOLID;
}
else
{
tx->supercontents = mod_q1bsp_texture_solid.supercontents;
tx->surfaceflags = mod_q1bsp_texture_solid.surfaceflags;
}
if (cls.state != ca_dedicated)
{
// LordHavoc: HL sky textures are entirely different than quake
if (!loadmodel->brush.ishlbsp && !strncmp(tx->name, "sky", 3) && mtwidth == mtheight * 2)
{
data = loadimagepixelsbgra(gamemode == GAME_TENEBRAE ? tx->name : va(vabuf, sizeof(vabuf), "textures/%s/%s", mapname, tx->name), false, false, false, NULL);
if (!data)
data = loadimagepixelsbgra(gamemode == GAME_TENEBRAE ? tx->name : va(vabuf, sizeof(vabuf), "textures/%s", tx->name), false, false, false, NULL);
if (data && image_width == image_height * 2)
{
R_Q1BSP_LoadSplitSky(data, image_width, image_height, 4);
Mem_Free(data);
}
else if (mtdata != NULL)
R_Q1BSP_LoadSplitSky(mtdata, mtwidth, mtheight, 1);
}
else
{
skinframe = R_SkinFrame_LoadExternal(gamemode == GAME_TENEBRAE ? tx->name : va(vabuf, sizeof(vabuf), "textures/%s/%s", mapname, tx->name), TEXF_ALPHA | TEXF_MIPMAP | TEXF_ISWORLD | TEXF_PICMIP | TEXF_COMPRESS, false);
if (!skinframe)
skinframe = R_SkinFrame_LoadExternal(gamemode == GAME_TENEBRAE ? tx->name : va(vabuf, sizeof(vabuf), "textures/%s", tx->name), TEXF_ALPHA | TEXF_MIPMAP | TEXF_ISWORLD | TEXF_PICMIP | TEXF_COMPRESS, false);
if (skinframe)
tx->offsetmapping = OFFSETMAPPING_DEFAULT; // allow offsetmapping on external textures without a q3 shader
if (!skinframe)
{
// did not find external texture, load it from the bsp or wad3
if (loadmodel->brush.ishlbsp)
{
// internal texture overrides wad
unsigned char *pixels, *freepixels;
pixels = freepixels = NULL;
if (mtdata)
pixels = W_ConvertWAD3TextureBGRA(&miptexsb);
if (pixels == NULL)
pixels = freepixels = W_GetTextureBGRA(tx->name);
if (pixels != NULL)
{
tx->width = image_width;
tx->height = image_height;
skinframe = R_SkinFrame_LoadInternalBGRA(tx->name, TEXF_ALPHA | TEXF_MIPMAP | TEXF_ISWORLD | TEXF_PICMIP, pixels, image_width, image_height, true);
}
if (freepixels)
Mem_Free(freepixels);
}
else if (mtdata) // texture included
skinframe = R_SkinFrame_LoadInternalQuake(tx->name, TEXF_MIPMAP | TEXF_ISWORLD | TEXF_PICMIP, false, r_fullbrights.integer, mtdata, tx->width, tx->height);
}
// if skinframe is still NULL the "missing" texture will be used
if (skinframe)
tx->skinframes[0] = skinframe;
}
// LordHavoc: some Tenebrae textures get replaced by black
if (!strncmp(tx->name, "*glassmirror", 12)) // Tenebrae
tx->skinframes[0] = R_SkinFrame_LoadInternalBGRA(tx->name, TEXF_MIPMAP | TEXF_ALPHA, zerotrans, 1, 1, false);
else if (!strncmp(tx->name, "mirror", 6)) // Tenebrae
tx->skinframes[0] = R_SkinFrame_LoadInternalBGRA(tx->name, 0, zeroopaque, 1, 1, false);
}
tx->basematerialflags = MATERIALFLAG_WALL;
if (tx->name[0] == '*')
{
// LordHavoc: some turbulent textures should not be affected by wateralpha
if (!strncmp(tx->name, "*glassmirror", 12)) // Tenebrae
tx->basematerialflags |= MATERIALFLAG_NOSHADOW | MATERIALFLAG_ADD | MATERIALFLAG_BLENDED | MATERIALFLAG_REFLECTION;
else if (!strncmp(tx->name,"*lava",5)
|| !strncmp(tx->name,"*teleport",9)
|| !strncmp(tx->name,"*rift",5)) // Scourge of Armagon texture
tx->basematerialflags |= MATERIALFLAG_WATERSCROLL | MATERIALFLAG_LIGHTBOTHSIDES | MATERIALFLAG_NOSHADOW;
else
tx->basematerialflags |= MATERIALFLAG_WATERSCROLL | MATERIALFLAG_LIGHTBOTHSIDES | MATERIALFLAG_NOSHADOW | MATERIALFLAG_WATERALPHA | MATERIALFLAG_WATERSHADER;
if (tx->skinframes[0] && tx->skinframes[0]->hasalpha)
tx->basematerialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
}
else if (!strncmp(tx->name, "mirror", 6)) // Tenebrae
{
// replace the texture with black
tx->basematerialflags |= MATERIALFLAG_REFLECTION;
}
else if (!strncmp(tx->name, "sky", 3))
tx->basematerialflags = MATERIALFLAG_SKY | MATERIALFLAG_NOSHADOW;
else if (!strcmp(tx->name, "caulk"))
tx->basematerialflags = MATERIALFLAG_NODRAW | MATERIALFLAG_NOSHADOW;
else if (tx->skinframes[0] && tx->skinframes[0]->hasalpha)
tx->basematerialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
// start out with no animation
tx->currentframe = tx;
tx->currentskinframe = tx->skinframes[0];
tx->currentmaterialflags = tx->basematerialflags;
}
// sequence the animations
for (i = 0;i < nummiptex;i++)
{
tx = loadmodel->data_textures + i;
if (!tx || tx->name[0] != '+' || tx->name[1] == 0 || tx->name[2] == 0)
continue;
if (tx->anim_total[0] || tx->anim_total[1])
continue; // already sequenced
// find the number of frames in the animation
memset(anims, 0, sizeof(anims));
memset(altanims, 0, sizeof(altanims));
for (j = i;j < nummiptex;j++)
{
tx2 = loadmodel->data_textures + j;
if (!tx2 || tx2->name[0] != '+' || strcmp(tx2->name+2, tx->name+2))
continue;
num = tx2->name[1];
if (num >= '0' && num <= '9')
anims[num - '0'] = tx2;
else if (num >= 'a' && num <= 'j')
altanims[num - 'a'] = tx2;
else
Con_Printf("Bad animating texture %s\n", tx->name);
}
max = altmax = 0;
for (j = 0;j < 10;j++)
{
if (anims[j])
max = j + 1;
if (altanims[j])
altmax = j + 1;
}
//Con_Printf("linking animation %s (%i:%i frames)\n\n", tx->name, max, altmax);
incomplete = false;
for (j = 0;j < max;j++)
{
if (!anims[j])
{
Con_Printf("Missing frame %i of %s\n", j, tx->name);
incomplete = true;
}
}
for (j = 0;j < altmax;j++)
{
if (!altanims[j])
{
Con_Printf("Missing altframe %i of %s\n", j, tx->name);
incomplete = true;
}
}
if (incomplete)
continue;
if (altmax < 1)
{
// if there is no alternate animation, duplicate the primary
// animation into the alternate
altmax = max;
for (k = 0;k < 10;k++)
altanims[k] = anims[k];
}
// link together the primary animation
for (j = 0;j < max;j++)
{
tx2 = anims[j];
tx2->animated = true;
tx2->anim_total[0] = max;
tx2->anim_total[1] = altmax;
for (k = 0;k < 10;k++)
{
tx2->anim_frames[0][k] = anims[k];
tx2->anim_frames[1][k] = altanims[k];
}
}
// if there really is an alternate anim...
if (anims[0] != altanims[0])
{
// link together the alternate animation
for (j = 0;j < altmax;j++)
{
tx2 = altanims[j];
tx2->animated = true;
// the primary/alternate are reversed here
tx2->anim_total[0] = altmax;
tx2->anim_total[1] = max;
for (k = 0;k < 10;k++)
{
tx2->anim_frames[0][k] = altanims[k];
tx2->anim_frames[1][k] = anims[k];
}
}
}
}
}
static void Mod_Q1BSP_LoadLighting(sizebuf_t *sb)
{
int i;
unsigned char *in, *out, *data, d;
char litfilename[MAX_QPATH];
char dlitfilename[MAX_QPATH];
fs_offset_t filesize;
if (loadmodel->brush.ishlbsp) // LordHavoc: load the colored lighting data straight
{
loadmodel->brushq1.lightdata = (unsigned char *)Mem_Alloc(loadmodel->mempool, sb->cursize);
for (i = 0;i < sb->cursize;i++)
loadmodel->brushq1.lightdata[i] = sb->data[i] >>= 1;
}
else // LordHavoc: bsp version 29 (normal white lighting)
{
// LordHavoc: hope is not lost yet, check for a .lit file to load
strlcpy (litfilename, loadmodel->name, sizeof (litfilename));
FS_StripExtension (litfilename, litfilename, sizeof (litfilename));
strlcpy (dlitfilename, litfilename, sizeof (dlitfilename));
strlcat (litfilename, ".lit", sizeof (litfilename));
strlcat (dlitfilename, ".dlit", sizeof (dlitfilename));
data = (unsigned char*) FS_LoadFile(litfilename, tempmempool, false, &filesize);
if (data)
{
if (filesize == (fs_offset_t)(8 + sb->cursize * 3) && data[0] == 'Q' && data[1] == 'L' && data[2] == 'I' && data[3] == 'T')
{
i = LittleLong(((int *)data)[1]);
if (i == 1)
{
if (developer_loading.integer)
Con_Printf("loaded %s\n", litfilename);
loadmodel->brushq1.lightdata = (unsigned char *)Mem_Alloc(loadmodel->mempool, filesize - 8);
memcpy(loadmodel->brushq1.lightdata, data + 8, filesize - 8);
Mem_Free(data);
data = (unsigned char*) FS_LoadFile(dlitfilename, tempmempool, false, &filesize);
if (data)
{
if (filesize == (fs_offset_t)(8 + sb->cursize * 3) && data[0] == 'Q' && data[1] == 'L' && data[2] == 'I' && data[3] == 'T')
{
i = LittleLong(((int *)data)[1]);
if (i == 1)
{
if (developer_loading.integer)
Con_Printf("loaded %s\n", dlitfilename);
loadmodel->brushq1.nmaplightdata = (unsigned char *)Mem_Alloc(loadmodel->mempool, filesize - 8);
memcpy(loadmodel->brushq1.nmaplightdata, data + 8, filesize - 8);
loadmodel->brushq3.deluxemapping_modelspace = false;
loadmodel->brushq3.deluxemapping = true;
}
}
Mem_Free(data);
data = NULL;
}
return;
}
else
Con_Printf("Unknown .lit file version (%d)\n", i);
}
else if (filesize == 8)
Con_Print("Empty .lit file, ignoring\n");
else
Con_Printf("Corrupt .lit file (file size %i bytes, should be %i bytes), ignoring\n", (int) filesize, (int) (8 + sb->cursize * 3));
if (data)
{
Mem_Free(data);
data = NULL;
}
}
// LordHavoc: oh well, expand the white lighting data
if (!sb->cursize)
return;
loadmodel->brushq1.lightdata = (unsigned char *)Mem_Alloc(loadmodel->mempool, sb->cursize*3);
in = sb->data;
out = loadmodel->brushq1.lightdata;
for (i = 0;i < sb->cursize;i++)
{
d = *in++;
*out++ = d;
*out++ = d;
*out++ = d;
}
}
}
static void Mod_Q1BSP_LoadVisibility(sizebuf_t *sb)
{
loadmodel->brushq1.num_compressedpvs = 0;
loadmodel->brushq1.data_compressedpvs = NULL;
if (!sb->cursize)
return;
loadmodel->brushq1.num_compressedpvs = sb->cursize;
loadmodel->brushq1.data_compressedpvs = (unsigned char *)Mem_Alloc(loadmodel->mempool, sb->cursize);
MSG_ReadBytes(sb, sb->cursize, loadmodel->brushq1.data_compressedpvs);
}
// used only for HalfLife maps
static void Mod_Q1BSP_ParseWadsFromEntityLump(const char *data)
{
char key[128], value[4096];
int i, j, k;
if (!data)
return;
if (!COM_ParseToken_Simple(&data, false, false, true))
return; // error
if (com_token[0] != '{')
return; // error
while (1)
{
if (!COM_ParseToken_Simple(&data, false, false, true))
return; // error
if (com_token[0] == '}')
break; // end of worldspawn
if (com_token[0] == '_')
strlcpy(key, com_token + 1, sizeof(key));
else
strlcpy(key, com_token, sizeof(key));
while (key[strlen(key)-1] == ' ') // remove trailing spaces
key[strlen(key)-1] = 0;
if (!COM_ParseToken_Simple(&data, false, false, true))
return; // error
dpsnprintf(value, sizeof(value), "%s", com_token);
if (!strcmp("wad", key)) // for HalfLife maps
{
if (loadmodel->brush.ishlbsp)
{
j = 0;
for (i = 0;i < (int)sizeof(value);i++)
if (value[i] != ';' && value[i] != '\\' && value[i] != '/' && value[i] != ':')
break;
if (value[i])
{
for (;i < (int)sizeof(value);i++)
{
// ignore path - the \\ check is for HalfLife... stupid windoze 'programmers'...
if (value[i] == '\\' || value[i] == '/' || value[i] == ':')
j = i+1;
else if (value[i] == ';' || value[i] == 0)
{
k = value[i];
value[i] = 0;
W_LoadTextureWadFile(&value[j], false);
j = i+1;
if (!k)
break;
}
}
}
}
}
}
}
static void Mod_Q1BSP_LoadEntities(sizebuf_t *sb)
{
loadmodel->brush.entities = NULL;
if (!sb->cursize)
return;
loadmodel->brush.entities = (char *)Mem_Alloc(loadmodel->mempool, sb->cursize + 1);
MSG_ReadBytes(sb, sb->cursize, (unsigned char *)loadmodel->brush.entities);
loadmodel->brush.entities[sb->cursize] = 0;
if (loadmodel->brush.ishlbsp)
Mod_Q1BSP_ParseWadsFromEntityLump(loadmodel->brush.entities);
}
static void Mod_Q1BSP_LoadVertexes(sizebuf_t *sb)
{
mvertex_t *out;
int i, count;
size_t structsize = 12;
if (sb->cursize % structsize)
Host_Error("Mod_Q1BSP_LoadVertexes: funny lump size in %s",loadmodel->name);
count = sb->cursize / structsize;
out = (mvertex_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(*out));
loadmodel->brushq1.vertexes = out;
loadmodel->brushq1.numvertexes = count;
for ( i=0 ; i<count ; i++, out++)
{
out->position[0] = MSG_ReadLittleFloat(sb);
out->position[1] = MSG_ReadLittleFloat(sb);
out->position[2] = MSG_ReadLittleFloat(sb);
}
}
static void Mod_Q1BSP_LoadSubmodels(sizebuf_t *sb, hullinfo_t *hullinfo)
{
mmodel_t *out;
int i, j, count;
size_t structsize = (48+4*hullinfo->filehulls);
if (sb->cursize % structsize)
Host_Error ("Mod_Q1BSP_LoadSubmodels: funny lump size in %s", loadmodel->name);
count = sb->cursize / structsize;
out = (mmodel_t *)Mem_Alloc (loadmodel->mempool, count*sizeof(*out));
loadmodel->brushq1.submodels = out;
loadmodel->brush.numsubmodels = count;
for (i = 0; i < count; i++, out++)
{
// spread out the mins / maxs by a pixel
out->mins[0] = MSG_ReadLittleFloat(sb) - 1;
out->mins[1] = MSG_ReadLittleFloat(sb) - 1;
out->mins[2] = MSG_ReadLittleFloat(sb) - 1;
out->maxs[0] = MSG_ReadLittleFloat(sb) + 1;
out->maxs[1] = MSG_ReadLittleFloat(sb) + 1;
out->maxs[2] = MSG_ReadLittleFloat(sb) + 1;
out->origin[0] = MSG_ReadLittleFloat(sb);
out->origin[1] = MSG_ReadLittleFloat(sb);
out->origin[2] = MSG_ReadLittleFloat(sb);
for (j = 0; j < hullinfo->filehulls; j++)
out->headnode[j] = MSG_ReadLittleLong(sb);
out->visleafs = MSG_ReadLittleLong(sb);
out->firstface = MSG_ReadLittleLong(sb);
out->numfaces = MSG_ReadLittleLong(sb);
}
}
static void Mod_Q1BSP_LoadEdges(sizebuf_t *sb)
{
medge_t *out;
int i, count;
size_t structsize = loadmodel->brush.isbsp2 ? 8 : 4;
if (sb->cursize % structsize)
Host_Error("Mod_Q1BSP_LoadEdges: funny lump size in %s",loadmodel->name);
count = sb->cursize / structsize;
out = (medge_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel->brushq1.edges = out;
loadmodel->brushq1.numedges = count;
for ( i=0 ; i<count ; i++, out++)
{
if (loadmodel->brush.isbsp2)
{
out->v[0] = (unsigned int)MSG_ReadLittleLong(sb);
out->v[1] = (unsigned int)MSG_ReadLittleLong(sb);
}
else
{
out->v[0] = (unsigned short)MSG_ReadLittleShort(sb);
out->v[1] = (unsigned short)MSG_ReadLittleShort(sb);
}
if ((int)out->v[0] >= loadmodel->brushq1.numvertexes || (int)out->v[1] >= loadmodel->brushq1.numvertexes)
{
Con_Printf("Mod_Q1BSP_LoadEdges: %s has invalid vertex indices in edge %i (vertices %i %i >= numvertices %i)\n", loadmodel->name, i, out->v[0], out->v[1], loadmodel->brushq1.numvertexes);
if(!loadmodel->brushq1.numvertexes)
Host_Error("Mod_Q1BSP_LoadEdges: %s has edges but no vertexes, cannot fix\n", loadmodel->name);
out->v[0] = 0;
out->v[1] = 0;
}
}
}
static void Mod_Q1BSP_LoadTexinfo(sizebuf_t *sb)
{
mtexinfo_t *out;
int i, j, k, count, miptex;
size_t structsize = 40;
if (sb->cursize % structsize)
Host_Error("Mod_Q1BSP_LoadTexinfo: funny lump size in %s",loadmodel->name);
count = sb->cursize / structsize;
out = (mtexinfo_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel->brushq1.texinfo = out;
loadmodel->brushq1.numtexinfo = count;
for (i = 0;i < count;i++, out++)
{
for (k = 0;k < 2;k++)
for (j = 0;j < 4;j++)
out->vecs[k][j] = MSG_ReadLittleFloat(sb);
miptex = MSG_ReadLittleLong(sb);
out->flags = MSG_ReadLittleLong(sb);
out->texture = NULL;
if (loadmodel->data_textures)
{
if ((unsigned int) miptex >= (unsigned int) loadmodel->num_textures)
Con_Printf("error in model \"%s\": invalid miptex index %i(of %i)\n", loadmodel->name, miptex, loadmodel->num_textures);
else
out->texture = loadmodel->data_textures + miptex;
}
if (out->flags & TEX_SPECIAL)
{
// if texture chosen is NULL or the shader needs a lightmap,
// force to notexture water shader
if (out->texture == NULL)
out->texture = loadmodel->data_textures + (loadmodel->num_textures - 1);
}
else
{
// if texture chosen is NULL, force to notexture
if (out->texture == NULL)
out->texture = loadmodel->data_textures + (loadmodel->num_textures - 2);
}
}
}
#if 0
void BoundPoly(int numverts, float *verts, vec3_t mins, vec3_t maxs)
{
int i, j;
float *v;
mins[0] = mins[1] = mins[2] = 9999;
maxs[0] = maxs[1] = maxs[2] = -9999;
v = verts;
for (i = 0;i < numverts;i++)
{
for (j = 0;j < 3;j++, v++)
{
if (*v < mins[j])
mins[j] = *v;
if (*v > maxs[j])
maxs[j] = *v;
}
}
}
#define MAX_SUBDIVPOLYTRIANGLES 4096
#define MAX_SUBDIVPOLYVERTS(MAX_SUBDIVPOLYTRIANGLES * 3)
static int subdivpolyverts, subdivpolytriangles;
static int subdivpolyindex[MAX_SUBDIVPOLYTRIANGLES][3];
static float subdivpolyvert[MAX_SUBDIVPOLYVERTS][3];
static int subdivpolylookupvert(vec3_t v)
{
int i;
for (i = 0;i < subdivpolyverts;i++)
if (subdivpolyvert[i][0] == v[0]
&& subdivpolyvert[i][1] == v[1]
&& subdivpolyvert[i][2] == v[2])
return i;
if (subdivpolyverts >= MAX_SUBDIVPOLYVERTS)
Host_Error("SubDividePolygon: ran out of vertices in buffer, please increase your r_subdivide_size");
VectorCopy(v, subdivpolyvert[subdivpolyverts]);
return subdivpolyverts++;
}
static void SubdividePolygon(int numverts, float *verts)
{
int i, i1, i2, i3, f, b, c, p;
vec3_t mins, maxs, front[256], back[256];
float m, *pv, *cv, dist[256], frac;
if (numverts > 250)
Host_Error("SubdividePolygon: ran out of verts in buffer");
BoundPoly(numverts, verts, mins, maxs);
for (i = 0;i < 3;i++)
{
m = (mins[i] + maxs[i]) * 0.5;
m = r_subdivide_size.value * floor(m/r_subdivide_size.value + 0.5);
if (maxs[i] - m < 8)
continue;
if (m - mins[i] < 8)
continue;
// cut it
for (cv = verts, c = 0;c < numverts;c++, cv += 3)
dist[c] = cv[i] - m;
f = b = 0;
for (p = numverts - 1, c = 0, pv = verts + p * 3, cv = verts;c < numverts;p = c, c++, pv = cv, cv += 3)
{
if (dist[p] >= 0)
{
VectorCopy(pv, front[f]);
f++;
}
if (dist[p] <= 0)
{
VectorCopy(pv, back[b]);
b++;
}
if (dist[p] == 0 || dist[c] == 0)
continue;
if ((dist[p] > 0) != (dist[c] > 0) )
{
// clip point
frac = dist[p] / (dist[p] - dist[c]);
front[f][0] = back[b][0] = pv[0] + frac * (cv[0] - pv[0]);
front[f][1] = back[b][1] = pv[1] + frac * (cv[1] - pv[1]);
front[f][2] = back[b][2] = pv[2] + frac * (cv[2] - pv[2]);
f++;
b++;
}
}
SubdividePolygon(f, front[0]);
SubdividePolygon(b, back[0]);
return;
}
i1 = subdivpolylookupvert(verts);
i2 = subdivpolylookupvert(verts + 3);
for (i = 2;i < numverts;i++)
{
if (subdivpolytriangles >= MAX_SUBDIVPOLYTRIANGLES)
{
Con_Print("SubdividePolygon: ran out of triangles in buffer, please increase your r_subdivide_size\n");
return;
}
i3 = subdivpolylookupvert(verts + i * 3);
subdivpolyindex[subdivpolytriangles][0] = i1;
subdivpolyindex[subdivpolytriangles][1] = i2;
subdivpolyindex[subdivpolytriangles][2] = i3;
i2 = i3;
subdivpolytriangles++;
}
}
//Breaks a polygon up along axial 64 unit
//boundaries so that turbulent and sky warps
//can be done reasonably.
static void Mod_Q1BSP_GenerateWarpMesh(msurface_t *surface)
{
int i, j;
surfvertex_t *v;
surfmesh_t *mesh;
subdivpolytriangles = 0;
subdivpolyverts = 0;
SubdividePolygon(surface->num_vertices, (surface->mesh->data_vertex3f + 3 * surface->num_firstvertex));
if (subdivpolytriangles < 1)
Host_Error("Mod_Q1BSP_GenerateWarpMesh: no triangles?");
surface->mesh = mesh = Mem_Alloc(loadmodel->mempool, sizeof(surfmesh_t) + subdivpolytriangles * sizeof(int[3]) + subdivpolyverts * sizeof(surfvertex_t));
mesh->num_vertices = subdivpolyverts;
mesh->num_triangles = subdivpolytriangles;
mesh->vertex = (surfvertex_t *)(mesh + 1);
mesh->index = (int *)(mesh->vertex + mesh->num_vertices);
memset(mesh->vertex, 0, mesh->num_vertices * sizeof(surfvertex_t));
for (i = 0;i < mesh->num_triangles;i++)
for (j = 0;j < 3;j++)
mesh->index[i*3+j] = subdivpolyindex[i][j];
for (i = 0, v = mesh->vertex;i < subdivpolyverts;i++, v++)
{
VectorCopy(subdivpolyvert[i], v->v);
v->st[0] = DotProduct(v->v, surface->lightmapinfo->texinfo->vecs[0]);
v->st[1] = DotProduct(v->v, surface->lightmapinfo->texinfo->vecs[1]);
}
}
#endif
extern cvar_t gl_max_lightmapsize;
static void Mod_Q1BSP_LoadFaces(sizebuf_t *sb)
{
msurface_t *surface;
int i, j, count, surfacenum, planenum, smax, tmax, ssize, tsize, firstedge, numedges, totalverts, totaltris, lightmapnumber, lightmapsize, totallightmapsamples, lightmapoffset, texinfoindex;
float texmins[2], texmaxs[2], val;
rtexture_t *lightmaptexture, *deluxemaptexture;
char vabuf[1024];
size_t structsize = loadmodel->brush.isbsp2 ? 28 : 20;
if (sb->cursize % structsize)
Host_Error("Mod_Q1BSP_LoadFaces: funny lump size in %s",loadmodel->name);
count = sb->cursize / structsize;
loadmodel->data_surfaces = (msurface_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(msurface_t));
loadmodel->data_surfaces_lightmapinfo = (msurface_lightmapinfo_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(msurface_lightmapinfo_t));
loadmodel->num_surfaces = count;
loadmodel->brushq1.firstrender = true;
loadmodel->brushq1.lightmapupdateflags = (unsigned char *)Mem_Alloc(loadmodel->mempool, count*sizeof(unsigned char));
totalverts = 0;
totaltris = 0;
for (surfacenum = 0;surfacenum < count;surfacenum++)
{
if (loadmodel->brush.isbsp2)
numedges = BuffLittleLong(sb->data + structsize * surfacenum + 12);
else
numedges = BuffLittleShort(sb->data + structsize * surfacenum + 8);
totalverts += numedges;
totaltris += numedges - 2;
}
Mod_AllocSurfMesh(loadmodel->mempool, totalverts, totaltris, true, false, false);
lightmaptexture = NULL;
deluxemaptexture = r_texture_blanknormalmap;
lightmapnumber = 0;
lightmapsize = bound(256, gl_max_lightmapsize.integer, (int)vid.maxtexturesize_2d);
totallightmapsamples = 0;
totalverts = 0;
totaltris = 0;
for (surfacenum = 0, surface = loadmodel->data_surfaces;surfacenum < count;surfacenum++, surface++)
{
surface->lightmapinfo = loadmodel->data_surfaces_lightmapinfo + surfacenum;
planenum = loadmodel->brush.isbsp2 ? MSG_ReadLittleLong(sb) : (unsigned short)MSG_ReadLittleShort(sb);
/*side = */loadmodel->brush.isbsp2 ? MSG_ReadLittleLong(sb) : (unsigned short)MSG_ReadLittleShort(sb);
firstedge = MSG_ReadLittleLong(sb);
numedges = loadmodel->brush.isbsp2 ? MSG_ReadLittleLong(sb) : (unsigned short)MSG_ReadLittleShort(sb);
texinfoindex = loadmodel->brush.isbsp2 ? MSG_ReadLittleLong(sb) : (unsigned short)MSG_ReadLittleShort(sb);
for (i = 0;i < MAXLIGHTMAPS;i++)
surface->lightmapinfo->styles[i] = MSG_ReadByte(sb);
lightmapoffset = MSG_ReadLittleLong(sb);
// FIXME: validate edges, texinfo, etc?
if ((unsigned int) firstedge > (unsigned int) loadmodel->brushq1.numsurfedges || (unsigned int) numedges > (unsigned int) loadmodel->brushq1.numsurfedges || (unsigned int) firstedge + (unsigned int) numedges > (unsigned int) loadmodel->brushq1.numsurfedges)
Host_Error("Mod_Q1BSP_LoadFaces: invalid edge range (firstedge %i, numedges %i, model edges %i)", firstedge, numedges, loadmodel->brushq1.numsurfedges);
if ((unsigned int) texinfoindex >= (unsigned int) loadmodel->brushq1.numtexinfo)
Host_Error("Mod_Q1BSP_LoadFaces: invalid texinfo index %i(model has %i texinfos)", texinfoindex, loadmodel->brushq1.numtexinfo);
if ((unsigned int) planenum >= (unsigned int) loadmodel->brush.num_planes)
Host_Error("Mod_Q1BSP_LoadFaces: invalid plane index %i (model has %i planes)", planenum, loadmodel->brush.num_planes);
surface->lightmapinfo->texinfo = loadmodel->brushq1.texinfo + texinfoindex;
surface->texture = surface->lightmapinfo->texinfo->texture;
//surface->flags = surface->texture->flags;
//if (LittleShort(in->side))
// surface->flags |= SURF_PLANEBACK;
//surface->plane = loadmodel->brush.data_planes + planenum;
surface->num_firstvertex = totalverts;
surface->num_vertices = numedges;
surface->num_firsttriangle = totaltris;
surface->num_triangles = numedges - 2;
totalverts += numedges;
totaltris += numedges - 2;
// convert edges back to a normal polygon
for (i = 0;i < surface->num_vertices;i++)
{
int lindex = loadmodel->brushq1.surfedges[firstedge + i];
float s, t;
// note: the q1bsp format does not allow a 0 surfedge (it would have no negative counterpart)
if (lindex >= 0)
VectorCopy(loadmodel->brushq1.vertexes[loadmodel->brushq1.edges[lindex].v[0]].position, (loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3);
else
VectorCopy(loadmodel->brushq1.vertexes[loadmodel->brushq1.edges[-lindex].v[1]].position, (loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3);
s = DotProduct(((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3), surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3];
t = DotProduct(((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3), surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3];
(loadmodel->surfmesh.data_texcoordtexture2f + 2 * surface->num_firstvertex)[i * 2 + 0] = s / surface->texture->width;
(loadmodel->surfmesh.data_texcoordtexture2f + 2 * surface->num_firstvertex)[i * 2 + 1] = t / surface->texture->height;
(loadmodel->surfmesh.data_texcoordlightmap2f + 2 * surface->num_firstvertex)[i * 2 + 0] = 0;
(loadmodel->surfmesh.data_texcoordlightmap2f + 2 * surface->num_firstvertex)[i * 2 + 1] = 0;
(loadmodel->surfmesh.data_lightmapoffsets + surface->num_firstvertex)[i] = 0;
}
for (i = 0;i < surface->num_triangles;i++)
{
(loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle)[i * 3 + 0] = 0 + surface->num_firstvertex;
(loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle)[i * 3 + 1] = i + 1 + surface->num_firstvertex;
(loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle)[i * 3 + 2] = i + 2 + surface->num_firstvertex;
}
// compile additional data about the surface geometry
Mod_BuildNormals(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, loadmodel->surfmesh.data_vertex3f, (loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle), loadmodel->surfmesh.data_normal3f, r_smoothnormals_areaweighting.integer != 0);
Mod_BuildTextureVectorsFromNormals(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, loadmodel->surfmesh.data_vertex3f, loadmodel->surfmesh.data_texcoordtexture2f, loadmodel->surfmesh.data_normal3f, (loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle), loadmodel->surfmesh.data_svector3f, loadmodel->surfmesh.data_tvector3f, r_smoothnormals_areaweighting.integer != 0);
BoxFromPoints(surface->mins, surface->maxs, surface->num_vertices, (loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex));
// generate surface extents information
texmins[0] = texmaxs[0] = DotProduct((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex), surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3];
texmins[1] = texmaxs[1] = DotProduct((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex), surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3];
for (i = 1;i < surface->num_vertices;i++)
{
for (j = 0;j < 2;j++)
{
val = DotProduct((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3, surface->lightmapinfo->texinfo->vecs[j]) + surface->lightmapinfo->texinfo->vecs[j][3];
texmins[j] = min(texmins[j], val);
texmaxs[j] = max(texmaxs[j], val);
}
}
for (i = 0;i < 2;i++)
{
surface->lightmapinfo->texturemins[i] = (int) floor(texmins[i] / 16.0) * 16;
surface->lightmapinfo->extents[i] = (int) ceil(texmaxs[i] / 16.0) * 16 - surface->lightmapinfo->texturemins[i];
}
smax = surface->lightmapinfo->extents[0] >> 4;
tmax = surface->lightmapinfo->extents[1] >> 4;
ssize = (surface->lightmapinfo->extents[0] >> 4) + 1;
tsize = (surface->lightmapinfo->extents[1] >> 4) + 1;
// lighting info
surface->lightmaptexture = NULL;
surface->deluxemaptexture = r_texture_blanknormalmap;
if (lightmapoffset == -1)
{
surface->lightmapinfo->samples = NULL;
#if 1
// give non-lightmapped water a 1x white lightmap
if (surface->texture->name[0] == '*' && (surface->lightmapinfo->texinfo->flags & TEX_SPECIAL) && ssize <= 256 && tsize <= 256)
{
surface->lightmapinfo->samples = (unsigned char *)Mem_Alloc(loadmodel->mempool, ssize * tsize * 3);
surface->lightmapinfo->styles[0] = 0;
memset(surface->lightmapinfo->samples, 128, ssize * tsize * 3);
}
#endif
}
else if (loadmodel->brush.ishlbsp) // LordHavoc: HalfLife map (bsp version 30)
surface->lightmapinfo->samples = loadmodel->brushq1.lightdata + lightmapoffset;
else // LordHavoc: white lighting (bsp version 29)
{
surface->lightmapinfo->samples = loadmodel->brushq1.lightdata + (lightmapoffset * 3);
if (loadmodel->brushq1.nmaplightdata)
surface->lightmapinfo->nmapsamples = loadmodel->brushq1.nmaplightdata + (lightmapoffset * 3);
}
// check if we should apply a lightmap to this
if (!(surface->lightmapinfo->texinfo->flags & TEX_SPECIAL) || surface->lightmapinfo->samples)
{
if (ssize > 256 || tsize > 256)
Host_Error("Bad surface extents");
if (lightmapsize < ssize)
lightmapsize = ssize;
if (lightmapsize < tsize)
lightmapsize = tsize;
totallightmapsamples += ssize*tsize;
// force lightmap upload on first time seeing the surface
//
// additionally this is used by the later code to see if a
// lightmap is needed on this surface (rather than duplicating the
// logic above)
loadmodel->brushq1.lightmapupdateflags[surfacenum] = true;
loadmodel->lit = true;
}
}
// small maps (such as ammo boxes especially) don't need big lightmap
// textures, so this code tries to guess a good size based on
// totallightmapsamples (size of the lightmaps lump basically), as well as
// trying to max out the size if there is a lot of lightmap data to store
// additionally, never choose a lightmapsize that is smaller than the
// largest surface encountered (as it would fail)
i = lightmapsize;
for (lightmapsize = 64; (lightmapsize < i) && (lightmapsize < bound(128, gl_max_lightmapsize.integer, (int)vid.maxtexturesize_2d)) && (totallightmapsamples > lightmapsize*lightmapsize); lightmapsize*=2)
;
// now that we've decided the lightmap texture size, we can do the rest
if (cls.state != ca_dedicated)
{
int stainmapsize = 0;
mod_alloclightmap_state_t allocState;
Mod_AllocLightmap_Init(&allocState, lightmapsize, lightmapsize);
for (surfacenum = 0, surface = loadmodel->data_surfaces;surfacenum < count;surfacenum++, surface++)
{
int i, iu, iv, lightmapx = 0, lightmapy = 0;
float u, v, ubase, vbase, uscale, vscale;
if (!loadmodel->brushq1.lightmapupdateflags[surfacenum])
continue;
smax = surface->lightmapinfo->extents[0] >> 4;
tmax = surface->lightmapinfo->extents[1] >> 4;
ssize = (surface->lightmapinfo->extents[0] >> 4) + 1;
tsize = (surface->lightmapinfo->extents[1] >> 4) + 1;
stainmapsize += ssize * tsize * 3;
if (!lightmaptexture || !Mod_AllocLightmap_Block(&allocState, ssize, tsize, &lightmapx, &lightmapy))
{
// allocate a texture pool if we need it
if (loadmodel->texturepool == NULL)
loadmodel->texturepool = R_AllocTexturePool();
// could not find room, make a new lightmap
loadmodel->brushq3.num_mergedlightmaps = lightmapnumber + 1;
loadmodel->brushq3.data_lightmaps = (rtexture_t **)Mem_Realloc(loadmodel->mempool, loadmodel->brushq3.data_lightmaps, loadmodel->brushq3.num_mergedlightmaps * sizeof(loadmodel->brushq3.data_lightmaps[0]));
loadmodel->brushq3.data_deluxemaps = (rtexture_t **)Mem_Realloc(loadmodel->mempool, loadmodel->brushq3.data_deluxemaps, loadmodel->brushq3.num_mergedlightmaps * sizeof(loadmodel->brushq3.data_deluxemaps[0]));
loadmodel->brushq3.data_lightmaps[lightmapnumber] = lightmaptexture = R_LoadTexture2D(loadmodel->texturepool, va(vabuf, sizeof(vabuf), "lightmap%i", lightmapnumber), lightmapsize, lightmapsize, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_ALLOWUPDATES, -1, NULL);
if (loadmodel->brushq1.nmaplightdata)
loadmodel->brushq3.data_deluxemaps[lightmapnumber] = deluxemaptexture = R_LoadTexture2D(loadmodel->texturepool, va(vabuf, sizeof(vabuf), "deluxemap%i", lightmapnumber), lightmapsize, lightmapsize, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_ALLOWUPDATES, -1, NULL);
lightmapnumber++;
Mod_AllocLightmap_Reset(&allocState);
Mod_AllocLightmap_Block(&allocState, ssize, tsize, &lightmapx, &lightmapy);
}
surface->lightmaptexture = lightmaptexture;
surface->deluxemaptexture = deluxemaptexture;
surface->lightmapinfo->lightmaporigin[0] = lightmapx;
surface->lightmapinfo->lightmaporigin[1] = lightmapy;
uscale = 1.0f / (float)lightmapsize;
vscale = 1.0f / (float)lightmapsize;
ubase = lightmapx * uscale;
vbase = lightmapy * vscale;
for (i = 0;i < surface->num_vertices;i++)
{
u = ((DotProduct(((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3), surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3]) + 8 - surface->lightmapinfo->texturemins[0]) * (1.0 / 16.0);
v = ((DotProduct(((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3), surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3]) + 8 - surface->lightmapinfo->texturemins[1]) * (1.0 / 16.0);
(loadmodel->surfmesh.data_texcoordlightmap2f + 2 * surface->num_firstvertex)[i * 2 + 0] = u * uscale + ubase;
(loadmodel->surfmesh.data_texcoordlightmap2f + 2 * surface->num_firstvertex)[i * 2 + 1] = v * vscale + vbase;
// LordHavoc: calc lightmap data offset for vertex lighting to use
iu = (int) u;
iv = (int) v;
(loadmodel->surfmesh.data_lightmapoffsets + surface->num_firstvertex)[i] = (bound(0, iv, tmax) * ssize + bound(0, iu, smax)) * 3;
}
}
if (cl_stainmaps.integer)
{
// allocate stainmaps for permanent marks on walls and clear white
unsigned char *stainsamples = NULL;
stainsamples = (unsigned char *)Mem_Alloc(loadmodel->mempool, stainmapsize);
memset(stainsamples, 255, stainmapsize);
// assign pointers
for (surfacenum = 0, surface = loadmodel->data_surfaces;surfacenum < count;surfacenum++, surface++)
{
if (!loadmodel->brushq1.lightmapupdateflags[surfacenum])
continue;
ssize = (surface->lightmapinfo->extents[0] >> 4) + 1;
tsize = (surface->lightmapinfo->extents[1] >> 4) + 1;
surface->lightmapinfo->stainsamples = stainsamples;
stainsamples += ssize * tsize * 3;
}
}
}
// generate ushort elements array if possible
if (loadmodel->surfmesh.data_element3s)
for (i = 0;i < loadmodel->surfmesh.num_triangles*3;i++)
loadmodel->surfmesh.data_element3s[i] = loadmodel->surfmesh.data_element3i[i];
}
static void Mod_Q1BSP_LoadNodes_RecursiveSetParent(mnode_t *node, mnode_t *parent)
{
//if (node->parent)
// Host_Error("Mod_Q1BSP_LoadNodes_RecursiveSetParent: runaway recursion");
node->parent = parent;
if (node->plane)
{
// this is a node, recurse to children
Mod_Q1BSP_LoadNodes_RecursiveSetParent(node->children[0], node);
Mod_Q1BSP_LoadNodes_RecursiveSetParent(node->children[1], node);
// combine supercontents of children
node->combinedsupercontents = node->children[0]->combinedsupercontents | node->children[1]->combinedsupercontents;
}
else
{
int j;
mleaf_t *leaf = (mleaf_t *)node;
// if this is a leaf, calculate supercontents mask from all collidable
// primitives in the leaf (brushes and collision surfaces)
// also flag if the leaf contains any collision surfaces
leaf->combinedsupercontents = 0;
// combine the supercontents values of all brushes in this leaf
for (j = 0;j < leaf->numleafbrushes;j++)
leaf->combinedsupercontents |= loadmodel->brush.data_brushes[leaf->firstleafbrush[j]].texture->supercontents;
// check if this leaf contains any collision surfaces (q3 patches)
for (j = 0;j < leaf->numleafsurfaces;j++)
{
msurface_t *surface = loadmodel->data_surfaces + leaf->firstleafsurface[j];
if (surface->num_collisiontriangles)
{
leaf->containscollisionsurfaces = true;
leaf->combinedsupercontents |= surface->texture->supercontents;
}
}
}
}
static void Mod_Q1BSP_LoadNodes(sizebuf_t *sb)
{
int i, j, count, p, child[2];
mnode_t *out;
size_t structsize = loadmodel->brush.isbsp2rmqe ? 32 : (loadmodel->brush.isbsp2 ? 44 : 24);
if (sb->cursize % structsize)
Host_Error("Mod_Q1BSP_LoadNodes: funny lump size in %s",loadmodel->name);
count = sb->cursize / structsize;
if (count == 0)
Host_Error("Mod_Q1BSP_LoadNodes: missing BSP tree in %s",loadmodel->name);
out = (mnode_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(*out));
loadmodel->brush.data_nodes = out;
loadmodel->brush.num_nodes = count;
for ( i=0 ; i<count ; i++, out++)
{
p = MSG_ReadLittleLong(sb);
out->plane = loadmodel->brush.data_planes + p;
if (loadmodel->brush.isbsp2rmqe)
{
child[0] = MSG_ReadLittleLong(sb);
child[1] = MSG_ReadLittleLong(sb);
out->mins[0] = MSG_ReadLittleShort(sb);
out->mins[1] = MSG_ReadLittleShort(sb);
out->mins[2] = MSG_ReadLittleShort(sb);
out->maxs[0] = MSG_ReadLittleShort(sb);
out->maxs[1] = MSG_ReadLittleShort(sb);
out->maxs[2] = MSG_ReadLittleShort(sb);
out->firstsurface = MSG_ReadLittleLong(sb);
out->numsurfaces = MSG_ReadLittleLong(sb);
}
else if (loadmodel->brush.isbsp2)
{
child[0] = MSG_ReadLittleLong(sb);
child[1] = MSG_ReadLittleLong(sb);
out->mins[0] = MSG_ReadLittleFloat(sb);
out->mins[1] = MSG_ReadLittleFloat(sb);
out->mins[2] = MSG_ReadLittleFloat(sb);
out->maxs[0] = MSG_ReadLittleFloat(sb);
out->maxs[1] = MSG_ReadLittleFloat(sb);
out->maxs[2] = MSG_ReadLittleFloat(sb);
out->firstsurface = MSG_ReadLittleLong(sb);
out->numsurfaces = MSG_ReadLittleLong(sb);
}
else
{
child[0] = (unsigned short)MSG_ReadLittleShort(sb);
child[1] = (unsigned short)MSG_ReadLittleShort(sb);
if (child[0] >= count)
child[0] -= 65536;
if (child[1] >= count)
child[1] -= 65536;
out->mins[0] = MSG_ReadLittleShort(sb);
out->mins[1] = MSG_ReadLittleShort(sb);
out->mins[2] = MSG_ReadLittleShort(sb);
out->maxs[0] = MSG_ReadLittleShort(sb);
out->maxs[1] = MSG_ReadLittleShort(sb);
out->maxs[2] = MSG_ReadLittleShort(sb);
out->firstsurface = (unsigned short)MSG_ReadLittleShort(sb);
out->numsurfaces = (unsigned short)MSG_ReadLittleShort(sb);
}
for (j=0 ; j<2 ; j++)
{
// LordHavoc: this code supports broken bsp files produced by
// arguire qbsp which can produce more than 32768 nodes, any value
// below count is assumed to be a node number, any other value is
// assumed to be a leaf number
p = child[j];
if (p >= 0)
{
if (p < loadmodel->brush.num_nodes)
out->children[j] = loadmodel->brush.data_nodes + p;
else
{
Con_Printf("Mod_Q1BSP_LoadNodes: invalid node index %i (file has only %i nodes)\n", p, loadmodel->brush.num_nodes);
// map it to the solid leaf
out->children[j] = (mnode_t *)loadmodel->brush.data_leafs;
}
}
else
{
// get leaf index as a positive value starting at 0 (-1 becomes 0, -2 becomes 1, etc)
p = -(p+1);
if (p < loadmodel->brush.num_leafs)
out->children[j] = (mnode_t *)(loadmodel->brush.data_leafs + p);
else
{
Con_Printf("Mod_Q1BSP_LoadNodes: invalid leaf index %i (file has only %i leafs)\n", p, loadmodel->brush.num_leafs);
// map it to the solid leaf
out->children[j] = (mnode_t *)loadmodel->brush.data_leafs;
}
}
}
}
Mod_Q1BSP_LoadNodes_RecursiveSetParent(loadmodel->brush.data_nodes, NULL); // sets nodes and leafs
}
static void Mod_Q1BSP_LoadLeafs(sizebuf_t *sb)
{
mleaf_t *out;
int i, j, count, p, firstmarksurface, nummarksurfaces;
size_t structsize = loadmodel->brush.isbsp2rmqe ? 32 : (loadmodel->brush.isbsp2 ? 44 : 28);
if (sb->cursize % structsize)
Host_Error("Mod_Q1BSP_LoadLeafs: funny lump size in %s",loadmodel->name);
count = sb->cursize / structsize;
out = (mleaf_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(*out));
loadmodel->brush.data_leafs = out;
loadmodel->brush.num_leafs = count;
// get visleafs from the submodel data
loadmodel->brush.num_pvsclusters = loadmodel->brushq1.submodels[0].visleafs;
loadmodel->brush.num_pvsclusterbytes = (loadmodel->brush.num_pvsclusters+7)>>3;
loadmodel->brush.data_pvsclusters = (unsigned char *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_pvsclusters * loadmodel->brush.num_pvsclusterbytes);
memset(loadmodel->brush.data_pvsclusters, 0xFF, loadmodel->brush.num_pvsclusters * loadmodel->brush.num_pvsclusterbytes);
// FIXME: this function could really benefit from some error checking
for ( i=0 ; i<count ; i++, out++)
{
out->contents = MSG_ReadLittleLong(sb);
out->clusterindex = i - 1;
if (out->clusterindex >= loadmodel->brush.num_pvsclusters)
out->clusterindex = -1;
p = MSG_ReadLittleLong(sb);
// ignore visofs errors on leaf 0 (solid)
if (p >= 0 && out->clusterindex >= 0)
{
if (p >= loadmodel->brushq1.num_compressedpvs)
Con_Print("Mod_Q1BSP_LoadLeafs: invalid visofs\n");
else
Mod_Q1BSP_DecompressVis(loadmodel->brushq1.data_compressedpvs + p, loadmodel->brushq1.data_compressedpvs + loadmodel->brushq1.num_compressedpvs, loadmodel->brush.data_pvsclusters + out->clusterindex * loadmodel->brush.num_pvsclusterbytes, loadmodel->brush.data_pvsclusters + (out->clusterindex + 1) * loadmodel->brush.num_pvsclusterbytes);
}
if (loadmodel->brush.isbsp2rmqe)
{
out->mins[0] = MSG_ReadLittleShort(sb);
out->mins[1] = MSG_ReadLittleShort(sb);
out->mins[2] = MSG_ReadLittleShort(sb);
out->maxs[0] = MSG_ReadLittleShort(sb);
out->maxs[1] = MSG_ReadLittleShort(sb);
out->maxs[2] = MSG_ReadLittleShort(sb);
firstmarksurface = MSG_ReadLittleLong(sb);
nummarksurfaces = MSG_ReadLittleLong(sb);
}
else if (loadmodel->brush.isbsp2)
{
out->mins[0] = MSG_ReadLittleFloat(sb);
out->mins[1] = MSG_ReadLittleFloat(sb);
out->mins[2] = MSG_ReadLittleFloat(sb);
out->maxs[0] = MSG_ReadLittleFloat(sb);
out->maxs[1] = MSG_ReadLittleFloat(sb);
out->maxs[2] = MSG_ReadLittleFloat(sb);
firstmarksurface = MSG_ReadLittleLong(sb);
nummarksurfaces = MSG_ReadLittleLong(sb);
}
else
{
out->mins[0] = MSG_ReadLittleShort(sb);
out->mins[1] = MSG_ReadLittleShort(sb);
out->mins[2] = MSG_ReadLittleShort(sb);
out->maxs[0] = MSG_ReadLittleShort(sb);
out->maxs[1] = MSG_ReadLittleShort(sb);
out->maxs[2] = MSG_ReadLittleShort(sb);
firstmarksurface = (unsigned short)MSG_ReadLittleShort(sb);
nummarksurfaces = (unsigned short)MSG_ReadLittleShort(sb);
}
if (firstmarksurface >= 0 && firstmarksurface + nummarksurfaces <= loadmodel->brush.num_leafsurfaces)
{
out->firstleafsurface = loadmodel->brush.data_leafsurfaces + firstmarksurface;
out->numleafsurfaces = nummarksurfaces;
}
else
{
Con_Printf("Mod_Q1BSP_LoadLeafs: invalid leafsurface range %i:%i outside range %i:%i\n", firstmarksurface, firstmarksurface+nummarksurfaces, 0, loadmodel->brush.num_leafsurfaces);
out->firstleafsurface = NULL;
out->numleafsurfaces = 0;
}
for (j = 0;j < 4;j++)
out->ambient_sound_level[j] = MSG_ReadByte(sb);
}
}
static qboolean Mod_Q1BSP_CheckWaterAlphaSupport(void)
{
int i, j;
mleaf_t *leaf;
const unsigned char *pvs;
// if there's no vis data, assume supported (because everything is visible all the time)
if (!loadmodel->brush.data_pvsclusters)
return true;
// check all liquid leafs to see if they can see into empty leafs, if any
// can we can assume this map supports r_wateralpha
for (i = 0, leaf = loadmodel->brush.data_leafs;i < loadmodel->brush.num_leafs;i++, leaf++)
{
if ((leaf->contents == CONTENTS_WATER || leaf->contents == CONTENTS_SLIME) && leaf->clusterindex >= 0)
{
pvs = loadmodel->brush.data_pvsclusters + leaf->clusterindex * loadmodel->brush.num_pvsclusterbytes;
for (j = 0;j < loadmodel->brush.num_leafs;j++)
if (CHECKPVSBIT(pvs, loadmodel->brush.data_leafs[j].clusterindex) && loadmodel->brush.data_leafs[j].contents == CONTENTS_EMPTY)
return true;
}
}
return false;
}
static void Mod_Q1BSP_LoadClipnodes(sizebuf_t *sb, hullinfo_t *hullinfo)
{
mclipnode_t *out;
int i, count;
hull_t *hull;
size_t structsize = loadmodel->brush.isbsp2 ? 12 : 8;
if (sb->cursize % structsize)
Host_Error("Mod_Q1BSP_LoadClipnodes: funny lump size in %s",loadmodel->name);
count = sb->cursize / structsize;
out = (mclipnode_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(*out));
loadmodel->brushq1.clipnodes = out;
loadmodel->brushq1.numclipnodes = count;
for (i = 1; i < MAX_MAP_HULLS; i++)
{
hull = &loadmodel->brushq1.hulls[i];
hull->clipnodes = out;
hull->firstclipnode = 0;
hull->lastclipnode = count-1;
hull->planes = loadmodel->brush.data_planes;
hull->clip_mins[0] = hullinfo->hullsizes[i][0][0];
hull->clip_mins[1] = hullinfo->hullsizes[i][0][1];
hull->clip_mins[2] = hullinfo->hullsizes[i][0][2];
hull->clip_maxs[0] = hullinfo->hullsizes[i][1][0];
hull->clip_maxs[1] = hullinfo->hullsizes[i][1][1];
hull->clip_maxs[2] = hullinfo->hullsizes[i][1][2];
VectorSubtract(hull->clip_maxs, hull->clip_mins, hull->clip_size);
}
for (i=0 ; i<count ; i++, out++)
{
out->planenum = MSG_ReadLittleLong(sb);
if (out->planenum < 0 || out->planenum >= loadmodel->brush.num_planes)
Host_Error("%s: Corrupt clipping hull(out of range planenum)", loadmodel->name);
if (loadmodel->brush.isbsp2)
{
out->children[0] = MSG_ReadLittleLong(sb);
out->children[1] = MSG_ReadLittleLong(sb);
if (out->children[0] >= count)
Host_Error("%s: Corrupt clipping hull (invalid child index)", loadmodel->name);
if (out->children[1] >= count)
Host_Error("%s: Corrupt clipping hull (invalid child index)", loadmodel->name);
}
else
{
// LordHavoc: this code supports arguire qbsp's broken clipnodes indices (more than 32768 clipnodes), values above count are assumed to be contents values
out->children[0] = (unsigned short)MSG_ReadLittleShort(sb);
out->children[1] = (unsigned short)MSG_ReadLittleShort(sb);
if (out->children[0] >= count)
out->children[0] -= 65536;
if (out->children[1] >= count)
out->children[1] -= 65536;
}
}
}
//Duplicate the drawing hull structure as a clipping hull
static void Mod_Q1BSP_MakeHull0(void)
{
mnode_t *in;
mclipnode_t *out;
int i;
hull_t *hull;
hull = &loadmodel->brushq1.hulls[0];
in = loadmodel->brush.data_nodes;
out = (mclipnode_t *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_nodes * sizeof(*out));
hull->clipnodes = out;
hull->firstclipnode = 0;
hull->lastclipnode = loadmodel->brush.num_nodes - 1;
hull->planes = loadmodel->brush.data_planes;
for (i = 0;i < loadmodel->brush.num_nodes;i++, out++, in++)
{
out->planenum = in->plane - loadmodel->brush.data_planes;
out->children[0] = in->children[0]->plane ? in->children[0] - loadmodel->brush.data_nodes : ((mleaf_t *)in->children[0])->contents;
out->children[1] = in->children[1]->plane ? in->children[1] - loadmodel->brush.data_nodes : ((mleaf_t *)in->children[1])->contents;
}
}
static void Mod_Q1BSP_LoadLeaffaces(sizebuf_t *sb)
{
int i, j;
size_t structsize = loadmodel->brush.isbsp2 ? 4 : 2;
if (sb->cursize % structsize)
Host_Error("Mod_Q1BSP_LoadLeaffaces: funny lump size in %s",loadmodel->name);
loadmodel->brush.num_leafsurfaces = sb->cursize / structsize;
loadmodel->brush.data_leafsurfaces = (int *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_leafsurfaces * sizeof(int));
if (loadmodel->brush.isbsp2)
{
for (i = 0;i < loadmodel->brush.num_leafsurfaces;i++)
{
j = MSG_ReadLittleLong(sb);
if (j < 0 || j >= loadmodel->num_surfaces)
Host_Error("Mod_Q1BSP_LoadLeaffaces: bad surface number");
loadmodel->brush.data_leafsurfaces[i] = j;
}
}
else
{
for (i = 0;i < loadmodel->brush.num_leafsurfaces;i++)
{
j = (unsigned short) MSG_ReadLittleShort(sb);
if (j >= loadmodel->num_surfaces)
Host_Error("Mod_Q1BSP_LoadLeaffaces: bad surface number");
loadmodel->brush.data_leafsurfaces[i] = j;
}
}
}
static void Mod_Q1BSP_LoadSurfedges(sizebuf_t *sb)
{
int i;
size_t structsize = 4;
if (sb->cursize % structsize)
Host_Error("Mod_Q1BSP_LoadSurfedges: funny lump size in %s",loadmodel->name);
loadmodel->brushq1.numsurfedges = sb->cursize / structsize;
loadmodel->brushq1.surfedges = (int *)Mem_Alloc(loadmodel->mempool, loadmodel->brushq1.numsurfedges * sizeof(int));
for (i = 0;i < loadmodel->brushq1.numsurfedges;i++)
loadmodel->brushq1.surfedges[i] = MSG_ReadLittleLong(sb);
}
static void Mod_Q1BSP_LoadPlanes(sizebuf_t *sb)
{
int i;
mplane_t *out;
size_t structsize = 20;
if (sb->cursize % structsize)
Host_Error("Mod_Q1BSP_LoadPlanes: funny lump size in %s", loadmodel->name);
loadmodel->brush.num_planes = sb->cursize / structsize;
loadmodel->brush.data_planes = out = (mplane_t *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_planes * sizeof(*out));
for (i = 0;i < loadmodel->brush.num_planes;i++, out++)
{
out->normal[0] = MSG_ReadLittleFloat(sb);
out->normal[1] = MSG_ReadLittleFloat(sb);
out->normal[2] = MSG_ReadLittleFloat(sb);
out->dist = MSG_ReadLittleFloat(sb);
MSG_ReadLittleLong(sb); // type is not used, we use PlaneClassify
PlaneClassify(out);
}
}
static void Mod_Q1BSP_LoadMapBrushes(void)
{
#if 0
// unfinished
int submodel, numbrushes;
qboolean firstbrush;
char *text, *maptext;
char mapfilename[MAX_QPATH];
FS_StripExtension (loadmodel->name, mapfilename, sizeof (mapfilename));
strlcat (mapfilename, ".map", sizeof (mapfilename));
maptext = (unsigned char*) FS_LoadFile(mapfilename, tempmempool, false, NULL);
if (!maptext)
return;
text = maptext;
if (!COM_ParseToken_Simple(&data, false, false, true))
return; // error
submodel = 0;
for (;;)
{
if (!COM_ParseToken_Simple(&data, false, false, true))
break;
if (com_token[0] != '{')
return; // error
// entity
firstbrush = true;
numbrushes = 0;
maxbrushes = 256;
brushes = Mem_Alloc(loadmodel->mempool, maxbrushes * sizeof(mbrush_t));
for (;;)
{
if (!COM_ParseToken_Simple(&data, false, false, true))
return; // error
if (com_token[0] == '}')
break; // end of entity
if (com_token[0] == '{')
{
// brush
if (firstbrush)
{
if (submodel)
{
if (submodel > loadmodel->brush.numsubmodels)
{
Con_Printf("Mod_Q1BSP_LoadMapBrushes: .map has more submodels than .bsp!\n");
model = NULL;
}
else
model = loadmodel->brush.submodels[submodel];
}
else
model = loadmodel;
}
for (;;)
{
if (!COM_ParseToken_Simple(&data, false, false, true))
return; // error
if (com_token[0] == '}')
break; // end of brush
// each brush face should be this format:
// ( x y z ) ( x y z ) ( x y z ) texture scroll_s scroll_t rotateangle scale_s scale_t
// FIXME: support hl .map format
for (pointnum = 0;pointnum < 3;pointnum++)
{
COM_ParseToken_Simple(&data, false, false, true);
for (componentnum = 0;componentnum < 3;componentnum++)
{
COM_ParseToken_Simple(&data, false, false, true);
point[pointnum][componentnum] = atof(com_token);
}
COM_ParseToken_Simple(&data, false, false, true);
}
COM_ParseToken_Simple(&data, false, false, true);
strlcpy(facetexture, com_token, sizeof(facetexture));
COM_ParseToken_Simple(&data, false, false, true);
//scroll_s = atof(com_token);
COM_ParseToken_Simple(&data, false, false, true);
//scroll_t = atof(com_token);
COM_ParseToken_Simple(&data, false, false, true);
//rotate = atof(com_token);
COM_ParseToken_Simple(&data, false, false, true);
//scale_s = atof(com_token);
COM_ParseToken_Simple(&data, false, false, true);
//scale_t = atof(com_token);
TriangleNormal(point[0], point[1], point[2], planenormal);
VectorNormalizeDouble(planenormal);
planedist = DotProduct(point[0], planenormal);
//ChooseTexturePlane(planenormal, texturevector[0], texturevector[1]);
}
continue;
}
}
}
#endif
}
#define MAX_PORTALPOINTS 64
typedef struct portal_s
{
mplane_t plane;
mnode_t *nodes[2]; // [0] = front side of plane
struct portal_s *next[2];
int numpoints;
double points[3*MAX_PORTALPOINTS];
struct portal_s *chain; // all portals are linked into a list
}
portal_t;
static memexpandablearray_t portalarray;
static void Mod_Q1BSP_RecursiveRecalcNodeBBox(mnode_t *node)
{
// process only nodes (leafs already had their box calculated)
if (!node->plane)
return;
// calculate children first
Mod_Q1BSP_RecursiveRecalcNodeBBox(node->children[0]);
Mod_Q1BSP_RecursiveRecalcNodeBBox(node->children[1]);
// make combined bounding box from children
node->mins[0] = min(node->children[0]->mins[0], node->children[1]->mins[0]);
node->mins[1] = min(node->children[0]->mins[1], node->children[1]->mins[1]);
node->mins[2] = min(node->children[0]->mins[2], node->children[1]->mins[2]);
node->maxs[0] = max(node->children[0]->maxs[0], node->children[1]->maxs[0]);
node->maxs[1] = max(node->children[0]->maxs[1], node->children[1]->maxs[1]);
node->maxs[2] = max(node->children[0]->maxs[2], node->children[1]->maxs[2]);
}
static void Mod_Q1BSP_FinalizePortals(void)
{
int i, j, numportals, numpoints, portalindex, portalrange = Mem_ExpandableArray_IndexRange(&portalarray);
portal_t *p;
mportal_t *portal;
mvertex_t *point;
mleaf_t *leaf, *endleaf;
// tally up portal and point counts and recalculate bounding boxes for all
// leafs (because qbsp is very sloppy)
leaf = loadmodel->brush.data_leafs;
endleaf = leaf + loadmodel->brush.num_leafs;
if (mod_recalculatenodeboxes.integer)
{
for (;leaf < endleaf;leaf++)
{
VectorSet(leaf->mins, 2000000000, 2000000000, 2000000000);
VectorSet(leaf->maxs, -2000000000, -2000000000, -2000000000);
}
}
numportals = 0;
numpoints = 0;
for (portalindex = 0;portalindex < portalrange;portalindex++)
{
p = (portal_t*)Mem_ExpandableArray_RecordAtIndex(&portalarray, portalindex);
if (!p)
continue;
// note: this check must match the one below or it will usually corrupt memory
// the nodes[0] != nodes[1] check is because leaf 0 is the shared solid leaf, it can have many portals inside with leaf 0 on both sides
if (p->numpoints >= 3 && p->nodes[0] != p->nodes[1] && ((mleaf_t *)p->nodes[0])->clusterindex >= 0 && ((mleaf_t *)p->nodes[1])->clusterindex >= 0)
{
numportals += 2;
numpoints += p->numpoints * 2;
}
}
loadmodel->brush.data_portals = (mportal_t *)Mem_Alloc(loadmodel->mempool, numportals * sizeof(mportal_t) + numpoints * sizeof(mvertex_t));
loadmodel->brush.num_portals = numportals;
loadmodel->brush.data_portalpoints = (mvertex_t *)((unsigned char *) loadmodel->brush.data_portals + numportals * sizeof(mportal_t));
loadmodel->brush.num_portalpoints = numpoints;
// clear all leaf portal chains
for (i = 0;i < loadmodel->brush.num_leafs;i++)
loadmodel->brush.data_leafs[i].portals = NULL;
// process all portals in the global portal chain, while freeing them
portal = loadmodel->brush.data_portals;
point = loadmodel->brush.data_portalpoints;
for (portalindex = 0;portalindex < portalrange;portalindex++)
{
p = (portal_t*)Mem_ExpandableArray_RecordAtIndex(&portalarray, portalindex);
if (!p)
continue;
if (p->numpoints >= 3 && p->nodes[0] != p->nodes[1])
{
// note: this check must match the one above or it will usually corrupt memory
// the nodes[0] != nodes[1] check is because leaf 0 is the shared solid leaf, it can have many portals inside with leaf 0 on both sides
if (((mleaf_t *)p->nodes[0])->clusterindex >= 0 && ((mleaf_t *)p->nodes[1])->clusterindex >= 0)
{
// first make the back to front portal(forward portal)
portal->points = point;
portal->numpoints = p->numpoints;
portal->plane.dist = p->plane.dist;
VectorCopy(p->plane.normal, portal->plane.normal);
portal->here = (mleaf_t *)p->nodes[1];
portal->past = (mleaf_t *)p->nodes[0];
// copy points
for (j = 0;j < portal->numpoints;j++)
{
VectorCopy(p->points + j*3, point->position);
point++;
}
BoxFromPoints(portal->mins, portal->maxs, portal->numpoints, portal->points->position);
PlaneClassify(&portal->plane);
// link into leaf's portal chain
portal->next = portal->here->portals;
portal->here->portals = portal;
// advance to next portal
portal++;
// then make the front to back portal(backward portal)
portal->points = point;
portal->numpoints = p->numpoints;
portal->plane.dist = -p->plane.dist;
VectorNegate(p->plane.normal, portal->plane.normal);
portal->here = (mleaf_t *)p->nodes[0];
portal->past = (mleaf_t *)p->nodes[1];
// copy points
for (j = portal->numpoints - 1;j >= 0;j--)
{
VectorCopy(p->points + j*3, point->position);
point++;
}
BoxFromPoints(portal->mins, portal->maxs, portal->numpoints, portal->points->position);
PlaneClassify(&portal->plane);
// link into leaf's portal chain
portal->next = portal->here->portals;
portal->here->portals = portal;
// advance to next portal
portal++;
}
// add the portal's polygon points to the leaf bounding boxes
if (mod_recalculatenodeboxes.integer)
{
for (i = 0;i < 2;i++)
{
leaf = (mleaf_t *)p->nodes[i];
for (j = 0;j < p->numpoints;j++)
{
if (leaf->mins[0] > p->points[j*3+0]) leaf->mins[0] = p->points[j*3+0];
if (leaf->mins[1] > p->points[j*3+1]) leaf->mins[1] = p->points[j*3+1];
if (leaf->mins[2] > p->points[j*3+2]) leaf->mins[2] = p->points[j*3+2];
if (leaf->maxs[0] < p->points[j*3+0]) leaf->maxs[0] = p->points[j*3+0];
if (leaf->maxs[1] < p->points[j*3+1]) leaf->maxs[1] = p->points[j*3+1];
if (leaf->maxs[2] < p->points[j*3+2]) leaf->maxs[2] = p->points[j*3+2];
}
}
}
}
}
// now recalculate the node bounding boxes from the leafs
if (mod_recalculatenodeboxes.integer)
Mod_Q1BSP_RecursiveRecalcNodeBBox(loadmodel->brush.data_nodes + loadmodel->brushq1.hulls[0].firstclipnode);
}
/*
=============
AddPortalToNodes
=============
*/
static void AddPortalToNodes(portal_t *p, mnode_t *front, mnode_t *back)
{
if (!front)
Host_Error("AddPortalToNodes: NULL front node");
if (!back)
Host_Error("AddPortalToNodes: NULL back node");
if (p->nodes[0] || p->nodes[1])
Host_Error("AddPortalToNodes: already included");
// note: front == back is handled gracefully, because leaf 0 is the shared solid leaf, it can often have portals with the same leaf on both sides
p->nodes[0] = front;
p->next[0] = (portal_t *)front->portals;
front->portals = (mportal_t *)p;
p->nodes[1] = back;
p->next[1] = (portal_t *)back->portals;
back->portals = (mportal_t *)p;
}
/*
=============
RemovePortalFromNode
=============
*/
static void RemovePortalFromNodes(portal_t *portal)
{
int i;
mnode_t *node;
void **portalpointer;
portal_t *t;
for (i = 0;i < 2;i++)
{
node = portal->nodes[i];
portalpointer = (void **) &node->portals;
while (1)
{
t = (portal_t *)*portalpointer;
if (!t)
Host_Error("RemovePortalFromNodes: portal not in leaf");
if (t == portal)
{
if (portal->nodes[0] == node)
{
*portalpointer = portal->next[0];
portal->nodes[0] = NULL;
}
else if (portal->nodes[1] == node)
{
*portalpointer = portal->next[1];
portal->nodes[1] = NULL;
}
else
Host_Error("RemovePortalFromNodes: portal not bounding leaf");
break;
}
if (t->nodes[0] == node)
portalpointer = (void **) &t->next[0];
else if (t->nodes[1] == node)
portalpointer = (void **) &t->next[1];
else
Host_Error("RemovePortalFromNodes: portal not bounding leaf");
}
}
}
#define PORTAL_DIST_EPSILON (1.0 / 32.0)
static double *portalpointsbuffer;
static int portalpointsbufferoffset;
static int portalpointsbuffersize;
static void Mod_Q1BSP_RecursiveNodePortals(mnode_t *node)
{
int i, side;
mnode_t *front, *back, *other_node;
mplane_t clipplane, *plane;
portal_t *portal, *nextportal, *nodeportal, *splitportal, *temp;
int numfrontpoints, numbackpoints;
double *frontpoints, *backpoints;
// if a leaf, we're done
if (!node->plane)
return;
// get some space for our clipping operations to use
if (portalpointsbuffersize < portalpointsbufferoffset + 6*MAX_PORTALPOINTS)
{
portalpointsbuffersize = portalpointsbufferoffset * 2;
portalpointsbuffer = (double *)Mem_Realloc(loadmodel->mempool, portalpointsbuffer, portalpointsbuffersize * sizeof(*portalpointsbuffer));
}
frontpoints = portalpointsbuffer + portalpointsbufferoffset;
portalpointsbufferoffset += 3*MAX_PORTALPOINTS;
backpoints = portalpointsbuffer + portalpointsbufferoffset;
portalpointsbufferoffset += 3*MAX_PORTALPOINTS;
plane = node->plane;
front = node->children[0];
back = node->children[1];
if (front == back)
Host_Error("Mod_Q1BSP_RecursiveNodePortals: corrupt node hierarchy");
// create the new portal by generating a polygon for the node plane,
// and clipping it by all of the other portals(which came from nodes above this one)
nodeportal = (portal_t *)Mem_ExpandableArray_AllocRecord(&portalarray);
nodeportal->plane = *plane;
// TODO: calculate node bounding boxes during recursion and calculate a maximum plane size accordingly to improve precision (as most maps do not need 1 billion unit plane polygons)
PolygonD_QuadForPlane(nodeportal->points, nodeportal->plane.normal[0], nodeportal->plane.normal[1], nodeportal->plane.normal[2], nodeportal->plane.dist, 1024.0*1024.0*1024.0);
nodeportal->numpoints = 4;
// side = 0; // shut up compiler warning -> should be no longer needed, Host_Error is declared noreturn now
for (portal = (portal_t *)node->portals;portal;portal = portal->next[side])
{
clipplane = portal->plane;
if (portal->nodes[0] == portal->nodes[1])
Host_Error("Mod_Q1BSP_RecursiveNodePortals: portal has same node on both sides(1)");
if (portal->nodes[0] == node)
side = 0;
else if (portal->nodes[1] == node)
{
clipplane.dist = -clipplane.dist;
VectorNegate(clipplane.normal, clipplane.normal);
side = 1;
}
else
{
Host_Error("Mod_Q1BSP_RecursiveNodePortals: mislinked portal");
side = 0; // hush warning
}
for (i = 0;i < nodeportal->numpoints*3;i++)
frontpoints[i] = nodeportal->points[i];
PolygonD_Divide(nodeportal->numpoints, frontpoints, clipplane.normal[0], clipplane.normal[1], clipplane.normal[2], clipplane.dist, PORTAL_DIST_EPSILON, MAX_PORTALPOINTS, nodeportal->points, &nodeportal->numpoints, 0, NULL, NULL, NULL);
if (nodeportal->numpoints <= 0 || nodeportal->numpoints >= MAX_PORTALPOINTS)
break;
}
if (nodeportal->numpoints < 3)
{
Con_Print("Mod_Q1BSP_RecursiveNodePortals: WARNING: new portal was clipped away\n");
nodeportal->numpoints = 0;
}
else if (nodeportal->numpoints >= MAX_PORTALPOINTS)
{
Con_Print("Mod_Q1BSP_RecursiveNodePortals: WARNING: new portal has too many points\n");
nodeportal->numpoints = 0;
}
AddPortalToNodes(nodeportal, front, back);
// split the portals of this node along this node's plane and assign them to the children of this node
// (migrating the portals downward through the tree)
for (portal = (portal_t *)node->portals;portal;portal = nextportal)
{
if (portal->nodes[0] == portal->nodes[1])
Host_Error("Mod_Q1BSP_RecursiveNodePortals: portal has same node on both sides(2)");
if (portal->nodes[0] == node)
side = 0;
else if (portal->nodes[1] == node)
side = 1;
else
{
Host_Error("Mod_Q1BSP_RecursiveNodePortals: mislinked portal");
side = 0; // hush warning
}
nextportal = portal->next[side];
if (!portal->numpoints)
continue;
other_node = portal->nodes[!side];
RemovePortalFromNodes(portal);
// cut the portal into two portals, one on each side of the node plane
PolygonD_Divide(portal->numpoints, portal->points, plane->normal[0], plane->normal[1], plane->normal[2], plane->dist, PORTAL_DIST_EPSILON, MAX_PORTALPOINTS, frontpoints, &numfrontpoints, MAX_PORTALPOINTS, backpoints, &numbackpoints, NULL);
if (!numfrontpoints)
{
if (side == 0)
AddPortalToNodes(portal, back, other_node);
else
AddPortalToNodes(portal, other_node, back);
continue;
}
if (!numbackpoints)
{
if (side == 0)
AddPortalToNodes(portal, front, other_node);
else
AddPortalToNodes(portal, other_node, front);
continue;
}
// the portal is split
splitportal = (portal_t *)Mem_ExpandableArray_AllocRecord(&portalarray);
temp = splitportal->chain;
*splitportal = *portal;
splitportal->chain = temp;
for (i = 0;i < numbackpoints*3;i++)
splitportal->points[i] = backpoints[i];
splitportal->numpoints = numbackpoints;
for (i = 0;i < numfrontpoints*3;i++)
portal->points[i] = frontpoints[i];
portal->numpoints = numfrontpoints;
if (side == 0)
{
AddPortalToNodes(portal, front, other_node);
AddPortalToNodes(splitportal, back, other_node);
}
else
{
AddPortalToNodes(portal, other_node, front);
AddPortalToNodes(splitportal, other_node, back);
}
}
Mod_Q1BSP_RecursiveNodePortals(front);
Mod_Q1BSP_RecursiveNodePortals(back);
portalpointsbufferoffset -= 6*MAX_PORTALPOINTS;
}
static void Mod_Q1BSP_MakePortals(void)
{
Mem_ExpandableArray_NewArray(&portalarray, loadmodel->mempool, sizeof(portal_t), 1020*1024/sizeof(portal_t));
portalpointsbufferoffset = 0;
portalpointsbuffersize = 6*MAX_PORTALPOINTS*128;
portalpointsbuffer = (double *)Mem_Alloc(loadmodel->mempool, portalpointsbuffersize * sizeof(*portalpointsbuffer));
Mod_Q1BSP_RecursiveNodePortals(loadmodel->brush.data_nodes + loadmodel->brushq1.hulls[0].firstclipnode);
Mem_Free(portalpointsbuffer);
portalpointsbuffer = NULL;
portalpointsbufferoffset = 0;
portalpointsbuffersize = 0;
Mod_Q1BSP_FinalizePortals();
Mem_ExpandableArray_FreeArray(&portalarray);
}
//Returns PVS data for a given point
//(note: can return NULL)
static unsigned char *Mod_Q1BSP_GetPVS(dp_model_t *model, const vec3_t p)
{
mnode_t *node;
node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode;
while (node->plane)
node = node->children[(node->plane->type < 3 ? p[node->plane->type] : DotProduct(p,node->plane->normal)) < node->plane->dist];
if (((mleaf_t *)node)->clusterindex >= 0)
return model->brush.data_pvsclusters + ((mleaf_t *)node)->clusterindex * model->brush.num_pvsclusterbytes;
else
return NULL;
}
static void Mod_Q1BSP_FatPVS_RecursiveBSPNode(dp_model_t *model, const vec3_t org, vec_t radius, unsigned char *pvsbuffer, int pvsbytes, mnode_t *node)
{
while (node->plane)
{
float d = PlaneDiff(org, node->plane);
if (d > radius)
node = node->children[0];
else if (d < -radius)
node = node->children[1];
else
{
// go down both sides
Mod_Q1BSP_FatPVS_RecursiveBSPNode(model, org, radius, pvsbuffer, pvsbytes, node->children[0]);
node = node->children[1];
}
}
// if this leaf is in a cluster, accumulate the pvs bits
if (((mleaf_t *)node)->clusterindex >= 0)
{
int i;
unsigned char *pvs = model->brush.data_pvsclusters + ((mleaf_t *)node)->clusterindex * model->brush.num_pvsclusterbytes;
for (i = 0;i < pvsbytes;i++)
pvsbuffer[i] |= pvs[i];
}
}
//Calculates a PVS that is the inclusive or of all leafs within radius pixels
//of the given point.
static int Mod_Q1BSP_FatPVS(dp_model_t *model, const vec3_t org, vec_t radius, unsigned char *pvsbuffer, int pvsbufferlength, qboolean merge)
{
int bytes = model->brush.num_pvsclusterbytes;
bytes = min(bytes, pvsbufferlength);
if (r_novis.integer || r_trippy.integer || !model->brush.num_pvsclusters || !Mod_Q1BSP_GetPVS(model, org))
{
memset(pvsbuffer, 0xFF, bytes);
return bytes;
}
if (!merge)
memset(pvsbuffer, 0, bytes);
Mod_Q1BSP_FatPVS_RecursiveBSPNode(model, org, radius, pvsbuffer, bytes, model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode);
return bytes;
}
static void Mod_Q1BSP_RoundUpToHullSize(dp_model_t *cmodel, const vec3_t inmins, const vec3_t inmaxs, vec3_t outmins, vec3_t outmaxs)
{
vec3_t size;
const hull_t *hull;
VectorSubtract(inmaxs, inmins, size);
if (cmodel->brush.ishlbsp)
{
if (size[0] < 3)
hull = &cmodel->brushq1.hulls[0]; // 0x0x0
else if (size[0] <= 32)
{
if (size[2] < 54) // pick the nearest of 36 or 72
hull = &cmodel->brushq1.hulls[3]; // 32x32x36
else
hull = &cmodel->brushq1.hulls[1]; // 32x32x72
}
else
hull = &cmodel->brushq1.hulls[2]; // 64x64x64
}
else
{
if (size[0] < 3)
hull = &cmodel->brushq1.hulls[0]; // 0x0x0
else if (size[0] <= 32)
hull = &cmodel->brushq1.hulls[1]; // 32x32x56
else
hull = &cmodel->brushq1.hulls[2]; // 64x64x88
}
VectorCopy(inmins, outmins);
VectorAdd(inmins, hull->clip_size, outmaxs);
}
static int Mod_Q1BSP_CreateShadowMesh(dp_model_t *mod)
{
int j;
int numshadowmeshtriangles = 0;
msurface_t *surface;
if (cls.state == ca_dedicated)
return 0;
// make a single combined shadow mesh to allow optimized shadow volume creation
for (j = 0, surface = mod->data_surfaces;j < mod->num_surfaces;j++, surface++)
{
surface->num_firstshadowmeshtriangle = numshadowmeshtriangles;
numshadowmeshtriangles += surface->num_triangles;
}
mod->brush.shadowmesh = Mod_ShadowMesh_Begin(mod->mempool, numshadowmeshtriangles * 3, numshadowmeshtriangles, NULL, NULL, NULL, false, false, true);
for (j = 0, surface = mod->data_surfaces;j < mod->num_surfaces;j++, surface++)
if (surface->num_triangles > 0)
Mod_ShadowMesh_AddMesh(mod->mempool, mod->brush.shadowmesh, NULL, NULL, NULL, mod->surfmesh.data_vertex3f, NULL, NULL, NULL, NULL, surface->num_triangles, (mod->surfmesh.data_element3i + 3 * surface->num_firsttriangle));
mod->brush.shadowmesh = Mod_ShadowMesh_Finish(mod->mempool, mod->brush.shadowmesh, false, r_enableshadowvolumes.integer != 0, false);
if (mod->brush.shadowmesh && mod->brush.shadowmesh->neighbor3i)
Mod_BuildTriangleNeighbors(mod->brush.shadowmesh->neighbor3i, mod->brush.shadowmesh->element3i, mod->brush.shadowmesh->numtriangles);
return numshadowmeshtriangles;
}
void Mod_CollisionBIH_TraceLineAgainstSurfaces(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask);
void Mod_Q1BSP_Load(dp_model_t *mod, void *buffer, void *bufferend)
{
int i, j, k;
sizebuf_t lumpsb[HEADER_LUMPS];
mmodel_t *bm;
float dist, modelyawradius, modelradius;
msurface_t *surface;
hullinfo_t hullinfo;
int totalstylesurfaces, totalstyles, stylecounts[256], remapstyles[256];
model_brush_lightstyleinfo_t styleinfo[256];
unsigned char *datapointer;
sizebuf_t sb;
MSG_InitReadBuffer(&sb, (unsigned char *)buffer, (unsigned char *)bufferend - (unsigned char *)buffer);
mod->type = mod_brushq1;
mod->brush.isbsp2 = false;
mod->brush.ishlbsp = false;
i = MSG_ReadLittleLong(&sb);
switch(i)
{
case BSPVERSION:
mod->modeldatatypestring = "Q1BSP";
break;
case 30:
mod->brush.ishlbsp = true;
mod->modeldatatypestring = "HLBSP";
break;
case ('2' + 'P' * 256 + 'S' * 65536 + 'B' * 16777216):
mod->brush.isbsp2 = true;
mod->brush.isbsp2rmqe = true; // like bsp2 except leaf/node bounds are 16bit (unexpanded)
mod->modeldatatypestring = "Q1BSP2rmqe";
break;
case ('B' + 'S' * 256 + 'P' * 65536 + '2' * 16777216):
mod->brush.isbsp2 = true;
mod->modeldatatypestring = "Q1BSP2";
break;
default:
mod->modeldatatypestring = "Unknown BSP";
Host_Error("Mod_Q1BSP_Load: %s has wrong version number %i: supported versions are 29 (Quake), 30 (Half-Life), \"BSP2\" or \"2PSB\" (rmqe)", mod->name, i);
return;
}
// fill in hull info
VectorClear (hullinfo.hullsizes[0][0]);
VectorClear (hullinfo.hullsizes[0][1]);
if (mod->brush.ishlbsp)
{
hullinfo.filehulls = 4;
VectorSet (hullinfo.hullsizes[1][0], -16, -16, -36);
VectorSet (hullinfo.hullsizes[1][1], 16, 16, 36);
VectorSet (hullinfo.hullsizes[2][0], -32, -32, -32);
VectorSet (hullinfo.hullsizes[2][1], 32, 32, 32);
VectorSet (hullinfo.hullsizes[3][0], -16, -16, -18);
VectorSet (hullinfo.hullsizes[3][1], 16, 16, 18);
}
else
{
hullinfo.filehulls = 4;
VectorSet (hullinfo.hullsizes[1][0], -16, -16, -24);
VectorSet (hullinfo.hullsizes[1][1], 16, 16, 32);
VectorSet (hullinfo.hullsizes[2][0], -32, -32, -24);
VectorSet (hullinfo.hullsizes[2][1], 32, 32, 64);
}
// read lumps
for (i = 0; i < HEADER_LUMPS; i++)
{
int offset = MSG_ReadLittleLong(&sb);
int size = MSG_ReadLittleLong(&sb);
if (offset < 0 || offset + size > sb.cursize)
Host_Error("Mod_Q1BSP_Load: %s has invalid lump %i (offset %i, size %i, file size %i)\n", mod->name, i, offset, size, (int)sb.cursize);
MSG_InitReadBuffer(&lumpsb[i], sb.data + offset, size);
}
mod->soundfromcenter = true;
mod->TraceBox = Mod_Q1BSP_TraceBox;
mod->TraceLine = Mod_Q1BSP_TraceLine;
mod->TracePoint = Mod_Q1BSP_TracePoint;
mod->PointSuperContents = Mod_Q1BSP_PointSuperContents;
mod->TraceLineAgainstSurfaces = Mod_Q1BSP_TraceLineAgainstSurfaces;
mod->brush.TraceLineOfSight = Mod_Q1BSP_TraceLineOfSight;
mod->brush.SuperContentsFromNativeContents = Mod_Q1BSP_SuperContentsFromNativeContents;
mod->brush.NativeContentsFromSuperContents = Mod_Q1BSP_NativeContentsFromSuperContents;
mod->brush.GetPVS = Mod_Q1BSP_GetPVS;
mod->brush.FatPVS = Mod_Q1BSP_FatPVS;
mod->brush.BoxTouchingPVS = Mod_Q1BSP_BoxTouchingPVS;
mod->brush.BoxTouchingLeafPVS = Mod_Q1BSP_BoxTouchingLeafPVS;
mod->brush.BoxTouchingVisibleLeafs = Mod_Q1BSP_BoxTouchingVisibleLeafs;
mod->brush.FindBoxClusters = Mod_Q1BSP_FindBoxClusters;
mod->brush.LightPoint = Mod_Q1BSP_LightPoint;
mod->brush.FindNonSolidLocation = Mod_Q1BSP_FindNonSolidLocation;
mod->brush.AmbientSoundLevelsForPoint = Mod_Q1BSP_AmbientSoundLevelsForPoint;
mod->brush.RoundUpToHullSize = Mod_Q1BSP_RoundUpToHullSize;
mod->brush.PointInLeaf = Mod_Q1BSP_PointInLeaf;
mod->Draw = R_Q1BSP_Draw;
mod->DrawDepth = R_Q1BSP_DrawDepth;
mod->DrawDebug = R_Q1BSP_DrawDebug;
mod->DrawPrepass = R_Q1BSP_DrawPrepass;
mod->GetLightInfo = R_Q1BSP_GetLightInfo;
mod->CompileShadowMap = R_Q1BSP_CompileShadowMap;
mod->DrawShadowMap = R_Q1BSP_DrawShadowMap;
mod->CompileShadowVolume = R_Q1BSP_CompileShadowVolume;
mod->DrawShadowVolume = R_Q1BSP_DrawShadowVolume;
mod->DrawLight = R_Q1BSP_DrawLight;
// load into heap
mod->brush.qw_md4sum = 0;
mod->brush.qw_md4sum2 = 0;
for (i = 0;i < HEADER_LUMPS;i++)
{
int temp;
if (i == LUMP_ENTITIES)
continue;
temp = Com_BlockChecksum(lumpsb[i].data, lumpsb[i].cursize);
mod->brush.qw_md4sum ^= LittleLong(temp);
if (i == LUMP_VISIBILITY || i == LUMP_LEAFS || i == LUMP_NODES)
continue;
mod->brush.qw_md4sum2 ^= LittleLong(temp);
}
Mod_Q1BSP_LoadEntities(&lumpsb[LUMP_ENTITIES]);
Mod_Q1BSP_LoadVertexes(&lumpsb[LUMP_VERTEXES]);
Mod_Q1BSP_LoadEdges(&lumpsb[LUMP_EDGES]);
Mod_Q1BSP_LoadSurfedges(&lumpsb[LUMP_SURFEDGES]);
Mod_Q1BSP_LoadTextures(&lumpsb[LUMP_TEXTURES]);
Mod_Q1BSP_LoadLighting(&lumpsb[LUMP_LIGHTING]);
Mod_Q1BSP_LoadPlanes(&lumpsb[LUMP_PLANES]);
Mod_Q1BSP_LoadTexinfo(&lumpsb[LUMP_TEXINFO]);
Mod_Q1BSP_LoadFaces(&lumpsb[LUMP_FACES]);
Mod_Q1BSP_LoadLeaffaces(&lumpsb[LUMP_MARKSURFACES]);
Mod_Q1BSP_LoadVisibility(&lumpsb[LUMP_VISIBILITY]);
// load submodels before leafs because they contain the number of vis leafs
Mod_Q1BSP_LoadSubmodels(&lumpsb[LUMP_MODELS], &hullinfo);
Mod_Q1BSP_LoadLeafs(&lumpsb[LUMP_LEAFS]);
Mod_Q1BSP_LoadNodes(&lumpsb[LUMP_NODES]);
Mod_Q1BSP_LoadClipnodes(&lumpsb[LUMP_CLIPNODES], &hullinfo);
for (i = 0; i < HEADER_LUMPS; i++)
if (lumpsb[i].readcount != lumpsb[i].cursize && i != LUMP_TEXTURES && i != LUMP_LIGHTING)
Host_Error("Lump %i incorrectly loaded (readcount %i, size %i)\n", i, lumpsb[i].readcount, lumpsb[i].cursize);
// check if the map supports transparent water rendering
loadmodel->brush.supportwateralpha = Mod_Q1BSP_CheckWaterAlphaSupport();
if (mod->brushq1.data_compressedpvs)
Mem_Free(mod->brushq1.data_compressedpvs);
mod->brushq1.data_compressedpvs = NULL;
mod->brushq1.num_compressedpvs = 0;
Mod_Q1BSP_MakeHull0();
if (mod_bsp_portalize.integer)
Mod_Q1BSP_MakePortals();
mod->numframes = 2; // regular and alternate animation
mod->numskins = 1;
// make a single combined shadow mesh to allow optimized shadow volume creation
Mod_Q1BSP_CreateShadowMesh(loadmodel);
if (loadmodel->brush.numsubmodels)
loadmodel->brush.submodels = (dp_model_t **)Mem_Alloc(loadmodel->mempool, loadmodel->brush.numsubmodels * sizeof(dp_model_t *));
// LordHavoc: to clear the fog around the original quake submodel code, I
// will explain:
// first of all, some background info on the submodels:
// model 0 is the map model (the world, named maps/e1m1.bsp for example)
// model 1 and higher are submodels (doors and the like, named *1, *2, etc)
// now the weird for loop itself:
// the loop functions in an odd way, on each iteration it sets up the
// current 'mod' model (which despite the confusing code IS the model of
// the number i), at the end of the loop it duplicates the model to become
// the next submodel, and loops back to set up the new submodel.
// LordHavoc: now the explanation of my sane way (which works identically):
// set up the world model, then on each submodel copy from the world model
// and set up the submodel with the respective model info.
totalstylesurfaces = 0;
totalstyles = 0;
for (i = 0;i < mod->brush.numsubmodels;i++)
{
memset(stylecounts, 0, sizeof(stylecounts));
for (k = 0;k < mod->brushq1.submodels[i].numfaces;k++)
{
surface = mod->data_surfaces + mod->brushq1.submodels[i].firstface + k;
for (j = 0;j < MAXLIGHTMAPS;j++)
stylecounts[surface->lightmapinfo->styles[j]]++;
}
for (k = 0;k < 255;k++)
{
totalstyles++;
if (stylecounts[k])
totalstylesurfaces += stylecounts[k];
}
}
datapointer = (unsigned char *)Mem_Alloc(mod->mempool, mod->num_surfaces * sizeof(int) + totalstyles * sizeof(model_brush_lightstyleinfo_t) + totalstylesurfaces * sizeof(int *));
for (i = 0;i < mod->brush.numsubmodels;i++)
{
// LordHavoc: this code was originally at the end of this loop, but
// has been transformed to something more readable at the start here.
if (i > 0)
{
char name[10];
// duplicate the basic information
dpsnprintf(name, sizeof(name), "*%i", i);
mod = Mod_FindName(name, loadmodel->name);
// copy the base model to this one
*mod = *loadmodel;
// rename the clone back to its proper name
strlcpy(mod->name, name, sizeof(mod->name));
mod->brush.parentmodel = loadmodel;
// textures and memory belong to the main model
mod->texturepool = NULL;
mod->mempool = NULL;
mod->brush.GetPVS = NULL;
mod->brush.FatPVS = NULL;
mod->brush.BoxTouchingPVS = NULL;
mod->brush.BoxTouchingLeafPVS = NULL;
mod->brush.BoxTouchingVisibleLeafs = NULL;
mod->brush.FindBoxClusters = NULL;
mod->brush.LightPoint = NULL;
mod->brush.AmbientSoundLevelsForPoint = NULL;
}
mod->brush.submodel = i;
if (loadmodel->brush.submodels)
loadmodel->brush.submodels[i] = mod;
bm = &mod->brushq1.submodels[i];
mod->brushq1.hulls[0].firstclipnode = bm->headnode[0];
for (j=1 ; j<MAX_MAP_HULLS ; j++)
{
mod->brushq1.hulls[j].firstclipnode = bm->headnode[j];
mod->brushq1.hulls[j].lastclipnode = mod->brushq1.numclipnodes - 1;
}
mod->firstmodelsurface = bm->firstface;
mod->nummodelsurfaces = bm->numfaces;
// set node/leaf parents for this submodel
Mod_Q1BSP_LoadNodes_RecursiveSetParent(mod->brush.data_nodes + mod->brushq1.hulls[0].firstclipnode, NULL);
// make the model surface list (used by shadowing/lighting)
mod->sortedmodelsurfaces = (int *)datapointer;datapointer += mod->nummodelsurfaces * sizeof(int);
Mod_MakeSortedSurfaces(mod);
// copy the submodel bounds, then enlarge the yaw and rotated bounds according to radius
// (previously this code measured the radius of the vertices of surfaces in the submodel, but that broke submodels that contain only CLIP brushes, which do not produce surfaces)
VectorCopy(bm->mins, mod->normalmins);
VectorCopy(bm->maxs, mod->normalmaxs);
dist = max(fabs(mod->normalmins[0]), fabs(mod->normalmaxs[0]));
modelyawradius = max(fabs(mod->normalmins[1]), fabs(mod->normalmaxs[1]));
modelyawradius = dist*dist+modelyawradius*modelyawradius;
modelradius = max(fabs(mod->normalmins[2]), fabs(mod->normalmaxs[2]));
modelradius = modelyawradius + modelradius * modelradius;
modelyawradius = sqrt(modelyawradius);
modelradius = sqrt(modelradius);
mod->yawmins[0] = mod->yawmins[1] = -modelyawradius;
mod->yawmins[2] = mod->normalmins[2];
mod->yawmaxs[0] = mod->yawmaxs[1] = modelyawradius;
mod->yawmaxs[2] = mod->normalmaxs[2];
mod->rotatedmins[0] = mod->rotatedmins[1] = mod->rotatedmins[2] = -modelradius;
mod->rotatedmaxs[0] = mod->rotatedmaxs[1] = mod->rotatedmaxs[2] = modelradius;
mod->radius = modelradius;
mod->radius2 = modelradius * modelradius;
// this gets altered below if sky or water is used
mod->DrawSky = NULL;
mod->DrawAddWaterPlanes = NULL;
// scan surfaces for sky and water and flag the submodel as possessing these features or not
// build lightstyle lists for quick marking of dirty lightmaps when lightstyles flicker
if (mod->nummodelsurfaces)
{
for (j = 0, surface = &mod->data_surfaces[mod->firstmodelsurface];j < mod->nummodelsurfaces;j++, surface++)
if (surface->texture->basematerialflags & MATERIALFLAG_SKY)
break;
if (j < mod->nummodelsurfaces)
mod->DrawSky = R_Q1BSP_DrawSky;
for (j = 0, surface = &mod->data_surfaces[mod->firstmodelsurface];j < mod->nummodelsurfaces;j++, surface++)
if (surface->texture->basematerialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA))
break;
if (j < mod->nummodelsurfaces)
mod->DrawAddWaterPlanes = R_Q1BSP_DrawAddWaterPlanes;
// build lightstyle update chains
// (used to rapidly mark lightmapupdateflags on many surfaces
// when d_lightstylevalue changes)
memset(stylecounts, 0, sizeof(stylecounts));
for (k = 0;k < mod->nummodelsurfaces;k++)
{
surface = mod->data_surfaces + mod->firstmodelsurface + k;
for (j = 0;j < MAXLIGHTMAPS;j++)
stylecounts[surface->lightmapinfo->styles[j]]++;
}
mod->brushq1.num_lightstyles = 0;
for (k = 0;k < 255;k++)
{
if (stylecounts[k])
{
styleinfo[mod->brushq1.num_lightstyles].style = k;
styleinfo[mod->brushq1.num_lightstyles].value = 0;
styleinfo[mod->brushq1.num_lightstyles].numsurfaces = 0;
styleinfo[mod->brushq1.num_lightstyles].surfacelist = (int *)datapointer;datapointer += stylecounts[k] * sizeof(int);
remapstyles[k] = mod->brushq1.num_lightstyles;
mod->brushq1.num_lightstyles++;
}
}
for (k = 0;k < mod->nummodelsurfaces;k++)
{
surface = mod->data_surfaces + mod->firstmodelsurface + k;
for (j = 0;j < MAXLIGHTMAPS;j++)
{
if (surface->lightmapinfo->styles[j] != 255)
{
int r = remapstyles[surface->lightmapinfo->styles[j]];
styleinfo[r].surfacelist[styleinfo[r].numsurfaces++] = mod->firstmodelsurface + k;
}
}
}
mod->brushq1.data_lightstyleinfo = (model_brush_lightstyleinfo_t *)datapointer;datapointer += mod->brushq1.num_lightstyles * sizeof(model_brush_lightstyleinfo_t);
memcpy(mod->brushq1.data_lightstyleinfo, styleinfo, mod->brushq1.num_lightstyles * sizeof(model_brush_lightstyleinfo_t));
}
else
{
// LordHavoc: empty submodel(lacrima.bsp has such a glitch)
Con_Printf("warning: empty submodel *%i in %s\n", i+1, loadmodel->name);
}
//mod->brushq1.num_visleafs = bm->visleafs;
// build a Bounding Interval Hierarchy for culling triangles in light rendering
Mod_MakeCollisionBIH(mod, true, &mod->render_bih);
if (mod_q1bsp_polygoncollisions.integer)
{
mod->collision_bih = mod->render_bih;
// point traces and contents checks still use the bsp tree
mod->TraceLine = Mod_CollisionBIH_TraceLine;
mod->TraceBox = Mod_CollisionBIH_TraceBox;
mod->TraceBrush = Mod_CollisionBIH_TraceBrush;
mod->TraceLineAgainstSurfaces = Mod_CollisionBIH_TraceLineAgainstSurfaces;
}
// generate VBOs and other shared data before cloning submodels
if (i == 0)
{
Mod_BuildVBOs();
Mod_Q1BSP_LoadMapBrushes();
//Mod_Q1BSP_ProcessLightList();
}
}
Con_DPrintf("Stats for q1bsp model \"%s\": %i faces, %i nodes, %i leafs, %i visleafs, %i visleafportals, mesh: %i vertices, %i triangles, %i surfaces\n", loadmodel->name, loadmodel->num_surfaces, loadmodel->brush.num_nodes, loadmodel->brush.num_leafs, mod->brush.num_pvsclusters, loadmodel->brush.num_portals, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->num_surfaces);
}
static void Mod_Q2BSP_LoadEntities(lump_t *l)
{
}
static void Mod_Q2BSP_LoadPlanes(lump_t *l)
{
/*
d_t *in;
m_t *out;
int i, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q2BSP_LoadPlanes: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel-> = out;
loadmodel->num = count;
for (i = 0;i < count;i++, in++, out++)
{
}
*/
}
static void Mod_Q2BSP_LoadVertices(lump_t *l)
{
/*
d_t *in;
m_t *out;
int i, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q2BSP_LoadVertices: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel-> = out;
loadmodel->num = count;
for (i = 0;i < count;i++, in++, out++)
{
}
*/
}
static void Mod_Q2BSP_LoadVisibility(lump_t *l)
{
/*
d_t *in;
m_t *out;
int i, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q2BSP_LoadVisibility: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel-> = out;
loadmodel->num = count;
for (i = 0;i < count;i++, in++, out++)
{
}
*/
}
static void Mod_Q2BSP_LoadNodes(lump_t *l)
{
/*
d_t *in;
m_t *out;
int i, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q2BSP_LoadNodes: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel-> = out;
loadmodel->num = count;
for (i = 0;i < count;i++, in++, out++)
{
}
*/
}
static void Mod_Q2BSP_LoadTexInfo(lump_t *l)
{
/*
d_t *in;
m_t *out;
int i, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q2BSP_LoadTexInfo: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel-> = out;
loadmodel->num = count;
for (i = 0;i < count;i++, in++, out++)
{
}
*/
}
static void Mod_Q2BSP_LoadFaces(lump_t *l)
{
/*
d_t *in;
m_t *out;
int i, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q2BSP_LoadFaces: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel-> = out;
loadmodel->num = count;
for (i = 0;i < count;i++, in++, out++)
{
}
*/
}
static void Mod_Q2BSP_LoadLighting(lump_t *l)
{
/*
d_t *in;
m_t *out;
int i, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q2BSP_LoadLighting: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel-> = out;
loadmodel->num = count;
for (i = 0;i < count;i++, in++, out++)
{
}
*/
}
static void Mod_Q2BSP_LoadLeafs(lump_t *l)
{
/*
d_t *in;
m_t *out;
int i, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q2BSP_LoadLeafs: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel-> = out;
loadmodel->num = count;
for (i = 0;i < count;i++, in++, out++)
{
}
*/
}
static void Mod_Q2BSP_LoadLeafFaces(lump_t *l)
{
/*
d_t *in;
m_t *out;
int i, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q2BSP_LoadLeafFaces: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel-> = out;
loadmodel->num = count;
for (i = 0;i < count;i++, in++, out++)
{
}
*/
}
static void Mod_Q2BSP_LoadLeafBrushes(lump_t *l)
{
/*
d_t *in;
m_t *out;
int i, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q2BSP_LoadLeafBrushes: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel-> = out;
loadmodel->num = count;
for (i = 0;i < count;i++, in++, out++)
{
}
*/
}
static void Mod_Q2BSP_LoadEdges(lump_t *l)
{
/*
d_t *in;
m_t *out;
int i, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q2BSP_LoadEdges: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel-> = out;
loadmodel->num = count;
for (i = 0;i < count;i++, in++, out++)
{
}
*/
}
static void Mod_Q2BSP_LoadSurfEdges(lump_t *l)
{
/*
d_t *in;
m_t *out;
int i, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q2BSP_LoadSurfEdges: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel-> = out;
loadmodel->num = count;
for (i = 0;i < count;i++, in++, out++)
{
}
*/
}
static void Mod_Q2BSP_LoadBrushes(lump_t *l)
{
/*
d_t *in;
m_t *out;
int i, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q2BSP_LoadBrushes: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel-> = out;
loadmodel->num = count;
for (i = 0;i < count;i++, in++, out++)
{
}
*/
}
static void Mod_Q2BSP_LoadBrushSides(lump_t *l)
{
/*
d_t *in;
m_t *out;
int i, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q2BSP_LoadBrushSides: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel-> = out;
loadmodel->num = count;
for (i = 0;i < count;i++, in++, out++)
{
}
*/
}
static void Mod_Q2BSP_LoadAreas(lump_t *l)
{
/*
d_t *in;
m_t *out;
int i, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q2BSP_LoadAreas: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel-> = out;
loadmodel->num = count;
for (i = 0;i < count;i++, in++, out++)
{
}
*/
}
static void Mod_Q2BSP_LoadAreaPortals(lump_t *l)
{
/*
d_t *in;
m_t *out;
int i, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q2BSP_LoadAreaPortals: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel-> = out;
loadmodel->num = count;
for (i = 0;i < count;i++, in++, out++)
{
}
*/
}
static void Mod_Q2BSP_LoadModels(lump_t *l)
{
/*
d_t *in;
m_t *out;
int i, count;
in = (void *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q2BSP_LoadModels: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel-> = out;
loadmodel->num = count;
for (i = 0;i < count;i++, in++, out++)
{
}
*/
}
static void Mod_Q2BSP_Load(dp_model_t *mod, void *buffer, void *bufferend)
{
int i;
q2dheader_t *header;
Host_Error("Mod_Q2BSP_Load: not yet implemented");
mod->modeldatatypestring = "Q2BSP";
mod->type = mod_brushq2;
header = (q2dheader_t *)buffer;
i = LittleLong(header->version);
if (i != Q2BSPVERSION)
Host_Error("Mod_Q2BSP_Load: %s has wrong version number (%i, should be %i)", mod->name, i, Q2BSPVERSION);
mod_base = (unsigned char *)header;
// swap all the lumps
for (i = 0;i < (int) sizeof(*header) / 4;i++)
((int *)header)[i] = LittleLong(((int *)header)[i]);
mod->brush.qw_md4sum = 0;
mod->brush.qw_md4sum2 = 0;
for (i = 0;i < Q2HEADER_LUMPS;i++)
{
if (i == Q2LUMP_ENTITIES)
continue;
mod->brush.qw_md4sum ^= Com_BlockChecksum(mod_base + header->lumps[i].fileofs, header->lumps[i].filelen);
if (i == Q2LUMP_VISIBILITY || i == Q2LUMP_LEAFS || i == Q2LUMP_NODES)
continue;
mod->brush.qw_md4sum2 ^= Com_BlockChecksum(mod_base + header->lumps[i].fileofs, header->lumps[i].filelen);
}
Mod_Q2BSP_LoadEntities(&header->lumps[Q2LUMP_ENTITIES]);
Mod_Q2BSP_LoadPlanes(&header->lumps[Q2LUMP_PLANES]);
Mod_Q2BSP_LoadVertices(&header->lumps[Q2LUMP_VERTEXES]);
Mod_Q2BSP_LoadVisibility(&header->lumps[Q2LUMP_VISIBILITY]);
Mod_Q2BSP_LoadNodes(&header->lumps[Q2LUMP_NODES]);
Mod_Q2BSP_LoadTexInfo(&header->lumps[Q2LUMP_TEXINFO]);
Mod_Q2BSP_LoadFaces(&header->lumps[Q2LUMP_FACES]);
Mod_Q2BSP_LoadLighting(&header->lumps[Q2LUMP_LIGHTING]);
Mod_Q2BSP_LoadLeafs(&header->lumps[Q2LUMP_LEAFS]);
Mod_Q2BSP_LoadLeafFaces(&header->lumps[Q2LUMP_LEAFFACES]);
Mod_Q2BSP_LoadLeafBrushes(&header->lumps[Q2LUMP_LEAFBRUSHES]);
Mod_Q2BSP_LoadEdges(&header->lumps[Q2LUMP_EDGES]);
Mod_Q2BSP_LoadSurfEdges(&header->lumps[Q2LUMP_SURFEDGES]);
Mod_Q2BSP_LoadBrushes(&header->lumps[Q2LUMP_BRUSHES]);
Mod_Q2BSP_LoadBrushSides(&header->lumps[Q2LUMP_BRUSHSIDES]);
Mod_Q2BSP_LoadAreas(&header->lumps[Q2LUMP_AREAS]);
Mod_Q2BSP_LoadAreaPortals(&header->lumps[Q2LUMP_AREAPORTALS]);
// LordHavoc: must go last because this makes the submodels
Mod_Q2BSP_LoadModels(&header->lumps[Q2LUMP_MODELS]);
}
static int Mod_Q3BSP_SuperContentsFromNativeContents(dp_model_t *model, int nativecontents);
static int Mod_Q3BSP_NativeContentsFromSuperContents(dp_model_t *model, int supercontents);
static void Mod_Q3BSP_LoadEntities(lump_t *l)
{
const char *data;
char key[128], value[MAX_INPUTLINE];
float v[3];
loadmodel->brushq3.num_lightgrid_cellsize[0] = 64;
loadmodel->brushq3.num_lightgrid_cellsize[1] = 64;
loadmodel->brushq3.num_lightgrid_cellsize[2] = 128;
if (!l->filelen)
return;
loadmodel->brush.entities = (char *)Mem_Alloc(loadmodel->mempool, l->filelen + 1);
memcpy(loadmodel->brush.entities, mod_base + l->fileofs, l->filelen);
loadmodel->brush.entities[l->filelen] = 0;
data = loadmodel->brush.entities;
// some Q3 maps override the lightgrid_cellsize with a worldspawn key
// VorteX: q3map2 FS-R generates tangentspace deluxemaps for q3bsp and sets 'deluxeMaps' key
loadmodel->brushq3.deluxemapping = false;
if (data && COM_ParseToken_Simple(&data, false, false, true) && com_token[0] == '{')
{
while (1)
{
if (!COM_ParseToken_Simple(&data, false, false, true))
break; // error
if (com_token[0] == '}')
break; // end of worldspawn
if (com_token[0] == '_')
strlcpy(key, com_token + 1, sizeof(key));
else
strlcpy(key, com_token, sizeof(key));
while (key[strlen(key)-1] == ' ') // remove trailing spaces
key[strlen(key)-1] = 0;
if (!COM_ParseToken_Simple(&data, false, false, true))
break; // error
strlcpy(value, com_token, sizeof(value));
if (!strcasecmp("gridsize", key)) // this one is case insensitive to 100% match q3map2
{
#if _MSC_VER >= 1400
#define sscanf sscanf_s
#endif
#if 0
if (sscanf(value, "%f %f %f", &v[0], &v[1], &v[2]) == 3 && v[0] != 0 && v[1] != 0 && v[2] != 0)
VectorCopy(v, loadmodel->brushq3.num_lightgrid_cellsize);
#else
VectorSet(v, 64, 64, 128);
if(sscanf(value, "%f %f %f", &v[0], &v[1], &v[2]) != 3)
Con_Printf("Mod_Q3BSP_LoadEntities: funny gridsize \"%s\" in %s, interpreting as \"%f %f %f\" to match q3map2's parsing\n", value, loadmodel->name, v[0], v[1], v[2]);
if (v[0] != 0 && v[1] != 0 && v[2] != 0)
VectorCopy(v, loadmodel->brushq3.num_lightgrid_cellsize);
#endif
}
else if (!strcmp("deluxeMaps", key))
{
if (!strcmp(com_token, "1"))
{
loadmodel->brushq3.deluxemapping = true;
loadmodel->brushq3.deluxemapping_modelspace = true;
}
else if (!strcmp(com_token, "2"))
{
loadmodel->brushq3.deluxemapping = true;
loadmodel->brushq3.deluxemapping_modelspace = false;
}
}
}
}
}
static void Mod_Q3BSP_LoadTextures(lump_t *l)
{
q3dtexture_t *in;
texture_t *out;
int i, count;
in = (q3dtexture_t *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q3BSP_LoadTextures: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = (texture_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel->data_textures = out;
loadmodel->num_textures = count;
loadmodel->num_texturesperskin = loadmodel->num_textures;
for (i = 0;i < count;i++)
{
strlcpy (out[i].name, in[i].name, sizeof (out[i].name));
out[i].surfaceflags = LittleLong(in[i].surfaceflags);
out[i].supercontents = Mod_Q3BSP_SuperContentsFromNativeContents(loadmodel, LittleLong(in[i].contents));
Mod_LoadTextureFromQ3Shader(out + i, out[i].name, true, true, TEXF_MIPMAP | TEXF_ISWORLD | TEXF_PICMIP | TEXF_COMPRESS);
// restore the surfaceflags and supercontents
out[i].surfaceflags = LittleLong(in[i].surfaceflags);
out[i].supercontents = Mod_Q3BSP_SuperContentsFromNativeContents(loadmodel, LittleLong(in[i].contents));
}
}
static void Mod_Q3BSP_LoadPlanes(lump_t *l)
{
q3dplane_t *in;
mplane_t *out;
int i, count;
in = (q3dplane_t *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q3BSP_LoadPlanes: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = (mplane_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel->brush.data_planes = out;
loadmodel->brush.num_planes = count;
for (i = 0;i < count;i++, in++, out++)
{
out->normal[0] = LittleFloat(in->normal[0]);
out->normal[1] = LittleFloat(in->normal[1]);
out->normal[2] = LittleFloat(in->normal[2]);
out->dist = LittleFloat(in->dist);
PlaneClassify(out);
}
}
static void Mod_Q3BSP_LoadBrushSides(lump_t *l)
{
q3dbrushside_t *in;
q3mbrushside_t *out;
int i, n, count;
in = (q3dbrushside_t *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q3BSP_LoadBrushSides: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = (q3mbrushside_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel->brush.data_brushsides = out;
loadmodel->brush.num_brushsides = count;
for (i = 0;i < count;i++, in++, out++)
{
n = LittleLong(in->planeindex);
if (n < 0 || n >= loadmodel->brush.num_planes)
Host_Error("Mod_Q3BSP_LoadBrushSides: invalid planeindex %i (%i planes)", n, loadmodel->brush.num_planes);
out->plane = loadmodel->brush.data_planes + n;
n = LittleLong(in->textureindex);
if (n < 0 || n >= loadmodel->num_textures)
Host_Error("Mod_Q3BSP_LoadBrushSides: invalid textureindex %i (%i textures)", n, loadmodel->num_textures);
out->texture = loadmodel->data_textures + n;
}
}
static void Mod_Q3BSP_LoadBrushSides_IG(lump_t *l)
{
q3dbrushside_ig_t *in;
q3mbrushside_t *out;
int i, n, count;
in = (q3dbrushside_ig_t *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q3BSP_LoadBrushSides: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = (q3mbrushside_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel->brush.data_brushsides = out;
loadmodel->brush.num_brushsides = count;
for (i = 0;i < count;i++, in++, out++)
{
n = LittleLong(in->planeindex);
if (n < 0 || n >= loadmodel->brush.num_planes)
Host_Error("Mod_Q3BSP_LoadBrushSides: invalid planeindex %i (%i planes)", n, loadmodel->brush.num_planes);
out->plane = loadmodel->brush.data_planes + n;
n = LittleLong(in->textureindex);
if (n < 0 || n >= loadmodel->num_textures)
Host_Error("Mod_Q3BSP_LoadBrushSides: invalid textureindex %i (%i textures)", n, loadmodel->num_textures);
out->texture = loadmodel->data_textures + n;
}
}
static void Mod_Q3BSP_LoadBrushes(lump_t *l)
{
q3dbrush_t *in;
q3mbrush_t *out;
int i, j, n, c, count, maxplanes, q3surfaceflags;
colplanef_t *planes;
in = (q3dbrush_t *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q3BSP_LoadBrushes: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = (q3mbrush_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel->brush.data_brushes = out;
loadmodel->brush.num_brushes = count;
maxplanes = 0;
planes = NULL;
for (i = 0;i < count;i++, in++, out++)
{
n = LittleLong(in->firstbrushside);
c = LittleLong(in->numbrushsides);
if (n < 0 || n + c > loadmodel->brush.num_brushsides)
Host_Error("Mod_Q3BSP_LoadBrushes: invalid brushside range %i : %i (%i brushsides)", n, n + c, loadmodel->brush.num_brushsides);
out->firstbrushside = loadmodel->brush.data_brushsides + n;
out->numbrushsides = c;
n = LittleLong(in->textureindex);
if (n < 0 || n >= loadmodel->num_textures)
Host_Error("Mod_Q3BSP_LoadBrushes: invalid textureindex %i (%i textures)", n, loadmodel->num_textures);
out->texture = loadmodel->data_textures + n;
// make a list of mplane_t structs to construct a colbrush from
if (maxplanes < out->numbrushsides)
{
maxplanes = out->numbrushsides;
if (planes)
Mem_Free(planes);
planes = (colplanef_t *)Mem_Alloc(tempmempool, sizeof(colplanef_t) * maxplanes);
}
q3surfaceflags = 0;
for (j = 0;j < out->numbrushsides;j++)
{
VectorCopy(out->firstbrushside[j].plane->normal, planes[j].normal);
planes[j].dist = out->firstbrushside[j].plane->dist;
planes[j].q3surfaceflags = out->firstbrushside[j].texture->surfaceflags;
planes[j].texture = out->firstbrushside[j].texture;
q3surfaceflags |= planes[j].q3surfaceflags;
}
// make the colbrush from the planes
out->colbrushf = Collision_NewBrushFromPlanes(loadmodel->mempool, out->numbrushsides, planes, out->texture->supercontents, q3surfaceflags, out->texture, true);
// this whole loop can take a while (e.g. on redstarrepublic4)
CL_KeepaliveMessage(false);
}
if (planes)
Mem_Free(planes);
}
static void Mod_Q3BSP_LoadEffects(lump_t *l)
{
q3deffect_t *in;
q3deffect_t *out;
int i, n, count;
in = (q3deffect_t *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q3BSP_LoadEffects: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = (q3deffect_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel->brushq3.data_effects = out;
loadmodel->brushq3.num_effects = count;
for (i = 0;i < count;i++, in++, out++)
{
strlcpy (out->shadername, in->shadername, sizeof (out->shadername));
n = LittleLong(in->brushindex);
if (n >= loadmodel->brush.num_brushes)
{
Con_Printf("Mod_Q3BSP_LoadEffects: invalid brushindex %i (%i brushes), setting to -1\n", n, loadmodel->brush.num_brushes);
n = -1;
}
out->brushindex = n;
out->unknown = LittleLong(in->unknown);
}
}
static void Mod_Q3BSP_LoadVertices(lump_t *l)
{
q3dvertex_t *in;
int i, count;
in = (q3dvertex_t *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q3BSP_LoadVertices: funny lump size in %s",loadmodel->name);
loadmodel->brushq3.num_vertices = count = l->filelen / sizeof(*in);
loadmodel->brushq3.data_vertex3f = (float *)Mem_Alloc(loadmodel->mempool, count * (sizeof(float) * (3 + 3 + 2 + 2 + 4)));
loadmodel->brushq3.data_normal3f = loadmodel->brushq3.data_vertex3f + count * 3;
loadmodel->brushq3.data_texcoordtexture2f = loadmodel->brushq3.data_normal3f + count * 3;
loadmodel->brushq3.data_texcoordlightmap2f = loadmodel->brushq3.data_texcoordtexture2f + count * 2;
loadmodel->brushq3.data_color4f = loadmodel->brushq3.data_texcoordlightmap2f + count * 2;
for (i = 0;i < count;i++, in++)
{
loadmodel->brushq3.data_vertex3f[i * 3 + 0] = LittleFloat(in->origin3f[0]);
loadmodel->brushq3.data_vertex3f[i * 3 + 1] = LittleFloat(in->origin3f[1]);
loadmodel->brushq3.data_vertex3f[i * 3 + 2] = LittleFloat(in->origin3f[2]);
loadmodel->brushq3.data_normal3f[i * 3 + 0] = LittleFloat(in->normal3f[0]);
loadmodel->brushq3.data_normal3f[i * 3 + 1] = LittleFloat(in->normal3f[1]);
loadmodel->brushq3.data_normal3f[i * 3 + 2] = LittleFloat(in->normal3f[2]);
loadmodel->brushq3.data_texcoordtexture2f[i * 2 + 0] = LittleFloat(in->texcoord2f[0]);
loadmodel->brushq3.data_texcoordtexture2f[i * 2 + 1] = LittleFloat(in->texcoord2f[1]);
loadmodel->brushq3.data_texcoordlightmap2f[i * 2 + 0] = LittleFloat(in->lightmap2f[0]);
loadmodel->brushq3.data_texcoordlightmap2f[i * 2 + 1] = LittleFloat(in->lightmap2f[1]);
// svector/tvector are calculated later in face loading
if(mod_q3bsp_sRGBlightmaps.integer)
{
// if lightmaps are sRGB, vertex colors are sRGB too, so we need to linearize them
// note: when this is in use, lightmap color 128 is no longer neutral, but "sRGB half power" is
// working like this may be odd, but matches q3map2 -gamma 2.2
if(vid_sRGB.integer && vid_sRGB_fallback.integer && !vid.sRGB3D)
{
loadmodel->brushq3.data_color4f[i * 4 + 0] = in->color4ub[0] * (1.0f / 255.0f);
loadmodel->brushq3.data_color4f[i * 4 + 1] = in->color4ub[1] * (1.0f / 255.0f);
loadmodel->brushq3.data_color4f[i * 4 + 2] = in->color4ub[2] * (1.0f / 255.0f);
// we fix the brightness consistently via lightmapscale
}
else
{
loadmodel->brushq3.data_color4f[i * 4 + 0] = Image_LinearFloatFromsRGB(in->color4ub[0]);
loadmodel->brushq3.data_color4f[i * 4 + 1] = Image_LinearFloatFromsRGB(in->color4ub[1]);
loadmodel->brushq3.data_color4f[i * 4 + 2] = Image_LinearFloatFromsRGB(in->color4ub[2]);
}
}
else
{
if(vid_sRGB.integer && vid_sRGB_fallback.integer && !vid.sRGB3D)
{
loadmodel->brushq3.data_color4f[i * 4 + 0] = Image_sRGBFloatFromLinear_Lightmap(in->color4ub[0]);
loadmodel->brushq3.data_color4f[i * 4 + 1] = Image_sRGBFloatFromLinear_Lightmap(in->color4ub[1]);
loadmodel->brushq3.data_color4f[i * 4 + 2] = Image_sRGBFloatFromLinear_Lightmap(in->color4ub[2]);
}
else
{
loadmodel->brushq3.data_color4f[i * 4 + 0] = in->color4ub[0] * (1.0f / 255.0f);
loadmodel->brushq3.data_color4f[i * 4 + 1] = in->color4ub[1] * (1.0f / 255.0f);
loadmodel->brushq3.data_color4f[i * 4 + 2] = in->color4ub[2] * (1.0f / 255.0f);
}
}
loadmodel->brushq3.data_color4f[i * 4 + 3] = in->color4ub[3] * (1.0f / 255.0f);
if(in->color4ub[0] != 255 || in->color4ub[1] != 255 || in->color4ub[2] != 255)
loadmodel->lit = true;
}
}
static void Mod_Q3BSP_LoadTriangles(lump_t *l)
{
int *in;
int *out;
int i, count;
in = (int *)(mod_base + l->fileofs);
if (l->filelen % sizeof(int[3]))
Host_Error("Mod_Q3BSP_LoadTriangles: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
if(!loadmodel->brushq3.num_vertices)
{
if (count)
Con_Printf("Mod_Q3BSP_LoadTriangles: %s has triangles but no vertexes, broken compiler, ignoring problem\n", loadmodel->name);
loadmodel->brushq3.num_triangles = 0;
return;
}
out = (int *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel->brushq3.num_triangles = count / 3;
loadmodel->brushq3.data_element3i = out;
for (i = 0;i < count;i++, in++, out++)
{
*out = LittleLong(*in);
if (*out < 0 || *out >= loadmodel->brushq3.num_vertices)
{
Con_Printf("Mod_Q3BSP_LoadTriangles: invalid vertexindex %i (%i vertices), setting to 0\n", *out, loadmodel->brushq3.num_vertices);
*out = 0;
}
}
}
static void Mod_Q3BSP_LoadLightmaps(lump_t *l, lump_t *faceslump)
{
q3dlightmap_t *input_pointer;
int i;
int j;
int k;
int count;
int powerx;
int powery;
int powerxy;
int powerdxy;
int endlightmap;
int mergegoal;
int lightmapindex;
int realcount;
int realindex;
int mergedwidth;
int mergedheight;
int mergedcolumns;
int mergedrows;
int mergedrowsxcolumns;
int size;
int bytesperpixel;
int rgbmap[3];
unsigned char *c;
unsigned char *mergedpixels;
unsigned char *mergeddeluxepixels;
unsigned char *mergebuf;
char mapname[MAX_QPATH];
qboolean external;
unsigned char *inpixels[10000]; // max count q3map2 can output (it uses 4 digits)
char vabuf[1024];
// defaults for q3bsp
size = 128;
bytesperpixel = 3;
rgbmap[0] = 2;
rgbmap[1] = 1;
rgbmap[2] = 0;
external = false;
loadmodel->brushq3.lightmapsize = 128;
if (cls.state == ca_dedicated)
return;
if(mod_q3bsp_nolightmaps.integer)
{
return;
}
else if(l->filelen)
{
// prefer internal LMs for compatibility (a BSP contains no info on whether external LMs exist)
if (developer_loading.integer)
Con_Printf("Using internal lightmaps\n");
input_pointer = (q3dlightmap_t *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*input_pointer))
Host_Error("Mod_Q3BSP_LoadLightmaps: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*input_pointer);
for(i = 0; i < count; ++i)
inpixels[i] = input_pointer[i].rgb;
}
else
{
// no internal lightmaps
// try external lightmaps
if (developer_loading.integer)
Con_Printf("Using external lightmaps\n");
FS_StripExtension(loadmodel->name, mapname, sizeof(mapname));
inpixels[0] = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s/lm_%04d", mapname, 0), false, false, false, NULL);
if(!inpixels[0])
return;
// using EXTERNAL lightmaps instead
if(image_width != (int) CeilPowerOf2(image_width) || image_width != image_height)
{
Mem_Free(inpixels[0]);
Host_Error("Mod_Q3BSP_LoadLightmaps: invalid external lightmap size in %s",loadmodel->name);
}
size = image_width;
bytesperpixel = 4;
rgbmap[0] = 0;
rgbmap[1] = 1;
rgbmap[2] = 2;
external = true;
for(count = 1; ; ++count)
{
inpixels[count] = loadimagepixelsbgra(va(vabuf, sizeof(vabuf), "%s/lm_%04d", mapname, count), false, false, false, NULL);
if(!inpixels[count])
break; // we got all of them
if(image_width != size || image_height != size)
{
Mem_Free(inpixels[count]);
inpixels[count] = NULL;
Con_Printf("Mod_Q3BSP_LoadLightmaps: mismatched lightmap size in %s - external lightmap %s/lm_%04d does not match earlier ones\n", loadmodel->name, mapname, count);
break;
}
}
}
loadmodel->brushq3.lightmapsize = size;
loadmodel->brushq3.num_originallightmaps = count;
// now check the surfaces to see if any of them index an odd numbered
// lightmap, if so this is not a deluxemapped bsp file
//
// also check what lightmaps are actually used, because q3map2 sometimes
// (always?) makes an unused one at the end, which
// q3map2 sometimes (or always?) makes a second blank lightmap for no
// reason when only one lightmap is used, which can throw off the
// deluxemapping detection method, so check 2-lightmap bsp's specifically
// to see if the second lightmap is blank, if so it is not deluxemapped.
// VorteX: autodetect only if previous attempt to find "deluxeMaps" key
// in Mod_Q3BSP_LoadEntities was failed
if (!loadmodel->brushq3.deluxemapping)
{
loadmodel->brushq3.deluxemapping = !(count & 1);
loadmodel->brushq3.deluxemapping_modelspace = true;
endlightmap = 0;
if (loadmodel->brushq3.deluxemapping)
{
int facecount = faceslump->filelen / sizeof(q3dface_t);
q3dface_t *faces = (q3dface_t *)(mod_base + faceslump->fileofs);
for (i = 0;i < facecount;i++)
{
j = LittleLong(faces[i].lightmapindex);
if (j >= 0)
{
endlightmap = max(endlightmap, j + 1);
if ((j & 1) || j + 1 >= count)
{
loadmodel->brushq3.deluxemapping = false;
break;
}
}
}
}
// q3map2 sometimes (or always?) makes a second blank lightmap for no
// reason when only one lightmap is used, which can throw off the
// deluxemapping detection method, so check 2-lightmap bsp's specifically
// to see if the second lightmap is blank, if so it is not deluxemapped.
//
// further research has shown q3map2 sometimes creates a deluxemap and two
// blank lightmaps, which must be handled properly as well
if (endlightmap == 1 && count > 1)
{
c = inpixels[1];
for (i = 0;i < size*size;i++)
{
if (c[bytesperpixel*i + rgbmap[0]])
break;
if (c[bytesperpixel*i + rgbmap[1]])
break;
if (c[bytesperpixel*i + rgbmap[2]])
break;
}
if (i == size*size)
{
// all pixels in the unused lightmap were black...
loadmodel->brushq3.deluxemapping = false;
}
}
}
Con_DPrintf("%s is %sdeluxemapped\n", loadmodel->name, loadmodel->brushq3.deluxemapping ? "" : "not ");
// figure out what the most reasonable merge power is within limits
// find the appropriate NxN dimensions to merge to, to avoid wasted space
realcount = count >> (int)loadmodel->brushq3.deluxemapping;
// figure out how big the merged texture has to be
mergegoal = 128<<bound(0, mod_q3bsp_lightmapmergepower.integer, 6);
mergegoal = bound(size, mergegoal, (int)vid.maxtexturesize_2d);
while (mergegoal > size && mergegoal * mergegoal / 4 >= size * size * realcount)
mergegoal /= 2;
mergedwidth = mergegoal;
mergedheight = mergegoal;
// choose non-square size (2x1 aspect) if only half the space is used;
// this really only happens when the entire set fits in one texture, if
// there are multiple textures, we don't worry about shrinking the last
// one to fit, because the driver prefers the same texture size on
// consecutive draw calls...
if (mergedwidth * mergedheight / 2 >= size*size*realcount)
mergedheight /= 2;
loadmodel->brushq3.num_lightmapmergedwidthpower = 0;
loadmodel->brushq3.num_lightmapmergedheightpower = 0;
while (mergedwidth > size<<loadmodel->brushq3.num_lightmapmergedwidthpower)
loadmodel->brushq3.num_lightmapmergedwidthpower++;
while (mergedheight > size<<loadmodel->brushq3.num_lightmapmergedheightpower)
loadmodel->brushq3.num_lightmapmergedheightpower++;
loadmodel->brushq3.num_lightmapmergedwidthheightdeluxepower = loadmodel->brushq3.num_lightmapmergedwidthpower + loadmodel->brushq3.num_lightmapmergedheightpower + (loadmodel->brushq3.deluxemapping ? 1 : 0);
powerx = loadmodel->brushq3.num_lightmapmergedwidthpower;
powery = loadmodel->brushq3.num_lightmapmergedheightpower;
powerxy = powerx+powery;
powerdxy = loadmodel->brushq3.deluxemapping + powerxy;
mergedcolumns = 1 << powerx;
mergedrows = 1 << powery;
mergedrowsxcolumns = 1 << powerxy;
loadmodel->brushq3.num_mergedlightmaps = (realcount + (1 << powerxy) - 1) >> powerxy;
loadmodel->brushq3.data_lightmaps = (rtexture_t **)Mem_Alloc(loadmodel->mempool, loadmodel->brushq3.num_mergedlightmaps * sizeof(rtexture_t *));
if (loadmodel->brushq3.deluxemapping)
loadmodel->brushq3.data_deluxemaps = (rtexture_t **)Mem_Alloc(loadmodel->mempool, loadmodel->brushq3.num_mergedlightmaps * sizeof(rtexture_t *));
// allocate a texture pool if we need it
if (loadmodel->texturepool == NULL && cls.state != ca_dedicated)
loadmodel->texturepool = R_AllocTexturePool();
mergedpixels = (unsigned char *) Mem_Alloc(tempmempool, mergedwidth * mergedheight * 4);
mergeddeluxepixels = loadmodel->brushq3.deluxemapping ? (unsigned char *) Mem_Alloc(tempmempool, mergedwidth * mergedheight * 4) : NULL;
for (i = 0;i < count;i++)
{
// figure out which merged lightmap texture this fits into
realindex = i >> (int)loadmodel->brushq3.deluxemapping;
lightmapindex = i >> powerdxy;
// choose the destination address
mergebuf = (loadmodel->brushq3.deluxemapping && (i & 1)) ? mergeddeluxepixels : mergedpixels;
mergebuf += 4 * (realindex & (mergedcolumns-1))*size + 4 * ((realindex >> powerx) & (mergedrows-1))*mergedwidth*size;
if ((i & 1) == 0 || !loadmodel->brushq3.deluxemapping)
Con_DPrintf("copying original lightmap %i (%ix%i) to %i (at %i,%i)\n", i, size, size, lightmapindex, (realindex & (mergedcolumns-1))*size, ((realindex >> powerx) & (mergedrows-1))*size);
// convert pixels from RGB or BGRA while copying them into the destination rectangle
for (j = 0;j < size;j++)
for (k = 0;k < size;k++)
{
mergebuf[(j*mergedwidth+k)*4+0] = inpixels[i][(j*size+k)*bytesperpixel+rgbmap[0]];
mergebuf[(j*mergedwidth+k)*4+1] = inpixels[i][(j*size+k)*bytesperpixel+rgbmap[1]];
mergebuf[(j*mergedwidth+k)*4+2] = inpixels[i][(j*size+k)*bytesperpixel+rgbmap[2]];
mergebuf[(j*mergedwidth+k)*4+3] = 255;
}
// upload texture if this was the last tile being written to the texture
if (((realindex + 1) & (mergedrowsxcolumns - 1)) == 0 || (realindex + 1) == realcount)
{
if (loadmodel->brushq3.deluxemapping && (i & 1))
loadmodel->brushq3.data_deluxemaps[lightmapindex] = R_LoadTexture2D(loadmodel->texturepool, va(vabuf, sizeof(vabuf), "deluxemap%04i", lightmapindex), mergedwidth, mergedheight, mergeddeluxepixels, TEXTYPE_BGRA, TEXF_FORCELINEAR | (gl_texturecompression_q3bspdeluxemaps.integer ? TEXF_COMPRESS : 0), -1, NULL);
else
{
if(mod_q3bsp_sRGBlightmaps.integer)
{
textype_t t;
if(vid_sRGB.integer && vid_sRGB_fallback.integer && !vid.sRGB3D)
{
t = TEXTYPE_BGRA; // in stupid fallback mode, we upload lightmaps in sRGB form and just fix their brightness
// we fix the brightness consistently via lightmapscale
}
else
t = TEXTYPE_SRGB_BGRA; // normally, we upload lightmaps in sRGB form (possibly downconverted to linear)
loadmodel->brushq3.data_lightmaps [lightmapindex] = R_LoadTexture2D(loadmodel->texturepool, va(vabuf, sizeof(vabuf), "lightmap%04i", lightmapindex), mergedwidth, mergedheight, mergedpixels, t, TEXF_FORCELINEAR | (gl_texturecompression_q3bsplightmaps.integer ? TEXF_COMPRESS : 0), -1, NULL);
}
else
{
if(vid_sRGB.integer && vid_sRGB_fallback.integer && !vid.sRGB3D)
Image_MakesRGBColorsFromLinear_Lightmap(mergedpixels, mergedpixels, mergedwidth * mergedheight);
loadmodel->brushq3.data_lightmaps [lightmapindex] = R_LoadTexture2D(loadmodel->texturepool, va(vabuf, sizeof(vabuf), "lightmap%04i", lightmapindex), mergedwidth, mergedheight, mergedpixels, TEXTYPE_BGRA, TEXF_FORCELINEAR | (gl_texturecompression_q3bsplightmaps.integer ? TEXF_COMPRESS : 0), -1, NULL);
}
}
}
}
if (mergeddeluxepixels)
Mem_Free(mergeddeluxepixels);
Mem_Free(mergedpixels);
if(external)
{
for(i = 0; i < count; ++i)
Mem_Free(inpixels[i]);
}
}
static void Mod_Q3BSP_BuildBBoxes(const int *element3i, int num_triangles, const float *vertex3f, float **collisionbbox6f, int *collisionstride, int stride)
{
int j, k, cnt, tri;
float *mins, *maxs;
const float *vert;
*collisionstride = stride;
if(stride > 0)
{
cnt = (num_triangles + stride - 1) / stride;
*collisionbbox6f = (float *) Mem_Alloc(loadmodel->mempool, sizeof(float[6]) * cnt);
for(j = 0; j < cnt; ++j)
{
mins = &((*collisionbbox6f)[6 * j + 0]);
maxs = &((*collisionbbox6f)[6 * j + 3]);
for(k = 0; k < stride; ++k)
{
tri = j * stride + k;
if(tri >= num_triangles)
break;
vert = &(vertex3f[element3i[3 * tri + 0] * 3]);
if(!k || vert[0] < mins[0]) mins[0] = vert[0];
if(!k || vert[1] < mins[1]) mins[1] = vert[1];
if(!k || vert[2] < mins[2]) mins[2] = vert[2];
if(!k || vert[0] > maxs[0]) maxs[0] = vert[0];
if(!k || vert[1] > maxs[1]) maxs[1] = vert[1];
if(!k || vert[2] > maxs[2]) maxs[2] = vert[2];
vert = &(vertex3f[element3i[3 * tri + 1] * 3]);
if(vert[0] < mins[0]) mins[0] = vert[0];
if(vert[1] < mins[1]) mins[1] = vert[1];
if(vert[2] < mins[2]) mins[2] = vert[2];
if(vert[0] > maxs[0]) maxs[0] = vert[0];
if(vert[1] > maxs[1]) maxs[1] = vert[1];
if(vert[2] > maxs[2]) maxs[2] = vert[2];
vert = &(vertex3f[element3i[3 * tri + 2] * 3]);
if(vert[0] < mins[0]) mins[0] = vert[0];
if(vert[1] < mins[1]) mins[1] = vert[1];
if(vert[2] < mins[2]) mins[2] = vert[2];
if(vert[0] > maxs[0]) maxs[0] = vert[0];
if(vert[1] > maxs[1]) maxs[1] = vert[1];
if(vert[2] > maxs[2]) maxs[2] = vert[2];
}
}
}
else
*collisionbbox6f = NULL;
}
typedef struct patchtess_s
{
patchinfo_t info;
// Auxiliary data used only by patch loading code in Mod_Q3BSP_LoadFaces
int surface_id;
float lodgroup[6];
float *originalvertex3f;
} patchtess_t;
#define PATCHTESS_SAME_LODGROUP(a,b) \
( \
(a).lodgroup[0] == (b).lodgroup[0] && \
(a).lodgroup[1] == (b).lodgroup[1] && \
(a).lodgroup[2] == (b).lodgroup[2] && \
(a).lodgroup[3] == (b).lodgroup[3] && \
(a).lodgroup[4] == (b).lodgroup[4] && \
(a).lodgroup[5] == (b).lodgroup[5] \
)
static void Mod_Q3BSP_LoadFaces(lump_t *l)
{
q3dface_t *in, *oldin;
msurface_t *out, *oldout;
int i, oldi, j, n, count, invalidelements, patchsize[2], finalwidth, finalheight, xtess, ytess, finalvertices, finaltriangles, firstvertex, firstelement, type, oldnumtriangles, oldnumtriangles2, meshvertices, meshtriangles, collisionvertices, collisiontriangles, numvertices, numtriangles, cxtess, cytess;
float lightmaptcbase[2], lightmaptcscale[2];
//int *originalelement3i;
//int *originalneighbor3i;
float *originalvertex3f;
//float *originalsvector3f;
//float *originaltvector3f;
float *originalnormal3f;
float *originalcolor4f;
float *originaltexcoordtexture2f;
float *originaltexcoordlightmap2f;
float *surfacecollisionvertex3f;
int *surfacecollisionelement3i;
float *v;
patchtess_t *patchtess = NULL;
int patchtesscount = 0;
qboolean again;
in = (q3dface_t *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q3BSP_LoadFaces: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = (msurface_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel->data_surfaces = out;
loadmodel->num_surfaces = count;
if(count > 0)
patchtess = (patchtess_t*) Mem_Alloc(tempmempool, count * sizeof(*patchtess));
i = 0;
oldi = i;
oldin = in;
oldout = out;
meshvertices = 0;
meshtriangles = 0;
for (;i < count;i++, in++, out++)
{
// check face type first
type = LittleLong(in->type);
if (type != Q3FACETYPE_FLAT
&& type != Q3FACETYPE_PATCH
&& type != Q3FACETYPE_MESH
&& type != Q3FACETYPE_FLARE)
{
Con_DPrintf("Mod_Q3BSP_LoadFaces: face #%i: unknown face type %i\n", i, type);
continue;
}
n = LittleLong(in->textureindex);
if (n < 0 || n >= loadmodel->num_textures)
{
Con_DPrintf("Mod_Q3BSP_LoadFaces: face #%i: invalid textureindex %i (%i textures)\n", i, n, loadmodel->num_textures);
continue;
}
out->texture = loadmodel->data_textures + n;
n = LittleLong(in->effectindex);
if (n < -1 || n >= loadmodel->brushq3.num_effects)
{
if (developer_extra.integer)
Con_DPrintf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid effectindex %i (%i effects)\n", i, out->texture->name, n, loadmodel->brushq3.num_effects);
n = -1;
}
if (n == -1)
out->effect = NULL;
else
out->effect = loadmodel->brushq3.data_effects + n;
if (cls.state != ca_dedicated)
{
out->lightmaptexture = NULL;
out->deluxemaptexture = r_texture_blanknormalmap;
n = LittleLong(in->lightmapindex);
if (n < 0)
n = -1;
else if (n >= loadmodel->brushq3.num_originallightmaps)
{
if(loadmodel->brushq3.num_originallightmaps != 0)
Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid lightmapindex %i (%i lightmaps)\n", i, out->texture->name, n, loadmodel->brushq3.num_originallightmaps);
n = -1;
}
else
{
out->lightmaptexture = loadmodel->brushq3.data_lightmaps[n >> loadmodel->brushq3.num_lightmapmergedwidthheightdeluxepower];
if (loadmodel->brushq3.deluxemapping)
out->deluxemaptexture = loadmodel->brushq3.data_deluxemaps[n >> loadmodel->brushq3.num_lightmapmergedwidthheightdeluxepower];
loadmodel->lit = true;
}
}
firstvertex = LittleLong(in->firstvertex);
numvertices = LittleLong(in->numvertices);
firstelement = LittleLong(in->firstelement);
numtriangles = LittleLong(in->numelements) / 3;
if (numtriangles * 3 != LittleLong(in->numelements))
{
Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): numelements %i is not a multiple of 3\n", i, out->texture->name, LittleLong(in->numelements));
continue;
}
if (firstvertex < 0 || firstvertex + numvertices > loadmodel->brushq3.num_vertices)
{
Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid vertex range %i : %i (%i vertices)\n", i, out->texture->name, firstvertex, firstvertex + numvertices, loadmodel->brushq3.num_vertices);
continue;
}
if (firstelement < 0 || firstelement + numtriangles * 3 > loadmodel->brushq3.num_triangles * 3)
{
Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid element range %i : %i (%i elements)\n", i, out->texture->name, firstelement, firstelement + numtriangles * 3, loadmodel->brushq3.num_triangles * 3);
continue;
}
switch(type)
{
case Q3FACETYPE_FLAT:
case Q3FACETYPE_MESH:
// no processing necessary
break;
case Q3FACETYPE_PATCH:
patchsize[0] = LittleLong(in->specific.patch.patchsize[0]);
patchsize[1] = LittleLong(in->specific.patch.patchsize[1]);
if (numvertices != (patchsize[0] * patchsize[1]) || patchsize[0] < 3 || patchsize[1] < 3 || !(patchsize[0] & 1) || !(patchsize[1] & 1) || patchsize[0] * patchsize[1] >= min(r_subdivisions_maxvertices.integer, r_subdivisions_collision_maxvertices.integer))
{
Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid patchsize %ix%i\n", i, out->texture->name, patchsize[0], patchsize[1]);
continue;
}
originalvertex3f = loadmodel->brushq3.data_vertex3f + firstvertex * 3;
// convert patch to Q3FACETYPE_MESH
xtess = Q3PatchTesselationOnX(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_tolerance.value);
ytess = Q3PatchTesselationOnY(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_tolerance.value);
// bound to user settings
xtess = bound(r_subdivisions_mintess.integer, xtess, r_subdivisions_maxtess.integer);
ytess = bound(r_subdivisions_mintess.integer, ytess, r_subdivisions_maxtess.integer);
// bound to sanity settings
xtess = bound(0, xtess, 1024);
ytess = bound(0, ytess, 1024);
// lower quality collision patches! Same procedure as before, but different cvars
// convert patch to Q3FACETYPE_MESH
cxtess = Q3PatchTesselationOnX(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_collision_tolerance.value);
cytess = Q3PatchTesselationOnY(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_collision_tolerance.value);
// bound to user settings
cxtess = bound(r_subdivisions_collision_mintess.integer, cxtess, r_subdivisions_collision_maxtess.integer);
cytess = bound(r_subdivisions_collision_mintess.integer, cytess, r_subdivisions_collision_maxtess.integer);
// bound to sanity settings
cxtess = bound(0, cxtess, 1024);
cytess = bound(0, cytess, 1024);
// store it for the LOD grouping step
patchtess[patchtesscount].info.xsize = patchsize[0];
patchtess[patchtesscount].info.ysize = patchsize[1];
patchtess[patchtesscount].info.lods[PATCH_LOD_VISUAL].xtess = xtess;
patchtess[patchtesscount].info.lods[PATCH_LOD_VISUAL].ytess = ytess;
patchtess[patchtesscount].info.lods[PATCH_LOD_COLLISION].xtess = cxtess;
patchtess[patchtesscount].info.lods[PATCH_LOD_COLLISION].ytess = cytess;
patchtess[patchtesscount].surface_id = i;
patchtess[patchtesscount].lodgroup[0] = LittleFloat(in->specific.patch.mins[0]);
patchtess[patchtesscount].lodgroup[1] = LittleFloat(in->specific.patch.mins[1]);
patchtess[patchtesscount].lodgroup[2] = LittleFloat(in->specific.patch.mins[2]);
patchtess[patchtesscount].lodgroup[3] = LittleFloat(in->specific.patch.maxs[0]);
patchtess[patchtesscount].lodgroup[4] = LittleFloat(in->specific.patch.maxs[1]);
patchtess[patchtesscount].lodgroup[5] = LittleFloat(in->specific.patch.maxs[2]);
patchtess[patchtesscount].originalvertex3f = originalvertex3f;
++patchtesscount;
break;
case Q3FACETYPE_FLARE:
if (developer_extra.integer)
Con_DPrintf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): Q3FACETYPE_FLARE not supported (yet)\n", i, out->texture->name);
// don't render it
continue;
}
out->num_vertices = numvertices;
out->num_triangles = numtriangles;
meshvertices += out->num_vertices;
meshtriangles += out->num_triangles;
}
// Fix patches tesselations so that they make no seams
do
{
again = false;
for(i = 0; i < patchtesscount; ++i)
{
for(j = i+1; j < patchtesscount; ++j)
{
if (!PATCHTESS_SAME_LODGROUP(patchtess[i], patchtess[j]))
continue;
if (Q3PatchAdjustTesselation(3, &patchtess[i].info, patchtess[i].originalvertex3f, &patchtess[j].info, patchtess[j].originalvertex3f) )
again = true;
}
}
}
while (again);
// Calculate resulting number of triangles
collisionvertices = 0;
collisiontriangles = 0;
for(i = 0; i < patchtesscount; ++i)
{
finalwidth = Q3PatchDimForTess(patchtess[i].info.xsize, patchtess[i].info.lods[PATCH_LOD_VISUAL].xtess);
finalheight = Q3PatchDimForTess(patchtess[i].info.ysize,patchtess[i].info.lods[PATCH_LOD_VISUAL].ytess);
numvertices = finalwidth * finalheight;
numtriangles = (finalwidth - 1) * (finalheight - 1) * 2;
oldout[patchtess[i].surface_id].num_vertices = numvertices;
oldout[patchtess[i].surface_id].num_triangles = numtriangles;
meshvertices += oldout[patchtess[i].surface_id].num_vertices;
meshtriangles += oldout[patchtess[i].surface_id].num_triangles;
finalwidth = Q3PatchDimForTess(patchtess[i].info.xsize, patchtess[i].info.lods[PATCH_LOD_COLLISION].xtess);
finalheight = Q3PatchDimForTess(patchtess[i].info.ysize,patchtess[i].info.lods[PATCH_LOD_COLLISION].ytess);
numvertices = finalwidth * finalheight;
numtriangles = (finalwidth - 1) * (finalheight - 1) * 2;
oldout[patchtess[i].surface_id].num_collisionvertices = numvertices;
oldout[patchtess[i].surface_id].num_collisiontriangles = numtriangles;
collisionvertices += oldout[patchtess[i].surface_id].num_collisionvertices;
collisiontriangles += oldout[patchtess[i].surface_id].num_collisiontriangles;
}
i = oldi;
in = oldin;
out = oldout;
Mod_AllocSurfMesh(loadmodel->mempool, meshvertices, meshtriangles, false, true, false);
if (collisiontriangles)
{
loadmodel->brush.data_collisionvertex3f = (float *)Mem_Alloc(loadmodel->mempool, collisionvertices * sizeof(float[3]));
loadmodel->brush.data_collisionelement3i = (int *)Mem_Alloc(loadmodel->mempool, collisiontriangles * sizeof(int[3]));
}
meshvertices = 0;
meshtriangles = 0;
collisionvertices = 0;
collisiontriangles = 0;
for (;i < count && meshvertices + out->num_vertices <= loadmodel->surfmesh.num_vertices;i++, in++, out++)
{
if (out->num_vertices < 3 || out->num_triangles < 1)
continue;
type = LittleLong(in->type);
firstvertex = LittleLong(in->firstvertex);
firstelement = LittleLong(in->firstelement);
out->num_firstvertex = meshvertices;
out->num_firsttriangle = meshtriangles;
out->num_firstcollisiontriangle = collisiontriangles;
switch(type)
{
case Q3FACETYPE_FLAT:
case Q3FACETYPE_MESH:
// no processing necessary, except for lightmap merging
for (j = 0;j < out->num_vertices;j++)
{
(loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[j * 3 + 0] = loadmodel->brushq3.data_vertex3f[(firstvertex + j) * 3 + 0];
(loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[j * 3 + 1] = loadmodel->brushq3.data_vertex3f[(firstvertex + j) * 3 + 1];
(loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[j * 3 + 2] = loadmodel->brushq3.data_vertex3f[(firstvertex + j) * 3 + 2];
(loadmodel->surfmesh.data_normal3f + 3 * out->num_firstvertex)[j * 3 + 0] = loadmodel->brushq3.data_normal3f[(firstvertex + j) * 3 + 0];
(loadmodel->surfmesh.data_normal3f + 3 * out->num_firstvertex)[j * 3 + 1] = loadmodel->brushq3.data_normal3f[(firstvertex + j) * 3 + 1];
(loadmodel->surfmesh.data_normal3f + 3 * out->num_firstvertex)[j * 3 + 2] = loadmodel->brushq3.data_normal3f[(firstvertex + j) * 3 + 2];
(loadmodel->surfmesh.data_texcoordtexture2f + 2 * out->num_firstvertex)[j * 2 + 0] = loadmodel->brushq3.data_texcoordtexture2f[(firstvertex + j) * 2 + 0];
(loadmodel->surfmesh.data_texcoordtexture2f + 2 * out->num_firstvertex)[j * 2 + 1] = loadmodel->brushq3.data_texcoordtexture2f[(firstvertex + j) * 2 + 1];
(loadmodel->surfmesh.data_texcoordlightmap2f + 2 * out->num_firstvertex)[j * 2 + 0] = loadmodel->brushq3.data_texcoordlightmap2f[(firstvertex + j) * 2 + 0];
(loadmodel->surfmesh.data_texcoordlightmap2f + 2 * out->num_firstvertex)[j * 2 + 1] = loadmodel->brushq3.data_texcoordlightmap2f[(firstvertex + j) * 2 + 1];
(loadmodel->surfmesh.data_lightmapcolor4f + 4 * out->num_firstvertex)[j * 4 + 0] = loadmodel->brushq3.data_color4f[(firstvertex + j) * 4 + 0];
(loadmodel->surfmesh.data_lightmapcolor4f + 4 * out->num_firstvertex)[j * 4 + 1] = loadmodel->brushq3.data_color4f[(firstvertex + j) * 4 + 1];
(loadmodel->surfmesh.data_lightmapcolor4f + 4 * out->num_firstvertex)[j * 4 + 2] = loadmodel->brushq3.data_color4f[(firstvertex + j) * 4 + 2];
(loadmodel->surfmesh.data_lightmapcolor4f + 4 * out->num_firstvertex)[j * 4 + 3] = loadmodel->brushq3.data_color4f[(firstvertex + j) * 4 + 3];
}
for (j = 0;j < out->num_triangles*3;j++)
(loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] = loadmodel->brushq3.data_element3i[firstelement + j] + out->num_firstvertex;
break;
case Q3FACETYPE_PATCH:
patchsize[0] = LittleLong(in->specific.patch.patchsize[0]);
patchsize[1] = LittleLong(in->specific.patch.patchsize[1]);
originalvertex3f = loadmodel->brushq3.data_vertex3f + firstvertex * 3;
originalnormal3f = loadmodel->brushq3.data_normal3f + firstvertex * 3;
originaltexcoordtexture2f = loadmodel->brushq3.data_texcoordtexture2f + firstvertex * 2;
originaltexcoordlightmap2f = loadmodel->brushq3.data_texcoordlightmap2f + firstvertex * 2;
originalcolor4f = loadmodel->brushq3.data_color4f + firstvertex * 4;
xtess = ytess = cxtess = cytess = -1;
for(j = 0; j < patchtesscount; ++j)
if(patchtess[j].surface_id == i)
{
xtess = patchtess[j].info.lods[PATCH_LOD_VISUAL].xtess;
ytess = patchtess[j].info.lods[PATCH_LOD_VISUAL].ytess;
cxtess = patchtess[j].info.lods[PATCH_LOD_COLLISION].xtess;
cytess = patchtess[j].info.lods[PATCH_LOD_COLLISION].ytess;
break;
}
if(xtess == -1)
{
Con_Printf("ERROR: patch %d isn't preprocessed?!?\n", i);
xtess = ytess = cxtess = cytess = 0;
}
finalwidth = Q3PatchDimForTess(patchsize[0],xtess); //((patchsize[0] - 1) * xtess) + 1;
finalheight = Q3PatchDimForTess(patchsize[1],ytess); //((patchsize[1] - 1) * ytess) + 1;
finalvertices = finalwidth * finalheight;
oldnumtriangles = finaltriangles = (finalwidth - 1) * (finalheight - 1) * 2;
type = Q3FACETYPE_MESH;
// generate geometry
// (note: normals are skipped because they get recalculated)
Q3PatchTesselateFloat(3, sizeof(float[3]), (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex), patchsize[0], patchsize[1], sizeof(float[3]), originalvertex3f, xtess, ytess);
Q3PatchTesselateFloat(3, sizeof(float[3]), (loadmodel->surfmesh.data_normal3f + 3 * out->num_firstvertex), patchsize[0], patchsize[1], sizeof(float[3]), originalnormal3f, xtess, ytess);
Q3PatchTesselateFloat(2, sizeof(float[2]), (loadmodel->surfmesh.data_texcoordtexture2f + 2 * out->num_firstvertex), patchsize[0], patchsize[1], sizeof(float[2]), originaltexcoordtexture2f, xtess, ytess);
Q3PatchTesselateFloat(2, sizeof(float[2]), (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * out->num_firstvertex), patchsize[0], patchsize[1], sizeof(float[2]), originaltexcoordlightmap2f, xtess, ytess);
Q3PatchTesselateFloat(4, sizeof(float[4]), (loadmodel->surfmesh.data_lightmapcolor4f + 4 * out->num_firstvertex), patchsize[0], patchsize[1], sizeof(float[4]), originalcolor4f, xtess, ytess);
Q3PatchTriangleElements((loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle), finalwidth, finalheight, out->num_firstvertex);
out->num_triangles = Mod_RemoveDegenerateTriangles(out->num_triangles, (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle), (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle), loadmodel->surfmesh.data_vertex3f);
if (developer_extra.integer)
{
if (out->num_triangles < finaltriangles)
Con_DPrintf("Mod_Q3BSP_LoadFaces: %ix%i curve subdivided to %i vertices / %i triangles, %i degenerate triangles removed (leaving %i)\n", patchsize[0], patchsize[1], out->num_vertices, finaltriangles, finaltriangles - out->num_triangles, out->num_triangles);
else
Con_DPrintf("Mod_Q3BSP_LoadFaces: %ix%i curve subdivided to %i vertices / %i triangles\n", patchsize[0], patchsize[1], out->num_vertices, out->num_triangles);
}
// q3map does not put in collision brushes for curves... ugh
// build the lower quality collision geometry
finalwidth = Q3PatchDimForTess(patchsize[0],cxtess); //((patchsize[0] - 1) * cxtess) + 1;
finalheight = Q3PatchDimForTess(patchsize[1],cytess); //((patchsize[1] - 1) * cytess) + 1;
finalvertices = finalwidth * finalheight;
oldnumtriangles2 = finaltriangles = (finalwidth - 1) * (finalheight - 1) * 2;
// legacy collision geometry implementation
out->deprecatedq3data_collisionvertex3f = (float *)Mem_Alloc(loadmodel->mempool, sizeof(float[3]) * finalvertices);
out->deprecatedq3data_collisionelement3i = (int *)Mem_Alloc(loadmodel->mempool, sizeof(int[3]) * finaltriangles);
out->num_collisionvertices = finalvertices;
out->num_collisiontriangles = finaltriangles;
Q3PatchTesselateFloat(3, sizeof(float[3]), out->deprecatedq3data_collisionvertex3f, patchsize[0], patchsize[1], sizeof(float[3]), originalvertex3f, cxtess, cytess);
Q3PatchTriangleElements(out->deprecatedq3data_collisionelement3i, finalwidth, finalheight, 0);
//Mod_SnapVertices(3, out->num_vertices, (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex), 0.25);
Mod_SnapVertices(3, finalvertices, out->deprecatedq3data_collisionvertex3f, 1);
out->num_collisiontriangles = Mod_RemoveDegenerateTriangles(finaltriangles, out->deprecatedq3data_collisionelement3i, out->deprecatedq3data_collisionelement3i, out->deprecatedq3data_collisionvertex3f);
// now optimize the collision mesh by finding triangle bboxes...
Mod_Q3BSP_BuildBBoxes(out->deprecatedq3data_collisionelement3i, out->num_collisiontriangles, out->deprecatedq3data_collisionvertex3f, &out->deprecatedq3data_collisionbbox6f, &out->deprecatedq3num_collisionbboxstride, mod_q3bsp_curves_collisions_stride.integer);
Mod_Q3BSP_BuildBBoxes(loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle, out->num_triangles, loadmodel->surfmesh.data_vertex3f, &out->deprecatedq3data_bbox6f, &out->deprecatedq3num_bboxstride, mod_q3bsp_curves_stride.integer);
// store collision geometry for BIH collision tree
surfacecollisionvertex3f = loadmodel->brush.data_collisionvertex3f + collisionvertices * 3;
surfacecollisionelement3i = loadmodel->brush.data_collisionelement3i + collisiontriangles * 3;
Q3PatchTesselateFloat(3, sizeof(float[3]), surfacecollisionvertex3f, patchsize[0], patchsize[1], sizeof(float[3]), originalvertex3f, cxtess, cytess);
Q3PatchTriangleElements(surfacecollisionelement3i, finalwidth, finalheight, collisionvertices);
Mod_SnapVertices(3, finalvertices, surfacecollisionvertex3f, 1);
#if 1
// remove this once the legacy code is removed
{
int nc = out->num_collisiontriangles;
#endif
out->num_collisiontriangles = Mod_RemoveDegenerateTriangles(finaltriangles, surfacecollisionelement3i, surfacecollisionelement3i, loadmodel->brush.data_collisionvertex3f);
#if 1
if(nc != out->num_collisiontriangles)
{
Con_Printf("number of collision triangles differs between BIH and BSP. FAIL.\n");
}
}
#endif
if (developer_extra.integer)
Con_DPrintf("Mod_Q3BSP_LoadFaces: %ix%i curve became %i:%i vertices / %i:%i triangles (%i:%i degenerate)\n", patchsize[0], patchsize[1], out->num_vertices, out->num_collisionvertices, oldnumtriangles, oldnumtriangles2, oldnumtriangles - out->num_triangles, oldnumtriangles2 - out->num_collisiontriangles);
collisionvertices += finalvertices;
collisiontriangles += out->num_collisiontriangles;
break;
default:
break;
}
meshvertices += out->num_vertices;
meshtriangles += out->num_triangles;
for (j = 0, invalidelements = 0;j < out->num_triangles * 3;j++)
if ((loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] < out->num_firstvertex || (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] >= out->num_firstvertex + out->num_vertices)
invalidelements++;
if (invalidelements)
{
Con_Printf("Mod_Q3BSP_LoadFaces: Warning: face #%i has %i invalid elements, type = %i, texture->name = \"%s\", texture->surfaceflags = %i, firstvertex = %i, numvertices = %i, firstelement = %i, numelements = %i, elements list:\n", i, invalidelements, type, out->texture->name, out->texture->surfaceflags, firstvertex, out->num_vertices, firstelement, out->num_triangles * 3);
for (j = 0;j < out->num_triangles * 3;j++)
{
Con_Printf(" %i", (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] - out->num_firstvertex);
if ((loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] < out->num_firstvertex || (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] >= out->num_firstvertex + out->num_vertices)
(loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] = out->num_firstvertex;
}
Con_Print("\n");
}
// calculate a bounding box
VectorClear(out->mins);
VectorClear(out->maxs);
if (out->num_vertices)
{
if (cls.state != ca_dedicated && out->lightmaptexture)
{
// figure out which part of the merged lightmap this fits into
int lightmapindex = LittleLong(in->lightmapindex) >> (loadmodel->brushq3.deluxemapping ? 1 : 0);
int mergewidth = R_TextureWidth(out->lightmaptexture) / loadmodel->brushq3.lightmapsize;
int mergeheight = R_TextureHeight(out->lightmaptexture) / loadmodel->brushq3.lightmapsize;
lightmapindex &= mergewidth * mergeheight - 1;
lightmaptcscale[0] = 1.0f / mergewidth;
lightmaptcscale[1] = 1.0f / mergeheight;
lightmaptcbase[0] = (lightmapindex % mergewidth) * lightmaptcscale[0];
lightmaptcbase[1] = (lightmapindex / mergewidth) * lightmaptcscale[1];
// modify the lightmap texcoords to match this region of the merged lightmap
for (j = 0, v = loadmodel->surfmesh.data_texcoordlightmap2f + 2 * out->num_firstvertex;j < out->num_vertices;j++, v += 2)
{
v[0] = v[0] * lightmaptcscale[0] + lightmaptcbase[0];
v[1] = v[1] * lightmaptcscale[1] + lightmaptcbase[1];
}
}
VectorCopy((loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex), out->mins);
VectorCopy((loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex), out->maxs);
for (j = 1, v = (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex) + 3;j < out->num_vertices;j++, v += 3)
{
out->mins[0] = min(out->mins[0], v[0]);
out->maxs[0] = max(out->maxs[0], v[0]);
out->mins[1] = min(out->mins[1], v[1]);
out->maxs[1] = max(out->maxs[1], v[1]);
out->mins[2] = min(out->mins[2], v[2]);
out->maxs[2] = max(out->maxs[2], v[2]);
}
out->mins[0] -= 1.0f;
out->mins[1] -= 1.0f;
out->mins[2] -= 1.0f;
out->maxs[0] += 1.0f;
out->maxs[1] += 1.0f;
out->maxs[2] += 1.0f;
}
// set lightmap styles for consistency with q1bsp
//out->lightmapinfo->styles[0] = 0;
//out->lightmapinfo->styles[1] = 255;
//out->lightmapinfo->styles[2] = 255;
//out->lightmapinfo->styles[3] = 255;
}
i = oldi;
out = oldout;
for (;i < count;i++, out++)
{
if(out->num_vertices && out->num_triangles)
continue;
if(out->num_vertices == 0)
{
Con_Printf("Mod_Q3BSP_LoadFaces: surface %d (texture %s) has no vertices, ignoring\n", i, out->texture ? out->texture->name : "(none)");
if(out->num_triangles == 0)
Con_Printf("Mod_Q3BSP_LoadFaces: surface %d (texture %s) has no triangles, ignoring\n", i, out->texture ? out->texture->name : "(none)");
}
else if(out->num_triangles == 0)
Con_Printf("Mod_Q3BSP_LoadFaces: surface %d (texture %s, near %f %f %f) has no triangles, ignoring\n", i, out->texture ? out->texture->name : "(none)",
(loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[0 * 3 + 0],
(loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[1 * 3 + 0],
(loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[2 * 3 + 0]);
}
// for per pixel lighting
Mod_BuildTextureVectorsFromNormals(0, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->surfmesh.data_vertex3f, loadmodel->surfmesh.data_texcoordtexture2f, loadmodel->surfmesh.data_normal3f, loadmodel->surfmesh.data_element3i, loadmodel->surfmesh.data_svector3f, loadmodel->surfmesh.data_tvector3f, r_smoothnormals_areaweighting.integer != 0);
// generate ushort elements array if possible
if (loadmodel->surfmesh.data_element3s)
for (i = 0;i < loadmodel->surfmesh.num_triangles*3;i++)
loadmodel->surfmesh.data_element3s[i] = loadmodel->surfmesh.data_element3i[i];
// free the no longer needed vertex data
loadmodel->brushq3.num_vertices = 0;
if (loadmodel->brushq3.data_vertex3f)
Mem_Free(loadmodel->brushq3.data_vertex3f);
loadmodel->brushq3.data_vertex3f = NULL;
loadmodel->brushq3.data_normal3f = NULL;
loadmodel->brushq3.data_texcoordtexture2f = NULL;
loadmodel->brushq3.data_texcoordlightmap2f = NULL;
loadmodel->brushq3.data_color4f = NULL;
// free the no longer needed triangle data
loadmodel->brushq3.num_triangles = 0;
if (loadmodel->brushq3.data_element3i)
Mem_Free(loadmodel->brushq3.data_element3i);
loadmodel->brushq3.data_element3i = NULL;
if(patchtess)
Mem_Free(patchtess);
}
static void Mod_Q3BSP_LoadModels(lump_t *l)
{
q3dmodel_t *in;
q3dmodel_t *out;
int i, j, n, c, count;
in = (q3dmodel_t *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q3BSP_LoadModels: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = (q3dmodel_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel->brushq3.data_models = out;
loadmodel->brushq3.num_models = count;
for (i = 0;i < count;i++, in++, out++)
{
for (j = 0;j < 3;j++)
{
out->mins[j] = LittleFloat(in->mins[j]);
out->maxs[j] = LittleFloat(in->maxs[j]);
}
n = LittleLong(in->firstface);
c = LittleLong(in->numfaces);
if (n < 0 || n + c > loadmodel->num_surfaces)
Host_Error("Mod_Q3BSP_LoadModels: invalid face range %i : %i (%i faces)", n, n + c, loadmodel->num_surfaces);
out->firstface = n;
out->numfaces = c;
n = LittleLong(in->firstbrush);
c = LittleLong(in->numbrushes);
if (n < 0 || n + c > loadmodel->brush.num_brushes)
Host_Error("Mod_Q3BSP_LoadModels: invalid brush range %i : %i (%i brushes)", n, n + c, loadmodel->brush.num_brushes);
out->firstbrush = n;
out->numbrushes = c;
}
}
static void Mod_Q3BSP_LoadLeafBrushes(lump_t *l)
{
int *in;
int *out;
int i, n, count;
in = (int *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q3BSP_LoadLeafBrushes: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = (int *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel->brush.data_leafbrushes = out;
loadmodel->brush.num_leafbrushes = count;
for (i = 0;i < count;i++, in++, out++)
{
n = LittleLong(*in);
if (n < 0 || n >= loadmodel->brush.num_brushes)
Host_Error("Mod_Q3BSP_LoadLeafBrushes: invalid brush index %i (%i brushes)", n, loadmodel->brush.num_brushes);
*out = n;
}
}
static void Mod_Q3BSP_LoadLeafFaces(lump_t *l)
{
int *in;
int *out;
int i, n, count;
in = (int *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q3BSP_LoadLeafFaces: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = (int *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel->brush.data_leafsurfaces = out;
loadmodel->brush.num_leafsurfaces = count;
for (i = 0;i < count;i++, in++, out++)
{
n = LittleLong(*in);
if (n < 0 || n >= loadmodel->num_surfaces)
Host_Error("Mod_Q3BSP_LoadLeafFaces: invalid face index %i (%i faces)", n, loadmodel->num_surfaces);
*out = n;
}
}
static void Mod_Q3BSP_LoadLeafs(lump_t *l)
{
q3dleaf_t *in;
mleaf_t *out;
int i, j, n, c, count;
in = (q3dleaf_t *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q3BSP_LoadLeafs: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
out = (mleaf_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel->brush.data_leafs = out;
loadmodel->brush.num_leafs = count;
for (i = 0;i < count;i++, in++, out++)
{
out->parent = NULL;
out->plane = NULL;
out->clusterindex = LittleLong(in->clusterindex);
out->areaindex = LittleLong(in->areaindex);
for (j = 0;j < 3;j++)
{
// yes the mins/maxs are ints
out->mins[j] = LittleLong(in->mins[j]) - 1;
out->maxs[j] = LittleLong(in->maxs[j]) + 1;
}
n = LittleLong(in->firstleafface);
c = LittleLong(in->numleaffaces);
if (n < 0 || n + c > loadmodel->brush.num_leafsurfaces)
Host_Error("Mod_Q3BSP_LoadLeafs: invalid leafsurface range %i : %i (%i leafsurfaces)", n, n + c, loadmodel->brush.num_leafsurfaces);
out->firstleafsurface = loadmodel->brush.data_leafsurfaces + n;
out->numleafsurfaces = c;
n = LittleLong(in->firstleafbrush);
c = LittleLong(in->numleafbrushes);
if (n < 0 || n + c > loadmodel->brush.num_leafbrushes)
Host_Error("Mod_Q3BSP_LoadLeafs: invalid leafbrush range %i : %i (%i leafbrushes)", n, n + c, loadmodel->brush.num_leafbrushes);
out->firstleafbrush = loadmodel->brush.data_leafbrushes + n;
out->numleafbrushes = c;
}
}
static void Mod_Q3BSP_LoadNodes(lump_t *l)
{
q3dnode_t *in;
mnode_t *out;
int i, j, n, count;
in = (q3dnode_t *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q3BSP_LoadNodes: funny lump size in %s",loadmodel->name);
count = l->filelen / sizeof(*in);
if (count == 0)
Host_Error("Mod_Q3BSP_LoadNodes: missing BSP tree in %s",loadmodel->name);
out = (mnode_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel->brush.data_nodes = out;
loadmodel->brush.num_nodes = count;
for (i = 0;i < count;i++, in++, out++)
{
out->parent = NULL;
n = LittleLong(in->planeindex);
if (n < 0 || n >= loadmodel->brush.num_planes)
Host_Error("Mod_Q3BSP_LoadNodes: invalid planeindex %i (%i planes)", n, loadmodel->brush.num_planes);
out->plane = loadmodel->brush.data_planes + n;
for (j = 0;j < 2;j++)
{
n = LittleLong(in->childrenindex[j]);
if (n >= 0)
{
if (n >= loadmodel->brush.num_nodes)
Host_Error("Mod_Q3BSP_LoadNodes: invalid child node index %i (%i nodes)", n, loadmodel->brush.num_nodes);
out->children[j] = loadmodel->brush.data_nodes + n;
}
else
{
n = -1 - n;
if (n >= loadmodel->brush.num_leafs)
Host_Error("Mod_Q3BSP_LoadNodes: invalid child leaf index %i (%i leafs)", n, loadmodel->brush.num_leafs);
out->children[j] = (mnode_t *)(loadmodel->brush.data_leafs + n);
}
}
for (j = 0;j < 3;j++)
{
// yes the mins/maxs are ints
out->mins[j] = LittleLong(in->mins[j]) - 1;
out->maxs[j] = LittleLong(in->maxs[j]) + 1;
}
}
// set the parent pointers
Mod_Q1BSP_LoadNodes_RecursiveSetParent(loadmodel->brush.data_nodes, NULL);
}
static void Mod_Q3BSP_LoadLightGrid(lump_t *l)
{
q3dlightgrid_t *in;
q3dlightgrid_t *out;
int count;
int i;
in = (q3dlightgrid_t *)(mod_base + l->fileofs);
if (l->filelen % sizeof(*in))
Host_Error("Mod_Q3BSP_LoadLightGrid: funny lump size in %s",loadmodel->name);
loadmodel->brushq3.num_lightgrid_scale[0] = 1.0f / loadmodel->brushq3.num_lightgrid_cellsize[0];
loadmodel->brushq3.num_lightgrid_scale[1] = 1.0f / loadmodel->brushq3.num_lightgrid_cellsize[1];
loadmodel->brushq3.num_lightgrid_scale[2] = 1.0f / loadmodel->brushq3.num_lightgrid_cellsize[2];
loadmodel->brushq3.num_lightgrid_imins[0] = (int)ceil(loadmodel->brushq3.data_models->mins[0] * loadmodel->brushq3.num_lightgrid_scale[0]);
loadmodel->brushq3.num_lightgrid_imins[1] = (int)ceil(loadmodel->brushq3.data_models->mins[1] * loadmodel->brushq3.num_lightgrid_scale[1]);
loadmodel->brushq3.num_lightgrid_imins[2] = (int)ceil(loadmodel->brushq3.data_models->mins[2] * loadmodel->brushq3.num_lightgrid_scale[2]);
loadmodel->brushq3.num_lightgrid_imaxs[0] = (int)floor(loadmodel->brushq3.data_models->maxs[0] * loadmodel->brushq3.num_lightgrid_scale[0]);
loadmodel->brushq3.num_lightgrid_imaxs[1] = (int)floor(loadmodel->brushq3.data_models->maxs[1] * loadmodel->brushq3.num_lightgrid_scale[1]);
loadmodel->brushq3.num_lightgrid_imaxs[2] = (int)floor(loadmodel->brushq3.data_models->maxs[2] * loadmodel->brushq3.num_lightgrid_scale[2]);
loadmodel->brushq3.num_lightgrid_isize[0] = loadmodel->brushq3.num_lightgrid_imaxs[0] - loadmodel->brushq3.num_lightgrid_imins[0] + 1;
loadmodel->brushq3.num_lightgrid_isize[1] = loadmodel->brushq3.num_lightgrid_imaxs[1] - loadmodel->brushq3.num_lightgrid_imins[1] + 1;
loadmodel->brushq3.num_lightgrid_isize[2] = loadmodel->brushq3.num_lightgrid_imaxs[2] - loadmodel->brushq3.num_lightgrid_imins[2] + 1;
count = loadmodel->brushq3.num_lightgrid_isize[0] * loadmodel->brushq3.num_lightgrid_isize[1] * loadmodel->brushq3.num_lightgrid_isize[2];
Matrix4x4_CreateScale3(&loadmodel->brushq3.num_lightgrid_indexfromworld, loadmodel->brushq3.num_lightgrid_scale[0], loadmodel->brushq3.num_lightgrid_scale[1], loadmodel->brushq3.num_lightgrid_scale[2]);
Matrix4x4_ConcatTranslate(&loadmodel->brushq3.num_lightgrid_indexfromworld, -loadmodel->brushq3.num_lightgrid_imins[0] * loadmodel->brushq3.num_lightgrid_cellsize[0], -loadmodel->brushq3.num_lightgrid_imins[1] * loadmodel->brushq3.num_lightgrid_cellsize[1], -loadmodel->brushq3.num_lightgrid_imins[2] * loadmodel->brushq3.num_lightgrid_cellsize[2]);
// if lump is empty there is nothing to load, we can deal with that in the LightPoint code
if (l->filelen)
{
if (l->filelen < count * (int)sizeof(*in))
{
Con_Printf("Mod_Q3BSP_LoadLightGrid: invalid lightgrid lump size %i bytes, should be %i bytes (%ix%ix%i)", l->filelen, (int)(count * sizeof(*in)), loadmodel->brushq3.num_lightgrid_isize[0], loadmodel->brushq3.num_lightgrid_isize[1], loadmodel->brushq3.num_lightgrid_isize[2]);
return; // ignore the grid if we cannot understand it
}
if (l->filelen != count * (int)sizeof(*in))
Con_Printf("Mod_Q3BSP_LoadLightGrid: Warning: calculated lightgrid size %i bytes does not match lump size %i\n", (int)(count * sizeof(*in)), l->filelen);
out = (q3dlightgrid_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
loadmodel->brushq3.data_lightgrid = out;
loadmodel->brushq3.num_lightgrid = count;
// no swapping or validation necessary
memcpy(out, in, count * (int)sizeof(*out));
if(mod_q3bsp_sRGBlightmaps.integer)
{
if(vid_sRGB.integer && vid_sRGB_fallback.integer && !vid.sRGB3D)
{
// we fix the brightness consistently via lightmapscale
}
else
{
for(i = 0; i < count; ++i)
{
out[i].ambientrgb[0] = floor(Image_LinearFloatFromsRGB(out[i].ambientrgb[0]) * 255.0f + 0.5f);
out[i].ambientrgb[1] = floor(Image_LinearFloatFromsRGB(out[i].ambientrgb[1]) * 255.0f + 0.5f);
out[i].ambientrgb[2] = floor(Image_LinearFloatFromsRGB(out[i].ambientrgb[2]) * 255.0f + 0.5f);
out[i].diffusergb[0] = floor(Image_LinearFloatFromsRGB(out[i].diffusergb[0]) * 255.0f + 0.5f);
out[i].diffusergb[1] = floor(Image_LinearFloatFromsRGB(out[i].diffusergb[1]) * 255.0f + 0.5f);
out[i].diffusergb[2] = floor(Image_LinearFloatFromsRGB(out[i].diffusergb[2]) * 255.0f + 0.5f);
}
}
}
else
{
if(vid_sRGB.integer && vid_sRGB_fallback.integer && !vid.sRGB3D)
{
for(i = 0; i < count; ++i)
{
out[i].ambientrgb[0] = floor(Image_sRGBFloatFromLinear_Lightmap(out[i].ambientrgb[0]) * 255.0f + 0.5f);
out[i].ambientrgb[1] = floor(Image_sRGBFloatFromLinear_Lightmap(out[i].ambientrgb[1]) * 255.0f + 0.5f);
out[i].ambientrgb[2] = floor(Image_sRGBFloatFromLinear_Lightmap(out[i].ambientrgb[2]) * 255.0f + 0.5f);
out[i].diffusergb[0] = floor(Image_sRGBFloatFromLinear_Lightmap(out[i].diffusergb[0]) * 255.0f + 0.5f);
out[i].diffusergb[1] = floor(Image_sRGBFloatFromLinear_Lightmap(out[i].diffusergb[1]) * 255.0f + 0.5f);
out[i].diffusergb[2] = floor(Image_sRGBFloatFromLinear_Lightmap(out[i].diffusergb[2]) * 255.0f + 0.5f);
}
}
else
{
// all is good
}
}
}
}
static void Mod_Q3BSP_LoadPVS(lump_t *l)
{
q3dpvs_t *in;
int totalchains;
if (l->filelen == 0)
{
int i;
// unvised maps often have cluster indices even without pvs, so check
// leafs to find real number of clusters
loadmodel->brush.num_pvsclusters = 1;
for (i = 0;i < loadmodel->brush.num_leafs;i++)
loadmodel->brush.num_pvsclusters = max(loadmodel->brush.num_pvsclusters, loadmodel->brush.data_leafs[i].clusterindex + 1);
// create clusters
loadmodel->brush.num_pvsclusterbytes = (loadmodel->brush.num_pvsclusters + 7) / 8;
totalchains = loadmodel->brush.num_pvsclusterbytes * loadmodel->brush.num_pvsclusters;
loadmodel->brush.data_pvsclusters = (unsigned char *)Mem_Alloc(loadmodel->mempool, totalchains);
memset(loadmodel->brush.data_pvsclusters, 0xFF, totalchains);
return;
}
in = (q3dpvs_t *)(mod_base + l->fileofs);
if (l->filelen < 9)
Host_Error("Mod_Q3BSP_LoadPVS: funny lump size in %s",loadmodel->name);
loadmodel->brush.num_pvsclusters = LittleLong(in->numclusters);
loadmodel->brush.num_pvsclusterbytes = LittleLong(in->chainlength);
if (loadmodel->brush.num_pvsclusterbytes < ((loadmodel->brush.num_pvsclusters + 7) / 8))
Host_Error("Mod_Q3BSP_LoadPVS: (chainlength = %i) < ((numclusters = %i) + 7) / 8", loadmodel->brush.num_pvsclusterbytes, loadmodel->brush.num_pvsclusters);
totalchains = loadmodel->brush.num_pvsclusterbytes * loadmodel->brush.num_pvsclusters;
if (l->filelen < totalchains + (int)sizeof(*in))
Host_Error("Mod_Q3BSP_LoadPVS: lump too small ((numclusters = %i) * (chainlength = %i) + sizeof(q3dpvs_t) == %i bytes, lump is %i bytes)", loadmodel->brush.num_pvsclusters, loadmodel->brush.num_pvsclusterbytes, (int)(totalchains + sizeof(*in)), l->filelen);
loadmodel->brush.data_pvsclusters = (unsigned char *)Mem_Alloc(loadmodel->mempool, totalchains);
memcpy(loadmodel->brush.data_pvsclusters, (unsigned char *)(in + 1), totalchains);
}
static void Mod_Q3BSP_LightPoint(dp_model_t *model, const vec3_t p, vec3_t ambientcolor, vec3_t diffusecolor, vec3_t diffusenormal)
{
int i, j, k, index[3];
float transformed[3], blend1, blend2, blend, stylescale = 1;
q3dlightgrid_t *a, *s;
// scale lighting by lightstyle[0] so that darkmode in dpmod works properly
switch(vid.renderpath)
{
case RENDERPATH_GL20:
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
case RENDERPATH_SOFT:
case RENDERPATH_GLES2:
// LordHavoc: FIXME: is this true?
stylescale = 1; // added while render
break;
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GLES1:
stylescale = r_refdef.scene.rtlightstylevalue[0];
break;
}
if (!model->brushq3.num_lightgrid)
{
ambientcolor[0] = stylescale;
ambientcolor[1] = stylescale;
ambientcolor[2] = stylescale;
return;
}
Matrix4x4_Transform(&model->brushq3.num_lightgrid_indexfromworld, p, transformed);
//Matrix4x4_Print(&model->brushq3.num_lightgrid_indexfromworld);
//Con_Printf("%f %f %f transformed %f %f %f clamped ", p[0], p[1], p[2], transformed[0], transformed[1], transformed[2]);
transformed[0] = bound(0, transformed[0], model->brushq3.num_lightgrid_isize[0] - 1);
transformed[1] = bound(0, transformed[1], model->brushq3.num_lightgrid_isize[1] - 1);
transformed[2] = bound(0, transformed[2], model->brushq3.num_lightgrid_isize[2] - 1);
index[0] = (int)floor(transformed[0]);
index[1] = (int)floor(transformed[1]);
index[2] = (int)floor(transformed[2]);
//Con_Printf("%f %f %f index %i %i %i:\n", transformed[0], transformed[1], transformed[2], index[0], index[1], index[2]);
// now lerp the values
VectorClear(diffusenormal);
a = &model->brushq3.data_lightgrid[(index[2] * model->brushq3.num_lightgrid_isize[1] + index[1]) * model->brushq3.num_lightgrid_isize[0] + index[0]];
for (k = 0;k < 2;k++)
{
blend1 = (k ? (transformed[2] - index[2]) : (1 - (transformed[2] - index[2])));
if (blend1 < 0.001f || index[2] + k >= model->brushq3.num_lightgrid_isize[2])
continue;
for (j = 0;j < 2;j++)
{
blend2 = blend1 * (j ? (transformed[1] - index[1]) : (1 - (transformed[1] - index[1])));
if (blend2 < 0.001f || index[1] + j >= model->brushq3.num_lightgrid_isize[1])
continue;
for (i = 0;i < 2;i++)
{
blend = blend2 * (i ? (transformed[0] - index[0]) : (1 - (transformed[0] - index[0]))) * stylescale;
if (blend < 0.001f || index[0] + i >= model->brushq3.num_lightgrid_isize[0])
continue;
s = a + (k * model->brushq3.num_lightgrid_isize[1] + j) * model->brushq3.num_lightgrid_isize[0] + i;
VectorMA(ambientcolor, blend * (1.0f / 128.0f), s->ambientrgb, ambientcolor);
VectorMA(diffusecolor, blend * (1.0f / 128.0f), s->diffusergb, diffusecolor);
// this uses the mod_md3_sin table because the values are
// already in the 0-255 range, the 64+ bias fetches a cosine
// instead of a sine value
diffusenormal[0] += blend * (mod_md3_sin[64 + s->diffuseyaw] * mod_md3_sin[s->diffusepitch]);
diffusenormal[1] += blend * (mod_md3_sin[ s->diffuseyaw] * mod_md3_sin[s->diffusepitch]);
diffusenormal[2] += blend * (mod_md3_sin[64 + s->diffusepitch]);
//Con_Printf("blend %f: ambient %i %i %i, diffuse %i %i %i, diffusepitch %i diffuseyaw %i (%f %f, normal %f %f %f)\n", blend, s->ambientrgb[0], s->ambientrgb[1], s->ambientrgb[2], s->diffusergb[0], s->diffusergb[1], s->diffusergb[2], s->diffusepitch, s->diffuseyaw, pitch, yaw, (cos(yaw) * cospitch), (sin(yaw) * cospitch), (-sin(pitch)));
}
}
}
// normalize the light direction before turning
VectorNormalize(diffusenormal);
//Con_Printf("result: ambient %f %f %f diffuse %f %f %f diffusenormal %f %f %f\n", ambientcolor[0], ambientcolor[1], ambientcolor[2], diffusecolor[0], diffusecolor[1], diffusecolor[2], diffusenormal[0], diffusenormal[1], diffusenormal[2]);
}
static int Mod_Q3BSP_TraceLineOfSight_RecursiveNodeCheck(mnode_t *node, double p1[3], double p2[3])
{
double t1, t2;
double midf, mid[3];
int ret, side;
// check for empty
while (node->plane)
{
// find the point distances
mplane_t *plane = node->plane;
if (plane->type < 3)
{
t1 = p1[plane->type] - plane->dist;
t2 = p2[plane->type] - plane->dist;
}
else
{
t1 = DotProduct (plane->normal, p1) - plane->dist;
t2 = DotProduct (plane->normal, p2) - plane->dist;
}
if (t1 < 0)
{
if (t2 < 0)
{
node = node->children[1];
continue;
}
side = 1;
}
else
{
if (t2 >= 0)
{
node = node->children[0];
continue;
}
side = 0;
}
midf = t1 / (t1 - t2);
VectorLerp(p1, midf, p2, mid);
// recurse both sides, front side first
// return 2 if empty is followed by solid (hit something)
// do not return 2 if both are solid or both empty,
// or if start is solid and end is empty
// as these degenerate cases usually indicate the eye is in solid and
// should see the target point anyway
ret = Mod_Q3BSP_TraceLineOfSight_RecursiveNodeCheck(node->children[side ], p1, mid);
if (ret != 0)
return ret;
ret = Mod_Q3BSP_TraceLineOfSight_RecursiveNodeCheck(node->children[side ^ 1], mid, p2);
if (ret != 1)
return ret;
return 2;
}
return ((mleaf_t *)node)->clusterindex < 0;
}
static qboolean Mod_Q3BSP_TraceLineOfSight(struct model_s *model, const vec3_t start, const vec3_t end)
{
if (model->brush.submodel || mod_q3bsp_tracelineofsight_brushes.integer)
{
trace_t trace;
model->TraceLine(model, NULL, NULL, &trace, start, end, SUPERCONTENTS_VISBLOCKERMASK);
return trace.fraction == 1;
}
else
{
double tracestart[3], traceend[3];
VectorCopy(start, tracestart);
VectorCopy(end, traceend);
return !Mod_Q3BSP_TraceLineOfSight_RecursiveNodeCheck(model->brush.data_nodes, tracestart, traceend);
}
}
void Mod_CollisionBIH_TracePoint(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, int hitsupercontentsmask)
{
const bih_t *bih;
const bih_leaf_t *leaf;
const bih_node_t *node;
const colbrushf_t *brush;
int axis;
int nodenum;
int nodestackpos = 0;
int nodestack[1024];
memset(trace, 0, sizeof(*trace));
trace->fraction = 1;
trace->realfraction = 1;
trace->hitsupercontentsmask = hitsupercontentsmask;
bih = &model->collision_bih;
if(!bih->nodes)
return;
nodenum = bih->rootnode;
nodestack[nodestackpos++] = nodenum;
while (nodestackpos)
{
nodenum = nodestack[--nodestackpos];
node = bih->nodes + nodenum;
#if 1
if (!BoxesOverlap(start, start, node->mins, node->maxs))
continue;
#endif
if (node->type <= BIH_SPLITZ && nodestackpos+2 <= 1024)
{
axis = node->type - BIH_SPLITX;
if (start[axis] >= node->frontmin)
nodestack[nodestackpos++] = node->front;
if (start[axis] <= node->backmax)
nodestack[nodestackpos++] = node->back;
}
else if (node->type == BIH_UNORDERED)
{
for (axis = 0;axis < BIH_MAXUNORDEREDCHILDREN && node->children[axis] >= 0;axis++)
{
leaf = bih->leafs + node->children[axis];
#if 1
if (!BoxesOverlap(start, start, leaf->mins, leaf->maxs))
continue;
#endif
switch(leaf->type)
{
case BIH_BRUSH:
brush = model->brush.data_brushes[leaf->itemindex].colbrushf;
Collision_TracePointBrushFloat(trace, start, brush);
break;
case BIH_COLLISIONTRIANGLE:
// collision triangle - skipped because they have no volume
break;
case BIH_RENDERTRIANGLE:
// render triangle - skipped because they have no volume
break;
}
}
}
}
}
static void Mod_CollisionBIH_TraceLineShared(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask, const bih_t *bih)
{
const bih_leaf_t *leaf;
const bih_node_t *node;
const colbrushf_t *brush;
const int *e;
const texture_t *texture;
vec3_t nodebigmins, nodebigmaxs, nodestart, nodeend, sweepnodemins, sweepnodemaxs;
vec_t d1, d2, d3, d4, f, nodestackline[1024][6];
int axis, nodenum, nodestackpos = 0, nodestack[1024];
if(!bih->nodes)
return;
if (VectorCompare(start, end))
{
Mod_CollisionBIH_TracePoint(model, frameblend, skeleton, trace, start, hitsupercontentsmask);
return;
}
nodenum = bih->rootnode;
memset(trace, 0, sizeof(*trace));
trace->fraction = 1;
trace->realfraction = 1;
trace->hitsupercontentsmask = hitsupercontentsmask;
// push first node
nodestackline[nodestackpos][0] = start[0];
nodestackline[nodestackpos][1] = start[1];
nodestackline[nodestackpos][2] = start[2];
nodestackline[nodestackpos][3] = end[0];
nodestackline[nodestackpos][4] = end[1];
nodestackline[nodestackpos][5] = end[2];
nodestack[nodestackpos++] = nodenum;
while (nodestackpos)
{
nodenum = nodestack[--nodestackpos];
node = bih->nodes + nodenum;
VectorCopy(nodestackline[nodestackpos], nodestart);
VectorCopy(nodestackline[nodestackpos] + 3, nodeend);
sweepnodemins[0] = min(nodestart[0], nodeend[0]); sweepnodemins[1] = min(nodestart[1], nodeend[1]); sweepnodemins[2] = min(nodestart[2], nodeend[2]); sweepnodemaxs[0] = max(nodestart[0], nodeend[0]); sweepnodemaxs[1] = max(nodestart[1], nodeend[1]); sweepnodemaxs[2] = max(nodestart[2], nodeend[2]);
if (!BoxesOverlap(sweepnodemins, sweepnodemaxs, node->mins, node->maxs))
continue;
if (node->type <= BIH_SPLITZ && nodestackpos+2 <= 1024)
{
// recurse children of the split
axis = node->type - BIH_SPLITX;
d1 = node->backmax - nodestart[axis];
d2 = node->backmax - nodeend[axis];
d3 = nodestart[axis] - node->frontmin;
d4 = nodeend[axis] - node->frontmin;
switch((d1 < 0) | ((d2 < 0) << 1) | ((d3 < 0) << 2) | ((d4 < 0) << 3))
{
case 0: /* >>>> */ VectorCopy(nodestart, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; VectorCopy(nodestart, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 1: /* <>>> */ f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; VectorCopy(nodestart, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 2: /* ><>> */ f = d1 / (d1 - d2); VectorCopy(nodestart, nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; VectorCopy(nodestart, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 3: /* <<>> */ VectorCopy(nodestart, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 4: /* >><> */ VectorCopy(nodestart, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; f = d3 / (d3 - d4); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 5: /* <><> */ f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; f = d3 / (d3 - d4); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 6: /* ><<> */ f = d1 / (d1 - d2); VectorCopy(nodestart, nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; f = d3 / (d3 - d4); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 7: /* <<<> */ f = d3 / (d3 - d4); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 8: /* >>>< */ VectorCopy(nodestart, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; f = d3 / (d3 - d4); VectorCopy(nodestart, nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 9: /* <>>< */ f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; f = d3 / (d3 - d4); VectorCopy(nodestart, nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 10: /* ><>< */ f = d1 / (d1 - d2); VectorCopy(nodestart, nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; f = d3 / (d3 - d4); VectorCopy(nodestart, nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 11: /* <<>< */ f = d3 / (d3 - d4); VectorCopy(nodestart, nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 12: /* >><< */ VectorCopy(nodestart, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; break;
case 13: /* <><< */ f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; break;
case 14: /* ><<< */ f = d1 / (d1 - d2); VectorCopy(nodestart, nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; break;
case 15: /* <<<< */ break;
}
}
else if (node->type == BIH_UNORDERED)
{
// calculate sweep bounds for this node
// copy node bounds into local variables
VectorCopy(node->mins, nodebigmins);
VectorCopy(node->maxs, nodebigmaxs);
// clip line to this node bounds
axis = 0; d1 = nodestart[axis] - nodebigmins[axis]; d2 = nodeend[axis] - nodebigmins[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); } d1 = nodebigmaxs[axis] - nodestart[axis]; d2 = nodebigmaxs[axis] - nodeend[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); }
axis = 1; d1 = nodestart[axis] - nodebigmins[axis]; d2 = nodeend[axis] - nodebigmins[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); } d1 = nodebigmaxs[axis] - nodestart[axis]; d2 = nodebigmaxs[axis] - nodeend[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); }
axis = 2; d1 = nodestart[axis] - nodebigmins[axis]; d2 = nodeend[axis] - nodebigmins[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); } d1 = nodebigmaxs[axis] - nodestart[axis]; d2 = nodebigmaxs[axis] - nodeend[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); }
// some of the line intersected the enlarged node box
// calculate sweep bounds for this node
sweepnodemins[0] = min(nodestart[0], nodeend[0]); sweepnodemins[1] = min(nodestart[1], nodeend[1]); sweepnodemins[2] = min(nodestart[2], nodeend[2]); sweepnodemaxs[0] = max(nodestart[0], nodeend[0]); sweepnodemaxs[1] = max(nodestart[1], nodeend[1]); sweepnodemaxs[2] = max(nodestart[2], nodeend[2]);
for (axis = 0;axis < BIH_MAXUNORDEREDCHILDREN && node->children[axis] >= 0;axis++)
{
leaf = bih->leafs + node->children[axis];
if (!BoxesOverlap(sweepnodemins, sweepnodemaxs, leaf->mins, leaf->maxs))
continue;
switch(leaf->type)
{
case BIH_BRUSH:
brush = model->brush.data_brushes[leaf->itemindex].colbrushf;
Collision_TraceLineBrushFloat(trace, start, end, brush, brush);
break;
case BIH_COLLISIONTRIANGLE:
if (!mod_q3bsp_curves_collisions.integer)
continue;
e = model->brush.data_collisionelement3i + 3*leaf->itemindex;
texture = model->data_textures + leaf->textureindex;
Collision_TraceLineTriangleFloat(trace, start, end, model->brush.data_collisionvertex3f + e[0] * 3, model->brush.data_collisionvertex3f + e[1] * 3, model->brush.data_collisionvertex3f + e[2] * 3, texture->supercontents, texture->surfaceflags, texture);
break;
case BIH_RENDERTRIANGLE:
e = model->surfmesh.data_element3i + 3*leaf->itemindex;
texture = model->data_textures + leaf->textureindex;
Collision_TraceLineTriangleFloat(trace, start, end, model->surfmesh.data_vertex3f + e[0] * 3, model->surfmesh.data_vertex3f + e[1] * 3, model->surfmesh.data_vertex3f + e[2] * 3, texture->supercontents, texture->surfaceflags, texture);
break;
}
}
}
}
}
void Mod_CollisionBIH_TraceLine(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask)
{
if (VectorCompare(start, end))
{
Mod_CollisionBIH_TracePoint(model, frameblend, skeleton, trace, start, hitsupercontentsmask);
return;
}
Mod_CollisionBIH_TraceLineShared(model, frameblend, skeleton, trace, start, end, hitsupercontentsmask, &model->collision_bih);
}
void Mod_CollisionBIH_TraceBrush(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, colbrushf_t *thisbrush_start, colbrushf_t *thisbrush_end, int hitsupercontentsmask)
{
const bih_t *bih;
const bih_leaf_t *leaf;
const bih_node_t *node;
const colbrushf_t *brush;
const int *e;
const texture_t *texture;
vec3_t start, end, startmins, startmaxs, endmins, endmaxs, mins, maxs;
vec3_t nodebigmins, nodebigmaxs, nodestart, nodeend, sweepnodemins, sweepnodemaxs;
vec_t d1, d2, d3, d4, f, nodestackline[1024][6];
int axis, nodenum, nodestackpos = 0, nodestack[1024];
if (mod_q3bsp_optimizedtraceline.integer && VectorCompare(thisbrush_start->mins, thisbrush_start->maxs) && VectorCompare(thisbrush_end->mins, thisbrush_end->maxs))
{
if (VectorCompare(thisbrush_start->mins, thisbrush_end->mins))
Mod_CollisionBIH_TracePoint(model, frameblend, skeleton, trace, thisbrush_start->mins, hitsupercontentsmask);
else
Mod_CollisionBIH_TraceLine(model, frameblend, skeleton, trace, thisbrush_start->mins, thisbrush_end->mins, hitsupercontentsmask);
return;
}
bih = &model->collision_bih;
if(!bih->nodes)
return;
nodenum = bih->rootnode;
// box trace, performed as brush trace
memset(trace, 0, sizeof(*trace));
trace->fraction = 1;
trace->realfraction = 1;
trace->hitsupercontentsmask = hitsupercontentsmask;
// calculate tracebox-like parameters for efficient culling
VectorMAM(0.5f, thisbrush_start->mins, 0.5f, thisbrush_start->maxs, start);
VectorMAM(0.5f, thisbrush_end->mins, 0.5f, thisbrush_end->maxs, end);
VectorSubtract(thisbrush_start->mins, start, startmins);
VectorSubtract(thisbrush_start->maxs, start, startmaxs);
VectorSubtract(thisbrush_end->mins, end, endmins);
VectorSubtract(thisbrush_end->maxs, end, endmaxs);
mins[0] = min(startmins[0], endmins[0]);
mins[1] = min(startmins[1], endmins[1]);
mins[2] = min(startmins[2], endmins[2]);
maxs[0] = max(startmaxs[0], endmaxs[0]);
maxs[1] = max(startmaxs[1], endmaxs[1]);
maxs[2] = max(startmaxs[2], endmaxs[2]);
// push first node
nodestackline[nodestackpos][0] = start[0];
nodestackline[nodestackpos][1] = start[1];
nodestackline[nodestackpos][2] = start[2];
nodestackline[nodestackpos][3] = end[0];
nodestackline[nodestackpos][4] = end[1];
nodestackline[nodestackpos][5] = end[2];
nodestack[nodestackpos++] = nodenum;
while (nodestackpos)
{
nodenum = nodestack[--nodestackpos];
node = bih->nodes + nodenum;
VectorCopy(nodestackline[nodestackpos], nodestart);
VectorCopy(nodestackline[nodestackpos] + 3, nodeend);
sweepnodemins[0] = min(nodestart[0], nodeend[0]) + mins[0]; sweepnodemins[1] = min(nodestart[1], nodeend[1]) + mins[1]; sweepnodemins[2] = min(nodestart[2], nodeend[2]) + mins[2]; sweepnodemaxs[0] = max(nodestart[0], nodeend[0]) + maxs[0]; sweepnodemaxs[1] = max(nodestart[1], nodeend[1]) + maxs[1]; sweepnodemaxs[2] = max(nodestart[2], nodeend[2]) + maxs[2];
if (!BoxesOverlap(sweepnodemins, sweepnodemaxs, node->mins, node->maxs))
continue;
if (node->type <= BIH_SPLITZ && nodestackpos+2 <= 1024)
{
// recurse children of the split
axis = node->type - BIH_SPLITX;
d1 = node->backmax - nodestart[axis] - mins[axis];
d2 = node->backmax - nodeend[axis] - mins[axis];
d3 = nodestart[axis] - node->frontmin + maxs[axis];
d4 = nodeend[axis] - node->frontmin + maxs[axis];
switch((d1 < 0) | ((d2 < 0) << 1) | ((d3 < 0) << 2) | ((d4 < 0) << 3))
{
case 0: /* >>>> */ VectorCopy(nodestart, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; VectorCopy(nodestart, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 1: /* <>>> */ f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; VectorCopy(nodestart, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 2: /* ><>> */ f = d1 / (d1 - d2); VectorCopy(nodestart, nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; VectorCopy(nodestart, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 3: /* <<>> */ VectorCopy(nodestart, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 4: /* >><> */ VectorCopy(nodestart, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; f = d3 / (d3 - d4); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 5: /* <><> */ f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; f = d3 / (d3 - d4); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 6: /* ><<> */ f = d1 / (d1 - d2); VectorCopy(nodestart, nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; f = d3 / (d3 - d4); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 7: /* <<<> */ f = d3 / (d3 - d4); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 8: /* >>>< */ VectorCopy(nodestart, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; f = d3 / (d3 - d4); VectorCopy(nodestart, nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 9: /* <>>< */ f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; f = d3 / (d3 - d4); VectorCopy(nodestart, nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 10: /* ><>< */ f = d1 / (d1 - d2); VectorCopy(nodestart, nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; f = d3 / (d3 - d4); VectorCopy(nodestart, nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 11: /* <<>< */ f = d3 / (d3 - d4); VectorCopy(nodestart, nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
case 12: /* >><< */ VectorCopy(nodestart, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; break;
case 13: /* <><< */ f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy( nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; break;
case 14: /* ><<< */ f = d1 / (d1 - d2); VectorCopy(nodestart, nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back; break;
case 15: /* <<<< */ break;
}
}
else if (node->type == BIH_UNORDERED)
{
// calculate sweep bounds for this node
// copy node bounds into local variables and expand to get Minkowski Sum of the two shapes
VectorSubtract(node->mins, maxs, nodebigmins);
VectorSubtract(node->maxs, mins, nodebigmaxs);
// clip line to this node bounds
axis = 0; d1 = nodestart[axis] - nodebigmins[axis]; d2 = nodeend[axis] - nodebigmins[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); } d1 = nodebigmaxs[axis] - nodestart[axis]; d2 = nodebigmaxs[axis] - nodeend[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); }
axis = 1; d1 = nodestart[axis] - nodebigmins[axis]; d2 = nodeend[axis] - nodebigmins[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); } d1 = nodebigmaxs[axis] - nodestart[axis]; d2 = nodebigmaxs[axis] - nodeend[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); }
axis = 2; d1 = nodestart[axis] - nodebigmins[axis]; d2 = nodeend[axis] - nodebigmins[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); } d1 = nodebigmaxs[axis] - nodestart[axis]; d2 = nodebigmaxs[axis] - nodeend[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); }
// some of the line intersected the enlarged node box
// calculate sweep bounds for this node
sweepnodemins[0] = min(nodestart[0], nodeend[0]) + mins[0]; sweepnodemins[1] = min(nodestart[1], nodeend[1]) + mins[1]; sweepnodemins[2] = min(nodestart[2], nodeend[2]) + mins[2]; sweepnodemaxs[0] = max(nodestart[0], nodeend[0]) + maxs[0]; sweepnodemaxs[1] = max(nodestart[1], nodeend[1]) + maxs[1]; sweepnodemaxs[2] = max(nodestart[2], nodeend[2]) + maxs[2];
for (axis = 0;axis < BIH_MAXUNORDEREDCHILDREN && node->children[axis] >= 0;axis++)
{
leaf = bih->leafs + node->children[axis];
if (!BoxesOverlap(sweepnodemins, sweepnodemaxs, leaf->mins, leaf->maxs))
continue;
switch(leaf->type)
{
case BIH_BRUSH:
brush = model->brush.data_brushes[leaf->itemindex].colbrushf;
Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, brush, brush);
break;
case BIH_COLLISIONTRIANGLE:
if (!mod_q3bsp_curves_collisions.integer)
continue;
e = model->brush.data_collisionelement3i + 3*leaf->itemindex;
texture = model->data_textures + leaf->textureindex;
Collision_TraceBrushTriangleFloat(trace, thisbrush_start, thisbrush_end, model->brush.data_collisionvertex3f + e[0] * 3, model->brush.data_collisionvertex3f + e[1] * 3, model->brush.data_collisionvertex3f + e[2] * 3, texture->supercontents, texture->surfaceflags, texture);
break;
case BIH_RENDERTRIANGLE:
e = model->surfmesh.data_element3i + 3*leaf->itemindex;
texture = model->data_textures + leaf->textureindex;
Collision_TraceBrushTriangleFloat(trace, thisbrush_start, thisbrush_end, model->surfmesh.data_vertex3f + e[0] * 3, model->surfmesh.data_vertex3f + e[1] * 3, model->surfmesh.data_vertex3f + e[2] * 3, texture->supercontents, texture->surfaceflags, texture);
break;
}
}
}
}
}
void Mod_CollisionBIH_TraceBox(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t boxmins, const vec3_t boxmaxs, const vec3_t end, int hitsupercontentsmask)
{
colboxbrushf_t thisbrush_start, thisbrush_end;
vec3_t boxstartmins, boxstartmaxs, boxendmins, boxendmaxs;
// box trace, performed as brush trace
VectorAdd(start, boxmins, boxstartmins);
VectorAdd(start, boxmaxs, boxstartmaxs);
VectorAdd(end, boxmins, boxendmins);
VectorAdd(end, boxmaxs, boxendmaxs);
Collision_BrushForBox(&thisbrush_start, boxstartmins, boxstartmaxs, 0, 0, NULL);
Collision_BrushForBox(&thisbrush_end, boxendmins, boxendmaxs, 0, 0, NULL);
Mod_CollisionBIH_TraceBrush(model, frameblend, skeleton, trace, &thisbrush_start.brush, &thisbrush_end.brush, hitsupercontentsmask);
}
static int Mod_CollisionBIH_PointSuperContents(struct model_s *model, int frame, const vec3_t point)
{
trace_t trace;
Mod_CollisionBIH_TracePoint(model, NULL, NULL, &trace, point, 0);
return trace.startsupercontents;
}
void Mod_CollisionBIH_TracePoint_Mesh(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, int hitsupercontentsmask)
{
#if 0
// broken - needs to be modified to count front faces and backfaces to figure out if it is in solid
vec3_t end;
int hitsupercontents;
VectorSet(end, start[0], start[1], model->normalmins[2]);
#endif
memset(trace, 0, sizeof(*trace));
trace->fraction = 1;
trace->realfraction = 1;
trace->hitsupercontentsmask = hitsupercontentsmask;
#if 0
Mod_CollisionBIH_TraceLine(model, frameblend, skeleton, trace, start, end, hitsupercontentsmask);
hitsupercontents = trace->hitsupercontents;
memset(trace, 0, sizeof(*trace));
trace->fraction = 1;
trace->realfraction = 1;
trace->hitsupercontentsmask = hitsupercontentsmask;
trace->startsupercontents = hitsupercontents;
#endif
}
int Mod_CollisionBIH_PointSuperContents_Mesh(struct model_s *model, int frame, const vec3_t start)
{
#if 0
// broken - needs to be modified to count front faces and backfaces to figure out if it is in solid
trace_t trace;
vec3_t end;
VectorSet(end, start[0], start[1], model->normalmins[2]);
memset(&trace, 0, sizeof(trace));
trace.fraction = 1;
trace.realfraction = 1;
trace.hitsupercontentsmask = 0;
Mod_CollisionBIH_TraceLine(model, frameblend, skeleton, trace, start, end, hitsupercontentsmask);
return trace.hitsupercontents;
#else
return 0;
#endif
}
static void Mod_Q3BSP_TracePoint_RecursiveBSPNode(trace_t *trace, dp_model_t *model, mnode_t *node, const vec3_t point, int markframe)
{
int i;
mleaf_t *leaf;
colbrushf_t *brush;
// find which leaf the point is in
while (node->plane)
node = node->children[(node->plane->type < 3 ? point[node->plane->type] : DotProduct(point, node->plane->normal)) < node->plane->dist];
// point trace the brushes
leaf = (mleaf_t *)node;
for (i = 0;i < leaf->numleafbrushes;i++)
{
brush = model->brush.data_brushes[leaf->firstleafbrush[i]].colbrushf;
if (brush && brush->markframe != markframe && BoxesOverlap(point, point, brush->mins, brush->maxs))
{
brush->markframe = markframe;
Collision_TracePointBrushFloat(trace, point, brush);
}
}
// can't do point traces on curves (they have no thickness)
}
static void Mod_Q3BSP_TraceLine_RecursiveBSPNode(trace_t *trace, dp_model_t *model, mnode_t *node, const vec3_t start, const vec3_t end, vec_t startfrac, vec_t endfrac, const vec3_t linestart, const vec3_t lineend, int markframe, const vec3_t segmentmins, const vec3_t segmentmaxs)
{
int i, startside, endside;
float dist1, dist2, midfrac, mid[3], nodesegmentmins[3], nodesegmentmaxs[3];
mleaf_t *leaf;
msurface_t *surface;
mplane_t *plane;
colbrushf_t *brush;
// walk the tree until we hit a leaf, recursing for any split cases
while (node->plane)
{
#if 0
if (!BoxesOverlap(segmentmins, segmentmaxs, node->mins, node->maxs))
return;
Mod_Q3BSP_TraceLine_RecursiveBSPNode(trace, model, node->children[0], start, end, startfrac, endfrac, linestart, lineend, markframe, segmentmins, segmentmaxs);
node = node->children[1];
#else
// abort if this part of the bsp tree can not be hit by this trace
// if (!(node->combinedsupercontents & trace->hitsupercontentsmask))
// return;
plane = node->plane;
// axial planes are much more common than non-axial, so an optimized
// axial case pays off here
if (plane->type < 3)
{
dist1 = start[plane->type] - plane->dist;
dist2 = end[plane->type] - plane->dist;
}
else
{
dist1 = DotProduct(start, plane->normal) - plane->dist;
dist2 = DotProduct(end, plane->normal) - plane->dist;
}
startside = dist1 < 0;
endside = dist2 < 0;
if (startside == endside)
{
// most of the time the line fragment is on one side of the plane
node = node->children[startside];
}
else
{
// line crosses node plane, split the line
dist1 = PlaneDiff(linestart, plane);
dist2 = PlaneDiff(lineend, plane);
midfrac = dist1 / (dist1 - dist2);
VectorLerp(linestart, midfrac, lineend, mid);
// take the near side first
Mod_Q3BSP_TraceLine_RecursiveBSPNode(trace, model, node->children[startside], start, mid, startfrac, midfrac, linestart, lineend, markframe, segmentmins, segmentmaxs);
// if we found an impact on the front side, don't waste time
// exploring the far side
if (midfrac <= trace->realfraction)
Mod_Q3BSP_TraceLine_RecursiveBSPNode(trace, model, node->children[endside], mid, end, midfrac, endfrac, linestart, lineend, markframe, segmentmins, segmentmaxs);
return;
}
#endif
}
// abort if this part of the bsp tree can not be hit by this trace
// if (!(node->combinedsupercontents & trace->hitsupercontentsmask))
// return;
// hit a leaf
nodesegmentmins[0] = min(start[0], end[0]) - 1;
nodesegmentmins[1] = min(start[1], end[1]) - 1;
nodesegmentmins[2] = min(start[2], end[2]) - 1;
nodesegmentmaxs[0] = max(start[0], end[0]) + 1;
nodesegmentmaxs[1] = max(start[1], end[1]) + 1;
nodesegmentmaxs[2] = max(start[2], end[2]) + 1;
// line trace the brushes
leaf = (mleaf_t *)node;
#if 0
if (!BoxesOverlap(segmentmins, segmentmaxs, leaf->mins, leaf->maxs))
return;
#endif
for (i = 0;i < leaf->numleafbrushes;i++)
{
brush = model->brush.data_brushes[leaf->firstleafbrush[i]].colbrushf;
if (brush && brush->markframe != markframe && BoxesOverlap(nodesegmentmins, nodesegmentmaxs, brush->mins, brush->maxs))
{
brush->markframe = markframe;
Collision_TraceLineBrushFloat(trace, linestart, lineend, brush, brush);
}
}
// can't do point traces on curves (they have no thickness)
if (leaf->containscollisionsurfaces && mod_q3bsp_curves_collisions.integer && !VectorCompare(start, end))
{
// line trace the curves
for (i = 0;i < leaf->numleafsurfaces;i++)
{
surface = model->data_surfaces + leaf->firstleafsurface[i];
if (surface->num_collisiontriangles && surface->deprecatedq3collisionmarkframe != markframe && BoxesOverlap(nodesegmentmins, nodesegmentmaxs, surface->mins, surface->maxs))
{
surface->deprecatedq3collisionmarkframe = markframe;
Collision_TraceLineTriangleMeshFloat(trace, linestart, lineend, surface->num_collisiontriangles, surface->deprecatedq3data_collisionelement3i, surface->deprecatedq3data_collisionvertex3f, surface->deprecatedq3num_collisionbboxstride, surface->deprecatedq3data_collisionbbox6f, surface->texture->supercontents, surface->texture->surfaceflags, surface->texture, segmentmins, segmentmaxs);
}
}
}
}
static void Mod_Q3BSP_TraceBrush_RecursiveBSPNode(trace_t *trace, dp_model_t *model, mnode_t *node, const colbrushf_t *thisbrush_start, const colbrushf_t *thisbrush_end, int markframe, const vec3_t segmentmins, const vec3_t segmentmaxs)
{
int i;
int sides;
mleaf_t *leaf;
colbrushf_t *brush;
msurface_t *surface;
mplane_t *plane;
float nodesegmentmins[3], nodesegmentmaxs[3];
// walk the tree until we hit a leaf, recursing for any split cases
while (node->plane)
{
#if 0
if (!BoxesOverlap(segmentmins, segmentmaxs, node->mins, node->maxs))
return;
Mod_Q3BSP_TraceBrush_RecursiveBSPNode(trace, model, node->children[0], thisbrush_start, thisbrush_end, markframe, segmentmins, segmentmaxs);
node = node->children[1];
#else
// abort if this part of the bsp tree can not be hit by this trace
// if (!(node->combinedsupercontents & trace->hitsupercontentsmask))
// return;
plane = node->plane;
// axial planes are much more common than non-axial, so an optimized
// axial case pays off here
if (plane->type < 3)
{
// this is an axial plane, compare bounding box directly to it and
// recurse sides accordingly
// recurse down node sides
// use an inlined axial BoxOnPlaneSide to slightly reduce overhead
//sides = BoxOnPlaneSide(nodesegmentmins, nodesegmentmaxs, plane);
//sides = ((segmentmaxs[plane->type] >= plane->dist) | ((segmentmins[plane->type] < plane->dist) << 1));
sides = ((segmentmaxs[plane->type] >= plane->dist) + ((segmentmins[plane->type] < plane->dist) * 2));
}
else
{
// this is a non-axial plane, so check if the start and end boxes
// are both on one side of the plane to handle 'diagonal' cases
sides = BoxOnPlaneSide(thisbrush_start->mins, thisbrush_start->maxs, plane) | BoxOnPlaneSide(thisbrush_end->mins, thisbrush_end->maxs, plane);
}
if (sides == 3)
{
// segment crosses plane
Mod_Q3BSP_TraceBrush_RecursiveBSPNode(trace, model, node->children[0], thisbrush_start, thisbrush_end, markframe, segmentmins, segmentmaxs);
sides = 2;
}
// if sides == 0 then the trace itself is bogus (Not A Number values),
// in this case we simply pretend the trace hit nothing
if (sides == 0)
return; // ERROR: NAN bounding box!
// take whichever side the segment box is on
node = node->children[sides - 1];
#endif
}
// abort if this part of the bsp tree can not be hit by this trace
// if (!(node->combinedsupercontents & trace->hitsupercontentsmask))
// return;
nodesegmentmins[0] = max(segmentmins[0], node->mins[0] - 1);
nodesegmentmins[1] = max(segmentmins[1], node->mins[1] - 1);
nodesegmentmins[2] = max(segmentmins[2], node->mins[2] - 1);
nodesegmentmaxs[0] = min(segmentmaxs[0], node->maxs[0] + 1);
nodesegmentmaxs[1] = min(segmentmaxs[1], node->maxs[1] + 1);
nodesegmentmaxs[2] = min(segmentmaxs[2], node->maxs[2] + 1);
// hit a leaf
leaf = (mleaf_t *)node;
#if 0
if (!BoxesOverlap(segmentmins, segmentmaxs, leaf->mins, leaf->maxs))
return;
#endif
for (i = 0;i < leaf->numleafbrushes;i++)
{
brush = model->brush.data_brushes[leaf->firstleafbrush[i]].colbrushf;
if (brush && brush->markframe != markframe && BoxesOverlap(nodesegmentmins, nodesegmentmaxs, brush->mins, brush->maxs))
{
brush->markframe = markframe;
Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, brush, brush);
}
}
if (leaf->containscollisionsurfaces && mod_q3bsp_curves_collisions.integer)
{
for (i = 0;i < leaf->numleafsurfaces;i++)
{
surface = model->data_surfaces + leaf->firstleafsurface[i];
if (surface->num_collisiontriangles && surface->deprecatedq3collisionmarkframe != markframe && BoxesOverlap(nodesegmentmins, nodesegmentmaxs, surface->mins, surface->maxs))
{
surface->deprecatedq3collisionmarkframe = markframe;
Collision_TraceBrushTriangleMeshFloat(trace, thisbrush_start, thisbrush_end, surface->num_collisiontriangles, surface->deprecatedq3data_collisionelement3i, surface->deprecatedq3data_collisionvertex3f, surface->deprecatedq3num_collisionbboxstride, surface->deprecatedq3data_collisionbbox6f, surface->texture->supercontents, surface->texture->surfaceflags, surface->texture, segmentmins, segmentmaxs);
}
}
}
}
static int markframe = 0;
static void Mod_Q3BSP_TracePoint(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, int hitsupercontentsmask)
{
int i;
q3mbrush_t *brush;
memset(trace, 0, sizeof(*trace));
trace->fraction = 1;
trace->realfraction = 1;
trace->hitsupercontentsmask = hitsupercontentsmask;
if (mod_collision_bih.integer)
Mod_CollisionBIH_TracePoint(model, frameblend, skeleton, trace, start, hitsupercontentsmask);
else if (model->brush.submodel)
{
for (i = 0, brush = model->brush.data_brushes + model->firstmodelbrush;i < model->nummodelbrushes;i++, brush++)
if (brush->colbrushf)
Collision_TracePointBrushFloat(trace, start, brush->colbrushf);
}
else
Mod_Q3BSP_TracePoint_RecursiveBSPNode(trace, model, model->brush.data_nodes, start, ++markframe);
}
static void Mod_Q3BSP_TraceLine(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask)
{
int i;
float segmentmins[3], segmentmaxs[3];
msurface_t *surface;
q3mbrush_t *brush;
if (VectorCompare(start, end))
{
Mod_Q3BSP_TracePoint(model, frameblend, skeleton, trace, start, hitsupercontentsmask);
return;
}
memset(trace, 0, sizeof(*trace));
trace->fraction = 1;
trace->realfraction = 1;
trace->hitsupercontentsmask = hitsupercontentsmask;
segmentmins[0] = min(start[0], end[0]) - 1;
segmentmins[1] = min(start[1], end[1]) - 1;
segmentmins[2] = min(start[2], end[2]) - 1;
segmentmaxs[0] = max(start[0], end[0]) + 1;
segmentmaxs[1] = max(start[1], end[1]) + 1;
segmentmaxs[2] = max(start[2], end[2]) + 1;
if (mod_collision_bih.integer)
Mod_CollisionBIH_TraceLine(model, frameblend, skeleton, trace, start, end, hitsupercontentsmask);
else if (model->brush.submodel)
{
for (i = 0, brush = model->brush.data_brushes + model->firstmodelbrush;i < model->nummodelbrushes;i++, brush++)
if (brush->colbrushf && BoxesOverlap(segmentmins, segmentmaxs, brush->colbrushf->mins, brush->colbrushf->maxs))
Collision_TraceLineBrushFloat(trace, start, end, brush->colbrushf, brush->colbrushf);
if (mod_q3bsp_curves_collisions.integer)
for (i = 0, surface = model->data_surfaces + model->firstmodelsurface;i < model->nummodelsurfaces;i++, surface++)
if (surface->num_collisiontriangles && BoxesOverlap(segmentmins, segmentmaxs, surface->mins, surface->maxs))
Collision_TraceLineTriangleMeshFloat(trace, start, end, surface->num_collisiontriangles, surface->deprecatedq3data_collisionelement3i, surface->deprecatedq3data_collisionvertex3f, surface->deprecatedq3num_collisionbboxstride, surface->deprecatedq3data_collisionbbox6f, surface->texture->supercontents, surface->texture->surfaceflags, surface->texture, segmentmins, segmentmaxs);
}
else
Mod_Q3BSP_TraceLine_RecursiveBSPNode(trace, model, model->brush.data_nodes, start, end, 0, 1, start, end, ++markframe, segmentmins, segmentmaxs);
}
static void Mod_Q3BSP_TraceBrush(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, colbrushf_t *start, colbrushf_t *end, int hitsupercontentsmask)
{
float segmentmins[3], segmentmaxs[3];
int i;
msurface_t *surface;
q3mbrush_t *brush;
if (mod_q3bsp_optimizedtraceline.integer && VectorCompare(start->mins, start->maxs) && VectorCompare(end->mins, end->maxs))
{
if (VectorCompare(start->mins, end->mins))
Mod_Q3BSP_TracePoint(model, frameblend, skeleton, trace, start->mins, hitsupercontentsmask);
else
Mod_Q3BSP_TraceLine(model, frameblend, skeleton, trace, start->mins, end->mins, hitsupercontentsmask);
return;
}
// box trace, performed as brush trace
memset(trace, 0, sizeof(*trace));
trace->fraction = 1;
trace->realfraction = 1;
trace->hitsupercontentsmask = hitsupercontentsmask;
segmentmins[0] = min(start->mins[0], end->mins[0]);
segmentmins[1] = min(start->mins[1], end->mins[1]);
segmentmins[2] = min(start->mins[2], end->mins[2]);
segmentmaxs[0] = max(start->maxs[0], end->maxs[0]);
segmentmaxs[1] = max(start->maxs[1], end->maxs[1]);
segmentmaxs[2] = max(start->maxs[2], end->maxs[2]);
if (mod_collision_bih.integer)
Mod_CollisionBIH_TraceBrush(model, frameblend, skeleton, trace, start, end, hitsupercontentsmask);
else if (model->brush.submodel)
{
for (i = 0, brush = model->brush.data_brushes + model->firstmodelbrush;i < model->nummodelbrushes;i++, brush++)
if (brush->colbrushf && BoxesOverlap(segmentmins, segmentmaxs, brush->colbrushf->mins, brush->colbrushf->maxs))
Collision_TraceBrushBrushFloat(trace, start, end, brush->colbrushf, brush->colbrushf);
if (mod_q3bsp_curves_collisions.integer)
for (i = 0, surface = model->data_surfaces + model->firstmodelsurface;i < model->nummodelsurfaces;i++, surface++)
if (surface->num_collisiontriangles && BoxesOverlap(segmentmins, segmentmaxs, surface->mins, surface->maxs))
Collision_TraceBrushTriangleMeshFloat(trace, start, end, surface->num_collisiontriangles, surface->deprecatedq3data_collisionelement3i, surface->deprecatedq3data_collisionvertex3f, surface->deprecatedq3num_collisionbboxstride, surface->deprecatedq3data_collisionbbox6f, surface->texture->supercontents, surface->texture->surfaceflags, surface->texture, segmentmins, segmentmaxs);
}
else
Mod_Q3BSP_TraceBrush_RecursiveBSPNode(trace, model, model->brush.data_nodes, start, end, ++markframe, segmentmins, segmentmaxs);
}
static void Mod_Q3BSP_TraceBox(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t boxmins, const vec3_t boxmaxs, const vec3_t end, int hitsupercontentsmask)
{
colboxbrushf_t thisbrush_start, thisbrush_end;
vec3_t boxstartmins, boxstartmaxs, boxendmins, boxendmaxs;
// box trace, performed as brush trace
VectorAdd(start, boxmins, boxstartmins);
VectorAdd(start, boxmaxs, boxstartmaxs);
VectorAdd(end, boxmins, boxendmins);
VectorAdd(end, boxmaxs, boxendmaxs);
Collision_BrushForBox(&thisbrush_start, boxstartmins, boxstartmaxs, 0, 0, NULL);
Collision_BrushForBox(&thisbrush_end, boxendmins, boxendmaxs, 0, 0, NULL);
Mod_Q3BSP_TraceBrush(model, frameblend, skeleton, trace, &thisbrush_start.brush, &thisbrush_end.brush, hitsupercontentsmask);
}
static int Mod_Q3BSP_PointSuperContents(struct model_s *model, int frame, const vec3_t point)
{
int i;
int supercontents = 0;
q3mbrush_t *brush;
if (mod_collision_bih.integer)
{
supercontents = Mod_CollisionBIH_PointSuperContents(model, frame, point);
}
// test if the point is inside each brush
else if (model->brush.submodel)
{
// submodels are effectively one leaf
for (i = 0, brush = model->brush.data_brushes + model->firstmodelbrush;i < model->nummodelbrushes;i++, brush++)
if (brush->colbrushf && Collision_PointInsideBrushFloat(point, brush->colbrushf))
supercontents |= brush->colbrushf->supercontents;
}
else
{
mnode_t *node = model->brush.data_nodes;
mleaf_t *leaf;
// find which leaf the point is in
while (node->plane)
node = node->children[(node->plane->type < 3 ? point[node->plane->type] : DotProduct(point, node->plane->normal)) < node->plane->dist];
leaf = (mleaf_t *)node;
// now check the brushes in the leaf
for (i = 0;i < leaf->numleafbrushes;i++)
{
brush = model->brush.data_brushes + leaf->firstleafbrush[i];
if (brush->colbrushf && Collision_PointInsideBrushFloat(point, brush->colbrushf))
supercontents |= brush->colbrushf->supercontents;
}
}
return supercontents;
}
void Mod_CollisionBIH_TraceLineAgainstSurfaces(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask)
{
Mod_CollisionBIH_TraceLineShared(model, frameblend, skeleton, trace, start, end, hitsupercontentsmask, &model->render_bih);
}
bih_t *Mod_MakeCollisionBIH(dp_model_t *model, qboolean userendersurfaces, bih_t *out)
{
int j;
int bihnumleafs;
int bihmaxnodes;
int brushindex;
int triangleindex;
int bihleafindex;
int nummodelbrushes = model->nummodelbrushes;
int nummodelsurfaces = model->nummodelsurfaces;
const int *e;
const int *collisionelement3i;
const float *collisionvertex3f;
const int *renderelement3i;
const float *rendervertex3f;
bih_leaf_t *bihleafs;
bih_node_t *bihnodes;
int *temp_leafsort;
int *temp_leafsortscratch;
const msurface_t *surface;
const q3mbrush_t *brush;
// find out how many BIH leaf nodes we need
bihnumleafs = 0;
if (userendersurfaces)
{
for (j = 0, surface = model->data_surfaces + model->firstmodelsurface;j < nummodelsurfaces;j++, surface++)
bihnumleafs += surface->num_triangles;
}
else
{
for (brushindex = 0, brush = model->brush.data_brushes + brushindex+model->firstmodelbrush;brushindex < nummodelbrushes;brushindex++, brush++)
if (brush->colbrushf)
bihnumleafs++;
for (j = 0, surface = model->data_surfaces + model->firstmodelsurface;j < nummodelsurfaces;j++, surface++)
{
if (surface->texture->basematerialflags & MATERIALFLAG_MESHCOLLISIONS)
bihnumleafs += surface->num_triangles + surface->num_collisiontriangles;
else
bihnumleafs += surface->num_collisiontriangles;
}
}
if (!bihnumleafs)
return NULL;
// allocate the memory for the BIH leaf nodes
bihleafs = (bih_leaf_t *)Mem_Alloc(loadmodel->mempool, sizeof(bih_leaf_t) * bihnumleafs);
// now populate the BIH leaf nodes
bihleafindex = 0;
// add render surfaces
renderelement3i = model->surfmesh.data_element3i;
rendervertex3f = model->surfmesh.data_vertex3f;
for (j = 0, surface = model->data_surfaces + model->firstmodelsurface;j < nummodelsurfaces;j++, surface++)
{
for (triangleindex = 0, e = renderelement3i + 3*surface->num_firsttriangle;triangleindex < surface->num_triangles;triangleindex++, e += 3)
{
if (!userendersurfaces && !(surface->texture->basematerialflags & MATERIALFLAG_MESHCOLLISIONS))
continue;
bihleafs[bihleafindex].type = BIH_RENDERTRIANGLE;
bihleafs[bihleafindex].textureindex = surface->texture - model->data_textures;
bihleafs[bihleafindex].surfaceindex = surface - model->data_surfaces;
bihleafs[bihleafindex].itemindex = triangleindex+surface->num_firsttriangle;
bihleafs[bihleafindex].mins[0] = min(rendervertex3f[3*e[0]+0], min(rendervertex3f[3*e[1]+0], rendervertex3f[3*e[2]+0])) - 1;
bihleafs[bihleafindex].mins[1] = min(rendervertex3f[3*e[0]+1], min(rendervertex3f[3*e[1]+1], rendervertex3f[3*e[2]+1])) - 1;
bihleafs[bihleafindex].mins[2] = min(rendervertex3f[3*e[0]+2], min(rendervertex3f[3*e[1]+2], rendervertex3f[3*e[2]+2])) - 1;
bihleafs[bihleafindex].maxs[0] = max(rendervertex3f[3*e[0]+0], max(rendervertex3f[3*e[1]+0], rendervertex3f[3*e[2]+0])) + 1;
bihleafs[bihleafindex].maxs[1] = max(rendervertex3f[3*e[0]+1], max(rendervertex3f[3*e[1]+1], rendervertex3f[3*e[2]+1])) + 1;
bihleafs[bihleafindex].maxs[2] = max(rendervertex3f[3*e[0]+2], max(rendervertex3f[3*e[1]+2], rendervertex3f[3*e[2]+2])) + 1;
bihleafindex++;
}
}
if (!userendersurfaces)
{
// add collision brushes
for (brushindex = 0, brush = model->brush.data_brushes + brushindex+model->firstmodelbrush;brushindex < nummodelbrushes;brushindex++, brush++)
{
if (!brush->colbrushf)
continue;
bihleafs[bihleafindex].type = BIH_BRUSH;
bihleafs[bihleafindex].textureindex = brush->texture - model->data_textures;
bihleafs[bihleafindex].surfaceindex = -1;
bihleafs[bihleafindex].itemindex = brushindex+model->firstmodelbrush;
VectorCopy(brush->colbrushf->mins, bihleafs[bihleafindex].mins);
VectorCopy(brush->colbrushf->maxs, bihleafs[bihleafindex].maxs);
bihleafindex++;
}
// add collision surfaces
collisionelement3i = model->brush.data_collisionelement3i;
collisionvertex3f = model->brush.data_collisionvertex3f;
for (j = 0, surface = model->data_surfaces + model->firstmodelsurface;j < nummodelsurfaces;j++, surface++)
{
for (triangleindex = 0, e = collisionelement3i + 3*surface->num_firstcollisiontriangle;triangleindex < surface->num_collisiontriangles;triangleindex++, e += 3)
{
bihleafs[bihleafindex].type = BIH_COLLISIONTRIANGLE;
bihleafs[bihleafindex].textureindex = surface->texture - model->data_textures;
bihleafs[bihleafindex].surfaceindex = surface - model->data_surfaces;
bihleafs[bihleafindex].itemindex = triangleindex+surface->num_firstcollisiontriangle;
bihleafs[bihleafindex].mins[0] = min(collisionvertex3f[3*e[0]+0], min(collisionvertex3f[3*e[1]+0], collisionvertex3f[3*e[2]+0])) - 1;
bihleafs[bihleafindex].mins[1] = min(collisionvertex3f[3*e[0]+1], min(collisionvertex3f[3*e[1]+1], collisionvertex3f[3*e[2]+1])) - 1;
bihleafs[bihleafindex].mins[2] = min(collisionvertex3f[3*e[0]+2], min(collisionvertex3f[3*e[1]+2], collisionvertex3f[3*e[2]+2])) - 1;
bihleafs[bihleafindex].maxs[0] = max(collisionvertex3f[3*e[0]+0], max(collisionvertex3f[3*e[1]+0], collisionvertex3f[3*e[2]+0])) + 1;
bihleafs[bihleafindex].maxs[1] = max(collisionvertex3f[3*e[0]+1], max(collisionvertex3f[3*e[1]+1], collisionvertex3f[3*e[2]+1])) + 1;
bihleafs[bihleafindex].maxs[2] = max(collisionvertex3f[3*e[0]+2], max(collisionvertex3f[3*e[1]+2], collisionvertex3f[3*e[2]+2])) + 1;
bihleafindex++;
}
}
}
// allocate buffers for the produced and temporary data
bihmaxnodes = bihnumleafs + 1;
bihnodes = (bih_node_t *)Mem_Alloc(loadmodel->mempool, sizeof(bih_node_t) * bihmaxnodes);
temp_leafsort = (int *)Mem_Alloc(loadmodel->mempool, sizeof(int) * bihnumleafs * 2);
temp_leafsortscratch = temp_leafsort + bihnumleafs;
// now build it
BIH_Build(out, bihnumleafs, bihleafs, bihmaxnodes, bihnodes, temp_leafsort, temp_leafsortscratch);
// we're done with the temporary data
Mem_Free(temp_leafsort);
// resize the BIH nodes array if it over-allocated
if (out->maxnodes > out->numnodes)
{
out->maxnodes = out->numnodes;
out->nodes = (bih_node_t *)Mem_Realloc(loadmodel->mempool, out->nodes, out->numnodes * sizeof(bih_node_t));
}
return out;
}
static int Mod_Q3BSP_SuperContentsFromNativeContents(dp_model_t *model, int nativecontents)
{
int supercontents = 0;
if (nativecontents & CONTENTSQ3_SOLID)
supercontents |= SUPERCONTENTS_SOLID;
if (nativecontents & CONTENTSQ3_WATER)
supercontents |= SUPERCONTENTS_WATER;
if (nativecontents & CONTENTSQ3_SLIME)
supercontents |= SUPERCONTENTS_SLIME;
if (nativecontents & CONTENTSQ3_LAVA)
supercontents |= SUPERCONTENTS_LAVA;
if (nativecontents & CONTENTSQ3_BODY)
supercontents |= SUPERCONTENTS_BODY;
if (nativecontents & CONTENTSQ3_CORPSE)
supercontents |= SUPERCONTENTS_CORPSE;
if (nativecontents & CONTENTSQ3_NODROP)
supercontents |= SUPERCONTENTS_NODROP;
if (nativecontents & CONTENTSQ3_PLAYERCLIP)
supercontents |= SUPERCONTENTS_PLAYERCLIP;
if (nativecontents & CONTENTSQ3_MONSTERCLIP)
supercontents |= SUPERCONTENTS_MONSTERCLIP;
if (nativecontents & CONTENTSQ3_DONOTENTER)
supercontents |= SUPERCONTENTS_DONOTENTER;
if (nativecontents & CONTENTSQ3_BOTCLIP)
supercontents |= SUPERCONTENTS_BOTCLIP;
if (!(nativecontents & CONTENTSQ3_TRANSLUCENT))
supercontents |= SUPERCONTENTS_OPAQUE;
return supercontents;
}
static int Mod_Q3BSP_NativeContentsFromSuperContents(dp_model_t *model, int supercontents)
{
int nativecontents = 0;
if (supercontents & SUPERCONTENTS_SOLID)
nativecontents |= CONTENTSQ3_SOLID;
if (supercontents & SUPERCONTENTS_WATER)
nativecontents |= CONTENTSQ3_WATER;
if (supercontents & SUPERCONTENTS_SLIME)
nativecontents |= CONTENTSQ3_SLIME;
if (supercontents & SUPERCONTENTS_LAVA)
nativecontents |= CONTENTSQ3_LAVA;
if (supercontents & SUPERCONTENTS_BODY)
nativecontents |= CONTENTSQ3_BODY;
if (supercontents & SUPERCONTENTS_CORPSE)
nativecontents |= CONTENTSQ3_CORPSE;
if (supercontents & SUPERCONTENTS_NODROP)
nativecontents |= CONTENTSQ3_NODROP;
if (supercontents & SUPERCONTENTS_PLAYERCLIP)
nativecontents |= CONTENTSQ3_PLAYERCLIP;
if (supercontents & SUPERCONTENTS_MONSTERCLIP)
nativecontents |= CONTENTSQ3_MONSTERCLIP;
if (supercontents & SUPERCONTENTS_DONOTENTER)
nativecontents |= CONTENTSQ3_DONOTENTER;
if (supercontents & SUPERCONTENTS_BOTCLIP)
nativecontents |= CONTENTSQ3_BOTCLIP;
if (!(supercontents & SUPERCONTENTS_OPAQUE))
nativecontents |= CONTENTSQ3_TRANSLUCENT;
return nativecontents;
}
static void Mod_Q3BSP_RecursiveFindNumLeafs(mnode_t *node)
{
int numleafs;
while (node->plane)
{
Mod_Q3BSP_RecursiveFindNumLeafs(node->children[0]);
node = node->children[1];
}
numleafs = ((mleaf_t *)node - loadmodel->brush.data_leafs) + 1;
if (loadmodel->brush.num_leafs < numleafs)
loadmodel->brush.num_leafs = numleafs;
}
static void Mod_Q3BSP_Load(dp_model_t *mod, void *buffer, void *bufferend)
{
int i, j, lumps;
q3dheader_t *header;
float corner[3], yawradius, modelradius;
mod->modeldatatypestring = "Q3BSP";
mod->type = mod_brushq3;
mod->numframes = 2; // although alternate textures are not supported it is annoying to complain about no such frame 1
mod->numskins = 1;
header = (q3dheader_t *)buffer;
if((char *) bufferend < (char *) buffer + sizeof(q3dheader_t))
Host_Error("Mod_Q3BSP_Load: %s is smaller than its header", mod->name);
i = LittleLong(header->version);
if (i != Q3BSPVERSION && i != Q3BSPVERSION_IG && i != Q3BSPVERSION_LIVE)
Host_Error("Mod_Q3BSP_Load: %s has wrong version number (%i, should be %i)", mod->name, i, Q3BSPVERSION);
mod->soundfromcenter = true;
mod->TraceBox = Mod_Q3BSP_TraceBox;
mod->TraceBrush = Mod_Q3BSP_TraceBrush;
mod->TraceLine = Mod_Q3BSP_TraceLine;
mod->TracePoint = Mod_Q3BSP_TracePoint;
mod->PointSuperContents = Mod_Q3BSP_PointSuperContents;
mod->TraceLineAgainstSurfaces = Mod_CollisionBIH_TraceLine;
mod->brush.TraceLineOfSight = Mod_Q3BSP_TraceLineOfSight;
mod->brush.SuperContentsFromNativeContents = Mod_Q3BSP_SuperContentsFromNativeContents;
mod->brush.NativeContentsFromSuperContents = Mod_Q3BSP_NativeContentsFromSuperContents;
mod->brush.GetPVS = Mod_Q1BSP_GetPVS;
mod->brush.FatPVS = Mod_Q1BSP_FatPVS;
mod->brush.BoxTouchingPVS = Mod_Q1BSP_BoxTouchingPVS;
mod->brush.BoxTouchingLeafPVS = Mod_Q1BSP_BoxTouchingLeafPVS;
mod->brush.BoxTouchingVisibleLeafs = Mod_Q1BSP_BoxTouchingVisibleLeafs;
mod->brush.FindBoxClusters = Mod_Q1BSP_FindBoxClusters;
mod->brush.LightPoint = Mod_Q3BSP_LightPoint;
mod->brush.FindNonSolidLocation = Mod_Q1BSP_FindNonSolidLocation;
mod->brush.AmbientSoundLevelsForPoint = NULL;
mod->brush.RoundUpToHullSize = NULL;
mod->brush.PointInLeaf = Mod_Q1BSP_PointInLeaf;
mod->Draw = R_Q1BSP_Draw;
mod->DrawDepth = R_Q1BSP_DrawDepth;
mod->DrawDebug = R_Q1BSP_DrawDebug;
mod->DrawPrepass = R_Q1BSP_DrawPrepass;
mod->GetLightInfo = R_Q1BSP_GetLightInfo;
mod->CompileShadowMap = R_Q1BSP_CompileShadowMap;
mod->DrawShadowMap = R_Q1BSP_DrawShadowMap;
mod->CompileShadowVolume = R_Q1BSP_CompileShadowVolume;
mod->DrawShadowVolume = R_Q1BSP_DrawShadowVolume;
mod->DrawLight = R_Q1BSP_DrawLight;
mod_base = (unsigned char *)header;
// swap all the lumps
header->ident = LittleLong(header->ident);
header->version = LittleLong(header->version);
lumps = (header->version == Q3BSPVERSION_LIVE) ? Q3HEADER_LUMPS_LIVE : Q3HEADER_LUMPS;
for (i = 0;i < lumps;i++)
{
j = (header->lumps[i].fileofs = LittleLong(header->lumps[i].fileofs));
if((char *) bufferend < (char *) buffer + j)
Host_Error("Mod_Q3BSP_Load: %s has a lump that starts outside the file!", mod->name);
j += (header->lumps[i].filelen = LittleLong(header->lumps[i].filelen));
if((char *) bufferend < (char *) buffer + j)
Host_Error("Mod_Q3BSP_Load: %s has a lump that ends outside the file!", mod->name);
}
/*
* NO, do NOT clear them!
* they contain actual data referenced by other stuff.
* Instead, before using the advertisements lump, check header->versio
* again!
* Sorry, but otherwise it breaks memory of the first lump.
for (i = lumps;i < Q3HEADER_LUMPS_MAX;i++)
{
header->lumps[i].fileofs = 0;
header->lumps[i].filelen = 0;
}
*/
mod->brush.qw_md4sum = 0;
mod->brush.qw_md4sum2 = 0;
for (i = 0;i < lumps;i++)
{
if (i == Q3LUMP_ENTITIES)
continue;
mod->brush.qw_md4sum ^= Com_BlockChecksum(mod_base + header->lumps[i].fileofs, header->lumps[i].filelen);
if (i == Q3LUMP_PVS || i == Q3LUMP_LEAFS || i == Q3LUMP_NODES)
continue;
mod->brush.qw_md4sum2 ^= Com_BlockChecksum(mod_base + header->lumps[i].fileofs, header->lumps[i].filelen);
// all this checksumming can take a while, so let's send keepalives here too
CL_KeepaliveMessage(false);
}
Mod_Q3BSP_LoadEntities(&header->lumps[Q3LUMP_ENTITIES]);
Mod_Q3BSP_LoadTextures(&header->lumps[Q3LUMP_TEXTURES]);
Mod_Q3BSP_LoadPlanes(&header->lumps[Q3LUMP_PLANES]);
if (header->version == Q3BSPVERSION_IG)
Mod_Q3BSP_LoadBrushSides_IG(&header->lumps[Q3LUMP_BRUSHSIDES]);
else
Mod_Q3BSP_LoadBrushSides(&header->lumps[Q3LUMP_BRUSHSIDES]);
Mod_Q3BSP_LoadBrushes(&header->lumps[Q3LUMP_BRUSHES]);
Mod_Q3BSP_LoadEffects(&header->lumps[Q3LUMP_EFFECTS]);
Mod_Q3BSP_LoadVertices(&header->lumps[Q3LUMP_VERTICES]);
Mod_Q3BSP_LoadTriangles(&header->lumps[Q3LUMP_TRIANGLES]);
Mod_Q3BSP_LoadLightmaps(&header->lumps[Q3LUMP_LIGHTMAPS], &header->lumps[Q3LUMP_FACES]);
Mod_Q3BSP_LoadFaces(&header->lumps[Q3LUMP_FACES]);
Mod_Q3BSP_LoadModels(&header->lumps[Q3LUMP_MODELS]);
Mod_Q3BSP_LoadLeafBrushes(&header->lumps[Q3LUMP_LEAFBRUSHES]);
Mod_Q3BSP_LoadLeafFaces(&header->lumps[Q3LUMP_LEAFFACES]);
Mod_Q3BSP_LoadLeafs(&header->lumps[Q3LUMP_LEAFS]);
Mod_Q3BSP_LoadNodes(&header->lumps[Q3LUMP_NODES]);
Mod_Q3BSP_LoadLightGrid(&header->lumps[Q3LUMP_LIGHTGRID]);
Mod_Q3BSP_LoadPVS(&header->lumps[Q3LUMP_PVS]);
loadmodel->brush.numsubmodels = loadmodel->brushq3.num_models;
// the MakePortals code works fine on the q3bsp data as well
if (mod_bsp_portalize.integer)
Mod_Q1BSP_MakePortals();
// FIXME: shader alpha should replace r_wateralpha support in q3bsp
loadmodel->brush.supportwateralpha = true;
// make a single combined shadow mesh to allow optimized shadow volume creation
Mod_Q1BSP_CreateShadowMesh(loadmodel);
loadmodel->brush.num_leafs = 0;
Mod_Q3BSP_RecursiveFindNumLeafs(loadmodel->brush.data_nodes);
if (loadmodel->brush.numsubmodels)
loadmodel->brush.submodels = (dp_model_t **)Mem_Alloc(loadmodel->mempool, loadmodel->brush.numsubmodels * sizeof(dp_model_t *));
mod = loadmodel;
for (i = 0;i < loadmodel->brush.numsubmodels;i++)
{
if (i > 0)
{
char name[10];
// duplicate the basic information
dpsnprintf(name, sizeof(name), "*%i", i);
mod = Mod_FindName(name, loadmodel->name);
// copy the base model to this one
*mod = *loadmodel;
// rename the clone back to its proper name
strlcpy(mod->name, name, sizeof(mod->name));
mod->brush.parentmodel = loadmodel;
// textures and memory belong to the main model
mod->texturepool = NULL;
mod->mempool = NULL;
mod->brush.GetPVS = NULL;
mod->brush.FatPVS = NULL;
mod->brush.BoxTouchingPVS = NULL;
mod->brush.BoxTouchingLeafPVS = NULL;
mod->brush.BoxTouchingVisibleLeafs = NULL;
mod->brush.FindBoxClusters = NULL;
mod->brush.LightPoint = NULL;
mod->brush.AmbientSoundLevelsForPoint = NULL;
}
mod->brush.submodel = i;
if (loadmodel->brush.submodels)
loadmodel->brush.submodels[i] = mod;
// make the model surface list (used by shadowing/lighting)
mod->firstmodelsurface = mod->brushq3.data_models[i].firstface;
mod->nummodelsurfaces = mod->brushq3.data_models[i].numfaces;
mod->firstmodelbrush = mod->brushq3.data_models[i].firstbrush;
mod->nummodelbrushes = mod->brushq3.data_models[i].numbrushes;
mod->sortedmodelsurfaces = (int *)Mem_Alloc(loadmodel->mempool, mod->nummodelsurfaces * sizeof(*mod->sortedmodelsurfaces));
Mod_MakeSortedSurfaces(mod);
VectorCopy(mod->brushq3.data_models[i].mins, mod->normalmins);
VectorCopy(mod->brushq3.data_models[i].maxs, mod->normalmaxs);
// enlarge the bounding box to enclose all geometry of this model,
// because q3map2 sometimes lies (mostly to affect the lightgrid),
// which can in turn mess up the farclip (as well as culling when
// outside the level - an unimportant concern)
//printf("Editing model %d... BEFORE re-bounding: %f %f %f - %f %f %f\n", i, mod->normalmins[0], mod->normalmins[1], mod->normalmins[2], mod->normalmaxs[0], mod->normalmaxs[1], mod->normalmaxs[2]);
for (j = 0;j < mod->nummodelsurfaces;j++)
{
const msurface_t *surface = mod->data_surfaces + j + mod->firstmodelsurface;
const float *v = mod->surfmesh.data_vertex3f + 3 * surface->num_firstvertex;
int k;
if (!surface->num_vertices)
continue;
for (k = 0;k < surface->num_vertices;k++, v += 3)
{
mod->normalmins[0] = min(mod->normalmins[0], v[0]);
mod->normalmins[1] = min(mod->normalmins[1], v[1]);
mod->normalmins[2] = min(mod->normalmins[2], v[2]);
mod->normalmaxs[0] = max(mod->normalmaxs[0], v[0]);
mod->normalmaxs[1] = max(mod->normalmaxs[1], v[1]);
mod->normalmaxs[2] = max(mod->normalmaxs[2], v[2]);
}
}
//printf("Editing model %d... AFTER re-bounding: %f %f %f - %f %f %f\n", i, mod->normalmins[0], mod->normalmins[1], mod->normalmins[2], mod->normalmaxs[0], mod->normalmaxs[1], mod->normalmaxs[2]);
corner[0] = max(fabs(mod->normalmins[0]), fabs(mod->normalmaxs[0]));
corner[1] = max(fabs(mod->normalmins[1]), fabs(mod->normalmaxs[1]));
corner[2] = max(fabs(mod->normalmins[2]), fabs(mod->normalmaxs[2]));
modelradius = sqrt(corner[0]*corner[0]+corner[1]*corner[1]+corner[2]*corner[2]);
yawradius = sqrt(corner[0]*corner[0]+corner[1]*corner[1]);
mod->rotatedmins[0] = mod->rotatedmins[1] = mod->rotatedmins[2] = -modelradius;
mod->rotatedmaxs[0] = mod->rotatedmaxs[1] = mod->rotatedmaxs[2] = modelradius;
mod->yawmaxs[0] = mod->yawmaxs[1] = yawradius;
mod->yawmins[0] = mod->yawmins[1] = -yawradius;
mod->yawmins[2] = mod->normalmins[2];
mod->yawmaxs[2] = mod->normalmaxs[2];
mod->radius = modelradius;
mod->radius2 = modelradius * modelradius;
// this gets altered below if sky or water is used
mod->DrawSky = NULL;
mod->DrawAddWaterPlanes = NULL;
for (j = 0;j < mod->nummodelsurfaces;j++)
if (mod->data_surfaces[j + mod->firstmodelsurface].texture->basematerialflags & MATERIALFLAG_SKY)
break;
if (j < mod->nummodelsurfaces)
mod->DrawSky = R_Q1BSP_DrawSky;
for (j = 0;j < mod->nummodelsurfaces;j++)
if (mod->data_surfaces[j + mod->firstmodelsurface].texture->basematerialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA))
break;
if (j < mod->nummodelsurfaces)
mod->DrawAddWaterPlanes = R_Q1BSP_DrawAddWaterPlanes;
Mod_MakeCollisionBIH(mod, false, &mod->collision_bih);
Mod_MakeCollisionBIH(mod, true, &mod->render_bih);
// generate VBOs and other shared data before cloning submodels
if (i == 0)
Mod_BuildVBOs();
}
if (mod_q3bsp_sRGBlightmaps.integer)
{
if (vid_sRGB.integer && vid_sRGB_fallback.integer && !vid.sRGB3D)
{
// actually we do in sRGB fallback with sRGB lightmaps: Image_sRGBFloatFromLinear_Lightmap(Image_LinearFloatFromsRGBFloat(x))
// neutral point is at Image_sRGBFloatFromLinearFloat(0.5)
// so we need to map Image_sRGBFloatFromLinearFloat(0.5) to 0.5
// factor is 0.5 / Image_sRGBFloatFromLinearFloat(0.5)
//loadmodel->lightmapscale *= 0.679942f; // fixes neutral level
}
else // if this is NOT set, regular rendering looks right by this requirement anyway
{
/*
// we want color 1 to do the same as without sRGB
// so, we want to map 1 to Image_LinearFloatFromsRGBFloat(2) instead of to 2
loadmodel->lightmapscale *= 2.476923f; // fixes max level
*/
// neutral level 0.5 gets uploaded as sRGB and becomes Image_LinearFloatFromsRGBFloat(0.5)
// we need to undo that
loadmodel->lightmapscale *= 2.336f; // fixes neutral level
}
}
Con_DPrintf("Stats for q3bsp model \"%s\": %i faces, %i nodes, %i leafs, %i clusters, %i clusterportals, mesh: %i vertices, %i triangles, %i surfaces\n", loadmodel->name, loadmodel->num_surfaces, loadmodel->brush.num_nodes, loadmodel->brush.num_leafs, mod->brush.num_pvsclusters, loadmodel->brush.num_portals, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->num_surfaces);
}
void Mod_IBSP_Load(dp_model_t *mod, void *buffer, void *bufferend)
{
int i = LittleLong(((int *)buffer)[1]);
if (i == Q3BSPVERSION || i == Q3BSPVERSION_IG || i == Q3BSPVERSION_LIVE)
Mod_Q3BSP_Load(mod,buffer, bufferend);
else if (i == Q2BSPVERSION)
Mod_Q2BSP_Load(mod,buffer, bufferend);
else
Host_Error("Mod_IBSP_Load: unknown/unsupported version %i", i);
}
void Mod_MAP_Load(dp_model_t *mod, void *buffer, void *bufferend)
{
Host_Error("Mod_MAP_Load: not yet implemented");
}
typedef struct objvertex_s
{
int nextindex;
int submodelindex;
int textureindex;
float v[3];
float vt[2];
float vn[3];
}
objvertex_t;
static unsigned char nobsp_pvs[1] = {1};
void Mod_OBJ_Load(dp_model_t *mod, void *buffer, void *bufferend)
{
const char *textbase = (char *)buffer, *text = textbase;
char *s;
char *argv[512];
char line[1024];
char materialname[MAX_QPATH];
int i, j, l, numvertices, firstvertex, firsttriangle, elementindex, vertexindex, surfacevertices, surfacetriangles, surfaceelements, submodelindex = 0;
int index1, index2, index3;
objvertex_t vfirst, vprev, vcurrent;
int argc;
int linelen;
int numtriangles = 0;
int maxtriangles = 0;
objvertex_t *vertices = NULL;
int linenumber = 0;
int maxtextures = 0, numtextures = 0, textureindex = 0;
int maxv = 0, numv = 1;
int maxvt = 0, numvt = 1;
int maxvn = 0, numvn = 1;
char *texturenames = NULL;
float dist, modelradius, modelyawradius, yawradius;
float *v = NULL;
float *vt = NULL;
float *vn = NULL;
float mins[3];
float maxs[3];
float corner[3];
objvertex_t *thisvertex = NULL;
int vertexhashindex;
int *vertexhashtable = NULL;
objvertex_t *vertexhashdata = NULL;
objvertex_t *vdata = NULL;
int vertexhashsize = 0;
int vertexhashcount = 0;
skinfile_t *skinfiles = NULL;
unsigned char *data = NULL;
int *submodelfirstsurface;
msurface_t *surface;
msurface_t *tempsurfaces;
memset(&vfirst, 0, sizeof(vfirst));
memset(&vprev, 0, sizeof(vprev));
memset(&vcurrent, 0, sizeof(vcurrent));
dpsnprintf(materialname, sizeof(materialname), "%s", loadmodel->name);
loadmodel->modeldatatypestring = "OBJ";
loadmodel->type = mod_obj;
loadmodel->soundfromcenter = true;
loadmodel->TraceBox = Mod_CollisionBIH_TraceBox;
loadmodel->TraceBrush = Mod_CollisionBIH_TraceBrush;
loadmodel->TraceLine = Mod_CollisionBIH_TraceLine;
loadmodel->TracePoint = Mod_CollisionBIH_TracePoint_Mesh;
loadmodel->TraceLineAgainstSurfaces = Mod_CollisionBIH_TraceLine;
loadmodel->PointSuperContents = Mod_CollisionBIH_PointSuperContents_Mesh;
loadmodel->brush.TraceLineOfSight = NULL;
loadmodel->brush.SuperContentsFromNativeContents = NULL;
loadmodel->brush.NativeContentsFromSuperContents = NULL;
loadmodel->brush.GetPVS = NULL;
loadmodel->brush.FatPVS = NULL;
loadmodel->brush.BoxTouchingPVS = NULL;
loadmodel->brush.BoxTouchingLeafPVS = NULL;
loadmodel->brush.BoxTouchingVisibleLeafs = NULL;
loadmodel->brush.FindBoxClusters = NULL;
loadmodel->brush.LightPoint = NULL;
loadmodel->brush.FindNonSolidLocation = NULL;
loadmodel->brush.AmbientSoundLevelsForPoint = NULL;
loadmodel->brush.RoundUpToHullSize = NULL;
loadmodel->brush.PointInLeaf = NULL;
loadmodel->Draw = R_Q1BSP_Draw;
loadmodel->DrawDepth = R_Q1BSP_DrawDepth;
loadmodel->DrawDebug = R_Q1BSP_DrawDebug;
loadmodel->DrawPrepass = R_Q1BSP_DrawPrepass;
loadmodel->GetLightInfo = R_Q1BSP_GetLightInfo;
loadmodel->CompileShadowMap = R_Q1BSP_CompileShadowMap;
loadmodel->DrawShadowMap = R_Q1BSP_DrawShadowMap;
loadmodel->CompileShadowVolume = R_Q1BSP_CompileShadowVolume;
loadmodel->DrawShadowVolume = R_Q1BSP_DrawShadowVolume;
loadmodel->DrawLight = R_Q1BSP_DrawLight;
skinfiles = Mod_LoadSkinFiles();
if (loadmodel->numskins < 1)
loadmodel->numskins = 1;
// make skinscenes for the skins (no groups)
loadmodel->skinscenes = (animscene_t *)Mem_Alloc(loadmodel->mempool, sizeof(animscene_t) * loadmodel->numskins);
for (i = 0;i < loadmodel->numskins;i++)
{
loadmodel->skinscenes[i].firstframe = i;
loadmodel->skinscenes[i].framecount = 1;
loadmodel->skinscenes[i].loop = true;
loadmodel->skinscenes[i].framerate = 10;
}
VectorClear(mins);
VectorClear(maxs);
// we always have model 0, i.e. the first "submodel"
loadmodel->brush.numsubmodels = 1;
// parse the OBJ text now
for(;;)
{
static char emptyarg[1] = "";
if (!*text)
break;
linenumber++;
linelen = 0;
for (linelen = 0;text[linelen] && text[linelen] != '\r' && text[linelen] != '\n';linelen++)
line[linelen] = text[linelen];
line[linelen] = 0;
for (argc = 0;argc < 4;argc++)
argv[argc] = emptyarg;
argc = 0;
s = line;
while (*s == ' ' || *s == '\t')
s++;
while (*s)
{
argv[argc++] = s;
while (*s > ' ')
s++;
if (!*s)
break;
*s++ = 0;
while (*s == ' ' || *s == '\t')
s++;
}
text += linelen;
if (*text == '\r')
text++;
if (*text == '\n')
text++;
if (!argc)
continue;
if (argv[0][0] == '#')
continue;
if (!strcmp(argv[0], "v"))
{
if (maxv <= numv)
{
maxv = max(maxv * 2, 1024);
v = (float *)Mem_Realloc(tempmempool, v, maxv * sizeof(float[3]));
}
if(mod_obj_orientation.integer)
{
v[numv*3+0] = atof(argv[1]);
v[numv*3+2] = atof(argv[2]);
v[numv*3+1] = atof(argv[3]);
}
else
{
v[numv*3+0] = atof(argv[1]);
v[numv*3+1] = atof(argv[2]);
v[numv*3+2] = atof(argv[3]);
}
numv++;
}
else if (!strcmp(argv[0], "vt"))
{
if (maxvt <= numvt)
{
maxvt = max(maxvt * 2, 1024);
vt = (float *)Mem_Realloc(tempmempool, vt, maxvt * sizeof(float[2]));
}
vt[numvt*2+0] = atof(argv[1]);
vt[numvt*2+1] = 1-atof(argv[2]);
numvt++;
}
else if (!strcmp(argv[0], "vn"))
{
if (maxvn <= numvn)
{
maxvn = max(maxvn * 2, 1024);
vn = (float *)Mem_Realloc(tempmempool, vn, maxvn * sizeof(float[3]));
}
if(mod_obj_orientation.integer)
{
vn[numvn*3+0] = atof(argv[1]);
vn[numvn*3+2] = atof(argv[2]);
vn[numvn*3+1] = atof(argv[3]);
}
else
{
vn[numvn*3+0] = atof(argv[1]);
vn[numvn*3+1] = atof(argv[2]);
vn[numvn*3+2] = atof(argv[3]);
}
numvn++;
}
else if (!strcmp(argv[0], "f"))
{
if (!numtextures)
{
if (maxtextures <= numtextures)
{
maxtextures = max(maxtextures * 2, 256);
texturenames = (char *)Mem_Realloc(loadmodel->mempool, texturenames, maxtextures * MAX_QPATH);
}
textureindex = numtextures++;
strlcpy(texturenames + textureindex*MAX_QPATH, loadmodel->name, MAX_QPATH);
}
for (j = 1;j < argc;j++)
{
index1 = atoi(argv[j]);
while(argv[j][0] && argv[j][0] != '/')
argv[j]++;
if (argv[j][0])
argv[j]++;
index2 = atoi(argv[j]);
while(argv[j][0] && argv[j][0] != '/')
argv[j]++;
if (argv[j][0])
argv[j]++;
index3 = atoi(argv[j]);
// negative refers to a recent vertex
// zero means not specified
// positive means an absolute vertex index
if (index1 < 0)
index1 = numv - index1;
if (index2 < 0)
index2 = numvt - index2;
if (index3 < 0)
index3 = numvn - index3;
vcurrent.nextindex = -1;
vcurrent.textureindex = textureindex;
vcurrent.submodelindex = submodelindex;
if (v && index1 >= 0 && index1 < numv)
VectorCopy(v + 3*index1, vcurrent.v);
if (vt && index2 >= 0 && index2 < numvt)
Vector2Copy(vt + 2*index2, vcurrent.vt);
if (vn && index3 >= 0 && index3 < numvn)
VectorCopy(vn + 3*index3, vcurrent.vn);
if (numtriangles == 0)
{
VectorCopy(vcurrent.v, mins);
VectorCopy(vcurrent.v, maxs);
}
else
{
mins[0] = min(mins[0], vcurrent.v[0]);
mins[1] = min(mins[1], vcurrent.v[1]);
mins[2] = min(mins[2], vcurrent.v[2]);
maxs[0] = max(maxs[0], vcurrent.v[0]);
maxs[1] = max(maxs[1], vcurrent.v[1]);
maxs[2] = max(maxs[2], vcurrent.v[2]);
}
if (j == 1)
vfirst = vcurrent;
else if (j >= 3)
{
if (maxtriangles <= numtriangles)
{
maxtriangles = max(maxtriangles * 2, 32768);
vertices = (objvertex_t*)Mem_Realloc(loadmodel->mempool, vertices, maxtriangles * sizeof(objvertex_t[3]));
}
if(mod_obj_orientation.integer)
{
vertices[numtriangles*3+0] = vfirst;
vertices[numtriangles*3+1] = vprev;
vertices[numtriangles*3+2] = vcurrent;
}
else
{
vertices[numtriangles*3+0] = vfirst;
vertices[numtriangles*3+2] = vprev;
vertices[numtriangles*3+1] = vcurrent;
}
numtriangles++;
}
vprev = vcurrent;
}
}
else if (!strcmp(argv[0], "o") || !strcmp(argv[0], "g"))
{
submodelindex = atof(argv[1]);
loadmodel->brush.numsubmodels = max(submodelindex + 1, loadmodel->brush.numsubmodels);
}
else if (!strcmp(argv[0], "usemtl"))
{
for (i = 0;i < numtextures;i++)
if (!strcmp(texturenames+i*MAX_QPATH, argv[1]))
break;
if (i < numtextures)
textureindex = i;
else
{
if (maxtextures <= numtextures)
{
maxtextures = max(maxtextures * 2, 256);
texturenames = (char *)Mem_Realloc(loadmodel->mempool, texturenames, maxtextures * MAX_QPATH);
}
textureindex = numtextures++;
strlcpy(texturenames + textureindex*MAX_QPATH, argv[1], MAX_QPATH);
}
}
}
// now that we have the OBJ data loaded as-is, we can convert it
// copy the model bounds, then enlarge the yaw and rotated bounds according to radius
VectorCopy(mins, loadmodel->normalmins);
VectorCopy(maxs, loadmodel->normalmaxs);
dist = max(fabs(loadmodel->normalmins[0]), fabs(loadmodel->normalmaxs[0]));
modelyawradius = max(fabs(loadmodel->normalmins[1]), fabs(loadmodel->normalmaxs[1]));
modelyawradius = dist*dist+modelyawradius*modelyawradius;
modelradius = max(fabs(loadmodel->normalmins[2]), fabs(loadmodel->normalmaxs[2]));
modelradius = modelyawradius + modelradius * modelradius;
modelyawradius = sqrt(modelyawradius);
modelradius = sqrt(modelradius);
loadmodel->yawmins[0] = loadmodel->yawmins[1] = -modelyawradius;
loadmodel->yawmins[2] = loadmodel->normalmins[2];
loadmodel->yawmaxs[0] = loadmodel->yawmaxs[1] = modelyawradius;
loadmodel->yawmaxs[2] = loadmodel->normalmaxs[2];
loadmodel->rotatedmins[0] = loadmodel->rotatedmins[1] = loadmodel->rotatedmins[2] = -modelradius;
loadmodel->rotatedmaxs[0] = loadmodel->rotatedmaxs[1] = loadmodel->rotatedmaxs[2] = modelradius;
loadmodel->radius = modelradius;
loadmodel->radius2 = modelradius * modelradius;
// allocate storage for triangles
loadmodel->surfmesh.data_element3i = (int *)Mem_Alloc(loadmodel->mempool, numtriangles * sizeof(int[3]));
// allocate vertex hash structures to build an optimal vertex subset
vertexhashsize = numtriangles*2;
vertexhashtable = (int *)Mem_Alloc(loadmodel->mempool, sizeof(int) * vertexhashsize);
memset(vertexhashtable, 0xFF, sizeof(int) * vertexhashsize);
vertexhashdata = (objvertex_t *)Mem_Alloc(loadmodel->mempool, sizeof(*vertexhashdata) * numtriangles*3);
vertexhashcount = 0;
// gather surface stats for assigning vertex/triangle ranges
firstvertex = 0;
firsttriangle = 0;
elementindex = 0;
loadmodel->num_surfaces = 0;
// allocate storage for the worst case number of surfaces, later we resize
tempsurfaces = (msurface_t *)Mem_Alloc(loadmodel->mempool, numtextures * loadmodel->brush.numsubmodels * sizeof(msurface_t));
submodelfirstsurface = (int *)Mem_Alloc(loadmodel->mempool, (loadmodel->brush.numsubmodels+1) * sizeof(int));
surface = tempsurfaces;
for (submodelindex = 0;submodelindex < loadmodel->brush.numsubmodels;submodelindex++)
{
submodelfirstsurface[submodelindex] = loadmodel->num_surfaces;
for (textureindex = 0;textureindex < numtextures;textureindex++)
{
for (vertexindex = 0;vertexindex < numtriangles*3;vertexindex++)
{
thisvertex = vertices + vertexindex;
if (thisvertex->submodelindex == submodelindex && thisvertex->textureindex == textureindex)
break;
}
// skip the surface creation if there are no triangles for it
if (vertexindex == numtriangles*3)
continue;
// create a surface for these vertices
surfacevertices = 0;
surfaceelements = 0;
// we hack in a texture index in the surface to be fixed up later...
surface->texture = (texture_t *)((size_t)textureindex);
// calculate bounds as we go
VectorCopy(thisvertex->v, surface->mins);
VectorCopy(thisvertex->v, surface->maxs);
for (;vertexindex < numtriangles*3;vertexindex++)
{
thisvertex = vertices + vertexindex;
if (thisvertex->submodelindex != submodelindex)
continue;
if (thisvertex->textureindex != textureindex)
continue;
// add vertex to surface bounds
surface->mins[0] = min(surface->mins[0], thisvertex->v[0]);
surface->mins[1] = min(surface->mins[1], thisvertex->v[1]);
surface->mins[2] = min(surface->mins[2], thisvertex->v[2]);
surface->maxs[0] = max(surface->maxs[0], thisvertex->v[0]);
surface->maxs[1] = max(surface->maxs[1], thisvertex->v[1]);
surface->maxs[2] = max(surface->maxs[2], thisvertex->v[2]);
// add the vertex if it is not found in the merged set, and
// get its index (triangle element) for the surface
vertexhashindex = (unsigned int)(thisvertex->v[0] * 3571 + thisvertex->v[0] * 1777 + thisvertex->v[0] * 457) % (unsigned int)vertexhashsize;
for (i = vertexhashtable[vertexhashindex];i >= 0;i = vertexhashdata[i].nextindex)
{
vdata = vertexhashdata + i;
if (vdata->submodelindex == thisvertex->submodelindex && vdata->textureindex == thisvertex->textureindex && VectorCompare(thisvertex->v, vdata->v) && VectorCompare(thisvertex->vn, vdata->vn) && Vector2Compare(thisvertex->vt, vdata->vt))
break;
}
if (i < 0)
{
i = vertexhashcount++;
vdata = vertexhashdata + i;
*vdata = *thisvertex;
vdata->nextindex = vertexhashtable[vertexhashindex];
vertexhashtable[vertexhashindex] = i;
surfacevertices++;
}
loadmodel->surfmesh.data_element3i[elementindex++] = i;
surfaceelements++;
}
surfacetriangles = surfaceelements / 3;
surface->num_vertices = surfacevertices;
surface->num_triangles = surfacetriangles;
surface->num_firstvertex = firstvertex;
surface->num_firsttriangle = firsttriangle;
firstvertex += surface->num_vertices;
firsttriangle += surface->num_triangles;
surface++;
loadmodel->num_surfaces++;
}
}
submodelfirstsurface[submodelindex] = loadmodel->num_surfaces;
numvertices = firstvertex;
loadmodel->data_surfaces = (msurface_t *)Mem_Realloc(loadmodel->mempool, tempsurfaces, loadmodel->num_surfaces * sizeof(msurface_t));
tempsurfaces = NULL;
// allocate storage for final mesh data
loadmodel->num_textures = numtextures * loadmodel->numskins;
loadmodel->num_texturesperskin = numtextures;
data = (unsigned char *)Mem_Alloc(loadmodel->mempool, loadmodel->num_surfaces * sizeof(int) + loadmodel->num_surfaces * loadmodel->numskins * sizeof(texture_t) + numtriangles * sizeof(int[3]) + (numvertices <= 65536 ? numtriangles * sizeof(unsigned short[3]) : 0) + (r_enableshadowvolumes.integer ? numtriangles * sizeof(int[3]) : 0) + numvertices * sizeof(float[14]) + loadmodel->brush.numsubmodels * sizeof(dp_model_t *));
loadmodel->brush.submodels = (dp_model_t **)data;data += loadmodel->brush.numsubmodels * sizeof(dp_model_t *);
loadmodel->sortedmodelsurfaces = (int *)data;data += loadmodel->num_surfaces * sizeof(int);
loadmodel->data_textures = (texture_t *)data;data += loadmodel->num_surfaces * loadmodel->numskins * sizeof(texture_t);
loadmodel->surfmesh.num_vertices = numvertices;
loadmodel->surfmesh.num_triangles = numtriangles;
if (r_enableshadowvolumes.integer)
loadmodel->surfmesh.data_neighbor3i = (int *)data;data += numtriangles * sizeof(int[3]);
loadmodel->surfmesh.data_vertex3f = (float *)data;data += numvertices * sizeof(float[3]);
loadmodel->surfmesh.data_svector3f = (float *)data;data += numvertices * sizeof(float[3]);
loadmodel->surfmesh.data_tvector3f = (float *)data;data += numvertices * sizeof(float[3]);
loadmodel->surfmesh.data_normal3f = (float *)data;data += numvertices * sizeof(float[3]);
loadmodel->surfmesh.data_texcoordtexture2f = (float *)data;data += numvertices * sizeof(float[2]);
if (loadmodel->surfmesh.num_vertices <= 65536)
loadmodel->surfmesh.data_element3s = (unsigned short *)data;data += loadmodel->surfmesh.num_triangles * sizeof(unsigned short[3]);
for (j = 0;j < loadmodel->surfmesh.num_vertices;j++)
{
VectorCopy(vertexhashdata[j].v, loadmodel->surfmesh.data_vertex3f + 3*j);
VectorCopy(vertexhashdata[j].vn, loadmodel->surfmesh.data_normal3f + 3*j);
Vector2Copy(vertexhashdata[j].vt, loadmodel->surfmesh.data_texcoordtexture2f + 2*j);
}
// load the textures
for (textureindex = 0;textureindex < numtextures;textureindex++)
Mod_BuildAliasSkinsFromSkinFiles(loadmodel->data_textures + textureindex, skinfiles, texturenames + textureindex*MAX_QPATH, texturenames + textureindex*MAX_QPATH);
Mod_FreeSkinFiles(skinfiles);
// set the surface textures to their real values now that we loaded them...
for (i = 0;i < loadmodel->num_surfaces;i++)
loadmodel->data_surfaces[i].texture = loadmodel->data_textures + (size_t)loadmodel->data_surfaces[i].texture;
// free data
Mem_Free(vertices);
Mem_Free(texturenames);
Mem_Free(v);
Mem_Free(vt);
Mem_Free(vn);
Mem_Free(vertexhashtable);
Mem_Free(vertexhashdata);
// make a single combined shadow mesh to allow optimized shadow volume creation
Mod_Q1BSP_CreateShadowMesh(loadmodel);
// compute all the mesh information that was not loaded from the file
if (loadmodel->surfmesh.data_element3s)
for (i = 0;i < loadmodel->surfmesh.num_triangles*3;i++)
loadmodel->surfmesh.data_element3s[i] = loadmodel->surfmesh.data_element3i[i];
Mod_ValidateElements(loadmodel->surfmesh.data_element3i, loadmodel->surfmesh.num_triangles, 0, loadmodel->surfmesh.num_vertices, __FILE__, __LINE__);
// generate normals if the file did not have them
if (!VectorLength2(loadmodel->surfmesh.data_normal3f))
Mod_BuildNormals(0, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->surfmesh.data_vertex3f, loadmodel->surfmesh.data_element3i, loadmodel->surfmesh.data_normal3f, r_smoothnormals_areaweighting.integer != 0);
Mod_BuildTextureVectorsFromNormals(0, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->surfmesh.data_vertex3f, loadmodel->surfmesh.data_texcoordtexture2f, loadmodel->surfmesh.data_normal3f, loadmodel->surfmesh.data_element3i, loadmodel->surfmesh.data_svector3f, loadmodel->surfmesh.data_tvector3f, r_smoothnormals_areaweighting.integer != 0);
if (loadmodel->surfmesh.data_neighbor3i)
Mod_BuildTriangleNeighbors(loadmodel->surfmesh.data_neighbor3i, loadmodel->surfmesh.data_element3i, loadmodel->surfmesh.num_triangles);
// if this is a worldmodel and has no BSP tree, create a fake one for the purpose
loadmodel->brush.num_visleafs = 1;
loadmodel->brush.num_leafs = 1;
loadmodel->brush.num_nodes = 0;
loadmodel->brush.num_leafsurfaces = loadmodel->num_surfaces;
loadmodel->brush.data_leafs = (mleaf_t *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_leafs * sizeof(mleaf_t));
loadmodel->brush.data_nodes = (mnode_t *)loadmodel->brush.data_leafs;
loadmodel->brush.num_pvsclusters = 1;
loadmodel->brush.num_pvsclusterbytes = 1;
loadmodel->brush.data_pvsclusters = nobsp_pvs;
//if (loadmodel->num_nodes) loadmodel->data_nodes = (mnode_t *)Mem_Alloc(loadmodel->mempool, loadmodel->num_nodes * sizeof(mnode_t));
//loadmodel->data_leafsurfaces = (int *)Mem_Alloc(loadmodel->mempool, loadmodel->num_leafsurfaces * sizeof(int));
loadmodel->brush.data_leafsurfaces = loadmodel->sortedmodelsurfaces;
VectorCopy(loadmodel->normalmins, loadmodel->brush.data_leafs->mins);
VectorCopy(loadmodel->normalmaxs, loadmodel->brush.data_leafs->maxs);
loadmodel->brush.data_leafs->combinedsupercontents = 0; // FIXME?
loadmodel->brush.data_leafs->clusterindex = 0;
loadmodel->brush.data_leafs->areaindex = 0;
loadmodel->brush.data_leafs->numleafsurfaces = loadmodel->brush.num_leafsurfaces;
loadmodel->brush.data_leafs->firstleafsurface = loadmodel->brush.data_leafsurfaces;
loadmodel->brush.data_leafs->numleafbrushes = 0;
loadmodel->brush.data_leafs->firstleafbrush = NULL;
loadmodel->brush.supportwateralpha = true;
if (loadmodel->brush.numsubmodels)
loadmodel->brush.submodels = (dp_model_t **)Mem_Alloc(loadmodel->mempool, loadmodel->brush.numsubmodels * sizeof(dp_model_t *));
mod = loadmodel;
for (i = 0;i < loadmodel->brush.numsubmodels;i++)
{
if (i > 0)
{
char name[10];
// duplicate the basic information
dpsnprintf(name, sizeof(name), "*%i", i);
mod = Mod_FindName(name, loadmodel->name);
// copy the base model to this one
*mod = *loadmodel;
// rename the clone back to its proper name
strlcpy(mod->name, name, sizeof(mod->name));
mod->brush.parentmodel = loadmodel;
// textures and memory belong to the main model
mod->texturepool = NULL;
mod->mempool = NULL;
mod->brush.GetPVS = NULL;
mod->brush.FatPVS = NULL;
mod->brush.BoxTouchingPVS = NULL;
mod->brush.BoxTouchingLeafPVS = NULL;
mod->brush.BoxTouchingVisibleLeafs = NULL;
mod->brush.FindBoxClusters = NULL;
mod->brush.LightPoint = NULL;
mod->brush.AmbientSoundLevelsForPoint = NULL;
}
mod->brush.submodel = i;
if (loadmodel->brush.submodels)
loadmodel->brush.submodels[i] = mod;
// make the model surface list (used by shadowing/lighting)
mod->firstmodelsurface = submodelfirstsurface[i];
mod->nummodelsurfaces = submodelfirstsurface[i+1] - submodelfirstsurface[i];
mod->firstmodelbrush = 0;
mod->nummodelbrushes = 0;
mod->sortedmodelsurfaces = loadmodel->sortedmodelsurfaces + mod->firstmodelsurface;
Mod_MakeSortedSurfaces(mod);
VectorClear(mod->normalmins);
VectorClear(mod->normalmaxs);
l = false;
for (j = 0;j < mod->nummodelsurfaces;j++)
{
const msurface_t *surface = mod->data_surfaces + j + mod->firstmodelsurface;
const float *v = mod->surfmesh.data_vertex3f + 3 * surface->num_firstvertex;
int k;
if (!surface->num_vertices)
continue;
if (!l)
{
l = true;
VectorCopy(v, mod->normalmins);
VectorCopy(v, mod->normalmaxs);
}
for (k = 0;k < surface->num_vertices;k++, v += 3)
{
mod->normalmins[0] = min(mod->normalmins[0], v[0]);
mod->normalmins[1] = min(mod->normalmins[1], v[1]);
mod->normalmins[2] = min(mod->normalmins[2], v[2]);
mod->normalmaxs[0] = max(mod->normalmaxs[0], v[0]);
mod->normalmaxs[1] = max(mod->normalmaxs[1], v[1]);
mod->normalmaxs[2] = max(mod->normalmaxs[2], v[2]);
}
}
corner[0] = max(fabs(mod->normalmins[0]), fabs(mod->normalmaxs[0]));
corner[1] = max(fabs(mod->normalmins[1]), fabs(mod->normalmaxs[1]));
corner[2] = max(fabs(mod->normalmins[2]), fabs(mod->normalmaxs[2]));
modelradius = sqrt(corner[0]*corner[0]+corner[1]*corner[1]+corner[2]*corner[2]);
yawradius = sqrt(corner[0]*corner[0]+corner[1]*corner[1]);
mod->rotatedmins[0] = mod->rotatedmins[1] = mod->rotatedmins[2] = -modelradius;
mod->rotatedmaxs[0] = mod->rotatedmaxs[1] = mod->rotatedmaxs[2] = modelradius;
mod->yawmaxs[0] = mod->yawmaxs[1] = yawradius;
mod->yawmins[0] = mod->yawmins[1] = -yawradius;
mod->yawmins[2] = mod->normalmins[2];
mod->yawmaxs[2] = mod->normalmaxs[2];
mod->radius = modelradius;
mod->radius2 = modelradius * modelradius;
// this gets altered below if sky or water is used
mod->DrawSky = NULL;
mod->DrawAddWaterPlanes = NULL;
for (j = 0;j < mod->nummodelsurfaces;j++)
if (mod->data_surfaces[j + mod->firstmodelsurface].texture->basematerialflags & MATERIALFLAG_SKY)
break;
if (j < mod->nummodelsurfaces)
mod->DrawSky = R_Q1BSP_DrawSky;
for (j = 0;j < mod->nummodelsurfaces;j++)
if (mod->data_surfaces[j + mod->firstmodelsurface].texture->basematerialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA))
break;
if (j < mod->nummodelsurfaces)
mod->DrawAddWaterPlanes = R_Q1BSP_DrawAddWaterPlanes;
Mod_MakeCollisionBIH(mod, true, &mod->collision_bih);
mod->render_bih = mod->collision_bih;
// generate VBOs and other shared data before cloning submodels
if (i == 0)
Mod_BuildVBOs();
}
mod = loadmodel;
Mem_Free(submodelfirstsurface);
Con_DPrintf("Stats for obj model \"%s\": %i faces, %i nodes, %i leafs, %i clusters, %i clusterportals, mesh: %i vertices, %i triangles, %i surfaces\n", loadmodel->name, loadmodel->num_surfaces, loadmodel->brush.num_nodes, loadmodel->brush.num_leafs, mod->brush.num_pvsclusters, loadmodel->brush.num_portals, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->num_surfaces);
}