quakequest/Projects/Android/jni/darkplaces/collision.c

1989 lines
78 KiB
C
Raw Normal View History

2019-05-30 05:57:57 +00:00
#include "quakedef.h"
#include "polygon.h"
#define COLLISION_EDGEDIR_DOT_EPSILON (0.999f)
#define COLLISION_EDGECROSS_MINLENGTH2 (1.0f / 4194304.0f)
#define COLLISION_SNAPSCALE (32.0f)
#define COLLISION_SNAP (1.0f / COLLISION_SNAPSCALE)
#define COLLISION_SNAP2 (2.0f / COLLISION_SNAPSCALE)
#define COLLISION_PLANE_DIST_EPSILON (2.0f / COLLISION_SNAPSCALE)
cvar_t collision_impactnudge = {0, "collision_impactnudge", "0.03125", "how much to back off from the impact"};
cvar_t collision_startnudge = {0, "collision_startnudge", "0", "how much to bias collision trace start"};
cvar_t collision_endnudge = {0, "collision_endnudge", "0", "how much to bias collision trace end"};
cvar_t collision_enternudge = {0, "collision_enternudge", "0", "how much to bias collision entry fraction"};
cvar_t collision_leavenudge = {0, "collision_leavenudge", "0", "how much to bias collision exit fraction"};
cvar_t collision_prefernudgedfraction = {0, "collision_prefernudgedfraction", "1", "whether to sort collision events by nudged fraction (1) or real fraction (0)"};
#ifdef COLLISION_STUPID_TRACE_ENDPOS_IN_SOLID_WORKAROUND
cvar_t collision_endposnudge = {0, "collision_endposnudge", "0", "workaround to fix trace_endpos sometimes being returned where it would be inside solid by making that collision hit (recommended: values like 1)"};
#endif
cvar_t collision_debug_tracelineasbox = {0, "collision_debug_tracelineasbox", "0", "workaround for any bugs in Collision_TraceLineBrushFloat by using Collision_TraceBrushBrushFloat"};
cvar_t collision_cache = {0, "collision_cache", "1", "store results of collision traces for next frame to reuse if possible (optimization)"};
//cvar_t collision_triangle_neighborsides = {0, "collision_triangle_neighborsides", "1", "override automatic side generation if triangle has neighbors with face planes that form a convex edge (perfect solution, but can not work for all edges)"};
cvar_t collision_triangle_bevelsides = {0, "collision_triangle_bevelsides", "1", "generate sloped edge planes on triangles - if 0, see axialedgeplanes"};
cvar_t collision_triangle_axialsides = {0, "collision_triangle_axialsides", "1", "generate axially-aligned edge planes on triangles - otherwise use perpendicular edge planes"};
mempool_t *collision_mempool;
void Collision_Init (void)
{
Cvar_RegisterVariable(&collision_impactnudge);
Cvar_RegisterVariable(&collision_startnudge);
Cvar_RegisterVariable(&collision_endnudge);
Cvar_RegisterVariable(&collision_enternudge);
Cvar_RegisterVariable(&collision_leavenudge);
Cvar_RegisterVariable(&collision_prefernudgedfraction);
#ifdef COLLISION_STUPID_TRACE_ENDPOS_IN_SOLID_WORKAROUND
Cvar_RegisterVariable(&collision_endposnudge);
#endif
Cvar_RegisterVariable(&collision_debug_tracelineasbox);
Cvar_RegisterVariable(&collision_cache);
// Cvar_RegisterVariable(&collision_triangle_neighborsides);
Cvar_RegisterVariable(&collision_triangle_bevelsides);
Cvar_RegisterVariable(&collision_triangle_axialsides);
collision_mempool = Mem_AllocPool("collision cache", 0, NULL);
Collision_Cache_Init(collision_mempool);
}
static void Collision_PrintBrushAsQHull(colbrushf_t *brush, const char *name)
{
int i;
Con_Printf("3 %s\n%i\n", name, brush->numpoints);
for (i = 0;i < brush->numpoints;i++)
Con_Printf("%f %f %f\n", brush->points[i].v[0], brush->points[i].v[1], brush->points[i].v[2]);
// FIXME: optimize!
Con_Printf("4\n%i\n", brush->numplanes);
for (i = 0;i < brush->numplanes;i++)
Con_Printf("%f %f %f %f\n", brush->planes[i].normal[0], brush->planes[i].normal[1], brush->planes[i].normal[2], brush->planes[i].dist);
}
static void Collision_ValidateBrush(colbrushf_t *brush)
{
int j, k, pointsoffplanes, pointonplanes, pointswithinsufficientplanes, printbrush;
float d;
printbrush = false;
if (!brush->numpoints)
{
Con_Print("Collision_ValidateBrush: brush with no points!\n");
printbrush = true;
}
#if 0
// it's ok for a brush to have one point and no planes...
if (brush->numplanes == 0 && brush->numpoints != 1)
{
Con_Print("Collision_ValidateBrush: brush with no planes and more than one point!\n");
printbrush = true;
}
#endif
if (brush->numplanes)
{
pointsoffplanes = 0;
pointswithinsufficientplanes = 0;
for (k = 0;k < brush->numplanes;k++)
if (DotProduct(brush->planes[k].normal, brush->planes[k].normal) < 0.0001f)
Con_Printf("Collision_ValidateBrush: plane #%i (%f %f %f %f) is degenerate\n", k, brush->planes[k].normal[0], brush->planes[k].normal[1], brush->planes[k].normal[2], brush->planes[k].dist);
for (j = 0;j < brush->numpoints;j++)
{
pointonplanes = 0;
for (k = 0;k < brush->numplanes;k++)
{
d = DotProduct(brush->points[j].v, brush->planes[k].normal) - brush->planes[k].dist;
if (d > COLLISION_PLANE_DIST_EPSILON)
{
Con_Printf("Collision_ValidateBrush: point #%i (%f %f %f) infront of plane #%i (%f %f %f %f)\n", j, brush->points[j].v[0], brush->points[j].v[1], brush->points[j].v[2], k, brush->planes[k].normal[0], brush->planes[k].normal[1], brush->planes[k].normal[2], brush->planes[k].dist);
printbrush = true;
}
if (fabs(d) > COLLISION_PLANE_DIST_EPSILON)
pointsoffplanes++;
else
pointonplanes++;
}
if (pointonplanes < 3)
pointswithinsufficientplanes++;
}
if (pointswithinsufficientplanes)
{
Con_Print("Collision_ValidateBrush: some points have insufficient planes, every point must be on at least 3 planes to form a corner.\n");
printbrush = true;
}
if (pointsoffplanes == 0) // all points are on all planes
{
Con_Print("Collision_ValidateBrush: all points lie on all planes (degenerate, no brush volume!)\n");
printbrush = true;
}
}
if (printbrush)
Collision_PrintBrushAsQHull(brush, "unnamed");
}
static float nearestplanedist_float(const float *normal, const colpointf_t *points, int numpoints)
{
float dist, bestdist;
if (!numpoints)
return 0;
bestdist = DotProduct(points->v, normal);
points++;
while(--numpoints)
{
dist = DotProduct(points->v, normal);
bestdist = min(bestdist, dist);
points++;
}
return bestdist;
}
static float furthestplanedist_float(const float *normal, const colpointf_t *points, int numpoints)
{
float dist, bestdist;
if (!numpoints)
return 0;
bestdist = DotProduct(points->v, normal);
points++;
while(--numpoints)
{
dist = DotProduct(points->v, normal);
bestdist = max(bestdist, dist);
points++;
}
return bestdist;
}
static void Collision_CalcEdgeDirsForPolygonBrushFloat(colbrushf_t *brush)
{
int i, j;
for (i = 0, j = brush->numpoints - 1;i < brush->numpoints;j = i, i++)
VectorSubtract(brush->points[i].v, brush->points[j].v, brush->edgedirs[j].v);
}
colbrushf_t *Collision_NewBrushFromPlanes(mempool_t *mempool, int numoriginalplanes, const colplanef_t *originalplanes, int supercontents, int q3surfaceflags, const texture_t *texture, int hasaabbplanes)
{
// TODO: planesbuf could be replaced by a remapping table
int j, k, l, m, w, xyzflags;
int numpointsbuf = 0, maxpointsbuf = 256, numedgedirsbuf = 0, maxedgedirsbuf = 256, numplanesbuf = 0, maxplanesbuf = 256, numelementsbuf = 0, maxelementsbuf = 256;
int isaabb = true;
double maxdist;
colbrushf_t *brush;
colpointf_t pointsbuf[256];
colpointf_t edgedirsbuf[256];
colplanef_t planesbuf[256];
int elementsbuf[1024];
int polypointbuf[256];
int pmaxpoints = 64;
int pnumpoints;
double p[2][3*64];
#if 0
// enable these if debugging to avoid seeing garbage in unused data-
memset(pointsbuf, 0, sizeof(pointsbuf));
memset(edgedirsbuf, 0, sizeof(edgedirsbuf));
memset(planesbuf, 0, sizeof(planesbuf));
memset(elementsbuf, 0, sizeof(elementsbuf));
memset(polypointbuf, 0, sizeof(polypointbuf));
memset(p, 0, sizeof(p));
#endif
// check if there are too many planes and skip the brush
if (numoriginalplanes >= maxplanesbuf)
{
Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many planes for buffer\n");
return NULL;
}
// figure out how large a bounding box we need to properly compute this brush
maxdist = 0;
for (j = 0;j < numoriginalplanes;j++)
maxdist = max(maxdist, fabs(originalplanes[j].dist));
// now make it large enough to enclose the entire brush, and round it off to a reasonable multiple of 1024
maxdist = floor(maxdist * (4.0 / 1024.0) + 2) * 1024.0;
// construct a collision brush (points, planes, and renderable mesh) from
// a set of planes, this also optimizes out any unnecessary planes (ones
// whose polygon is clipped away by the other planes)
for (j = 0;j < numoriginalplanes;j++)
{
// add the new plane
VectorCopy(originalplanes[j].normal, planesbuf[numplanesbuf].normal);
planesbuf[numplanesbuf].dist = originalplanes[j].dist;
planesbuf[numplanesbuf].q3surfaceflags = originalplanes[j].q3surfaceflags;
planesbuf[numplanesbuf].texture = originalplanes[j].texture;
numplanesbuf++;
// create a large polygon from the plane
w = 0;
PolygonD_QuadForPlane(p[w], originalplanes[j].normal[0], originalplanes[j].normal[1], originalplanes[j].normal[2], originalplanes[j].dist, maxdist);
pnumpoints = 4;
// clip it by all other planes
for (k = 0;k < numoriginalplanes && pnumpoints >= 3 && pnumpoints <= pmaxpoints;k++)
{
// skip the plane this polygon
// (nothing happens if it is processed, this is just an optimization)
if (k != j)
{
// we want to keep the inside of the brush plane so we flip
// the cutting plane
PolygonD_Divide(pnumpoints, p[w], -originalplanes[k].normal[0], -originalplanes[k].normal[1], -originalplanes[k].normal[2], -originalplanes[k].dist, COLLISION_PLANE_DIST_EPSILON, pmaxpoints, p[!w], &pnumpoints, 0, NULL, NULL, NULL);
w = !w;
}
}
// if nothing is left, skip it
if (pnumpoints < 3)
{
//Con_DPrintf("Collision_NewBrushFromPlanes: warning: polygon for plane %f %f %f %f clipped away\n", originalplanes[j].normal[0], originalplanes[j].normal[1], originalplanes[j].normal[2], originalplanes[j].dist);
continue;
}
for (k = 0;k < pnumpoints;k++)
{
int l, m;
m = 0;
for (l = 0;l < numoriginalplanes;l++)
if (fabs(DotProduct(&p[w][k*3], originalplanes[l].normal) - originalplanes[l].dist) < COLLISION_PLANE_DIST_EPSILON)
m++;
if (m < 3)
break;
}
if (k < pnumpoints)
{
Con_DPrintf("Collision_NewBrushFromPlanes: warning: polygon point does not lie on at least 3 planes\n");
//return NULL;
}
// check if there are too many polygon vertices for buffer
if (pnumpoints > pmaxpoints)
{
Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many points for buffer\n");
return NULL;
}
// check if there are too many triangle elements for buffer
if (numelementsbuf + (pnumpoints - 2) * 3 > maxelementsbuf)
{
Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many triangle elements for buffer\n");
return NULL;
}
// add the unique points for this polygon
for (k = 0;k < pnumpoints;k++)
{
float v[3];
// downgrade to float precision before comparing
VectorCopy(&p[w][k*3], v);
// check if there is already a matching point (no duplicates)
for (m = 0;m < numpointsbuf;m++)
if (VectorDistance2(v, pointsbuf[m].v) < COLLISION_SNAP2)
break;
// if there is no match, add a new one
if (m == numpointsbuf)
{
// check if there are too many and skip the brush
if (numpointsbuf >= maxpointsbuf)
{
Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many points for buffer\n");
return NULL;
}
// add the new one
VectorCopy(&p[w][k*3], pointsbuf[numpointsbuf].v);
numpointsbuf++;
}
// store the index into a buffer
polypointbuf[k] = m;
}
// add the triangles for the polygon
// (this particular code makes a triangle fan)
for (k = 0;k < pnumpoints - 2;k++)
{
elementsbuf[numelementsbuf++] = polypointbuf[0];
elementsbuf[numelementsbuf++] = polypointbuf[k + 1];
elementsbuf[numelementsbuf++] = polypointbuf[k + 2];
}
// add the unique edgedirs for this polygon
for (k = 0, l = pnumpoints-1;k < pnumpoints;l = k, k++)
{
float dir[3];
// downgrade to float precision before comparing
VectorSubtract(&p[w][k*3], &p[w][l*3], dir);
VectorNormalize(dir);
// check if there is already a matching edgedir (no duplicates)
for (m = 0;m < numedgedirsbuf;m++)
if (DotProduct(dir, edgedirsbuf[m].v) >= COLLISION_EDGEDIR_DOT_EPSILON)
break;
// skip this if there is
if (m < numedgedirsbuf)
continue;
// try again with negated edgedir
VectorNegate(dir, dir);
// check if there is already a matching edgedir (no duplicates)
for (m = 0;m < numedgedirsbuf;m++)
if (DotProduct(dir, edgedirsbuf[m].v) >= COLLISION_EDGEDIR_DOT_EPSILON)
break;
// if there is no match, add a new one
if (m == numedgedirsbuf)
{
// check if there are too many and skip the brush
if (numedgedirsbuf >= maxedgedirsbuf)
{
Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many edgedirs for buffer\n");
return NULL;
}
// add the new one
VectorCopy(dir, edgedirsbuf[numedgedirsbuf].v);
numedgedirsbuf++;
}
}
// if any normal is not purely axial, it's not an axis-aligned box
if (isaabb && (originalplanes[j].normal[0] == 0) + (originalplanes[j].normal[1] == 0) + (originalplanes[j].normal[2] == 0) < 2)
isaabb = false;
}
// if nothing is left, there's nothing to allocate
if (numplanesbuf < 4)
{
Con_DPrintf("Collision_NewBrushFromPlanes: failed to build collision brush: %i triangles, %i planes (input was %i planes), %i vertices\n", numelementsbuf / 3, numplanesbuf, numoriginalplanes, numpointsbuf);
return NULL;
}
// if no triangles or points could be constructed, then this routine failed but the brush is not discarded
if (numelementsbuf < 12 || numpointsbuf < 4)
Con_DPrintf("Collision_NewBrushFromPlanes: unable to rebuild triangles/points for collision brush: %i triangles, %i planes (input was %i planes), %i vertices\n", numelementsbuf / 3, numplanesbuf, numoriginalplanes, numpointsbuf);
// validate plane distances
for (j = 0;j < numplanesbuf;j++)
{
float d = furthestplanedist_float(planesbuf[j].normal, pointsbuf, numpointsbuf);
if (fabs(planesbuf[j].dist - d) > COLLISION_PLANE_DIST_EPSILON)
Con_DPrintf("plane %f %f %f %f mismatches dist %f\n", planesbuf[j].normal[0], planesbuf[j].normal[1], planesbuf[j].normal[2], planesbuf[j].dist, d);
}
// allocate the brush and copy to it
brush = (colbrushf_t *)Mem_Alloc(mempool, sizeof(colbrushf_t) + sizeof(colpointf_t) * numpointsbuf + sizeof(colpointf_t) * numedgedirsbuf + sizeof(colplanef_t) * numplanesbuf + sizeof(int) * numelementsbuf);
brush->isaabb = isaabb;
brush->hasaabbplanes = hasaabbplanes;
brush->supercontents = supercontents;
brush->numplanes = numplanesbuf;
brush->numedgedirs = numedgedirsbuf;
brush->numpoints = numpointsbuf;
brush->numtriangles = numelementsbuf / 3;
brush->planes = (colplanef_t *)(brush + 1);
brush->points = (colpointf_t *)(brush->planes + brush->numplanes);
brush->edgedirs = (colpointf_t *)(brush->points + brush->numpoints);
brush->elements = (int *)(brush->points + brush->numpoints);
brush->q3surfaceflags = q3surfaceflags;
brush->texture = texture;
for (j = 0;j < brush->numpoints;j++)
{
brush->points[j].v[0] = pointsbuf[j].v[0];
brush->points[j].v[1] = pointsbuf[j].v[1];
brush->points[j].v[2] = pointsbuf[j].v[2];
}
for (j = 0;j < brush->numedgedirs;j++)
{
brush->edgedirs[j].v[0] = edgedirsbuf[j].v[0];
brush->edgedirs[j].v[1] = edgedirsbuf[j].v[1];
brush->edgedirs[j].v[2] = edgedirsbuf[j].v[2];
}
for (j = 0;j < brush->numplanes;j++)
{
brush->planes[j].normal[0] = planesbuf[j].normal[0];
brush->planes[j].normal[1] = planesbuf[j].normal[1];
brush->planes[j].normal[2] = planesbuf[j].normal[2];
brush->planes[j].dist = planesbuf[j].dist;
brush->planes[j].q3surfaceflags = planesbuf[j].q3surfaceflags;
brush->planes[j].texture = planesbuf[j].texture;
}
for (j = 0;j < brush->numtriangles * 3;j++)
brush->elements[j] = elementsbuf[j];
xyzflags = 0;
VectorClear(brush->mins);
VectorClear(brush->maxs);
for (j = 0;j < min(6, numoriginalplanes);j++)
{
if (originalplanes[j].normal[0] == 1) {xyzflags |= 1;brush->maxs[0] = originalplanes[j].dist;}
else if (originalplanes[j].normal[0] == -1) {xyzflags |= 2;brush->mins[0] = -originalplanes[j].dist;}
else if (originalplanes[j].normal[1] == 1) {xyzflags |= 4;brush->maxs[1] = originalplanes[j].dist;}
else if (originalplanes[j].normal[1] == -1) {xyzflags |= 8;brush->mins[1] = -originalplanes[j].dist;}
else if (originalplanes[j].normal[2] == 1) {xyzflags |= 16;brush->maxs[2] = originalplanes[j].dist;}
else if (originalplanes[j].normal[2] == -1) {xyzflags |= 32;brush->mins[2] = -originalplanes[j].dist;}
}
// if not all xyzflags were set, then this is not a brush from q3map/q3map2, and needs reconstruction of the bounding box
// (this case works for any brush with valid points, but sometimes brushes are not reconstructed properly and hence the points are not valid, so this is reserved as a fallback case)
if (xyzflags != 63)
{
VectorCopy(brush->points[0].v, brush->mins);
VectorCopy(brush->points[0].v, brush->maxs);
for (j = 1;j < brush->numpoints;j++)
{
brush->mins[0] = min(brush->mins[0], brush->points[j].v[0]);
brush->mins[1] = min(brush->mins[1], brush->points[j].v[1]);
brush->mins[2] = min(brush->mins[2], brush->points[j].v[2]);
brush->maxs[0] = max(brush->maxs[0], brush->points[j].v[0]);
brush->maxs[1] = max(brush->maxs[1], brush->points[j].v[1]);
brush->maxs[2] = max(brush->maxs[2], brush->points[j].v[2]);
}
}
brush->mins[0] -= 1;
brush->mins[1] -= 1;
brush->mins[2] -= 1;
brush->maxs[0] += 1;
brush->maxs[1] += 1;
brush->maxs[2] += 1;
Collision_ValidateBrush(brush);
return brush;
}
void Collision_CalcPlanesForTriangleBrushFloat(colbrushf_t *brush)
{
int i;
float edge0[3], edge1[3], edge2[3];
colpointf_t *p;
TriangleNormal(brush->points[0].v, brush->points[1].v, brush->points[2].v, brush->planes[0].normal);
if (DotProduct(brush->planes[0].normal, brush->planes[0].normal) < 0.0001f)
{
// there's no point in processing a degenerate triangle (GIGO - Garbage In, Garbage Out)
// note that some of these exist in q3bsp bspline patches
brush->numplanes = 0;
return;
}
// there are 5 planes (front, back, sides) and 3 edges
brush->numplanes = 5;
brush->numedgedirs = 3;
VectorNormalize(brush->planes[0].normal);
brush->planes[0].dist = DotProduct(brush->points->v, brush->planes[0].normal);
VectorNegate(brush->planes[0].normal, brush->planes[1].normal);
brush->planes[1].dist = -brush->planes[0].dist;
// edge directions are easy to calculate
VectorSubtract(brush->points[2].v, brush->points[0].v, edge0);
VectorSubtract(brush->points[0].v, brush->points[1].v, edge1);
VectorSubtract(brush->points[1].v, brush->points[2].v, edge2);
VectorCopy(edge0, brush->edgedirs[0].v);
VectorCopy(edge1, brush->edgedirs[1].v);
VectorCopy(edge2, brush->edgedirs[2].v);
// now select an algorithm to generate the side planes
if (collision_triangle_bevelsides.integer)
{
// use 45 degree slopes at the edges of the triangle to make a sinking trace error turn into "riding up" the slope rather than getting stuck
CrossProduct(edge0, brush->planes->normal, brush->planes[2].normal);
CrossProduct(edge1, brush->planes->normal, brush->planes[3].normal);
CrossProduct(edge2, brush->planes->normal, brush->planes[4].normal);
VectorNormalize(brush->planes[2].normal);
VectorNormalize(brush->planes[3].normal);
VectorNormalize(brush->planes[4].normal);
VectorAdd(brush->planes[2].normal, brush->planes[0].normal, brush->planes[2].normal);
VectorAdd(brush->planes[3].normal, brush->planes[0].normal, brush->planes[3].normal);
VectorAdd(brush->planes[4].normal, brush->planes[0].normal, brush->planes[4].normal);
VectorNormalize(brush->planes[2].normal);
VectorNormalize(brush->planes[3].normal);
VectorNormalize(brush->planes[4].normal);
}
else if (collision_triangle_axialsides.integer)
{
float projectionnormal[3], projectionedge0[3], projectionedge1[3], projectionedge2[3];
int i, best;
float dist, bestdist;
bestdist = fabs(brush->planes[0].normal[0]);
best = 0;
for (i = 1;i < 3;i++)
{
dist = fabs(brush->planes[0].normal[i]);
if (bestdist < dist)
{
bestdist = dist;
best = i;
}
}
VectorClear(projectionnormal);
if (brush->planes[0].normal[best] < 0)
projectionnormal[best] = -1;
else
projectionnormal[best] = 1;
VectorCopy(edge0, projectionedge0);
VectorCopy(edge1, projectionedge1);
VectorCopy(edge2, projectionedge2);
projectionedge0[best] = 0;
projectionedge1[best] = 0;
projectionedge2[best] = 0;
CrossProduct(projectionedge0, projectionnormal, brush->planes[2].normal);
CrossProduct(projectionedge1, projectionnormal, brush->planes[3].normal);
CrossProduct(projectionedge2, projectionnormal, brush->planes[4].normal);
VectorNormalize(brush->planes[2].normal);
VectorNormalize(brush->planes[3].normal);
VectorNormalize(brush->planes[4].normal);
}
else
{
CrossProduct(edge0, brush->planes->normal, brush->planes[2].normal);
CrossProduct(edge1, brush->planes->normal, brush->planes[3].normal);
CrossProduct(edge2, brush->planes->normal, brush->planes[4].normal);
VectorNormalize(brush->planes[2].normal);
VectorNormalize(brush->planes[3].normal);
VectorNormalize(brush->planes[4].normal);
}
brush->planes[2].dist = DotProduct(brush->points[2].v, brush->planes[2].normal);
brush->planes[3].dist = DotProduct(brush->points[0].v, brush->planes[3].normal);
brush->planes[4].dist = DotProduct(brush->points[1].v, brush->planes[4].normal);
if (developer_extra.integer)
{
// validity check - will be disabled later
Collision_ValidateBrush(brush);
for (i = 0;i < brush->numplanes;i++)
{
int j;
for (j = 0, p = brush->points;j < brush->numpoints;j++, p++)
if (DotProduct(p->v, brush->planes[i].normal) > brush->planes[i].dist + COLLISION_PLANE_DIST_EPSILON)
Con_DPrintf("Error in brush plane generation, plane %i\n", i);
}
}
}
colbrushf_t *Collision_AllocBrushFromPermanentPolygonFloat(mempool_t *mempool, int numpoints, float *points, int supercontents, int q3surfaceflags, const texture_t *texture)
{
colbrushf_t *brush;
brush = (colbrushf_t *)Mem_Alloc(mempool, sizeof(colbrushf_t) + sizeof(colplanef_t) * (numpoints + 2) + sizeof(colpointf_t) * numpoints);
brush->isaabb = false;
brush->hasaabbplanes = false;
brush->supercontents = supercontents;
brush->numpoints = numpoints;
brush->numedgedirs = numpoints;
brush->numplanes = numpoints + 2;
brush->planes = (colplanef_t *)(brush + 1);
brush->points = (colpointf_t *)points;
brush->edgedirs = (colpointf_t *)(brush->planes + brush->numplanes);
brush->q3surfaceflags = q3surfaceflags;
brush->texture = texture;
Sys_Error("Collision_AllocBrushFromPermanentPolygonFloat: FIXME: this code needs to be updated to generate a mesh...");
return brush;
}
// NOTE: start and end of each brush pair must have same numplanes/numpoints
void Collision_TraceBrushBrushFloat(trace_t *trace, const colbrushf_t *trace_start, const colbrushf_t *trace_end, const colbrushf_t *other_start, const colbrushf_t *other_end)
{
int nplane, nplane2, nedge1, nedge2, hitq3surfaceflags = 0;
int tracenumedgedirs = trace_start->numedgedirs;
//int othernumedgedirs = other_start->numedgedirs;
int tracenumpoints = trace_start->numpoints;
int othernumpoints = other_start->numpoints;
int numplanes1 = other_start->numplanes;
int numplanes2 = numplanes1 + trace_start->numplanes;
int numplanes3 = numplanes2 + trace_start->numedgedirs * other_start->numedgedirs * 2;
vec_t enterfrac = -1, leavefrac = 1, startdist, enddist, ie, f, imove, enterfrac2 = -1;
vec4_t startplane;
vec4_t endplane;
vec4_t newimpactplane;
const texture_t *hittexture = NULL;
vec_t startdepth = 1;
vec3_t startdepthnormal;
VectorClear(startdepthnormal);
Vector4Clear(newimpactplane);
// fast case for AABB vs compiled brushes (which begin with AABB planes and also have precomputed bevels for AABB collisions)
if (trace_start->isaabb && other_start->hasaabbplanes)
numplanes3 = numplanes2 = numplanes1;
// Separating Axis Theorem:
// if a supporting vector (plane normal) can be found that separates two
// objects, they are not colliding.
//
// Minkowski Sum:
// reduce the size of one object to a point while enlarging the other to
// represent the space that point can not occupy.
//
// try every plane we can construct between the two brushes and measure
// the distance between them.
for (nplane = 0;nplane < numplanes3;nplane++)
{
if (nplane < numplanes1)
{
nplane2 = nplane;
VectorCopy(other_start->planes[nplane2].normal, startplane);
VectorCopy(other_end->planes[nplane2].normal, endplane);
}
else if (nplane < numplanes2)
{
nplane2 = nplane - numplanes1;
VectorCopy(trace_start->planes[nplane2].normal, startplane);
VectorCopy(trace_end->planes[nplane2].normal, endplane);
}
else
{
// pick an edgedir from each brush and cross them
nplane2 = nplane - numplanes2;
nedge1 = nplane2 >> 1;
nedge2 = nedge1 / tracenumedgedirs;
nedge1 -= nedge2 * tracenumedgedirs;
if (nplane2 & 1)
{
CrossProduct(trace_start->edgedirs[nedge1].v, other_start->edgedirs[nedge2].v, startplane);
if (VectorLength2(startplane) < COLLISION_EDGECROSS_MINLENGTH2)
continue; // degenerate crossproduct
CrossProduct(trace_end->edgedirs[nedge1].v, other_end->edgedirs[nedge2].v, endplane);
if (VectorLength2(endplane) < COLLISION_EDGECROSS_MINLENGTH2)
continue; // degenerate crossproduct
}
else
{
CrossProduct(other_start->edgedirs[nedge2].v, trace_start->edgedirs[nedge1].v, startplane);
if (VectorLength2(startplane) < COLLISION_EDGECROSS_MINLENGTH2)
continue; // degenerate crossproduct
CrossProduct(other_end->edgedirs[nedge2].v, trace_end->edgedirs[nedge1].v, endplane);
if (VectorLength2(endplane) < COLLISION_EDGECROSS_MINLENGTH2)
continue; // degenerate crossproduct
}
VectorNormalize(startplane);
VectorNormalize(endplane);
}
startplane[3] = furthestplanedist_float(startplane, other_start->points, othernumpoints);
endplane[3] = furthestplanedist_float(startplane, other_end->points, othernumpoints);
startdist = nearestplanedist_float(startplane, trace_start->points, tracenumpoints) - startplane[3] - collision_startnudge.value;
enddist = nearestplanedist_float(endplane, trace_end->points, tracenumpoints) - endplane[3] - collision_endnudge.value;
//Con_Printf("%c%i: startdist = %f, enddist = %f, startdist / (startdist - enddist) = %f\n", nplane2 != nplane ? 'b' : 'a', nplane2, startdist, enddist, startdist / (startdist - enddist));
// aside from collisions, this is also used for error correction
if (startdist < collision_impactnudge.value && nplane < numplanes1 && (startdepth < startdist || startdepth == 1))
{
startdepth = startdist;
VectorCopy(startplane, startdepthnormal);
}
if (startdist > enddist)
{
// moving into brush
if (enddist >= collision_enternudge.value)
return;
if (startdist > 0)
{
// enter
imove = 1 / (startdist - enddist);
f = (startdist - collision_enternudge.value) * imove;
if (f < 0)
f = 0;
// check if this will reduce the collision time range
if (enterfrac < f)
{
// reduced collision time range
enterfrac = f;
// if the collision time range is now empty, no collision
if (enterfrac > leavefrac)
return;
// if the collision would be further away than the trace's
// existing collision data, we don't care about this
// collision
if (enterfrac > trace->realfraction)
return;
// calculate the nudged fraction and impact normal we'll
// need if we accept this collision later
enterfrac2 = (startdist - collision_impactnudge.value) * imove;
ie = 1.0f - enterfrac;
newimpactplane[0] = startplane[0] * ie + endplane[0] * enterfrac;
newimpactplane[1] = startplane[1] * ie + endplane[1] * enterfrac;
newimpactplane[2] = startplane[2] * ie + endplane[2] * enterfrac;
newimpactplane[3] = startplane[3] * ie + endplane[3] * enterfrac;
if (nplane < numplanes1)
{
// use the plane from other
nplane2 = nplane;
hitq3surfaceflags = other_start->planes[nplane2].q3surfaceflags;
hittexture = other_start->planes[nplane2].texture;
}
else if (nplane < numplanes2)
{
// use the plane from trace
nplane2 = nplane - numplanes1;
hitq3surfaceflags = trace_start->planes[nplane2].q3surfaceflags;
hittexture = trace_start->planes[nplane2].texture;
}
else
{
hitq3surfaceflags = other_start->q3surfaceflags;
hittexture = other_start->texture;
}
}
}
}
else
{
// moving out of brush
if (startdist > 0)
return;
if (enddist > 0)
{
// leave
f = (startdist + collision_leavenudge.value) / (startdist - enddist);
if (f > 1)
f = 1;
// check if this will reduce the collision time range
if (leavefrac > f)
{
// reduced collision time range
leavefrac = f;
// if the collision time range is now empty, no collision
if (enterfrac > leavefrac)
return;
}
}
}
}
// at this point we know the trace overlaps the brush because it was not
// rejected at any point in the loop above
// see if the trace started outside the brush or not
if (enterfrac > -1)
{
// started outside, and overlaps, therefore there is a collision here
// store out the impact information
if (trace->hitsupercontentsmask & other_start->supercontents)
{
trace->hitsupercontents = other_start->supercontents;
trace->hitq3surfaceflags = hitq3surfaceflags;
trace->hittexture = hittexture;
trace->realfraction = bound(0, enterfrac, 1);
trace->fraction = bound(0, enterfrac2, 1);
if (collision_prefernudgedfraction.integer)
trace->realfraction = trace->fraction;
VectorCopy(newimpactplane, trace->plane.normal);
trace->plane.dist = newimpactplane[3];
}
}
else
{
// started inside, update startsolid and friends
trace->startsupercontents |= other_start->supercontents;
if (trace->hitsupercontentsmask & other_start->supercontents)
{
trace->startsolid = true;
if (leavefrac < 1)
trace->allsolid = true;
VectorCopy(newimpactplane, trace->plane.normal);
trace->plane.dist = newimpactplane[3];
if (trace->startdepth > startdepth)
{
trace->startdepth = startdepth;
VectorCopy(startdepthnormal, trace->startdepthnormal);
}
}
}
}
// NOTE: start and end of each brush pair must have same numplanes/numpoints
void Collision_TraceLineBrushFloat(trace_t *trace, const vec3_t linestart, const vec3_t lineend, const colbrushf_t *other_start, const colbrushf_t *other_end)
{
int nplane, hitq3surfaceflags = 0;
int numplanes = other_start->numplanes;
vec_t enterfrac = -1, leavefrac = 1, startdist, enddist, ie, f, imove, enterfrac2 = -1;
vec4_t startplane;
vec4_t endplane;
vec4_t newimpactplane;
const texture_t *hittexture = NULL;
vec_t startdepth = 1;
vec3_t startdepthnormal;
if (collision_debug_tracelineasbox.integer)
{
colboxbrushf_t thisbrush_start, thisbrush_end;
Collision_BrushForBox(&thisbrush_start, linestart, linestart, 0, 0, NULL);
Collision_BrushForBox(&thisbrush_end, lineend, lineend, 0, 0, NULL);
Collision_TraceBrushBrushFloat(trace, &thisbrush_start.brush, &thisbrush_end.brush, other_start, other_end);
return;
}
VectorClear(startdepthnormal);
Vector4Clear(newimpactplane);
// Separating Axis Theorem:
// if a supporting vector (plane normal) can be found that separates two
// objects, they are not colliding.
//
// Minkowski Sum:
// reduce the size of one object to a point while enlarging the other to
// represent the space that point can not occupy.
//
// try every plane we can construct between the two brushes and measure
// the distance between them.
for (nplane = 0;nplane < numplanes;nplane++)
{
VectorCopy(other_start->planes[nplane].normal, startplane);
startplane[3] = other_start->planes[nplane].dist;
VectorCopy(other_end->planes[nplane].normal, endplane);
endplane[3] = other_end->planes[nplane].dist;
startdist = DotProduct(linestart, startplane) - startplane[3] - collision_startnudge.value;
enddist = DotProduct(lineend, endplane) - endplane[3] - collision_endnudge.value;
//Con_Printf("%c%i: startdist = %f, enddist = %f, startdist / (startdist - enddist) = %f\n", nplane2 != nplane ? 'b' : 'a', nplane2, startdist, enddist, startdist / (startdist - enddist));
// aside from collisions, this is also used for error correction
if (startdist < collision_impactnudge.value && (startdepth < startdist || startdepth == 1))
{
startdepth = startdist;
VectorCopy(startplane, startdepthnormal);
}
if (startdist > enddist)
{
// moving into brush
if (enddist >= collision_enternudge.value)
return;
if (startdist > 0)
{
// enter
imove = 1 / (startdist - enddist);
f = (startdist - collision_enternudge.value) * imove;
if (f < 0)
f = 0;
// check if this will reduce the collision time range
if (enterfrac < f)
{
// reduced collision time range
enterfrac = f;
// if the collision time range is now empty, no collision
if (enterfrac > leavefrac)
return;
// if the collision would be further away than the trace's
// existing collision data, we don't care about this
// collision
if (enterfrac > trace->realfraction)
return;
// calculate the nudged fraction and impact normal we'll
// need if we accept this collision later
enterfrac2 = (startdist - collision_impactnudge.value) * imove;
ie = 1.0f - enterfrac;
newimpactplane[0] = startplane[0] * ie + endplane[0] * enterfrac;
newimpactplane[1] = startplane[1] * ie + endplane[1] * enterfrac;
newimpactplane[2] = startplane[2] * ie + endplane[2] * enterfrac;
newimpactplane[3] = startplane[3] * ie + endplane[3] * enterfrac;
hitq3surfaceflags = other_start->planes[nplane].q3surfaceflags;
hittexture = other_start->planes[nplane].texture;
}
}
}
else
{
// moving out of brush
if (startdist > 0)
return;
if (enddist > 0)
{
// leave
f = (startdist + collision_leavenudge.value) / (startdist - enddist);
if (f > 1)
f = 1;
// check if this will reduce the collision time range
if (leavefrac > f)
{
// reduced collision time range
leavefrac = f;
// if the collision time range is now empty, no collision
if (enterfrac > leavefrac)
return;
}
}
}
}
// at this point we know the trace overlaps the brush because it was not
// rejected at any point in the loop above
// see if the trace started outside the brush or not
if (enterfrac > -1)
{
// started outside, and overlaps, therefore there is a collision here
// store out the impact information
if (trace->hitsupercontentsmask & other_start->supercontents)
{
trace->hitsupercontents = other_start->supercontents;
trace->hitq3surfaceflags = hitq3surfaceflags;
trace->hittexture = hittexture;
trace->realfraction = bound(0, enterfrac, 1);
trace->fraction = bound(0, enterfrac2, 1);
if (collision_prefernudgedfraction.integer)
trace->realfraction = trace->fraction;
VectorCopy(newimpactplane, trace->plane.normal);
trace->plane.dist = newimpactplane[3];
}
}
else
{
// started inside, update startsolid and friends
trace->startsupercontents |= other_start->supercontents;
if (trace->hitsupercontentsmask & other_start->supercontents)
{
trace->startsolid = true;
if (leavefrac < 1)
trace->allsolid = true;
VectorCopy(newimpactplane, trace->plane.normal);
trace->plane.dist = newimpactplane[3];
if (trace->startdepth > startdepth)
{
trace->startdepth = startdepth;
VectorCopy(startdepthnormal, trace->startdepthnormal);
}
}
}
}
qboolean Collision_PointInsideBrushFloat(const vec3_t point, const colbrushf_t *brush)
{
int nplane;
const colplanef_t *plane;
if (!BoxesOverlap(point, point, brush->mins, brush->maxs))
return false;
for (nplane = 0, plane = brush->planes;nplane < brush->numplanes;nplane++, plane++)
if (DotProduct(plane->normal, point) > plane->dist)
return false;
return true;
}
void Collision_TracePointBrushFloat(trace_t *trace, const vec3_t point, const colbrushf_t *thatbrush)
{
if (!Collision_PointInsideBrushFloat(point, thatbrush))
return;
trace->startsupercontents |= thatbrush->supercontents;
if (trace->hitsupercontentsmask & thatbrush->supercontents)
{
trace->startsolid = true;
trace->allsolid = true;
}
}
static void Collision_SnapCopyPoints(int numpoints, const colpointf_t *in, colpointf_t *out, float fractionprecision, float invfractionprecision)
{
int i;
for (i = 0;i < numpoints;i++)
{
out[i].v[0] = floor(in[i].v[0] * fractionprecision + 0.5f) * invfractionprecision;
out[i].v[1] = floor(in[i].v[1] * fractionprecision + 0.5f) * invfractionprecision;
out[i].v[2] = floor(in[i].v[2] * fractionprecision + 0.5f) * invfractionprecision;
}
}
void Collision_TraceBrushTriangleMeshFloat(trace_t *trace, const colbrushf_t *thisbrush_start, const colbrushf_t *thisbrush_end, int numtriangles, const int *element3i, const float *vertex3f, int stride, float *bbox6f, int supercontents, int q3surfaceflags, const texture_t *texture, const vec3_t segmentmins, const vec3_t segmentmaxs)
{
int i;
colpointf_t points[3];
colpointf_t edgedirs[3];
colplanef_t planes[5];
colbrushf_t brush;
memset(&brush, 0, sizeof(brush));
brush.isaabb = false;
brush.hasaabbplanes = false;
brush.numpoints = 3;
brush.numedgedirs = 3;
brush.numplanes = 5;
brush.points = points;
brush.edgedirs = edgedirs;
brush.planes = planes;
brush.supercontents = supercontents;
brush.q3surfaceflags = q3surfaceflags;
brush.texture = texture;
for (i = 0;i < brush.numplanes;i++)
{
brush.planes[i].q3surfaceflags = q3surfaceflags;
brush.planes[i].texture = texture;
}
if(stride > 0)
{
int k, cnt, tri;
cnt = (numtriangles + stride - 1) / stride;
for(i = 0; i < cnt; ++i)
{
if(BoxesOverlap(bbox6f + i * 6, bbox6f + i * 6 + 3, segmentmins, segmentmaxs))
{
for(k = 0; k < stride; ++k)
{
tri = i * stride + k;
if(tri >= numtriangles)
break;
VectorCopy(vertex3f + element3i[tri * 3 + 0] * 3, points[0].v);
VectorCopy(vertex3f + element3i[tri * 3 + 1] * 3, points[1].v);
VectorCopy(vertex3f + element3i[tri * 3 + 2] * 3, points[2].v);
Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP);
Collision_CalcEdgeDirsForPolygonBrushFloat(&brush);
Collision_CalcPlanesForTriangleBrushFloat(&brush);
//Collision_PrintBrushAsQHull(&brush, "brush");
Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush);
}
}
}
}
else if(stride == 0)
{
for (i = 0;i < numtriangles;i++, element3i += 3)
{
if (TriangleBBoxOverlapsBox(vertex3f + element3i[0]*3, vertex3f + element3i[1]*3, vertex3f + element3i[2]*3, segmentmins, segmentmaxs))
{
VectorCopy(vertex3f + element3i[0] * 3, points[0].v);
VectorCopy(vertex3f + element3i[1] * 3, points[1].v);
VectorCopy(vertex3f + element3i[2] * 3, points[2].v);
Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP);
Collision_CalcEdgeDirsForPolygonBrushFloat(&brush);
Collision_CalcPlanesForTriangleBrushFloat(&brush);
//Collision_PrintBrushAsQHull(&brush, "brush");
Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush);
}
}
}
else
{
for (i = 0;i < numtriangles;i++, element3i += 3)
{
VectorCopy(vertex3f + element3i[0] * 3, points[0].v);
VectorCopy(vertex3f + element3i[1] * 3, points[1].v);
VectorCopy(vertex3f + element3i[2] * 3, points[2].v);
Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP);
Collision_CalcEdgeDirsForPolygonBrushFloat(&brush);
Collision_CalcPlanesForTriangleBrushFloat(&brush);
//Collision_PrintBrushAsQHull(&brush, "brush");
Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush);
}
}
}
void Collision_TraceLineTriangleMeshFloat(trace_t *trace, const vec3_t linestart, const vec3_t lineend, int numtriangles, const int *element3i, const float *vertex3f, int stride, float *bbox6f, int supercontents, int q3surfaceflags, const texture_t *texture, const vec3_t segmentmins, const vec3_t segmentmaxs)
{
int i;
// FIXME: snap vertices?
if(stride > 0)
{
int k, cnt, tri;
cnt = (numtriangles + stride - 1) / stride;
for(i = 0; i < cnt; ++i)
{
if(BoxesOverlap(bbox6f + i * 6, bbox6f + i * 6 + 3, segmentmins, segmentmaxs))
{
for(k = 0; k < stride; ++k)
{
tri = i * stride + k;
if(tri >= numtriangles)
break;
Collision_TraceLineTriangleFloat(trace, linestart, lineend, vertex3f + element3i[tri * 3 + 0] * 3, vertex3f + element3i[tri * 3 + 1] * 3, vertex3f + element3i[tri * 3 + 2] * 3, supercontents, q3surfaceflags, texture);
}
}
}
}
else
{
for (i = 0;i < numtriangles;i++, element3i += 3)
Collision_TraceLineTriangleFloat(trace, linestart, lineend, vertex3f + element3i[0] * 3, vertex3f + element3i[1] * 3, vertex3f + element3i[2] * 3, supercontents, q3surfaceflags, texture);
}
}
void Collision_TraceBrushTriangleFloat(trace_t *trace, const colbrushf_t *thisbrush_start, const colbrushf_t *thisbrush_end, const float *v0, const float *v1, const float *v2, int supercontents, int q3surfaceflags, const texture_t *texture)
{
int i;
colpointf_t points[3];
colpointf_t edgedirs[3];
colplanef_t planes[5];
colbrushf_t brush;
memset(&brush, 0, sizeof(brush));
brush.isaabb = false;
brush.hasaabbplanes = false;
brush.numpoints = 3;
brush.numedgedirs = 3;
brush.numplanes = 5;
brush.points = points;
brush.edgedirs = edgedirs;
brush.planes = planes;
brush.supercontents = supercontents;
brush.q3surfaceflags = q3surfaceflags;
brush.texture = texture;
for (i = 0;i < brush.numplanes;i++)
{
brush.planes[i].q3surfaceflags = q3surfaceflags;
brush.planes[i].texture = texture;
}
VectorCopy(v0, points[0].v);
VectorCopy(v1, points[1].v);
VectorCopy(v2, points[2].v);
Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP);
Collision_CalcEdgeDirsForPolygonBrushFloat(&brush);
Collision_CalcPlanesForTriangleBrushFloat(&brush);
//Collision_PrintBrushAsQHull(&brush, "brush");
Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush);
}
void Collision_BrushForBox(colboxbrushf_t *boxbrush, const vec3_t mins, const vec3_t maxs, int supercontents, int q3surfaceflags, const texture_t *texture)
{
int i;
memset(boxbrush, 0, sizeof(*boxbrush));
boxbrush->brush.isaabb = true;
boxbrush->brush.hasaabbplanes = true;
boxbrush->brush.points = boxbrush->points;
boxbrush->brush.edgedirs = boxbrush->edgedirs;
boxbrush->brush.planes = boxbrush->planes;
boxbrush->brush.supercontents = supercontents;
boxbrush->brush.q3surfaceflags = q3surfaceflags;
boxbrush->brush.texture = texture;
if (VectorCompare(mins, maxs))
{
// point brush
boxbrush->brush.numpoints = 1;
boxbrush->brush.numedgedirs = 0;
boxbrush->brush.numplanes = 0;
VectorCopy(mins, boxbrush->brush.points[0].v);
}
else
{
boxbrush->brush.numpoints = 8;
boxbrush->brush.numedgedirs = 3;
boxbrush->brush.numplanes = 6;
// there are 8 points on a box
// there are 3 edgedirs on a box (both signs are tested in collision)
// there are 6 planes on a box
VectorSet(boxbrush->brush.points[0].v, mins[0], mins[1], mins[2]);
VectorSet(boxbrush->brush.points[1].v, maxs[0], mins[1], mins[2]);
VectorSet(boxbrush->brush.points[2].v, mins[0], maxs[1], mins[2]);
VectorSet(boxbrush->brush.points[3].v, maxs[0], maxs[1], mins[2]);
VectorSet(boxbrush->brush.points[4].v, mins[0], mins[1], maxs[2]);
VectorSet(boxbrush->brush.points[5].v, maxs[0], mins[1], maxs[2]);
VectorSet(boxbrush->brush.points[6].v, mins[0], maxs[1], maxs[2]);
VectorSet(boxbrush->brush.points[7].v, maxs[0], maxs[1], maxs[2]);
VectorSet(boxbrush->brush.edgedirs[0].v, 1, 0, 0);
VectorSet(boxbrush->brush.edgedirs[1].v, 0, 1, 0);
VectorSet(boxbrush->brush.edgedirs[2].v, 0, 0, 1);
VectorSet(boxbrush->brush.planes[0].normal, -1, 0, 0);boxbrush->brush.planes[0].dist = -mins[0];
VectorSet(boxbrush->brush.planes[1].normal, 1, 0, 0);boxbrush->brush.planes[1].dist = maxs[0];
VectorSet(boxbrush->brush.planes[2].normal, 0, -1, 0);boxbrush->brush.planes[2].dist = -mins[1];
VectorSet(boxbrush->brush.planes[3].normal, 0, 1, 0);boxbrush->brush.planes[3].dist = maxs[1];
VectorSet(boxbrush->brush.planes[4].normal, 0, 0, -1);boxbrush->brush.planes[4].dist = -mins[2];
VectorSet(boxbrush->brush.planes[5].normal, 0, 0, 1);boxbrush->brush.planes[5].dist = maxs[2];
for (i = 0;i < 6;i++)
{
boxbrush->brush.planes[i].q3surfaceflags = q3surfaceflags;
boxbrush->brush.planes[i].texture = texture;
}
}
boxbrush->brush.supercontents = supercontents;
boxbrush->brush.q3surfaceflags = q3surfaceflags;
boxbrush->brush.texture = texture;
VectorSet(boxbrush->brush.mins, mins[0] - 1, mins[1] - 1, mins[2] - 1);
VectorSet(boxbrush->brush.maxs, maxs[0] + 1, maxs[1] + 1, maxs[2] + 1);
//Collision_ValidateBrush(&boxbrush->brush);
}
//pseudocode for detecting line/sphere overlap without calculating an impact point
//linesphereorigin = sphereorigin - linestart;linediff = lineend - linestart;linespherefrac = DotProduct(linesphereorigin, linediff) / DotProduct(linediff, linediff);return VectorLength2(linesphereorigin - bound(0, linespherefrac, 1) * linediff) >= sphereradius*sphereradius;
// LordHavoc: currently unused, but tested
// note: this can be used for tracing a moving sphere vs a stationary sphere,
// by simply adding the moving sphere's radius to the sphereradius parameter,
// all the results are correct (impactpoint, impactnormal, and fraction)
float Collision_ClipTrace_Line_Sphere(double *linestart, double *lineend, double *sphereorigin, double sphereradius, double *impactpoint, double *impactnormal)
{
double dir[3], scale, v[3], deviationdist2, impactdist, linelength;
// make sure the impactpoint and impactnormal are valid even if there is
// no collision
VectorCopy(lineend, impactpoint);
VectorClear(impactnormal);
// calculate line direction
VectorSubtract(lineend, linestart, dir);
// normalize direction
linelength = VectorLength(dir);
if (linelength)
{
scale = 1.0 / linelength;
VectorScale(dir, scale, dir);
}
// this dotproduct calculates the distance along the line at which the
// sphere origin is (nearest point to the sphere origin on the line)
impactdist = DotProduct(sphereorigin, dir) - DotProduct(linestart, dir);
// calculate point on line at that distance, and subtract the
// sphereorigin from it, so we have a vector to measure for the distance
// of the line from the sphereorigin (deviation, how off-center it is)
VectorMA(linestart, impactdist, dir, v);
VectorSubtract(v, sphereorigin, v);
deviationdist2 = sphereradius * sphereradius - VectorLength2(v);
// if squared offset length is outside the squared sphere radius, miss
if (deviationdist2 < 0)
return 1; // miss (off to the side)
// nudge back to find the correct impact distance
impactdist -= sqrt(deviationdist2);
if (impactdist >= linelength)
return 1; // miss (not close enough)
if (impactdist < 0)
return 1; // miss (linestart is past or inside sphere)
// calculate new impactpoint
VectorMA(linestart, impactdist, dir, impactpoint);
// calculate impactnormal (surface normal at point of impact)
VectorSubtract(impactpoint, sphereorigin, impactnormal);
// normalize impactnormal
VectorNormalize(impactnormal);
// return fraction of movement distance
return impactdist / linelength;
}
void Collision_TraceLineTriangleFloat(trace_t *trace, const vec3_t linestart, const vec3_t lineend, const float *point0, const float *point1, const float *point2, int supercontents, int q3surfaceflags, const texture_t *texture)
{
#if 1
// more optimized
float d1, d2, d, f, impact[3], edgenormal[3], faceplanenormal[3], faceplanedist, faceplanenormallength2, edge01[3], edge21[3], edge02[3];
// this function executes:
// 32 ops when line starts behind triangle
// 38 ops when line ends infront of triangle
// 43 ops when line fraction is already closer than this triangle
// 72 ops when line is outside edge 01
// 92 ops when line is outside edge 21
// 115 ops when line is outside edge 02
// 123 ops when line impacts triangle and updates trace results
// this code is designed for clockwise triangles, conversion to
// counterclockwise would require swapping some things around...
// it is easier to simply swap the point0 and point2 parameters to this
// function when calling it than it is to rewire the internals.
// calculate the faceplanenormal of the triangle, this represents the front side
// 15 ops
VectorSubtract(point0, point1, edge01);
VectorSubtract(point2, point1, edge21);
CrossProduct(edge01, edge21, faceplanenormal);
// there's no point in processing a degenerate triangle (GIGO - Garbage In, Garbage Out)
// 6 ops
faceplanenormallength2 = DotProduct(faceplanenormal, faceplanenormal);
if (faceplanenormallength2 < 0.0001f)
return;
// calculate the distance
// 5 ops
faceplanedist = DotProduct(point0, faceplanenormal);
// if start point is on the back side there is no collision
// (we don't care about traces going through the triangle the wrong way)
// calculate the start distance
// 6 ops
d1 = DotProduct(faceplanenormal, linestart);
if (d1 <= faceplanedist)
return;
// calculate the end distance
// 6 ops
d2 = DotProduct(faceplanenormal, lineend);
// if both are in front, there is no collision
if (d2 >= faceplanedist)
return;
// from here on we know d1 is >= 0 and d2 is < 0
// this means the line starts infront and ends behind, passing through it
// calculate the recipricol of the distance delta,
// so we can use it multiple times cheaply (instead of division)
// 2 ops
d = 1.0f / (d1 - d2);
// calculate the impact fraction by taking the start distance (> 0)
// and subtracting the face plane distance (this is the distance of the
// triangle along that same normal)
// then multiply by the recipricol distance delta
// 2 ops
f = (d1 - faceplanedist) * d;
// skip out if this impact is further away than previous ones
// 1 ops
if (f > trace->realfraction)
return;
// calculate the perfect impact point for classification of insidedness
// 9 ops
impact[0] = linestart[0] + f * (lineend[0] - linestart[0]);
impact[1] = linestart[1] + f * (lineend[1] - linestart[1]);
impact[2] = linestart[2] + f * (lineend[2] - linestart[2]);
// calculate the edge normal and reject if impact is outside triangle
// (an edge normal faces away from the triangle, to get the desired normal
// a crossproduct with the faceplanenormal is used, and because of the way
// the insidedness comparison is written it does not need to be normalized)
// first use the two edges from the triangle plane math
// the other edge only gets calculated if the point survives that long
// 20 ops
CrossProduct(edge01, faceplanenormal, edgenormal);
if (DotProduct(impact, edgenormal) > DotProduct(point1, edgenormal))
return;
// 20 ops
CrossProduct(faceplanenormal, edge21, edgenormal);
if (DotProduct(impact, edgenormal) > DotProduct(point2, edgenormal))
return;
// 23 ops
VectorSubtract(point0, point2, edge02);
CrossProduct(faceplanenormal, edge02, edgenormal);
if (DotProduct(impact, edgenormal) > DotProduct(point0, edgenormal))
return;
// 8 ops (rare)
// store the new trace fraction
trace->realfraction = f;
// calculate a nudged fraction to keep it out of the surface
// (the main fraction remains perfect)
trace->fraction = f - collision_impactnudge.value * d;
if (collision_prefernudgedfraction.integer)
trace->realfraction = trace->fraction;
// store the new trace plane (because collisions only happen from
// the front this is always simply the triangle normal, never flipped)
d = 1.0 / sqrt(faceplanenormallength2);
VectorScale(faceplanenormal, d, trace->plane.normal);
trace->plane.dist = faceplanedist * d;
trace->hitsupercontents = supercontents;
trace->hitq3surfaceflags = q3surfaceflags;
trace->hittexture = texture;
#else
float d1, d2, d, f, fnudged, impact[3], edgenormal[3], faceplanenormal[3], faceplanedist, edge[3];
// this code is designed for clockwise triangles, conversion to
// counterclockwise would require swapping some things around...
// it is easier to simply swap the point0 and point2 parameters to this
// function when calling it than it is to rewire the internals.
// calculate the unnormalized faceplanenormal of the triangle,
// this represents the front side
TriangleNormal(point0, point1, point2, faceplanenormal);
// there's no point in processing a degenerate triangle
// (GIGO - Garbage In, Garbage Out)
if (DotProduct(faceplanenormal, faceplanenormal) < 0.0001f)
return;
// calculate the unnormalized distance
faceplanedist = DotProduct(point0, faceplanenormal);
// calculate the unnormalized start distance
d1 = DotProduct(faceplanenormal, linestart) - faceplanedist;
// if start point is on the back side there is no collision
// (we don't care about traces going through the triangle the wrong way)
if (d1 <= 0)
return;
// calculate the unnormalized end distance
d2 = DotProduct(faceplanenormal, lineend) - faceplanedist;
// if both are in front, there is no collision
if (d2 >= 0)
return;
// from here on we know d1 is >= 0 and d2 is < 0
// this means the line starts infront and ends behind, passing through it
// calculate the recipricol of the distance delta,
// so we can use it multiple times cheaply (instead of division)
d = 1.0f / (d1 - d2);
// calculate the impact fraction by taking the start distance (> 0)
// and subtracting the face plane distance (this is the distance of the
// triangle along that same normal)
// then multiply by the recipricol distance delta
f = d1 * d;
// skip out if this impact is further away than previous ones
if (f > trace->realfraction)
return;
// calculate the perfect impact point for classification of insidedness
impact[0] = linestart[0] + f * (lineend[0] - linestart[0]);
impact[1] = linestart[1] + f * (lineend[1] - linestart[1]);
impact[2] = linestart[2] + f * (lineend[2] - linestart[2]);
// calculate the edge normal and reject if impact is outside triangle
// (an edge normal faces away from the triangle, to get the desired normal
// a crossproduct with the faceplanenormal is used, and because of the way
// the insidedness comparison is written it does not need to be normalized)
VectorSubtract(point2, point0, edge);
CrossProduct(edge, faceplanenormal, edgenormal);
if (DotProduct(impact, edgenormal) > DotProduct(point0, edgenormal))
return;
VectorSubtract(point0, point1, edge);
CrossProduct(edge, faceplanenormal, edgenormal);
if (DotProduct(impact, edgenormal) > DotProduct(point1, edgenormal))
return;
VectorSubtract(point1, point2, edge);
CrossProduct(edge, faceplanenormal, edgenormal);
if (DotProduct(impact, edgenormal) > DotProduct(point2, edgenormal))
return;
// store the new trace fraction
trace->realfraction = bound(0, f, 1);
// store the new trace plane (because collisions only happen from
// the front this is always simply the triangle normal, never flipped)
VectorNormalize(faceplanenormal);
VectorCopy(faceplanenormal, trace->plane.normal);
trace->plane.dist = DotProduct(point0, faceplanenormal);
// calculate the normalized start and end distances
d1 = DotProduct(trace->plane.normal, linestart) - trace->plane.dist;
d2 = DotProduct(trace->plane.normal, lineend) - trace->plane.dist;
// calculate a nudged fraction to keep it out of the surface
// (the main fraction remains perfect)
fnudged = (d1 - collision_impactnudge.value) / (d1 - d2);
trace->fraction = bound(0, fnudged, 1);
// store the new trace endpos
// not needed, it's calculated later when the trace is finished
//trace->endpos[0] = linestart[0] + fnudged * (lineend[0] - linestart[0]);
//trace->endpos[1] = linestart[1] + fnudged * (lineend[1] - linestart[1]);
//trace->endpos[2] = linestart[2] + fnudged * (lineend[2] - linestart[2]);
trace->hitsupercontents = supercontents;
trace->hitq3surfaceflags = q3surfaceflags;
trace->hittexture = texture;
#endif
}
void Collision_BoundingBoxOfBrushTraceSegment(const colbrushf_t *start, const colbrushf_t *end, vec3_t mins, vec3_t maxs, float startfrac, float endfrac)
{
int i;
colpointf_t *ps, *pe;
float tempstart[3], tempend[3];
VectorLerp(start->points[0].v, startfrac, end->points[0].v, mins);
VectorCopy(mins, maxs);
for (i = 0, ps = start->points, pe = end->points;i < start->numpoints;i++, ps++, pe++)
{
VectorLerp(ps->v, startfrac, pe->v, tempstart);
VectorLerp(ps->v, endfrac, pe->v, tempend);
mins[0] = min(mins[0], min(tempstart[0], tempend[0]));
mins[1] = min(mins[1], min(tempstart[1], tempend[1]));
mins[2] = min(mins[2], min(tempstart[2], tempend[2]));
maxs[0] = min(maxs[0], min(tempstart[0], tempend[0]));
maxs[1] = min(maxs[1], min(tempstart[1], tempend[1]));
maxs[2] = min(maxs[2], min(tempstart[2], tempend[2]));
}
mins[0] -= 1;
mins[1] -= 1;
mins[2] -= 1;
maxs[0] += 1;
maxs[1] += 1;
maxs[2] += 1;
}
//===========================================
static void Collision_TranslateBrush(const vec3_t shift, colbrushf_t *brush)
{
int i;
// now we can transform the data
for(i = 0; i < brush->numplanes; ++i)
{
brush->planes[i].dist += DotProduct(shift, brush->planes[i].normal);
}
for(i = 0; i < brush->numpoints; ++i)
{
VectorAdd(brush->points[i].v, shift, brush->points[i].v);
}
VectorAdd(brush->mins, shift, brush->mins);
VectorAdd(brush->maxs, shift, brush->maxs);
}
static void Collision_TransformBrush(const matrix4x4_t *matrix, colbrushf_t *brush)
{
int i;
vec3_t v;
// we're breaking any AABB properties here...
brush->isaabb = false;
brush->hasaabbplanes = false;
// now we can transform the data
for(i = 0; i < brush->numplanes; ++i)
{
Matrix4x4_TransformPositivePlane(matrix, brush->planes[i].normal[0], brush->planes[i].normal[1], brush->planes[i].normal[2], brush->planes[i].dist, brush->planes[i].normal);
}
for(i = 0; i < brush->numedgedirs; ++i)
{
Matrix4x4_Transform(matrix, brush->edgedirs[i].v, v);
VectorCopy(v, brush->edgedirs[i].v);
}
for(i = 0; i < brush->numpoints; ++i)
{
Matrix4x4_Transform(matrix, brush->points[i].v, v);
VectorCopy(v, brush->points[i].v);
}
VectorCopy(brush->points[0].v, brush->mins);
VectorCopy(brush->points[0].v, brush->maxs);
for(i = 1; i < brush->numpoints; ++i)
{
if(brush->points[i].v[0] < brush->mins[0]) brush->mins[0] = brush->points[i].v[0];
if(brush->points[i].v[1] < brush->mins[1]) brush->mins[1] = brush->points[i].v[1];
if(brush->points[i].v[2] < brush->mins[2]) brush->mins[2] = brush->points[i].v[2];
if(brush->points[i].v[0] > brush->maxs[0]) brush->maxs[0] = brush->points[i].v[0];
if(brush->points[i].v[1] > brush->maxs[1]) brush->maxs[1] = brush->points[i].v[1];
if(brush->points[i].v[2] > brush->maxs[2]) brush->maxs[2] = brush->points[i].v[2];
}
}
typedef struct collision_cachedtrace_parameters_s
{
dp_model_t *model;
vec3_t end;
vec3_t start;
int hitsupercontentsmask;
matrix4x4_t matrix;
}
collision_cachedtrace_parameters_t;
typedef struct collision_cachedtrace_s
{
qboolean valid;
collision_cachedtrace_parameters_t p;
trace_t result;
}
collision_cachedtrace_t;
static mempool_t *collision_cachedtrace_mempool;
static collision_cachedtrace_t *collision_cachedtrace_array;
static int collision_cachedtrace_firstfree;
static int collision_cachedtrace_lastused;
static int collision_cachedtrace_max;
static int collision_cachedtrace_sequence;
static int collision_cachedtrace_hashsize;
static int *collision_cachedtrace_hash;
static unsigned int *collision_cachedtrace_arrayfullhashindex;
static unsigned int *collision_cachedtrace_arrayhashindex;
static unsigned int *collision_cachedtrace_arraynext;
static unsigned char *collision_cachedtrace_arrayused;
static qboolean collision_cachedtrace_rebuildhash;
void Collision_Cache_Reset(qboolean resetlimits)
{
if (collision_cachedtrace_hash)
Mem_Free(collision_cachedtrace_hash);
if (collision_cachedtrace_array)
Mem_Free(collision_cachedtrace_array);
if (collision_cachedtrace_arrayfullhashindex)
Mem_Free(collision_cachedtrace_arrayfullhashindex);
if (collision_cachedtrace_arrayhashindex)
Mem_Free(collision_cachedtrace_arrayhashindex);
if (collision_cachedtrace_arraynext)
Mem_Free(collision_cachedtrace_arraynext);
if (collision_cachedtrace_arrayused)
Mem_Free(collision_cachedtrace_arrayused);
if (resetlimits || !collision_cachedtrace_max)
collision_cachedtrace_max = collision_cache.integer ? 128 : 1;
collision_cachedtrace_firstfree = 1;
collision_cachedtrace_lastused = 0;
collision_cachedtrace_hashsize = collision_cachedtrace_max;
collision_cachedtrace_array = (collision_cachedtrace_t *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(collision_cachedtrace_t));
collision_cachedtrace_hash = (int *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_hashsize * sizeof(int));
collision_cachedtrace_arrayfullhashindex = (unsigned int *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(unsigned int));
collision_cachedtrace_arrayhashindex = (unsigned int *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(unsigned int));
collision_cachedtrace_arraynext = (unsigned int *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(unsigned int));
collision_cachedtrace_arrayused = (unsigned char *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(unsigned char));
collision_cachedtrace_sequence = 1;
collision_cachedtrace_rebuildhash = false;
}
void Collision_Cache_Init(mempool_t *mempool)
{
collision_cachedtrace_mempool = mempool;
Collision_Cache_Reset(true);
}
static void Collision_Cache_RebuildHash(void)
{
int index;
int range = collision_cachedtrace_lastused + 1;
int sequence = collision_cachedtrace_sequence;
int firstfree = collision_cachedtrace_max;
int lastused = 0;
int *hash = collision_cachedtrace_hash;
unsigned int hashindex;
unsigned int *arrayhashindex = collision_cachedtrace_arrayhashindex;
unsigned int *arraynext = collision_cachedtrace_arraynext;
collision_cachedtrace_rebuildhash = false;
memset(collision_cachedtrace_hash, 0, collision_cachedtrace_hashsize * sizeof(int));
for (index = 1;index < range;index++)
{
if (collision_cachedtrace_arrayused[index] == sequence)
{
hashindex = arrayhashindex[index];
arraynext[index] = hash[hashindex];
hash[hashindex] = index;
lastused = index;
}
else
{
if (firstfree > index)
firstfree = index;
collision_cachedtrace_arrayused[index] = 0;
}
}
collision_cachedtrace_firstfree = firstfree;
collision_cachedtrace_lastused = lastused;
}
void Collision_Cache_NewFrame(void)
{
if (collision_cache.integer)
{
if (collision_cachedtrace_max < 128)
Collision_Cache_Reset(true);
}
else
{
if (collision_cachedtrace_max > 1)
Collision_Cache_Reset(true);
}
// rebuild hash if sequence would overflow byte, otherwise increment
if (collision_cachedtrace_sequence == 255)
{
Collision_Cache_RebuildHash();
collision_cachedtrace_sequence = 1;
}
else
{
collision_cachedtrace_rebuildhash = true;
collision_cachedtrace_sequence++;
}
}
static unsigned int Collision_Cache_HashIndexForArray(unsigned int *array, unsigned int size)
{
unsigned int i;
unsigned int hashindex = 0;
// this is a super-cheesy checksum, designed only for speed
for (i = 0;i < size;i++)
hashindex += array[i] * (1 + i);
return hashindex;
}
static collision_cachedtrace_t *Collision_Cache_Lookup(dp_model_t *model, const matrix4x4_t *matrix, const matrix4x4_t *inversematrix, const vec3_t start, const vec3_t end, int hitsupercontentsmask)
{
int hashindex = 0;
unsigned int fullhashindex;
int index = 0;
int range;
int sequence = collision_cachedtrace_sequence;
int *hash = collision_cachedtrace_hash;
unsigned int *arrayfullhashindex = collision_cachedtrace_arrayfullhashindex;
unsigned int *arraynext = collision_cachedtrace_arraynext;
collision_cachedtrace_t *cached = collision_cachedtrace_array + index;
collision_cachedtrace_parameters_t params;
// all non-cached traces use the same index
if (!collision_cache.integer)
r_refdef.stats[r_stat_photoncache_traced]++;
else
{
// cached trace lookup
memset(&params, 0, sizeof(params));
params.model = model;
VectorCopy(start, params.start);
VectorCopy(end, params.end);
params.hitsupercontentsmask = hitsupercontentsmask;
params.matrix = *matrix;
fullhashindex = Collision_Cache_HashIndexForArray((unsigned int *)&params, sizeof(params) / sizeof(unsigned int));
hashindex = (int)(fullhashindex % (unsigned int)collision_cachedtrace_hashsize);
for (index = hash[hashindex];index;index = arraynext[index])
{
if (arrayfullhashindex[index] != fullhashindex)
continue;
cached = collision_cachedtrace_array + index;
//if (memcmp(&cached->p, &params, sizeof(params)))
if (cached->p.model != params.model
|| cached->p.end[0] != params.end[0]
|| cached->p.end[1] != params.end[1]
|| cached->p.end[2] != params.end[2]
|| cached->p.start[0] != params.start[0]
|| cached->p.start[1] != params.start[1]
|| cached->p.start[2] != params.start[2]
|| cached->p.hitsupercontentsmask != params.hitsupercontentsmask
|| cached->p.matrix.m[0][0] != params.matrix.m[0][0]
|| cached->p.matrix.m[0][1] != params.matrix.m[0][1]
|| cached->p.matrix.m[0][2] != params.matrix.m[0][2]
|| cached->p.matrix.m[0][3] != params.matrix.m[0][3]
|| cached->p.matrix.m[1][0] != params.matrix.m[1][0]
|| cached->p.matrix.m[1][1] != params.matrix.m[1][1]
|| cached->p.matrix.m[1][2] != params.matrix.m[1][2]
|| cached->p.matrix.m[1][3] != params.matrix.m[1][3]
|| cached->p.matrix.m[2][0] != params.matrix.m[2][0]
|| cached->p.matrix.m[2][1] != params.matrix.m[2][1]
|| cached->p.matrix.m[2][2] != params.matrix.m[2][2]
|| cached->p.matrix.m[2][3] != params.matrix.m[2][3]
|| cached->p.matrix.m[3][0] != params.matrix.m[3][0]
|| cached->p.matrix.m[3][1] != params.matrix.m[3][1]
|| cached->p.matrix.m[3][2] != params.matrix.m[3][2]
|| cached->p.matrix.m[3][3] != params.matrix.m[3][3]
)
continue;
// found a matching trace in the cache
r_refdef.stats[r_stat_photoncache_cached]++;
cached->valid = true;
collision_cachedtrace_arrayused[index] = collision_cachedtrace_sequence;
return cached;
}
r_refdef.stats[r_stat_photoncache_traced]++;
// find an unused cache entry
for (index = collision_cachedtrace_firstfree, range = collision_cachedtrace_max;index < range;index++)
if (collision_cachedtrace_arrayused[index] == 0)
break;
if (index == range)
{
// all claimed, but probably some are stale...
for (index = 1, range = collision_cachedtrace_max;index < range;index++)
if (collision_cachedtrace_arrayused[index] != sequence)
break;
if (index < range)
{
// found a stale one, rebuild the hash
Collision_Cache_RebuildHash();
}
else
{
// we need to grow the cache
collision_cachedtrace_max *= 2;
Collision_Cache_Reset(false);
index = 1;
}
}
// link the new cache entry into the hash bucket
collision_cachedtrace_firstfree = index + 1;
if (collision_cachedtrace_lastused < index)
collision_cachedtrace_lastused = index;
cached = collision_cachedtrace_array + index;
collision_cachedtrace_arraynext[index] = collision_cachedtrace_hash[hashindex];
collision_cachedtrace_hash[hashindex] = index;
collision_cachedtrace_arrayhashindex[index] = hashindex;
cached->valid = false;
cached->p = params;
collision_cachedtrace_arrayfullhashindex[index] = fullhashindex;
collision_cachedtrace_arrayused[index] = collision_cachedtrace_sequence;
}
return cached;
}
void Collision_Cache_ClipLineToGenericEntitySurfaces(trace_t *trace, dp_model_t *model, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t start, const vec3_t end, int hitsupercontentsmask)
{
collision_cachedtrace_t *cached = Collision_Cache_Lookup(model, matrix, inversematrix, start, end, hitsupercontentsmask);
if (cached->valid)
{
*trace = cached->result;
return;
}
Collision_ClipLineToGenericEntity(trace, model, NULL, NULL, vec3_origin, vec3_origin, 0, matrix, inversematrix, start, end, hitsupercontentsmask, true);
cached->result = *trace;
}
void Collision_Cache_ClipLineToWorldSurfaces(trace_t *trace, dp_model_t *model, const vec3_t start, const vec3_t end, int hitsupercontents)
{
collision_cachedtrace_t *cached = Collision_Cache_Lookup(model, &identitymatrix, &identitymatrix, start, end, hitsupercontents);
if (cached->valid)
{
*trace = cached->result;
return;
}
Collision_ClipLineToWorld(trace, model, start, end, hitsupercontents, true);
cached->result = *trace;
}
void Collision_ClipToGenericEntity(trace_t *trace, dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, const vec3_t bodymins, const vec3_t bodymaxs, int bodysupercontents, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t start, const vec3_t mins, const vec3_t maxs, const vec3_t end, int hitsupercontentsmask)
{
float starttransformed[3], endtransformed[3];
memset(trace, 0, sizeof(*trace));
trace->fraction = trace->realfraction = 1;
Matrix4x4_Transform(inversematrix, start, starttransformed);
Matrix4x4_Transform(inversematrix, end, endtransformed);
#if COLLISIONPARANOID >= 3
Con_Printf("trans(%f %f %f -> %f %f %f, %f %f %f -> %f %f %f)", start[0], start[1], start[2], starttransformed[0], starttransformed[1], starttransformed[2], end[0], end[1], end[2], endtransformed[0], endtransformed[1], endtransformed[2]);
#endif
if (model && model->TraceBox)
{
if(model->TraceBrush && (inversematrix->m[0][1] || inversematrix->m[0][2] || inversematrix->m[1][0] || inversematrix->m[1][2] || inversematrix->m[2][0] || inversematrix->m[2][1]))
{
// we get here if TraceBrush exists, AND we have a rotation component (SOLID_BSP case)
// using starttransformed, endtransformed is WRONG in this case!
// should rather build a brush and trace using it
colboxbrushf_t thisbrush_start, thisbrush_end;
Collision_BrushForBox(&thisbrush_start, mins, maxs, 0, 0, NULL);
Collision_BrushForBox(&thisbrush_end, mins, maxs, 0, 0, NULL);
Collision_TranslateBrush(start, &thisbrush_start.brush);
Collision_TranslateBrush(end, &thisbrush_end.brush);
Collision_TransformBrush(inversematrix, &thisbrush_start.brush);
Collision_TransformBrush(inversematrix, &thisbrush_end.brush);
//Collision_TranslateBrush(starttransformed, &thisbrush_start.brush);
//Collision_TranslateBrush(endtransformed, &thisbrush_end.brush);
model->TraceBrush(model, frameblend, skeleton, trace, &thisbrush_start.brush, &thisbrush_end.brush, hitsupercontentsmask);
}
else // this is only approximate if rotated, quite useless
model->TraceBox(model, frameblend, skeleton, trace, starttransformed, mins, maxs, endtransformed, hitsupercontentsmask);
}
else // and this requires that the transformation matrix doesn't have angles components, like SV_TraceBox ensures; FIXME may get called if a model is SOLID_BSP but has no TraceBox function
Collision_ClipTrace_Box(trace, bodymins, bodymaxs, starttransformed, mins, maxs, endtransformed, hitsupercontentsmask, bodysupercontents, 0, NULL);
trace->fraction = bound(0, trace->fraction, 1);
trace->realfraction = bound(0, trace->realfraction, 1);
VectorLerp(start, trace->fraction, end, trace->endpos);
// transform plane
// NOTE: this relies on plane.dist being directly after plane.normal
Matrix4x4_TransformPositivePlane(matrix, trace->plane.normal[0], trace->plane.normal[1], trace->plane.normal[2], trace->plane.dist, trace->plane.normal);
}
void Collision_ClipToWorld(trace_t *trace, dp_model_t *model, const vec3_t start, const vec3_t mins, const vec3_t maxs, const vec3_t end, int hitsupercontents)
{
memset(trace, 0, sizeof(*trace));
trace->fraction = trace->realfraction = 1;
// ->TraceBox: TraceBrush not needed here, as worldmodel is never rotated
if (model && model->TraceBox)
model->TraceBox(model, NULL, NULL, trace, start, mins, maxs, end, hitsupercontents);
trace->fraction = bound(0, trace->fraction, 1);
trace->realfraction = bound(0, trace->realfraction, 1);
VectorLerp(start, trace->fraction, end, trace->endpos);
}
void Collision_ClipLineToGenericEntity(trace_t *trace, dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, const vec3_t bodymins, const vec3_t bodymaxs, int bodysupercontents, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t start, const vec3_t end, int hitsupercontentsmask, qboolean hitsurfaces)
{
float starttransformed[3], endtransformed[3];
memset(trace, 0, sizeof(*trace));
trace->fraction = trace->realfraction = 1;
Matrix4x4_Transform(inversematrix, start, starttransformed);
Matrix4x4_Transform(inversematrix, end, endtransformed);
#if COLLISIONPARANOID >= 3
Con_Printf("trans(%f %f %f -> %f %f %f, %f %f %f -> %f %f %f)", start[0], start[1], start[2], starttransformed[0], starttransformed[1], starttransformed[2], end[0], end[1], end[2], endtransformed[0], endtransformed[1], endtransformed[2]);
#endif
if (model && model->TraceLineAgainstSurfaces && hitsurfaces)
model->TraceLineAgainstSurfaces(model, frameblend, skeleton, trace, starttransformed, endtransformed, hitsupercontentsmask);
else if (model && model->TraceLine)
model->TraceLine(model, frameblend, skeleton, trace, starttransformed, endtransformed, hitsupercontentsmask);
else
Collision_ClipTrace_Box(trace, bodymins, bodymaxs, starttransformed, vec3_origin, vec3_origin, endtransformed, hitsupercontentsmask, bodysupercontents, 0, NULL);
trace->fraction = bound(0, trace->fraction, 1);
trace->realfraction = bound(0, trace->realfraction, 1);
VectorLerp(start, trace->fraction, end, trace->endpos);
// transform plane
// NOTE: this relies on plane.dist being directly after plane.normal
Matrix4x4_TransformPositivePlane(matrix, trace->plane.normal[0], trace->plane.normal[1], trace->plane.normal[2], trace->plane.dist, trace->plane.normal);
}
void Collision_ClipLineToWorld(trace_t *trace, dp_model_t *model, const vec3_t start, const vec3_t end, int hitsupercontents, qboolean hitsurfaces)
{
memset(trace, 0, sizeof(*trace));
trace->fraction = trace->realfraction = 1;
if (model && model->TraceLineAgainstSurfaces && hitsurfaces)
model->TraceLineAgainstSurfaces(model, NULL, NULL, trace, start, end, hitsupercontents);
else if (model && model->TraceLine)
model->TraceLine(model, NULL, NULL, trace, start, end, hitsupercontents);
trace->fraction = bound(0, trace->fraction, 1);
trace->realfraction = bound(0, trace->realfraction, 1);
VectorLerp(start, trace->fraction, end, trace->endpos);
}
void Collision_ClipPointToGenericEntity(trace_t *trace, dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, const vec3_t bodymins, const vec3_t bodymaxs, int bodysupercontents, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t start, int hitsupercontentsmask)
{
float starttransformed[3];
memset(trace, 0, sizeof(*trace));
trace->fraction = trace->realfraction = 1;
Matrix4x4_Transform(inversematrix, start, starttransformed);
#if COLLISIONPARANOID >= 3
Con_Printf("trans(%f %f %f -> %f %f %f)", start[0], start[1], start[2], starttransformed[0], starttransformed[1], starttransformed[2]);
#endif
if (model && model->TracePoint)
model->TracePoint(model, NULL, NULL, trace, starttransformed, hitsupercontentsmask);
else
Collision_ClipTrace_Point(trace, bodymins, bodymaxs, starttransformed, hitsupercontentsmask, bodysupercontents, 0, NULL);
VectorCopy(start, trace->endpos);
// transform plane
// NOTE: this relies on plane.dist being directly after plane.normal
Matrix4x4_TransformPositivePlane(matrix, trace->plane.normal[0], trace->plane.normal[1], trace->plane.normal[2], trace->plane.dist, trace->plane.normal);
}
void Collision_ClipPointToWorld(trace_t *trace, dp_model_t *model, const vec3_t start, int hitsupercontents)
{
memset(trace, 0, sizeof(*trace));
trace->fraction = trace->realfraction = 1;
if (model && model->TracePoint)
model->TracePoint(model, NULL, NULL, trace, start, hitsupercontents);
VectorCopy(start, trace->endpos);
}
void Collision_CombineTraces(trace_t *cliptrace, const trace_t *trace, void *touch, qboolean isbmodel)
{
// take the 'best' answers from the new trace and combine with existing data
if (trace->allsolid)
cliptrace->allsolid = true;
if (trace->startsolid)
{
if (isbmodel)
cliptrace->bmodelstartsolid = true;
cliptrace->startsolid = true;
if (cliptrace->realfraction == 1)
cliptrace->ent = touch;
if (cliptrace->startdepth > trace->startdepth)
{
cliptrace->startdepth = trace->startdepth;
VectorCopy(trace->startdepthnormal, cliptrace->startdepthnormal);
}
}
// don't set this except on the world, because it can easily confuse
// monsters underwater if there's a bmodel involved in the trace
// (inopen && inwater is how they check water visibility)
//if (trace->inopen)
// cliptrace->inopen = true;
if (trace->inwater)
cliptrace->inwater = true;
if ((trace->realfraction < cliptrace->realfraction) && (VectorLength2(trace->plane.normal) > 0))
{
cliptrace->fraction = trace->fraction;
cliptrace->realfraction = trace->realfraction;
VectorCopy(trace->endpos, cliptrace->endpos);
cliptrace->plane = trace->plane;
cliptrace->ent = touch;
cliptrace->hitsupercontents = trace->hitsupercontents;
cliptrace->hitq3surfaceflags = trace->hitq3surfaceflags;
cliptrace->hittexture = trace->hittexture;
}
cliptrace->startsupercontents |= trace->startsupercontents;
}
void Collision_ShortenTrace(trace_t *trace, float shorten_factor, const vec3_t end)
{
// now undo our moving end 1 qu farther...
trace->fraction = bound(trace->fraction, trace->fraction / shorten_factor - 1e-6, 1); // we subtract 1e-6 to guard for roundoff errors
trace->realfraction = bound(trace->realfraction, trace->realfraction / shorten_factor - 1e-6, 1); // we subtract 1e-6 to guard for roundoff errors
if(trace->fraction >= 1) // trace would NOT hit if not expanded!
{
trace->fraction = 1;
trace->realfraction = 1;
VectorCopy(end, trace->endpos);
memset(&trace->plane, 0, sizeof(trace->plane));
trace->ent = NULL;
trace->hitsupercontentsmask = 0;
trace->hitsupercontents = 0;
trace->hitq3surfaceflags = 0;
trace->hittexture = NULL;
}
}