quakequest/Projects/Android/jni/darkplaces/gl_rsurf.c

1646 lines
62 KiB
C
Raw Normal View History

2019-05-30 05:57:57 +00:00
/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// r_surf.c: surface-related refresh code
#include "quakedef.h"
#include "r_shadow.h"
#include "portals.h"
#include "csprogs.h"
#include "image.h"
cvar_t r_ambient = {0, "r_ambient", "0", "brightens map, value is 0-128"};
cvar_t r_lockpvs = {0, "r_lockpvs", "0", "disables pvs switching, allows you to walk around and inspect what is visible from a given location in the map (anything not visible from your current location will not be drawn)"};
cvar_t r_lockvisibility = {0, "r_lockvisibility", "0", "disables visibility updates, allows you to walk around and inspect what is visible from a given viewpoint in the map (anything offscreen at the moment this is enabled will not be drawn)"};
cvar_t r_useportalculling = {0, "r_useportalculling", "2", "improve framerate with r_novis 1 by using portal culling - still not as good as compiled visibility data in the map, but it helps (a value of 2 forces use of this even with vis data, which improves framerates in maps without too much complexity, but hurts in extremely complex maps, which is why 2 is not the default mode)"};
cvar_t r_usesurfaceculling = {0, "r_usesurfaceculling", "1", "skip off-screen surfaces (1 = cull surfaces if the map is likely to benefit, 2 = always cull surfaces)"};
cvar_t r_q3bsp_renderskydepth = {0, "r_q3bsp_renderskydepth", "0", "draws sky depth masking in q3 maps (as in q1 maps), this means for example that sky polygons can hide other things"};
/*
===============
R_BuildLightMap
Combine and scale multiple lightmaps into the 8.8 format in blocklights
===============
*/
void R_BuildLightMap (const entity_render_t *ent, msurface_t *surface)
{
int smax, tmax, i, size, size3, maps, l;
int *bl, scale;
unsigned char *lightmap, *out, *stain;
dp_model_t *model = ent->model;
int *intblocklights;
unsigned char *templight;
smax = (surface->lightmapinfo->extents[0]>>4)+1;
tmax = (surface->lightmapinfo->extents[1]>>4)+1;
size = smax*tmax;
size3 = size*3;
r_refdef.stats[r_stat_lightmapupdatepixels] += size;
r_refdef.stats[r_stat_lightmapupdates]++;
if (cl.buildlightmapmemorysize < size*sizeof(int[3]))
{
cl.buildlightmapmemorysize = size*sizeof(int[3]);
if (cl.buildlightmapmemory)
Mem_Free(cl.buildlightmapmemory);
cl.buildlightmapmemory = (unsigned char *) Mem_Alloc(cls.levelmempool, cl.buildlightmapmemorysize);
}
// these both point at the same buffer, templight is only used for final
// processing and can replace the intblocklights data as it goes
intblocklights = (int *)cl.buildlightmapmemory;
templight = (unsigned char *)cl.buildlightmapmemory;
// update cached lighting info
model->brushq1.lightmapupdateflags[surface - model->data_surfaces] = false;
lightmap = surface->lightmapinfo->samples;
// set to full bright if no light data
bl = intblocklights;
if (!model->brushq1.lightdata)
{
for (i = 0;i < size3;i++)
bl[i] = 128*256;
}
else
{
// clear to no light
memset(bl, 0, size3*sizeof(*bl));
// add all the lightmaps
if (lightmap)
for (maps = 0;maps < MAXLIGHTMAPS && surface->lightmapinfo->styles[maps] != 255;maps++, lightmap += size3)
for (scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[maps]], i = 0;i < size3;i++)
bl[i] += lightmap[i] * scale;
}
stain = surface->lightmapinfo->stainsamples;
bl = intblocklights;
out = templight;
// the >> 16 shift adjusts down 8 bits to account for the stainmap
// scaling, and remaps the 0-65536 (2x overbright) to 0-256, it will
// be doubled during rendering to achieve 2x overbright
// (0 = 0.0, 128 = 1.0, 256 = 2.0)
if (stain)
{
for (i = 0;i < size;i++, bl += 3, stain += 3, out += 4)
{
l = (bl[0] * stain[0]) >> 16;out[2] = min(l, 255);
l = (bl[1] * stain[1]) >> 16;out[1] = min(l, 255);
l = (bl[2] * stain[2]) >> 16;out[0] = min(l, 255);
out[3] = 255;
}
}
else
{
for (i = 0;i < size;i++, bl += 3, out += 4)
{
l = bl[0] >> 8;out[2] = min(l, 255);
l = bl[1] >> 8;out[1] = min(l, 255);
l = bl[2] >> 8;out[0] = min(l, 255);
out[3] = 255;
}
}
if(vid_sRGB.integer && vid_sRGB_fallback.integer && !vid.sRGB3D)
Image_MakesRGBColorsFromLinear_Lightmap(templight, templight, size);
R_UpdateTexture(surface->lightmaptexture, templight, surface->lightmapinfo->lightmaporigin[0], surface->lightmapinfo->lightmaporigin[1], 0, smax, tmax, 1);
// update the surface's deluxemap if it has one
if (surface->deluxemaptexture != r_texture_blanknormalmap)
{
vec3_t n;
unsigned char *normalmap = surface->lightmapinfo->nmapsamples;
lightmap = surface->lightmapinfo->samples;
// clear to no normalmap
bl = intblocklights;
memset(bl, 0, size3*sizeof(*bl));
// add all the normalmaps
if (lightmap && normalmap)
{
for (maps = 0;maps < MAXLIGHTMAPS && surface->lightmapinfo->styles[maps] != 255;maps++, lightmap += size3, normalmap += size3)
{
for (scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[maps]], i = 0;i < size;i++)
{
// add the normalmap with weighting proportional to the style's lightmap intensity
l = (int)(VectorLength(lightmap + i*3) * scale);
bl[i*3+0] += ((int)normalmap[i*3+0] - 128) * l;
bl[i*3+1] += ((int)normalmap[i*3+1] - 128) * l;
bl[i*3+2] += ((int)normalmap[i*3+2] - 128) * l;
}
}
}
bl = intblocklights;
out = templight;
// we simply renormalize the weighted normals to get a valid deluxemap
for (i = 0;i < size;i++, bl += 3, out += 4)
{
VectorCopy(bl, n);
VectorNormalize(n);
l = (int)(n[0] * 128 + 128);out[2] = bound(0, l, 255);
l = (int)(n[1] * 128 + 128);out[1] = bound(0, l, 255);
l = (int)(n[2] * 128 + 128);out[0] = bound(0, l, 255);
out[3] = 255;
}
R_UpdateTexture(surface->deluxemaptexture, templight, surface->lightmapinfo->lightmaporigin[0], surface->lightmapinfo->lightmaporigin[1], 0, smax, tmax, 1);
}
}
static void R_StainNode (mnode_t *node, dp_model_t *model, const vec3_t origin, float radius, const float fcolor[8])
{
float ndist, a, ratio, maxdist, maxdist2, maxdist3, invradius, sdtable[256], td, dist2;
msurface_t *surface, *endsurface;
int i, s, t, smax, tmax, smax3, impacts, impactt, stained;
unsigned char *bl;
vec3_t impact;
maxdist = radius * radius;
invradius = 1.0f / radius;
loc0:
if (!node->plane)
return;
ndist = PlaneDiff(origin, node->plane);
if (ndist > radius)
{
node = node->children[0];
goto loc0;
}
if (ndist < -radius)
{
node = node->children[1];
goto loc0;
}
dist2 = ndist * ndist;
maxdist3 = maxdist - dist2;
if (node->plane->type < 3)
{
VectorCopy(origin, impact);
impact[node->plane->type] -= ndist;
}
else
{
impact[0] = origin[0] - node->plane->normal[0] * ndist;
impact[1] = origin[1] - node->plane->normal[1] * ndist;
impact[2] = origin[2] - node->plane->normal[2] * ndist;
}
for (surface = model->data_surfaces + node->firstsurface, endsurface = surface + node->numsurfaces;surface < endsurface;surface++)
{
if (surface->lightmapinfo->stainsamples)
{
smax = (surface->lightmapinfo->extents[0] >> 4) + 1;
tmax = (surface->lightmapinfo->extents[1] >> 4) + 1;
impacts = (int)(DotProduct (impact, surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3] - surface->lightmapinfo->texturemins[0]);
impactt = (int)(DotProduct (impact, surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3] - surface->lightmapinfo->texturemins[1]);
s = bound(0, impacts, smax * 16) - impacts;
t = bound(0, impactt, tmax * 16) - impactt;
i = (int)(s * s + t * t + dist2);
if ((i > maxdist) || (smax > (int)(sizeof(sdtable)/sizeof(sdtable[0])))) // smax overflow fix from Andreas Dehmel
continue;
// reduce calculations
for (s = 0, i = impacts; s < smax; s++, i -= 16)
sdtable[s] = i * i + dist2;
bl = surface->lightmapinfo->stainsamples;
smax3 = smax * 3;
stained = false;
i = impactt;
for (t = 0;t < tmax;t++, i -= 16)
{
td = i * i;
// make sure some part of it is visible on this line
if (td < maxdist3)
{
maxdist2 = maxdist - td;
for (s = 0;s < smax;s++)
{
if (sdtable[s] < maxdist2)
{
ratio = lhrandom(0.0f, 1.0f);
a = (fcolor[3] + ratio * fcolor[7]) * (1.0f - sqrt(sdtable[s] + td) * invradius);
if (a >= (1.0f / 64.0f))
{
if (a > 1)
a = 1;
bl[0] = (unsigned char) ((float) bl[0] + a * ((fcolor[0] + ratio * fcolor[4]) - (float) bl[0]));
bl[1] = (unsigned char) ((float) bl[1] + a * ((fcolor[1] + ratio * fcolor[5]) - (float) bl[1]));
bl[2] = (unsigned char) ((float) bl[2] + a * ((fcolor[2] + ratio * fcolor[6]) - (float) bl[2]));
stained = true;
}
}
bl += 3;
}
}
else // skip line
bl += smax3;
}
// force lightmap upload
if (stained)
model->brushq1.lightmapupdateflags[surface - model->data_surfaces] = true;
}
}
if (node->children[0]->plane)
{
if (node->children[1]->plane)
{
R_StainNode(node->children[0], model, origin, radius, fcolor);
node = node->children[1];
goto loc0;
}
else
{
node = node->children[0];
goto loc0;
}
}
else if (node->children[1]->plane)
{
node = node->children[1];
goto loc0;
}
}
void R_Stain (const vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2)
{
int n;
float fcolor[8];
entity_render_t *ent;
dp_model_t *model;
vec3_t org;
if (r_refdef.scene.worldmodel == NULL || !r_refdef.scene.worldmodel->brush.data_nodes || !r_refdef.scene.worldmodel->brushq1.lightdata)
return;
fcolor[0] = cr1;
fcolor[1] = cg1;
fcolor[2] = cb1;
fcolor[3] = ca1 * (1.0f / 64.0f);
fcolor[4] = cr2 - cr1;
fcolor[5] = cg2 - cg1;
fcolor[6] = cb2 - cb1;
fcolor[7] = (ca2 - ca1) * (1.0f / 64.0f);
R_StainNode(r_refdef.scene.worldmodel->brush.data_nodes + r_refdef.scene.worldmodel->brushq1.hulls[0].firstclipnode, r_refdef.scene.worldmodel, origin, radius, fcolor);
// look for embedded bmodels
for (n = 0;n < cl.num_brushmodel_entities;n++)
{
ent = &cl.entities[cl.brushmodel_entities[n]].render;
model = ent->model;
if (model && model->name[0] == '*')
{
if (model->brush.data_nodes)
{
Matrix4x4_Transform(&ent->inversematrix, origin, org);
R_StainNode(model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode, model, org, radius, fcolor);
}
}
}
}
/*
=============================================================
BRUSH MODELS
=============================================================
*/
static void R_DrawPortal_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
{
// due to the hacky nature of this function's parameters, this is never
// called with a batch, so numsurfaces is always 1, and the surfacelist
// contains only a leaf number for coloring purposes
const mportal_t *portal = (mportal_t *)ent;
qboolean isvis;
int i, numpoints;
float *v;
float vertex3f[POLYGONELEMENTS_MAXPOINTS*3];
CHECKGLERROR
GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
GL_DepthMask(false);
GL_DepthRange(0, 1);
GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
GL_DepthTest(true);
GL_CullFace(GL_NONE);
R_EntityMatrix(&identitymatrix);
numpoints = min(portal->numpoints, POLYGONELEMENTS_MAXPOINTS);
// R_Mesh_ResetTextureState();
isvis = (portal->here->clusterindex >= 0 && portal->past->clusterindex >= 0 && portal->here->clusterindex != portal->past->clusterindex);
i = surfacelist[0] >> 1;
GL_Color(((i & 0x0007) >> 0) * (1.0f / 7.0f) * r_refdef.view.colorscale,
((i & 0x0038) >> 3) * (1.0f / 7.0f) * r_refdef.view.colorscale,
((i & 0x01C0) >> 6) * (1.0f / 7.0f) * r_refdef.view.colorscale,
isvis ? 0.125f : 0.03125f);
for (i = 0, v = vertex3f;i < numpoints;i++, v += 3)
VectorCopy(portal->points[i].position, v);
R_Mesh_PrepareVertices_Generic_Arrays(numpoints, vertex3f, NULL, NULL);
R_SetupShader_Generic_NoTexture(false, false);
R_Mesh_Draw(0, numpoints, 0, numpoints - 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
}
// LordHavoc: this is just a nice debugging tool, very slow
void R_DrawPortals(void)
{
int i, leafnum;
mportal_t *portal;
float center[3], f;
dp_model_t *model = r_refdef.scene.worldmodel;
if (model == NULL)
return;
for (leafnum = 0;leafnum < r_refdef.scene.worldmodel->brush.num_leafs;leafnum++)
{
if (r_refdef.viewcache.world_leafvisible[leafnum])
{
//for (portalnum = 0, portal = model->brush.data_portals;portalnum < model->brush.num_portals;portalnum++, portal++)
for (portal = r_refdef.scene.worldmodel->brush.data_leafs[leafnum].portals;portal;portal = portal->next)
{
if (portal->numpoints <= POLYGONELEMENTS_MAXPOINTS)
if (!R_CullBox(portal->mins, portal->maxs))
{
VectorClear(center);
for (i = 0;i < portal->numpoints;i++)
VectorAdd(center, portal->points[i].position, center);
f = ixtable[portal->numpoints];
VectorScale(center, f, center);
R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, center, R_DrawPortal_Callback, (entity_render_t *)portal, leafnum, rsurface.rtlight);
}
}
}
}
}
static void R_View_WorldVisibility_CullSurfaces(void)
{
int surfaceindex;
int surfaceindexstart;
int surfaceindexend;
unsigned char *surfacevisible;
msurface_t *surfaces;
dp_model_t *model = r_refdef.scene.worldmodel;
if (!model)
return;
if (r_trippy.integer)
return;
if (r_usesurfaceculling.integer < 1)
return;
surfaceindexstart = model->firstmodelsurface;
surfaceindexend = surfaceindexstart + model->nummodelsurfaces;
surfaces = model->data_surfaces;
surfacevisible = r_refdef.viewcache.world_surfacevisible;
for (surfaceindex = surfaceindexstart;surfaceindex < surfaceindexend;surfaceindex++)
if (surfacevisible[surfaceindex] && R_CullBox(surfaces[surfaceindex].mins, surfaces[surfaceindex].maxs))
surfacevisible[surfaceindex] = 0;
}
void R_View_WorldVisibility(qboolean forcenovis)
{
int i, j, *mark;
mleaf_t *leaf;
mleaf_t *viewleaf;
dp_model_t *model = r_refdef.scene.worldmodel;
if (!model)
return;
if (r_refdef.view.usecustompvs)
{
// clear the visible surface and leaf flags arrays
memset(r_refdef.viewcache.world_surfacevisible, 0, model->num_surfaces);
memset(r_refdef.viewcache.world_leafvisible, 0, model->brush.num_leafs);
r_refdef.viewcache.world_novis = false;
// simply cull each marked leaf to the frustum (view pyramid)
for (j = 0, leaf = model->brush.data_leafs;j < model->brush.num_leafs;j++, leaf++)
{
// if leaf is in current pvs and on the screen, mark its surfaces
if (CHECKPVSBIT(r_refdef.viewcache.world_pvsbits, leaf->clusterindex) && !R_CullBox(leaf->mins, leaf->maxs))
{
r_refdef.stats[r_stat_world_leafs]++;
r_refdef.viewcache.world_leafvisible[j] = true;
if (leaf->numleafsurfaces)
for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++)
r_refdef.viewcache.world_surfacevisible[*mark] = true;
}
}
R_View_WorldVisibility_CullSurfaces();
return;
}
// if possible find the leaf the view origin is in
viewleaf = model->brush.PointInLeaf ? model->brush.PointInLeaf(model, r_refdef.view.origin) : NULL;
// if possible fetch the visible cluster bits
if (!r_lockpvs.integer && model->brush.FatPVS)
model->brush.FatPVS(model, r_refdef.view.origin, 2, r_refdef.viewcache.world_pvsbits, (r_refdef.viewcache.world_numclusters+7)>>3, false);
if (!r_lockvisibility.integer)
{
// clear the visible surface and leaf flags arrays
memset(r_refdef.viewcache.world_surfacevisible, 0, model->num_surfaces);
memset(r_refdef.viewcache.world_leafvisible, 0, model->brush.num_leafs);
r_refdef.viewcache.world_novis = false;
// if floating around in the void (no pvs data available, and no
// portals available), simply use all on-screen leafs.
if (!viewleaf || viewleaf->clusterindex < 0 || forcenovis || r_trippy.integer)
{
// no visibility method: (used when floating around in the void)
// simply cull each leaf to the frustum (view pyramid)
// similar to quake's RecursiveWorldNode but without cache misses
r_refdef.viewcache.world_novis = true;
for (j = 0, leaf = model->brush.data_leafs;j < model->brush.num_leafs;j++, leaf++)
{
if (leaf->clusterindex < 0)
continue;
// if leaf is in current pvs and on the screen, mark its surfaces
if (!R_CullBox(leaf->mins, leaf->maxs))
{
r_refdef.stats[r_stat_world_leafs]++;
r_refdef.viewcache.world_leafvisible[j] = true;
if (leaf->numleafsurfaces)
for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++)
r_refdef.viewcache.world_surfacevisible[*mark] = true;
}
}
}
// just check if each leaf in the PVS is on screen
// (unless portal culling is enabled)
else if (!model->brush.data_portals || r_useportalculling.integer < 1 || (r_useportalculling.integer < 2 && !r_novis.integer))
{
// pvs method:
// simply check if each leaf is in the Potentially Visible Set,
// and cull to frustum (view pyramid)
// similar to quake's RecursiveWorldNode but without cache misses
for (j = 0, leaf = model->brush.data_leafs;j < model->brush.num_leafs;j++, leaf++)
{
if (leaf->clusterindex < 0)
continue;
// if leaf is in current pvs and on the screen, mark its surfaces
if (CHECKPVSBIT(r_refdef.viewcache.world_pvsbits, leaf->clusterindex) && !R_CullBox(leaf->mins, leaf->maxs))
{
r_refdef.stats[r_stat_world_leafs]++;
r_refdef.viewcache.world_leafvisible[j] = true;
if (leaf->numleafsurfaces)
for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++)
r_refdef.viewcache.world_surfacevisible[*mark] = true;
}
}
}
// if desired use a recursive portal flow, culling each portal to
// frustum and checking if the leaf the portal leads to is in the pvs
else
{
int leafstackpos;
mportal_t *p;
mleaf_t *leafstack[8192];
// simple-frustum portal method:
// follows portals leading outward from viewleaf, does not venture
// offscreen or into leafs that are not visible, faster than
// Quake's RecursiveWorldNode and vastly better in unvised maps,
// often culls some surfaces that pvs alone would miss
// (such as a room in pvs that is hidden behind a wall, but the
// passage leading to the room is off-screen)
leafstack[0] = viewleaf;
leafstackpos = 1;
while (leafstackpos)
{
leaf = leafstack[--leafstackpos];
if (r_refdef.viewcache.world_leafvisible[leaf - model->brush.data_leafs])
continue;
if (leaf->clusterindex < 0)
continue;
r_refdef.stats[r_stat_world_leafs]++;
r_refdef.viewcache.world_leafvisible[leaf - model->brush.data_leafs] = true;
// mark any surfaces bounding this leaf
if (leaf->numleafsurfaces)
for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++)
r_refdef.viewcache.world_surfacevisible[*mark] = true;
// follow portals into other leafs
// the checks are:
// if viewer is behind portal (portal faces outward into the scene)
// and the portal polygon's bounding box is on the screen
// and the leaf has not been visited yet
// and the leaf is visible in the pvs
// (the first two checks won't cause as many cache misses as the leaf checks)
for (p = leaf->portals;p;p = p->next)
{
r_refdef.stats[r_stat_world_portals]++;
if (DotProduct(r_refdef.view.origin, p->plane.normal) < (p->plane.dist + 1)
&& !r_refdef.viewcache.world_leafvisible[p->past - model->brush.data_leafs]
&& CHECKPVSBIT(r_refdef.viewcache.world_pvsbits, p->past->clusterindex)
&& !R_CullBox(p->mins, p->maxs)
&& leafstackpos < (int)(sizeof(leafstack) / sizeof(leafstack[0])))
leafstack[leafstackpos++] = p->past;
}
}
}
}
R_View_WorldVisibility_CullSurfaces();
}
void R_Q1BSP_DrawSky(entity_render_t *ent)
{
if (ent->model == NULL)
return;
if (ent == r_refdef.scene.worldentity)
R_DrawWorldSurfaces(true, true, false, false, false);
else
R_DrawModelSurfaces(ent, true, true, false, false, false);
}
void R_Q1BSP_DrawAddWaterPlanes(entity_render_t *ent)
{
int i, j, n, flagsmask;
dp_model_t *model = ent->model;
msurface_t *surfaces;
if (model == NULL)
return;
if (ent == r_refdef.scene.worldentity)
RSurf_ActiveWorldEntity();
else
RSurf_ActiveModelEntity(ent, true, false, false);
surfaces = model->data_surfaces;
flagsmask = MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA;
// add visible surfaces to draw list
if (ent == r_refdef.scene.worldentity)
{
for (i = 0;i < model->nummodelsurfaces;i++)
{
j = model->sortedmodelsurfaces[i];
if (r_refdef.viewcache.world_surfacevisible[j])
if (surfaces[j].texture->basematerialflags & flagsmask)
R_Water_AddWaterPlane(surfaces + j, 0);
}
}
else
{
if(ent->entitynumber >= MAX_EDICTS) // && CL_VM_TransformView(ent->entitynumber - MAX_EDICTS, NULL, NULL, NULL))
n = ent->entitynumber;
else
n = 0;
for (i = 0;i < model->nummodelsurfaces;i++)
{
j = model->sortedmodelsurfaces[i];
if (surfaces[j].texture->basematerialflags & flagsmask)
R_Water_AddWaterPlane(surfaces + j, n);
}
}
rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveWorldEntity/RSurf_ActiveModelEntity
}
void R_Q1BSP_Draw(entity_render_t *ent)
{
dp_model_t *model = ent->model;
if (model == NULL)
return;
if (ent == r_refdef.scene.worldentity)
R_DrawWorldSurfaces(false, true, false, false, false);
else
R_DrawModelSurfaces(ent, false, true, false, false, false);
}
void R_Q1BSP_DrawDepth(entity_render_t *ent)
{
dp_model_t *model = ent->model;
if (model == NULL || model->surfmesh.isanimated)
return;
GL_ColorMask(0,0,0,0);
GL_Color(1,1,1,1);
GL_DepthTest(true);
GL_BlendFunc(GL_ONE, GL_ZERO);
GL_DepthMask(true);
// R_Mesh_ResetTextureState();
if (ent == r_refdef.scene.worldentity)
R_DrawWorldSurfaces(false, false, true, false, false);
else
R_DrawModelSurfaces(ent, false, false, true, false, false);
GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
}
void R_Q1BSP_DrawDebug(entity_render_t *ent)
{
if (ent->model == NULL)
return;
if (ent == r_refdef.scene.worldentity)
R_DrawWorldSurfaces(false, false, false, true, false);
else
R_DrawModelSurfaces(ent, false, false, false, true, false);
}
void R_Q1BSP_DrawPrepass(entity_render_t *ent)
{
dp_model_t *model = ent->model;
if (model == NULL)
return;
if (ent == r_refdef.scene.worldentity)
R_DrawWorldSurfaces(false, true, false, false, true);
else
R_DrawModelSurfaces(ent, false, true, false, false, true);
}
typedef struct r_q1bsp_getlightinfo_s
{
dp_model_t *model;
vec3_t relativelightorigin;
float lightradius;
int *outleaflist;
unsigned char *outleafpvs;
int outnumleafs;
unsigned char *visitingleafpvs;
int *outsurfacelist;
unsigned char *outsurfacepvs;
unsigned char *tempsurfacepvs;
unsigned char *outshadowtrispvs;
unsigned char *outlighttrispvs;
int outnumsurfaces;
vec3_t outmins;
vec3_t outmaxs;
vec3_t lightmins;
vec3_t lightmaxs;
const unsigned char *pvs;
qboolean svbsp_active;
qboolean svbsp_insertoccluder;
int numfrustumplanes;
const mplane_t *frustumplanes;
}
r_q1bsp_getlightinfo_t;
#define GETLIGHTINFO_MAXNODESTACK 4096
static void R_Q1BSP_RecursiveGetLightInfo_BSP(r_q1bsp_getlightinfo_t *info, qboolean skipsurfaces)
{
// nodestack
mnode_t *nodestack[GETLIGHTINFO_MAXNODESTACK];
int nodestackpos = 0;
// node processing
mplane_t *plane;
mnode_t *node;
int sides;
// leaf processing
mleaf_t *leaf;
const msurface_t *surface;
const msurface_t *surfaces = info->model->data_surfaces;
int numleafsurfaces;
int leafsurfaceindex;
int surfaceindex;
int triangleindex, t;
int currentmaterialflags;
qboolean castshadow;
const int *e;
const vec_t *v[3];
float v2[3][3];
qboolean insidebox;
qboolean frontsidecasting = r_shadow_frontsidecasting.integer != 0;
qboolean svbspactive = info->svbsp_active;
qboolean svbspinsertoccluder = info->svbsp_insertoccluder;
const int *leafsurfaceindices;
qboolean addedtris;
int i;
mportal_t *portal;
static float points[128][3];
// push the root node onto our nodestack
nodestack[nodestackpos++] = info->model->brush.data_nodes;
// we'll be done when the nodestack is empty
while (nodestackpos)
{
// get a node from the stack to process
node = nodestack[--nodestackpos];
// is it a node or a leaf?
plane = node->plane;
if (plane)
{
// node
#if 0
if (!BoxesOverlap(info->lightmins, info->lightmaxs, node->mins, node->maxs))
continue;
#endif
#if 0
if (!r_shadow_compilingrtlight && R_CullBoxCustomPlanes(node->mins, node->maxs, rtlight->cached_numfrustumplanes, rtlight->cached_frustumplanes))
continue;
#endif
// axial planes can be processed much more quickly
if (plane->type < 3)
{
// axial plane
if (info->lightmins[plane->type] > plane->dist)
nodestack[nodestackpos++] = node->children[0];
else if (info->lightmaxs[plane->type] < plane->dist)
nodestack[nodestackpos++] = node->children[1];
else
{
// recurse front side first because the svbsp building prefers it
if (info->relativelightorigin[plane->type] >= plane->dist)
{
if (nodestackpos < GETLIGHTINFO_MAXNODESTACK)
nodestack[nodestackpos++] = node->children[0];
nodestack[nodestackpos++] = node->children[1];
}
else
{
if (nodestackpos < GETLIGHTINFO_MAXNODESTACK)
nodestack[nodestackpos++] = node->children[1];
nodestack[nodestackpos++] = node->children[0];
}
}
}
else
{
// sloped plane
sides = BoxOnPlaneSide(info->lightmins, info->lightmaxs, plane);
switch (sides)
{
default:
continue; // ERROR: NAN bounding box!
case 1:
nodestack[nodestackpos++] = node->children[0];
break;
case 2:
nodestack[nodestackpos++] = node->children[1];
break;
case 3:
// recurse front side first because the svbsp building prefers it
if (PlaneDist(info->relativelightorigin, plane) >= 0)
{
if (nodestackpos < GETLIGHTINFO_MAXNODESTACK)
nodestack[nodestackpos++] = node->children[0];
nodestack[nodestackpos++] = node->children[1];
}
else
{
if (nodestackpos < GETLIGHTINFO_MAXNODESTACK)
nodestack[nodestackpos++] = node->children[1];
nodestack[nodestackpos++] = node->children[0];
}
break;
}
}
}
else
{
// leaf
leaf = (mleaf_t *)node;
#if 1
if (r_shadow_frontsidecasting.integer && info->pvs != NULL && !CHECKPVSBIT(info->pvs, leaf->clusterindex))
continue;
#endif
#if 1
if (!BoxesOverlap(info->lightmins, info->lightmaxs, leaf->mins, leaf->maxs))
continue;
#endif
#if 1
if (!r_shadow_compilingrtlight && R_CullBoxCustomPlanes(leaf->mins, leaf->maxs, info->numfrustumplanes, info->frustumplanes))
continue;
#endif
if (svbspactive)
{
// we can occlusion test the leaf by checking if all of its portals
// are occluded (unless the light is in this leaf - but that was
// already handled by the caller)
for (portal = leaf->portals;portal;portal = portal->next)
{
for (i = 0;i < portal->numpoints;i++)
VectorCopy(portal->points[i].position, points[i]);
if (SVBSP_AddPolygon(&r_svbsp, portal->numpoints, points[0], false, NULL, NULL, 0) & 2)
break;
}
if (leaf->portals && portal == NULL)
continue; // no portals of this leaf visible
}
// add this leaf to the reduced light bounds
info->outmins[0] = min(info->outmins[0], leaf->mins[0]);
info->outmins[1] = min(info->outmins[1], leaf->mins[1]);
info->outmins[2] = min(info->outmins[2], leaf->mins[2]);
info->outmaxs[0] = max(info->outmaxs[0], leaf->maxs[0]);
info->outmaxs[1] = max(info->outmaxs[1], leaf->maxs[1]);
info->outmaxs[2] = max(info->outmaxs[2], leaf->maxs[2]);
// mark this leaf as being visible to the light
if (info->outleafpvs)
{
int leafindex = leaf - info->model->brush.data_leafs;
if (!CHECKPVSBIT(info->outleafpvs, leafindex))
{
SETPVSBIT(info->outleafpvs, leafindex);
info->outleaflist[info->outnumleafs++] = leafindex;
}
}
// when using BIH, we skip the surfaces here
if (skipsurfaces)
continue;
// iterate the surfaces linked by this leaf and check their triangles
leafsurfaceindices = leaf->firstleafsurface;
numleafsurfaces = leaf->numleafsurfaces;
if (svbspinsertoccluder)
{
for (leafsurfaceindex = 0;leafsurfaceindex < numleafsurfaces;leafsurfaceindex++)
{
surfaceindex = leafsurfaceindices[leafsurfaceindex];
if (CHECKPVSBIT(info->outsurfacepvs, surfaceindex))
continue;
SETPVSBIT(info->outsurfacepvs, surfaceindex);
surface = surfaces + surfaceindex;
if (!BoxesOverlap(info->lightmins, info->lightmaxs, surface->mins, surface->maxs))
continue;
currentmaterialflags = R_GetCurrentTexture(surface->texture)->currentmaterialflags;
castshadow = !(currentmaterialflags & MATERIALFLAG_NOSHADOW);
if (!castshadow)
continue;
insidebox = BoxInsideBox(surface->mins, surface->maxs, info->lightmins, info->lightmaxs);
for (triangleindex = 0, t = surface->num_firstshadowmeshtriangle, e = info->model->brush.shadowmesh->element3i + t * 3;triangleindex < surface->num_triangles;triangleindex++, t++, e += 3)
{
v[0] = info->model->brush.shadowmesh->vertex3f + e[0] * 3;
v[1] = info->model->brush.shadowmesh->vertex3f + e[1] * 3;
v[2] = info->model->brush.shadowmesh->vertex3f + e[2] * 3;
VectorCopy(v[0], v2[0]);
VectorCopy(v[1], v2[1]);
VectorCopy(v[2], v2[2]);
if (insidebox || TriangleBBoxOverlapsBox(v2[0], v2[1], v2[2], info->lightmins, info->lightmaxs))
SVBSP_AddPolygon(&r_svbsp, 3, v2[0], true, NULL, NULL, 0);
}
}
}
else
{
for (leafsurfaceindex = 0;leafsurfaceindex < numleafsurfaces;leafsurfaceindex++)
{
surfaceindex = leafsurfaceindices[leafsurfaceindex];
if (CHECKPVSBIT(info->outsurfacepvs, surfaceindex))
continue;
SETPVSBIT(info->outsurfacepvs, surfaceindex);
surface = surfaces + surfaceindex;
if (!BoxesOverlap(info->lightmins, info->lightmaxs, surface->mins, surface->maxs))
continue;
addedtris = false;
currentmaterialflags = R_GetCurrentTexture(surface->texture)->currentmaterialflags;
castshadow = !(currentmaterialflags & MATERIALFLAG_NOSHADOW);
insidebox = BoxInsideBox(surface->mins, surface->maxs, info->lightmins, info->lightmaxs);
for (triangleindex = 0, t = surface->num_firstshadowmeshtriangle, e = info->model->brush.shadowmesh->element3i + t * 3;triangleindex < surface->num_triangles;triangleindex++, t++, e += 3)
{
v[0] = info->model->brush.shadowmesh->vertex3f + e[0] * 3;
v[1] = info->model->brush.shadowmesh->vertex3f + e[1] * 3;
v[2] = info->model->brush.shadowmesh->vertex3f + e[2] * 3;
VectorCopy(v[0], v2[0]);
VectorCopy(v[1], v2[1]);
VectorCopy(v[2], v2[2]);
if (!insidebox && !TriangleBBoxOverlapsBox(v2[0], v2[1], v2[2], info->lightmins, info->lightmaxs))
continue;
if (svbspactive && !(SVBSP_AddPolygon(&r_svbsp, 3, v2[0], false, NULL, NULL, 0) & 2))
continue;
// we don't omit triangles from lighting even if they are
// backfacing, because when using shadowmapping they are often
// not fully occluded on the horizon of an edge
SETPVSBIT(info->outlighttrispvs, t);
addedtris = true;
if (castshadow)
{
if (currentmaterialflags & MATERIALFLAG_NOCULLFACE)
{
// if the material is double sided we
// can't cull by direction
SETPVSBIT(info->outshadowtrispvs, t);
}
else if (frontsidecasting)
{
// front side casting occludes backfaces,
// so they are completely useless as both
// casters and lit polygons
if (PointInfrontOfTriangle(info->relativelightorigin, v2[0], v2[1], v2[2]))
SETPVSBIT(info->outshadowtrispvs, t);
}
else
{
// back side casting does not occlude
// anything so we can't cull lit polygons
if (!PointInfrontOfTriangle(info->relativelightorigin, v2[0], v2[1], v2[2]))
SETPVSBIT(info->outshadowtrispvs, t);
}
}
}
if (addedtris)
info->outsurfacelist[info->outnumsurfaces++] = surfaceindex;
}
}
}
}
}
static void R_Q1BSP_RecursiveGetLightInfo_BIH(r_q1bsp_getlightinfo_t *info, const bih_t *bih)
{
bih_leaf_t *leaf;
bih_node_t *node;
int nodenum;
int axis;
int surfaceindex;
int t;
int nodeleafindex;
int currentmaterialflags;
qboolean castshadow;
msurface_t *surface;
const int *e;
const vec_t *v[3];
float v2[3][3];
int nodestack[GETLIGHTINFO_MAXNODESTACK];
int nodestackpos = 0;
// note: because the BSP leafs are not in the BIH tree, the _BSP function
// must be called to mark leafs visible for entity culling...
// we start at the root node
nodestack[nodestackpos++] = bih->rootnode;
// we'll be done when the stack is empty
while (nodestackpos)
{
// pop one off the stack to process
nodenum = nodestack[--nodestackpos];
// node
node = bih->nodes + nodenum;
if (node->type == BIH_UNORDERED)
{
for (nodeleafindex = 0;nodeleafindex < BIH_MAXUNORDEREDCHILDREN && node->children[nodeleafindex] >= 0;nodeleafindex++)
{
leaf = bih->leafs + node->children[nodeleafindex];
if (leaf->type != BIH_RENDERTRIANGLE)
continue;
#if 1
if (!BoxesOverlap(info->lightmins, info->lightmaxs, leaf->mins, leaf->maxs))
continue;
#endif
#if 1
if (!r_shadow_compilingrtlight && R_CullBoxCustomPlanes(leaf->mins, leaf->maxs, info->numfrustumplanes, info->frustumplanes))
continue;
#endif
surfaceindex = leaf->surfaceindex;
surface = info->model->data_surfaces + surfaceindex;
currentmaterialflags = R_GetCurrentTexture(surface->texture)->currentmaterialflags;
castshadow = !(currentmaterialflags & MATERIALFLAG_NOSHADOW);
t = leaf->itemindex + surface->num_firstshadowmeshtriangle - surface->num_firsttriangle;
e = info->model->brush.shadowmesh->element3i + t * 3;
v[0] = info->model->brush.shadowmesh->vertex3f + e[0] * 3;
v[1] = info->model->brush.shadowmesh->vertex3f + e[1] * 3;
v[2] = info->model->brush.shadowmesh->vertex3f + e[2] * 3;
VectorCopy(v[0], v2[0]);
VectorCopy(v[1], v2[1]);
VectorCopy(v[2], v2[2]);
if (info->svbsp_insertoccluder)
{
if (castshadow)
SVBSP_AddPolygon(&r_svbsp, 3, v2[0], true, NULL, NULL, 0);
continue;
}
if (info->svbsp_active && !(SVBSP_AddPolygon(&r_svbsp, 3, v2[0], false, NULL, NULL, 0) & 2))
continue;
// we don't occlude triangles from lighting even
// if they are backfacing, because when using
// shadowmapping they are often not fully occluded
// on the horizon of an edge
SETPVSBIT(info->outlighttrispvs, t);
if (castshadow)
{
if (currentmaterialflags & MATERIALFLAG_NOCULLFACE)
{
// if the material is double sided we
// can't cull by direction
SETPVSBIT(info->outshadowtrispvs, t);
}
else if (r_shadow_frontsidecasting.integer)
{
// front side casting occludes backfaces,
// so they are completely useless as both
// casters and lit polygons
if (PointInfrontOfTriangle(info->relativelightorigin, v2[0], v2[1], v2[2]))
SETPVSBIT(info->outshadowtrispvs, t);
}
else
{
// back side casting does not occlude
// anything so we can't cull lit polygons
if (!PointInfrontOfTriangle(info->relativelightorigin, v2[0], v2[1], v2[2]))
SETPVSBIT(info->outshadowtrispvs, t);
}
}
if (!CHECKPVSBIT(info->outsurfacepvs, surfaceindex))
{
SETPVSBIT(info->outsurfacepvs, surfaceindex);
info->outsurfacelist[info->outnumsurfaces++] = surfaceindex;
}
}
}
else
{
axis = node->type - BIH_SPLITX;
#if 0
if (!BoxesOverlap(info->lightmins, info->lightmaxs, node->mins, node->maxs))
continue;
#endif
#if 0
if (!r_shadow_compilingrtlight && R_CullBoxCustomPlanes(node->mins, node->maxs, rtlight->cached_numfrustumplanes, rtlight->cached_frustumplanes))
continue;
#endif
if (info->lightmins[axis] <= node->backmax)
{
if (info->lightmaxs[axis] >= node->frontmin && nodestackpos < GETLIGHTINFO_MAXNODESTACK)
nodestack[nodestackpos++] = node->front;
nodestack[nodestackpos++] = node->back;
continue;
}
else if (info->lightmaxs[axis] >= node->frontmin)
{
nodestack[nodestackpos++] = node->front;
continue;
}
else
continue; // light falls between children, nothing here
}
}
}
static void R_Q1BSP_CallRecursiveGetLightInfo(r_q1bsp_getlightinfo_t *info, qboolean use_svbsp)
{
extern cvar_t r_shadow_usebihculling;
if (use_svbsp)
{
float origin[3];
VectorCopy(info->relativelightorigin, origin);
r_svbsp.maxnodes = max(r_svbsp.maxnodes, 1<<12);
r_svbsp.nodes = (svbsp_node_t*) R_FrameData_Alloc(r_svbsp.maxnodes * sizeof(svbsp_node_t));
info->svbsp_active = true;
info->svbsp_insertoccluder = true;
for (;;)
{
SVBSP_Init(&r_svbsp, origin, r_svbsp.maxnodes, r_svbsp.nodes);
R_Q1BSP_RecursiveGetLightInfo_BSP(info, false);
// if that failed, retry with more nodes
if (r_svbsp.ranoutofnodes)
{
// an upper limit is imposed
if (r_svbsp.maxnodes >= 2<<22)
break;
r_svbsp.maxnodes *= 2;
r_svbsp.nodes = (svbsp_node_t*) R_FrameData_Alloc(r_svbsp.maxnodes * sizeof(svbsp_node_t));
//Mem_Free(r_svbsp.nodes);
//r_svbsp.nodes = (svbsp_node_t*) Mem_Alloc(tempmempool, r_svbsp.maxnodes * sizeof(svbsp_node_t));
}
else
break;
}
// now clear the visibility arrays because we need to redo it
info->outnumleafs = 0;
info->outnumsurfaces = 0;
memset(info->outleafpvs, 0, (info->model->brush.num_leafs + 7) >> 3);
memset(info->outsurfacepvs, 0, (info->model->nummodelsurfaces + 7) >> 3);
if (info->model->brush.shadowmesh)
memset(info->outshadowtrispvs, 0, (info->model->brush.shadowmesh->numtriangles + 7) >> 3);
else
memset(info->outshadowtrispvs, 0, (info->model->surfmesh.num_triangles + 7) >> 3);
memset(info->outlighttrispvs, 0, (info->model->surfmesh.num_triangles + 7) >> 3);
}
else
info->svbsp_active = false;
// we HAVE to mark the leaf the light is in as lit, because portals are
// irrelevant to a leaf that the light source is inside of
// (and they are all facing away, too)
{
mnode_t *node = info->model->brush.data_nodes;
mleaf_t *leaf;
while (node->plane)
node = node->children[(node->plane->type < 3 ? info->relativelightorigin[node->plane->type] : DotProduct(info->relativelightorigin,node->plane->normal)) < node->plane->dist];
leaf = (mleaf_t *)node;
info->outmins[0] = min(info->outmins[0], leaf->mins[0]);
info->outmins[1] = min(info->outmins[1], leaf->mins[1]);
info->outmins[2] = min(info->outmins[2], leaf->mins[2]);
info->outmaxs[0] = max(info->outmaxs[0], leaf->maxs[0]);
info->outmaxs[1] = max(info->outmaxs[1], leaf->maxs[1]);
info->outmaxs[2] = max(info->outmaxs[2], leaf->maxs[2]);
if (info->outleafpvs)
{
int leafindex = leaf - info->model->brush.data_leafs;
if (!CHECKPVSBIT(info->outleafpvs, leafindex))
{
SETPVSBIT(info->outleafpvs, leafindex);
info->outleaflist[info->outnumleafs++] = leafindex;
}
}
}
info->svbsp_insertoccluder = false;
// use BIH culling on single leaf maps (generally this only happens if running a model as a map), otherwise use BSP culling to make use of vis data
if (r_shadow_usebihculling.integer > 0 && (r_shadow_usebihculling.integer == 2 || info->model->brush.num_leafs == 1) && info->model->render_bih.leafs != NULL)
{
R_Q1BSP_RecursiveGetLightInfo_BSP(info, true);
R_Q1BSP_RecursiveGetLightInfo_BIH(info, &info->model->render_bih);
}
else
R_Q1BSP_RecursiveGetLightInfo_BSP(info, false);
// we're using temporary framedata memory, so this pointer will be invalid soon, clear it
r_svbsp.nodes = NULL;
if (developer_extra.integer && use_svbsp)
{
Con_DPrintf("GetLightInfo: svbsp built with %i nodes, polygon stats:\n", r_svbsp.numnodes);
Con_DPrintf("occluders: %i accepted, %i rejected, %i fragments accepted, %i fragments rejected.\n", r_svbsp.stat_occluders_accepted, r_svbsp.stat_occluders_rejected, r_svbsp.stat_occluders_fragments_accepted, r_svbsp.stat_occluders_fragments_rejected);
Con_DPrintf("queries : %i accepted, %i rejected, %i fragments accepted, %i fragments rejected.\n", r_svbsp.stat_queries_accepted, r_svbsp.stat_queries_rejected, r_svbsp.stat_queries_fragments_accepted, r_svbsp.stat_queries_fragments_rejected);
}
}
static msurface_t *r_q1bsp_getlightinfo_surfaces;
static int R_Q1BSP_GetLightInfo_comparefunc(const void *ap, const void *bp)
{
int a = *(int*)ap;
int b = *(int*)bp;
const msurface_t *as = r_q1bsp_getlightinfo_surfaces + a;
const msurface_t *bs = r_q1bsp_getlightinfo_surfaces + b;
if (as->texture < bs->texture)
return -1;
if (as->texture > bs->texture)
return 1;
return a - b;
}
extern cvar_t r_shadow_sortsurfaces;
void R_Q1BSP_GetLightInfo(entity_render_t *ent, vec3_t relativelightorigin, float lightradius, vec3_t outmins, vec3_t outmaxs, int *outleaflist, unsigned char *outleafpvs, int *outnumleafspointer, int *outsurfacelist, unsigned char *outsurfacepvs, int *outnumsurfacespointer, unsigned char *outshadowtrispvs, unsigned char *outlighttrispvs, unsigned char *visitingleafpvs, int numfrustumplanes, const mplane_t *frustumplanes)
{
r_q1bsp_getlightinfo_t info;
VectorCopy(relativelightorigin, info.relativelightorigin);
info.lightradius = lightradius;
info.lightmins[0] = info.relativelightorigin[0] - info.lightradius;
info.lightmins[1] = info.relativelightorigin[1] - info.lightradius;
info.lightmins[2] = info.relativelightorigin[2] - info.lightradius;
info.lightmaxs[0] = info.relativelightorigin[0] + info.lightradius;
info.lightmaxs[1] = info.relativelightorigin[1] + info.lightradius;
info.lightmaxs[2] = info.relativelightorigin[2] + info.lightradius;
if (ent->model == NULL)
{
VectorCopy(info.lightmins, outmins);
VectorCopy(info.lightmaxs, outmaxs);
*outnumleafspointer = 0;
*outnumsurfacespointer = 0;
return;
}
info.model = ent->model;
info.outleaflist = outleaflist;
info.outleafpvs = outleafpvs;
info.outnumleafs = 0;
info.visitingleafpvs = visitingleafpvs;
info.outsurfacelist = outsurfacelist;
info.outsurfacepvs = outsurfacepvs;
info.outshadowtrispvs = outshadowtrispvs;
info.outlighttrispvs = outlighttrispvs;
info.outnumsurfaces = 0;
info.numfrustumplanes = numfrustumplanes;
info.frustumplanes = frustumplanes;
VectorCopy(info.relativelightorigin, info.outmins);
VectorCopy(info.relativelightorigin, info.outmaxs);
memset(visitingleafpvs, 0, (info.model->brush.num_leafs + 7) >> 3);
memset(outleafpvs, 0, (info.model->brush.num_leafs + 7) >> 3);
memset(outsurfacepvs, 0, (info.model->nummodelsurfaces + 7) >> 3);
if (info.model->brush.shadowmesh)
memset(outshadowtrispvs, 0, (info.model->brush.shadowmesh->numtriangles + 7) >> 3);
else
memset(outshadowtrispvs, 0, (info.model->surfmesh.num_triangles + 7) >> 3);
memset(outlighttrispvs, 0, (info.model->surfmesh.num_triangles + 7) >> 3);
if (info.model->brush.GetPVS && r_shadow_frontsidecasting.integer)
info.pvs = info.model->brush.GetPVS(info.model, info.relativelightorigin);
else
info.pvs = NULL;
RSurf_ActiveWorldEntity();
if (r_shadow_frontsidecasting.integer && r_shadow_compilingrtlight && r_shadow_realtime_world_compileportalculling.integer && info.model->brush.data_portals)
{
// use portal recursion for exact light volume culling, and exact surface checking
Portal_Visibility(info.model, info.relativelightorigin, info.outleaflist, info.outleafpvs, &info.outnumleafs, info.outsurfacelist, info.outsurfacepvs, &info.outnumsurfaces, NULL, 0, true, info.lightmins, info.lightmaxs, info.outmins, info.outmaxs, info.outshadowtrispvs, info.outlighttrispvs, info.visitingleafpvs);
}
else if (r_shadow_frontsidecasting.integer && r_shadow_realtime_dlight_portalculling.integer && info.model->brush.data_portals)
{
// use portal recursion for exact light volume culling, but not the expensive exact surface checking
Portal_Visibility(info.model, info.relativelightorigin, info.outleaflist, info.outleafpvs, &info.outnumleafs, info.outsurfacelist, info.outsurfacepvs, &info.outnumsurfaces, NULL, 0, r_shadow_realtime_dlight_portalculling.integer >= 2, info.lightmins, info.lightmaxs, info.outmins, info.outmaxs, info.outshadowtrispvs, info.outlighttrispvs, info.visitingleafpvs);
}
else
{
// recurse the bsp tree, checking leafs and surfaces for visibility
// optionally using svbsp for exact culling of compiled lights
// (or if the user enables dlight svbsp culling, which is mostly for
// debugging not actual use)
R_Q1BSP_CallRecursiveGetLightInfo(&info, (r_shadow_compilingrtlight ? r_shadow_realtime_world_compilesvbsp.integer : r_shadow_realtime_dlight_svbspculling.integer) != 0);
}
rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveWorldEntity/RSurf_ActiveModelEntity
// limit combined leaf box to light boundaries
outmins[0] = max(info.outmins[0] - 1, info.lightmins[0]);
outmins[1] = max(info.outmins[1] - 1, info.lightmins[1]);
outmins[2] = max(info.outmins[2] - 1, info.lightmins[2]);
outmaxs[0] = min(info.outmaxs[0] + 1, info.lightmaxs[0]);
outmaxs[1] = min(info.outmaxs[1] + 1, info.lightmaxs[1]);
outmaxs[2] = min(info.outmaxs[2] + 1, info.lightmaxs[2]);
*outnumleafspointer = info.outnumleafs;
*outnumsurfacespointer = info.outnumsurfaces;
// now sort surfaces by texture for faster rendering
r_q1bsp_getlightinfo_surfaces = info.model->data_surfaces;
if (r_shadow_sortsurfaces.integer)
qsort(info.outsurfacelist, info.outnumsurfaces, sizeof(*info.outsurfacelist), R_Q1BSP_GetLightInfo_comparefunc);
}
void R_Q1BSP_CompileShadowVolume(entity_render_t *ent, vec3_t relativelightorigin, vec3_t relativelightdirection, float lightradius, int numsurfaces, const int *surfacelist)
{
dp_model_t *model = ent->model;
msurface_t *surface;
int surfacelistindex;
float projectdistance = relativelightdirection ? lightradius : lightradius + model->radius*2 + r_shadow_projectdistance.value;
// if triangle neighbors are disabled, shadowvolumes are disabled
if (!model->brush.shadowmesh->neighbor3i)
return;
r_shadow_compilingrtlight->static_meshchain_shadow_zfail = Mod_ShadowMesh_Begin(r_main_mempool, 32768, 32768, NULL, NULL, NULL, false, false, true);
R_Shadow_PrepareShadowMark(model->brush.shadowmesh->numtriangles);
for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++)
{
surface = model->data_surfaces + surfacelist[surfacelistindex];
if (surface->texture->basematerialflags & MATERIALFLAG_NOSHADOW)
continue;
R_Shadow_MarkVolumeFromBox(surface->num_firstshadowmeshtriangle, surface->num_triangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, relativelightorigin, relativelightdirection, r_shadow_compilingrtlight->cullmins, r_shadow_compilingrtlight->cullmaxs, surface->mins, surface->maxs);
}
R_Shadow_VolumeFromList(model->brush.shadowmesh->numverts, model->brush.shadowmesh->numtriangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, model->brush.shadowmesh->neighbor3i, relativelightorigin, relativelightdirection, projectdistance, numshadowmark, shadowmarklist, ent->mins, ent->maxs);
r_shadow_compilingrtlight->static_meshchain_shadow_zfail = Mod_ShadowMesh_Finish(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow_zfail, false, false, true);
}
extern cvar_t r_polygonoffset_submodel_factor;
extern cvar_t r_polygonoffset_submodel_offset;
void R_Q1BSP_DrawShadowVolume(entity_render_t *ent, const vec3_t relativelightorigin, const vec3_t relativelightdirection, float lightradius, int modelnumsurfaces, const int *modelsurfacelist, const vec3_t lightmins, const vec3_t lightmaxs)
{
dp_model_t *model = ent->model;
const msurface_t *surface;
int modelsurfacelistindex;
float projectdistance = relativelightdirection ? lightradius : lightradius + model->radius*2 + r_shadow_projectdistance.value;
// check the box in modelspace, it was already checked in worldspace
if (!BoxesOverlap(model->normalmins, model->normalmaxs, lightmins, lightmaxs))
return;
R_FrameData_SetMark();
if (ent->model->brush.submodel)
GL_PolygonOffset(r_refdef.shadowpolygonfactor + r_polygonoffset_submodel_factor.value, r_refdef.shadowpolygonoffset + r_polygonoffset_submodel_offset.value);
if (model->brush.shadowmesh)
{
// if triangle neighbors are disabled, shadowvolumes are disabled
if (!model->brush.shadowmesh->neighbor3i)
return;
R_Shadow_PrepareShadowMark(model->brush.shadowmesh->numtriangles);
for (modelsurfacelistindex = 0;modelsurfacelistindex < modelnumsurfaces;modelsurfacelistindex++)
{
surface = model->data_surfaces + modelsurfacelist[modelsurfacelistindex];
if (R_GetCurrentTexture(surface->texture)->currentmaterialflags & MATERIALFLAG_NOSHADOW)
continue;
R_Shadow_MarkVolumeFromBox(surface->num_firstshadowmeshtriangle, surface->num_triangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, relativelightorigin, relativelightdirection, lightmins, lightmaxs, surface->mins, surface->maxs);
}
R_Shadow_VolumeFromList(model->brush.shadowmesh->numverts, model->brush.shadowmesh->numtriangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, model->brush.shadowmesh->neighbor3i, relativelightorigin, relativelightdirection, projectdistance, numshadowmark, shadowmarklist, ent->mins, ent->maxs);
}
else
{
// if triangle neighbors are disabled, shadowvolumes are disabled
if (!model->surfmesh.data_neighbor3i)
return;
projectdistance = lightradius + model->radius*2;
R_Shadow_PrepareShadowMark(model->surfmesh.num_triangles);
// identify lit faces within the bounding box
for (modelsurfacelistindex = 0;modelsurfacelistindex < modelnumsurfaces;modelsurfacelistindex++)
{
surface = model->data_surfaces + modelsurfacelist[modelsurfacelistindex];
rsurface.texture = R_GetCurrentTexture(surface->texture);
if (rsurface.texture->currentmaterialflags & MATERIALFLAG_NOSHADOW)
continue;
R_Shadow_MarkVolumeFromBox(surface->num_firsttriangle, surface->num_triangles, rsurface.modelvertex3f, rsurface.modelelement3i, relativelightorigin, relativelightdirection, lightmins, lightmaxs, surface->mins, surface->maxs);
}
R_Shadow_VolumeFromList(model->surfmesh.num_vertices, model->surfmesh.num_triangles, rsurface.modelvertex3f, model->surfmesh.data_element3i, model->surfmesh.data_neighbor3i, relativelightorigin, relativelightdirection, projectdistance, numshadowmark, shadowmarklist, ent->mins, ent->maxs);
}
if (ent->model->brush.submodel)
GL_PolygonOffset(r_refdef.shadowpolygonfactor, r_refdef.shadowpolygonoffset);
R_FrameData_ReturnToMark();
}
void R_Q1BSP_CompileShadowMap(entity_render_t *ent, vec3_t relativelightorigin, vec3_t relativelightdirection, float lightradius, int numsurfaces, const int *surfacelist)
{
dp_model_t *model = ent->model;
msurface_t *surface;
int surfacelistindex;
int sidetotals[6] = { 0, 0, 0, 0, 0, 0 }, sidemasks = 0;
int i;
if (!model->brush.shadowmesh)
return;
r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap = Mod_ShadowMesh_Begin(r_main_mempool, 32768, 32768, NULL, NULL, NULL, false, false, true);
R_Shadow_PrepareShadowSides(model->brush.shadowmesh->numtriangles);
for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++)
{
surface = model->data_surfaces + surfacelist[surfacelistindex];
sidemasks |= R_Shadow_ChooseSidesFromBox(surface->num_firstshadowmeshtriangle, surface->num_triangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, &r_shadow_compilingrtlight->matrix_worldtolight, relativelightorigin, relativelightdirection, r_shadow_compilingrtlight->cullmins, r_shadow_compilingrtlight->cullmaxs, surface->mins, surface->maxs, surface->texture->basematerialflags & MATERIALFLAG_NOSHADOW ? NULL : sidetotals);
}
R_Shadow_ShadowMapFromList(model->brush.shadowmesh->numverts, model->brush.shadowmesh->numtriangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, numshadowsides, sidetotals, shadowsides, shadowsideslist);
r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap = Mod_ShadowMesh_Finish(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap, false, false, true);
r_shadow_compilingrtlight->static_shadowmap_receivers &= sidemasks;
for(i = 0;i<6;i++)
if(!sidetotals[i])
r_shadow_compilingrtlight->static_shadowmap_casters &= ~(1 << i);
}
#define RSURF_MAX_BATCHSURFACES 8192
static const msurface_t *batchsurfacelist[RSURF_MAX_BATCHSURFACES];
void R_Q1BSP_DrawShadowMap(int side, entity_render_t *ent, const vec3_t relativelightorigin, const vec3_t relativelightdirection, float lightradius, int modelnumsurfaces, const int *modelsurfacelist, const unsigned char *surfacesides, const vec3_t lightmins, const vec3_t lightmaxs)
{
dp_model_t *model = ent->model;
const msurface_t *surface;
int modelsurfacelistindex, batchnumsurfaces;
// check the box in modelspace, it was already checked in worldspace
if (!BoxesOverlap(model->normalmins, model->normalmaxs, lightmins, lightmaxs))
return;
R_FrameData_SetMark();
// identify lit faces within the bounding box
for (modelsurfacelistindex = 0;modelsurfacelistindex < modelnumsurfaces;modelsurfacelistindex++)
{
surface = model->data_surfaces + modelsurfacelist[modelsurfacelistindex];
if (surfacesides && !(surfacesides[modelsurfacelistindex] && (1 << side)))
continue;
rsurface.texture = R_GetCurrentTexture(surface->texture);
if (rsurface.texture->currentmaterialflags & MATERIALFLAG_NOSHADOW)
continue;
if (!BoxesOverlap(lightmins, lightmaxs, surface->mins, surface->maxs))
continue;
r_refdef.stats[r_stat_lights_dynamicshadowtriangles] += surface->num_triangles;
r_refdef.stats[r_stat_lights_shadowtriangles] += surface->num_triangles;
batchsurfacelist[0] = surface;
batchnumsurfaces = 1;
while(++modelsurfacelistindex < modelnumsurfaces && batchnumsurfaces < RSURF_MAX_BATCHSURFACES)
{
surface = model->data_surfaces + modelsurfacelist[modelsurfacelistindex];
if (surfacesides && !(surfacesides[modelsurfacelistindex] & (1 << side)))
continue;
if (surface->texture != batchsurfacelist[0]->texture)
break;
if (!BoxesOverlap(lightmins, lightmaxs, surface->mins, surface->maxs))
continue;
r_refdef.stats[r_stat_lights_dynamicshadowtriangles] += surface->num_triangles;
r_refdef.stats[r_stat_lights_shadowtriangles] += surface->num_triangles;
batchsurfacelist[batchnumsurfaces++] = surface;
}
--modelsurfacelistindex;
GL_CullFace(rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE ? GL_NONE : r_refdef.view.cullface_back);
RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_ALLOWMULTIDRAW, batchnumsurfaces, batchsurfacelist);
R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
RSurf_DrawBatch();
}
R_FrameData_ReturnToMark();
}
#define BATCHSIZE 1024
static void R_Q1BSP_DrawLight_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
{
int i, j, endsurface;
texture_t *t;
const msurface_t *surface;
R_FrameData_SetMark();
// note: in practice this never actually receives batches
R_Shadow_RenderMode_Begin();
R_Shadow_RenderMode_ActiveLight(rtlight);
R_Shadow_RenderMode_Lighting(false, true, false);
R_Shadow_SetupEntityLight(ent);
for (i = 0;i < numsurfaces;i = j)
{
j = i + 1;
surface = rsurface.modelsurfaces + surfacelist[i];
t = surface->texture;
rsurface.texture = R_GetCurrentTexture(t);
endsurface = min(j + BATCHSIZE, numsurfaces);
for (j = i;j < endsurface;j++)
{
surface = rsurface.modelsurfaces + surfacelist[j];
if (t != surface->texture)
break;
R_Shadow_RenderLighting(1, &surface);
}
}
R_Shadow_RenderMode_End();
R_FrameData_ReturnToMark();
}
extern qboolean r_shadow_usingdeferredprepass;
void R_Q1BSP_DrawLight(entity_render_t *ent, int numsurfaces, const int *surfacelist, const unsigned char *lighttrispvs)
{
dp_model_t *model = ent->model;
const msurface_t *surface;
int i, k, kend, l, endsurface, batchnumsurfaces, texturenumsurfaces;
const msurface_t **texturesurfacelist;
texture_t *tex;
CHECKGLERROR
R_FrameData_SetMark();
// this is a double loop because non-visible surface skipping has to be
// fast, and even if this is not the world model (and hence no visibility
// checking) the input surface list and batch buffer are different formats
// so some processing is necessary. (luckily models have few surfaces)
for (i = 0;i < numsurfaces;)
{
batchnumsurfaces = 0;
endsurface = min(i + RSURF_MAX_BATCHSURFACES, numsurfaces);
if (ent == r_refdef.scene.worldentity)
{
for (;i < endsurface;i++)
if (r_refdef.viewcache.world_surfacevisible[surfacelist[i]])
batchsurfacelist[batchnumsurfaces++] = model->data_surfaces + surfacelist[i];
}
else
{
for (;i < endsurface;i++)
batchsurfacelist[batchnumsurfaces++] = model->data_surfaces + surfacelist[i];
}
if (!batchnumsurfaces)
continue;
for (k = 0;k < batchnumsurfaces;k = kend)
{
surface = batchsurfacelist[k];
tex = surface->texture;
rsurface.texture = R_GetCurrentTexture(tex);
// gather surfaces into a batch range
for (kend = k;kend < batchnumsurfaces && tex == batchsurfacelist[kend]->texture;kend++)
;
// now figure out what to do with this particular range of surfaces
// VorteX: added MATERIALFLAG_NORTLIGHT
if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_WALL | MATERIALFLAG_FULLBRIGHT | MATERIALFLAG_NORTLIGHT)) != MATERIALFLAG_WALL)
continue;
if (r_fb.water.renderingscene && (rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA)))
continue;
if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED)
{
vec3_t tempcenter, center;
for (l = k;l < kend;l++)
{
surface = batchsurfacelist[l];
if (r_transparent_sortsurfacesbynearest.integer)
{
tempcenter[0] = bound(surface->mins[0], rsurface.localvieworigin[0], surface->maxs[0]);
tempcenter[1] = bound(surface->mins[1], rsurface.localvieworigin[1], surface->maxs[1]);
tempcenter[2] = bound(surface->mins[2], rsurface.localvieworigin[2], surface->maxs[2]);
}
else
{
tempcenter[0] = (surface->mins[0] + surface->maxs[0]) * 0.5f;
tempcenter[1] = (surface->mins[1] + surface->maxs[1]) * 0.5f;
tempcenter[2] = (surface->mins[2] + surface->maxs[2]) * 0.5f;
}
Matrix4x4_Transform(&rsurface.matrix, tempcenter, center);
if (ent->transparent_offset) // transparent offset
{
center[0] += r_refdef.view.forward[0]*ent->transparent_offset;
center[1] += r_refdef.view.forward[1]*ent->transparent_offset;
center[2] += r_refdef.view.forward[2]*ent->transparent_offset;
}
R_MeshQueue_AddTransparent((rsurface.entity->flags & RENDER_WORLDOBJECT) ? TRANSPARENTSORT_SKY : ((rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST) ? TRANSPARENTSORT_HUD : rsurface.texture->transparentsort), center, R_Q1BSP_DrawLight_TransparentCallback, ent, surface - rsurface.modelsurfaces, rsurface.rtlight);
}
continue;
}
if (r_shadow_usingdeferredprepass)
continue;
texturenumsurfaces = kend - k;
texturesurfacelist = batchsurfacelist + k;
R_Shadow_RenderLighting(texturenumsurfaces, texturesurfacelist);
}
}
R_FrameData_ReturnToMark();
}
//Made by [515]
static void R_ReplaceWorldTexture (void)
{
dp_model_t *m;
texture_t *t;
int i;
const char *r, *newt;
skinframe_t *skinframe;
if (!r_refdef.scene.worldmodel)
{
Con_Printf("There is no worldmodel\n");
return;
}
m = r_refdef.scene.worldmodel;
if(Cmd_Argc() < 2)
{
Con_Print("r_replacemaptexture <texname> <newtexname> - replaces texture\n");
Con_Print("r_replacemaptexture <texname> - switch back to default texture\n");
return;
}
if(!cl.islocalgame || !cl.worldmodel)
{
Con_Print("This command works only in singleplayer\n");
return;
}
r = Cmd_Argv(1);
newt = Cmd_Argv(2);
if(!newt[0])
newt = r;
for(i=0,t=m->data_textures;i<m->num_textures;i++,t++)
{
if(/*t->width && !strcasecmp(t->name, r)*/ matchpattern( t->name, r, true ) )
{
if ((skinframe = R_SkinFrame_LoadExternal(newt, TEXF_MIPMAP | TEXF_ALPHA | TEXF_PICMIP, true)))
{
// t->skinframes[0] = skinframe;
t->currentskinframe = skinframe;
Con_Printf("%s replaced with %s\n", r, newt);
}
else
{
Con_Printf("%s was not found\n", newt);
return;
}
}
}
}
//Made by [515]
static void R_ListWorldTextures (void)
{
dp_model_t *m;
texture_t *t;
int i;
if (!r_refdef.scene.worldmodel)
{
Con_Printf("There is no worldmodel\n");
return;
}
m = r_refdef.scene.worldmodel;
Con_Print("Worldmodel textures :\n");
for(i=0,t=m->data_textures;i<m->num_textures;i++,t++)
if (t->numskinframes)
Con_Printf("%s\n", t->name);
}
#if 0
static void gl_surf_start(void)
{
}
static void gl_surf_shutdown(void)
{
}
static void gl_surf_newmap(void)
{
}
#endif
void GL_Surf_Init(void)
{
Cvar_RegisterVariable(&r_ambient);
Cvar_RegisterVariable(&r_lockpvs);
Cvar_RegisterVariable(&r_lockvisibility);
Cvar_RegisterVariable(&r_useportalculling);
Cvar_RegisterVariable(&r_usesurfaceculling);
Cvar_RegisterVariable(&r_q3bsp_renderskydepth);
Cmd_AddCommand ("r_replacemaptexture", R_ReplaceWorldTexture, "override a map texture for testing purposes");
Cmd_AddCommand ("r_listmaptextures", R_ListWorldTextures, "list all textures used by the current map");
//R_RegisterModule("GL_Surf", gl_surf_start, gl_surf_shutdown, gl_surf_newmap);
}