quakequest/Projects/Android/jni/darkplaces/model_shared.c

4475 lines
179 KiB
C
Raw Normal View History

2019-05-30 05:57:57 +00:00
/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// models.c -- model loading and caching
// models are the only shared resource between a client and server running
// on the same machine.
#include "quakedef.h"
#include "image.h"
#include "r_shadow.h"
#include "polygon.h"
cvar_t r_enableshadowvolumes = {CVAR_SAVE, "r_enableshadowvolumes", "1", "Enables use of Stencil Shadow Volume shadowing methods, saves some memory if turned off"};
cvar_t r_mipskins = {CVAR_SAVE, "r_mipskins", "0", "mipmaps model skins so they render faster in the distance and do not display noise artifacts, can cause discoloration of skins if they contain undesirable border colors"};
cvar_t r_mipnormalmaps = {CVAR_SAVE, "r_mipnormalmaps", "1", "mipmaps normalmaps (turning it off looks sharper but may have aliasing)"};
cvar_t mod_generatelightmaps_unitspersample = {CVAR_SAVE, "mod_generatelightmaps_unitspersample", "8", "lightmap resolution"};
cvar_t mod_generatelightmaps_borderpixels = {CVAR_SAVE, "mod_generatelightmaps_borderpixels", "2", "extra space around polygons to prevent sampling artifacts"};
cvar_t mod_generatelightmaps_texturesize = {CVAR_SAVE, "mod_generatelightmaps_texturesize", "1024", "size of lightmap textures"};
cvar_t mod_generatelightmaps_lightmapsamples = {CVAR_SAVE, "mod_generatelightmaps_lightmapsamples", "16", "number of shadow tests done per lightmap pixel"};
cvar_t mod_generatelightmaps_vertexsamples = {CVAR_SAVE, "mod_generatelightmaps_vertexsamples", "16", "number of shadow tests done per vertex"};
cvar_t mod_generatelightmaps_gridsamples = {CVAR_SAVE, "mod_generatelightmaps_gridsamples", "64", "number of shadow tests done per lightgrid cell"};
cvar_t mod_generatelightmaps_lightmapradius = {CVAR_SAVE, "mod_generatelightmaps_lightmapradius", "16", "sampling area around each lightmap pixel"};
cvar_t mod_generatelightmaps_vertexradius = {CVAR_SAVE, "mod_generatelightmaps_vertexradius", "16", "sampling area around each vertex"};
cvar_t mod_generatelightmaps_gridradius = {CVAR_SAVE, "mod_generatelightmaps_gridradius", "64", "sampling area around each lightgrid cell center"};
dp_model_t *loadmodel;
static mempool_t *mod_mempool;
static memexpandablearray_t models;
static mempool_t* q3shaders_mem;
typedef struct q3shader_hash_entry_s
{
q3shaderinfo_t shader;
struct q3shader_hash_entry_s* chain;
} q3shader_hash_entry_t;
#define Q3SHADER_HASH_SIZE 1021
typedef struct q3shader_data_s
{
memexpandablearray_t hash_entries;
q3shader_hash_entry_t hash[Q3SHADER_HASH_SIZE];
memexpandablearray_t char_ptrs;
} q3shader_data_t;
static q3shader_data_t* q3shader_data;
static void mod_start(void)
{
int i, count;
int nummodels = Mem_ExpandableArray_IndexRange(&models);
dp_model_t *mod;
SCR_PushLoadingScreen(false, "Loading models", 1.0);
count = 0;
for (i = 0;i < nummodels;i++)
if ((mod = (dp_model_t*) Mem_ExpandableArray_RecordAtIndex(&models, i)) && mod->name[0] && mod->name[0] != '*')
if (mod->used)
++count;
for (i = 0;i < nummodels;i++)
if ((mod = (dp_model_t*) Mem_ExpandableArray_RecordAtIndex(&models, i)) && mod->name[0] && mod->name[0] != '*')
if (mod->used)
{
SCR_PushLoadingScreen(true, mod->name, 1.0 / count);
Mod_LoadModel(mod, true, false);
SCR_PopLoadingScreen(false);
}
SCR_PopLoadingScreen(false);
}
static void mod_shutdown(void)
{
int i;
int nummodels = Mem_ExpandableArray_IndexRange(&models);
dp_model_t *mod;
for (i = 0;i < nummodels;i++)
if ((mod = (dp_model_t*) Mem_ExpandableArray_RecordAtIndex(&models, i)) && (mod->loaded || mod->mempool))
Mod_UnloadModel(mod);
Mod_FreeQ3Shaders();
Mod_Skeletal_FreeBuffers();
}
static void mod_newmap(void)
{
msurface_t *surface;
int i, j, k, surfacenum, ssize, tsize;
int nummodels = Mem_ExpandableArray_IndexRange(&models);
dp_model_t *mod;
for (i = 0;i < nummodels;i++)
{
if ((mod = (dp_model_t*) Mem_ExpandableArray_RecordAtIndex(&models, i)) && mod->mempool)
{
for (j = 0;j < mod->num_textures && mod->data_textures;j++)
{
for (k = 0;k < mod->data_textures[j].numskinframes;k++)
R_SkinFrame_MarkUsed(mod->data_textures[j].skinframes[k]);
for (k = 0;k < mod->data_textures[j].backgroundnumskinframes;k++)
R_SkinFrame_MarkUsed(mod->data_textures[j].backgroundskinframes[k]);
}
if (mod->brush.solidskyskinframe)
R_SkinFrame_MarkUsed(mod->brush.solidskyskinframe);
if (mod->brush.alphaskyskinframe)
R_SkinFrame_MarkUsed(mod->brush.alphaskyskinframe);
}
}
if (!cl_stainmaps_clearonload.integer)
return;
for (i = 0;i < nummodels;i++)
{
if ((mod = (dp_model_t*) Mem_ExpandableArray_RecordAtIndex(&models, i)) && mod->mempool && mod->data_surfaces)
{
for (surfacenum = 0, surface = mod->data_surfaces;surfacenum < mod->num_surfaces;surfacenum++, surface++)
{
if (surface->lightmapinfo && surface->lightmapinfo->stainsamples)
{
ssize = (surface->lightmapinfo->extents[0] >> 4) + 1;
tsize = (surface->lightmapinfo->extents[1] >> 4) + 1;
memset(surface->lightmapinfo->stainsamples, 255, ssize * tsize * 3);
mod->brushq1.lightmapupdateflags[surfacenum] = true;
}
}
}
}
}
/*
===============
Mod_Init
===============
*/
static void Mod_Print(void);
static void Mod_Precache (void);
static void Mod_Decompile_f(void);
static void Mod_GenerateLightmaps_f(void);
void Mod_Init (void)
{
mod_mempool = Mem_AllocPool("modelinfo", 0, NULL);
Mem_ExpandableArray_NewArray(&models, mod_mempool, sizeof(dp_model_t), 16);
Mod_BrushInit();
Mod_AliasInit();
Mod_SpriteInit();
Cvar_RegisterVariable(&r_enableshadowvolumes);
Cvar_RegisterVariable(&r_mipskins);
Cvar_RegisterVariable(&r_mipnormalmaps);
Cvar_RegisterVariable(&mod_generatelightmaps_unitspersample);
Cvar_RegisterVariable(&mod_generatelightmaps_borderpixels);
Cvar_RegisterVariable(&mod_generatelightmaps_texturesize);
Cvar_RegisterVariable(&mod_generatelightmaps_lightmapsamples);
Cvar_RegisterVariable(&mod_generatelightmaps_vertexsamples);
Cvar_RegisterVariable(&mod_generatelightmaps_gridsamples);
Cvar_RegisterVariable(&mod_generatelightmaps_lightmapradius);
Cvar_RegisterVariable(&mod_generatelightmaps_vertexradius);
Cvar_RegisterVariable(&mod_generatelightmaps_gridradius);
Cmd_AddCommand ("modellist", Mod_Print, "prints a list of loaded models");
Cmd_AddCommand ("modelprecache", Mod_Precache, "load a model");
Cmd_AddCommand ("modeldecompile", Mod_Decompile_f, "exports a model in several formats for editing purposes");
Cmd_AddCommand ("mod_generatelightmaps", Mod_GenerateLightmaps_f, "rebuilds lighting on current worldmodel");
}
void Mod_RenderInit(void)
{
R_RegisterModule("Models", mod_start, mod_shutdown, mod_newmap, NULL, NULL);
}
void Mod_UnloadModel (dp_model_t *mod)
{
char name[MAX_QPATH];
qboolean used;
dp_model_t *parentmodel;
if (developer_loading.integer)
Con_Printf("unloading model %s\n", mod->name);
strlcpy(name, mod->name, sizeof(name));
parentmodel = mod->brush.parentmodel;
used = mod->used;
if (mod->mempool)
{
if (mod->surfmesh.data_element3i_indexbuffer)
R_Mesh_DestroyMeshBuffer(mod->surfmesh.data_element3i_indexbuffer);
mod->surfmesh.data_element3i_indexbuffer = NULL;
if (mod->surfmesh.data_element3s_indexbuffer)
R_Mesh_DestroyMeshBuffer(mod->surfmesh.data_element3s_indexbuffer);
mod->surfmesh.data_element3s_indexbuffer = NULL;
if (mod->surfmesh.vbo_vertexbuffer)
R_Mesh_DestroyMeshBuffer(mod->surfmesh.vbo_vertexbuffer);
mod->surfmesh.vbo_vertexbuffer = NULL;
}
// free textures/memory attached to the model
R_FreeTexturePool(&mod->texturepool);
Mem_FreePool(&mod->mempool);
// clear the struct to make it available
memset(mod, 0, sizeof(dp_model_t));
// restore the fields we want to preserve
strlcpy(mod->name, name, sizeof(mod->name));
mod->brush.parentmodel = parentmodel;
mod->used = used;
mod->loaded = false;
}
static void R_Model_Null_Draw(entity_render_t *ent)
{
return;
}
typedef void (*mod_framegroupify_parsegroups_t) (unsigned int i, int start, int len, float fps, qboolean loop, const char *name, void *pass);
static int Mod_FrameGroupify_ParseGroups(const char *buf, mod_framegroupify_parsegroups_t cb, void *pass)
{
const char *bufptr;
int start, len;
float fps;
unsigned int i;
qboolean loop;
char name[64];
bufptr = buf;
i = 0;
while(bufptr)
{
// an anim scene!
// REQUIRED: fetch start
COM_ParseToken_Simple(&bufptr, true, false, true);
if (!bufptr)
break; // end of file
if (!strcmp(com_token, "\n"))
continue; // empty line
start = atoi(com_token);
// REQUIRED: fetch length
COM_ParseToken_Simple(&bufptr, true, false, true);
if (!bufptr || !strcmp(com_token, "\n"))
{
Con_Printf("framegroups file: missing number of frames\n");
continue;
}
len = atoi(com_token);
// OPTIONAL args start
COM_ParseToken_Simple(&bufptr, true, false, true);
// OPTIONAL: fetch fps
fps = 20;
if (bufptr && strcmp(com_token, "\n"))
{
fps = atof(com_token);
COM_ParseToken_Simple(&bufptr, true, false, true);
}
// OPTIONAL: fetch loopflag
loop = true;
if (bufptr && strcmp(com_token, "\n"))
{
loop = (atoi(com_token) != 0);
COM_ParseToken_Simple(&bufptr, true, false, true);
}
// OPTIONAL: fetch name
name[0] = 0;
if (bufptr && strcmp(com_token, "\n"))
{
strlcpy(name, com_token, sizeof(name));
COM_ParseToken_Simple(&bufptr, true, false, true);
}
// OPTIONAL: remaining unsupported tokens (eat them)
while (bufptr && strcmp(com_token, "\n"))
COM_ParseToken_Simple(&bufptr, true, false, true);
//Con_Printf("data: %d %d %d %f %d (%s)\n", i, start, len, fps, loop, name);
if(cb)
cb(i, start, len, fps, loop, (name[0] ? name : NULL), pass);
++i;
}
return i;
}
static void Mod_FrameGroupify_ParseGroups_Store (unsigned int i, int start, int len, float fps, qboolean loop, const char *name, void *pass)
{
dp_model_t *mod = (dp_model_t *) pass;
animscene_t *anim = &mod->animscenes[i];
if(name)
strlcpy(anim->name, name, sizeof(anim[i].name));
else
dpsnprintf(anim->name, sizeof(anim[i].name), "groupified_%d_anim", i);
anim->firstframe = bound(0, start, mod->num_poses - 1);
anim->framecount = bound(1, len, mod->num_poses - anim->firstframe);
anim->framerate = max(1, fps);
anim->loop = !!loop;
//Con_Printf("frame group %d is %d %d %f %d\n", i, start, len, fps, loop);
}
static void Mod_FrameGroupify(dp_model_t *mod, const char *buf)
{
unsigned int cnt;
// 0. count
cnt = Mod_FrameGroupify_ParseGroups(buf, NULL, NULL);
if(!cnt)
{
Con_Printf("no scene found in framegroups file, aborting\n");
return;
}
mod->numframes = cnt;
// 1. reallocate
// (we do not free the previous animscenes, but model unloading will free the pool owning them, so it's okay)
mod->animscenes = (animscene_t *) Mem_Alloc(mod->mempool, sizeof(animscene_t) * mod->numframes);
// 2. parse
Mod_FrameGroupify_ParseGroups(buf, Mod_FrameGroupify_ParseGroups_Store, mod);
}
static void Mod_FindPotentialDeforms(dp_model_t *mod)
{
int i, j;
texture_t *texture;
mod->wantnormals = false;
mod->wanttangents = false;
for (i = 0;i < mod->num_textures;i++)
{
texture = mod->data_textures + i;
if (texture->tcgen.tcgen == Q3TCGEN_ENVIRONMENT)
mod->wantnormals = true;
for (j = 0;j < Q3MAXDEFORMS;j++)
{
if (texture->deforms[j].deform == Q3DEFORM_AUTOSPRITE)
{
mod->wanttangents = true;
mod->wantnormals = true;
break;
}
if (texture->deforms[j].deform != Q3DEFORM_NONE)
mod->wantnormals = true;
}
}
}
/*
==================
Mod_LoadModel
Loads a model
==================
*/
dp_model_t *Mod_LoadModel(dp_model_t *mod, qboolean crash, qboolean checkdisk)
{
int num;
unsigned int crc;
void *buf;
fs_offset_t filesize = 0;
char vabuf[1024];
mod->used = true;
if (mod->name[0] == '*') // submodel
return mod;
if (!strcmp(mod->name, "null"))
{
if(mod->loaded)
return mod;
if (mod->loaded || mod->mempool)
Mod_UnloadModel(mod);
if (developer_loading.integer)
Con_Printf("loading model %s\n", mod->name);
mod->used = true;
mod->crc = (unsigned int)-1;
mod->loaded = false;
VectorClear(mod->normalmins);
VectorClear(mod->normalmaxs);
VectorClear(mod->yawmins);
VectorClear(mod->yawmaxs);
VectorClear(mod->rotatedmins);
VectorClear(mod->rotatedmaxs);
mod->modeldatatypestring = "null";
mod->type = mod_null;
mod->Draw = R_Model_Null_Draw;
mod->numframes = 2;
mod->numskins = 1;
// no fatal errors occurred, so this model is ready to use.
mod->loaded = true;
return mod;
}
crc = 0;
buf = NULL;
// even if the model is loaded it still may need reloading...
// if it is not loaded or checkdisk is true we need to calculate the crc
if (!mod->loaded || checkdisk)
{
if (checkdisk && mod->loaded)
Con_DPrintf("checking model %s\n", mod->name);
buf = FS_LoadFile (mod->name, tempmempool, false, &filesize);
if (buf)
{
crc = CRC_Block((unsigned char *)buf, filesize);
// we need to reload the model if the crc does not match
if (mod->crc != crc)
mod->loaded = false;
}
}
// if the model is already loaded and checks passed, just return
if (mod->loaded)
{
if (buf)
Mem_Free(buf);
return mod;
}
if (developer_loading.integer)
Con_Printf("loading model %s\n", mod->name);
SCR_PushLoadingScreen(true, mod->name, 1);
// LordHavoc: unload the existing model in this slot (if there is one)
if (mod->loaded || mod->mempool)
Mod_UnloadModel(mod);
// load the model
mod->used = true;
mod->crc = crc;
// errors can prevent the corresponding mod->loaded = true;
mod->loaded = false;
// default lightmap scale
mod->lightmapscale = 1;
// default model radius and bounding box (mainly for missing models)
mod->radius = 16;
VectorSet(mod->normalmins, -mod->radius, -mod->radius, -mod->radius);
VectorSet(mod->normalmaxs, mod->radius, mod->radius, mod->radius);
VectorSet(mod->yawmins, -mod->radius, -mod->radius, -mod->radius);
VectorSet(mod->yawmaxs, mod->radius, mod->radius, mod->radius);
VectorSet(mod->rotatedmins, -mod->radius, -mod->radius, -mod->radius);
VectorSet(mod->rotatedmaxs, mod->radius, mod->radius, mod->radius);
if (!q3shaders_mem)
{
// load q3 shaders for the first time, or after a level change
Mod_LoadQ3Shaders();
}
if (buf)
{
char *bufend = (char *)buf + filesize;
// all models use memory, so allocate a memory pool
mod->mempool = Mem_AllocPool(mod->name, 0, NULL);
num = LittleLong(*((int *)buf));
// call the apropriate loader
loadmodel = mod;
if (!strcasecmp(FS_FileExtension(mod->name), "obj")) Mod_OBJ_Load(mod, buf, bufend);
else if (!memcmp(buf, "IDPO", 4)) Mod_IDP0_Load(mod, buf, bufend);
else if (!memcmp(buf, "IDP2", 4)) Mod_IDP2_Load(mod, buf, bufend);
else if (!memcmp(buf, "IDP3", 4)) Mod_IDP3_Load(mod, buf, bufend);
else if (!memcmp(buf, "IDSP", 4)) Mod_IDSP_Load(mod, buf, bufend);
else if (!memcmp(buf, "IDS2", 4)) Mod_IDS2_Load(mod, buf, bufend);
else if (!memcmp(buf, "IBSP", 4)) Mod_IBSP_Load(mod, buf, bufend);
else if (!memcmp(buf, "ZYMOTICMODEL", 12)) Mod_ZYMOTICMODEL_Load(mod, buf, bufend);
else if (!memcmp(buf, "DARKPLACESMODEL", 16)) Mod_DARKPLACESMODEL_Load(mod, buf, bufend);
else if (!memcmp(buf, "ACTRHEAD", 8)) Mod_PSKMODEL_Load(mod, buf, bufend);
else if (!memcmp(buf, "INTERQUAKEMODEL", 16)) Mod_INTERQUAKEMODEL_Load(mod, buf, bufend);
else if (strlen(mod->name) >= 4 && !strcmp(mod->name + strlen(mod->name) - 4, ".map")) Mod_MAP_Load(mod, buf, bufend);
else if (num == BSPVERSION || num == 30 || !memcmp(buf, "BSP2", 4) || !memcmp(buf, "2PSB", 4)) Mod_Q1BSP_Load(mod, buf, bufend);
else Con_Printf("Mod_LoadModel: model \"%s\" is of unknown/unsupported type\n", mod->name);
Mem_Free(buf);
Mod_FindPotentialDeforms(mod);
buf = FS_LoadFile(va(vabuf, sizeof(vabuf), "%s.framegroups", mod->name), tempmempool, false, &filesize);
if(buf)
{
Mod_FrameGroupify(mod, (const char *)buf);
Mem_Free(buf);
}
Mod_BuildVBOs();
}
else if (crash)
{
// LordHavoc: Sys_Error was *ANNOYING*
Con_Printf ("Mod_LoadModel: %s not found\n", mod->name);
}
// no fatal errors occurred, so this model is ready to use.
mod->loaded = true;
SCR_PopLoadingScreen(false);
return mod;
}
void Mod_ClearUsed(void)
{
int i;
int nummodels = Mem_ExpandableArray_IndexRange(&models);
dp_model_t *mod;
for (i = 0;i < nummodels;i++)
if ((mod = (dp_model_t*) Mem_ExpandableArray_RecordAtIndex(&models, i)) && mod->name[0])
mod->used = false;
}
void Mod_PurgeUnused(void)
{
int i;
int nummodels = Mem_ExpandableArray_IndexRange(&models);
dp_model_t *mod;
for (i = 0;i < nummodels;i++)
{
if ((mod = (dp_model_t*) Mem_ExpandableArray_RecordAtIndex(&models, i)) && mod->name[0] && !mod->used)
{
Mod_UnloadModel(mod);
Mem_ExpandableArray_FreeRecord(&models, mod);
}
}
}
/*
==================
Mod_FindName
==================
*/
dp_model_t *Mod_FindName(const char *name, const char *parentname)
{
int i;
int nummodels;
dp_model_t *mod;
if (!parentname)
parentname = "";
// if we're not dedicatd, the renderer calls will crash without video
Host_StartVideo();
nummodels = Mem_ExpandableArray_IndexRange(&models);
if (!name[0])
Host_Error ("Mod_ForName: empty name");
// search the currently loaded models
for (i = 0;i < nummodels;i++)
{
if ((mod = (dp_model_t*) Mem_ExpandableArray_RecordAtIndex(&models, i)) && mod->name[0] && !strcmp(mod->name, name) && ((!mod->brush.parentmodel && !parentname[0]) || (mod->brush.parentmodel && parentname[0] && !strcmp(mod->brush.parentmodel->name, parentname))))
{
mod->used = true;
return mod;
}
}
// no match found, create a new one
mod = (dp_model_t *) Mem_ExpandableArray_AllocRecord(&models);
strlcpy(mod->name, name, sizeof(mod->name));
if (parentname[0])
mod->brush.parentmodel = Mod_FindName(parentname, NULL);
else
mod->brush.parentmodel = NULL;
mod->loaded = false;
mod->used = true;
return mod;
}
/*
==================
Mod_ForName
Loads in a model for the given name
==================
*/
dp_model_t *Mod_ForName(const char *name, qboolean crash, qboolean checkdisk, const char *parentname)
{
dp_model_t *model;
model = Mod_FindName(name, parentname);
if (!model->loaded || checkdisk)
Mod_LoadModel(model, crash, checkdisk);
return model;
}
/*
==================
Mod_Reload
Reloads all models if they have changed
==================
*/
void Mod_Reload(void)
{
int i, count;
int nummodels = Mem_ExpandableArray_IndexRange(&models);
dp_model_t *mod;
SCR_PushLoadingScreen(false, "Reloading models", 1.0);
count = 0;
for (i = 0;i < nummodels;i++)
if ((mod = (dp_model_t *) Mem_ExpandableArray_RecordAtIndex(&models, i)) && mod->name[0] && mod->name[0] != '*' && mod->used)
++count;
for (i = 0;i < nummodels;i++)
if ((mod = (dp_model_t *) Mem_ExpandableArray_RecordAtIndex(&models, i)) && mod->name[0] && mod->name[0] != '*' && mod->used)
{
SCR_PushLoadingScreen(true, mod->name, 1.0 / count);
Mod_LoadModel(mod, true, true);
SCR_PopLoadingScreen(false);
}
SCR_PopLoadingScreen(false);
}
unsigned char *mod_base;
//=============================================================================
/*
================
Mod_Print
================
*/
static void Mod_Print(void)
{
int i;
int nummodels = Mem_ExpandableArray_IndexRange(&models);
dp_model_t *mod;
Con_Print("Loaded models:\n");
for (i = 0;i < nummodels;i++)
{
if ((mod = (dp_model_t *) Mem_ExpandableArray_RecordAtIndex(&models, i)) && mod->name[0] && mod->name[0] != '*')
{
if (mod->brush.numsubmodels)
Con_Printf("%4iK %s (%i submodels)\n", mod->mempool ? (int)((mod->mempool->totalsize + 1023) / 1024) : 0, mod->name, mod->brush.numsubmodels);
else
Con_Printf("%4iK %s\n", mod->mempool ? (int)((mod->mempool->totalsize + 1023) / 1024) : 0, mod->name);
}
}
}
/*
================
Mod_Precache
================
*/
static void Mod_Precache(void)
{
if (Cmd_Argc() == 2)
Mod_ForName(Cmd_Argv(1), false, true, Cmd_Argv(1)[0] == '*' ? cl.model_name[1] : NULL);
else
Con_Print("usage: modelprecache <filename>\n");
}
int Mod_BuildVertexRemapTableFromElements(int numelements, const int *elements, int numvertices, int *remapvertices)
{
int i, count;
unsigned char *used;
used = (unsigned char *)Mem_Alloc(tempmempool, numvertices);
memset(used, 0, numvertices);
for (i = 0;i < numelements;i++)
used[elements[i]] = 1;
for (i = 0, count = 0;i < numvertices;i++)
remapvertices[i] = used[i] ? count++ : -1;
Mem_Free(used);
return count;
}
#if 1
// fast way, using an edge hash
#define TRIANGLEEDGEHASH 8192
void Mod_BuildTriangleNeighbors(int *neighbors, const int *elements, int numtriangles)
{
int i, j, p, e1, e2, *n, hashindex, count, match;
const int *e;
typedef struct edgehashentry_s
{
struct edgehashentry_s *next;
int triangle;
int element[2];
}
edgehashentry_t;
static edgehashentry_t **edgehash;
edgehashentry_t *edgehashentries, *hash;
if (!numtriangles)
return;
edgehash = (edgehashentry_t **)Mem_Alloc(tempmempool, TRIANGLEEDGEHASH * sizeof(*edgehash));
// if there are too many triangles for the stack array, allocate larger buffer
edgehashentries = (edgehashentry_t *)Mem_Alloc(tempmempool, numtriangles * 3 * sizeof(edgehashentry_t));
// find neighboring triangles
for (i = 0, e = elements, n = neighbors;i < numtriangles;i++, e += 3, n += 3)
{
for (j = 0, p = 2;j < 3;p = j, j++)
{
e1 = e[p];
e2 = e[j];
// this hash index works for both forward and backward edges
hashindex = (unsigned int)(e1 + e2) % TRIANGLEEDGEHASH;
hash = edgehashentries + i * 3 + j;
hash->next = edgehash[hashindex];
edgehash[hashindex] = hash;
hash->triangle = i;
hash->element[0] = e1;
hash->element[1] = e2;
}
}
for (i = 0, e = elements, n = neighbors;i < numtriangles;i++, e += 3, n += 3)
{
for (j = 0, p = 2;j < 3;p = j, j++)
{
e1 = e[p];
e2 = e[j];
// this hash index works for both forward and backward edges
hashindex = (unsigned int)(e1 + e2) % TRIANGLEEDGEHASH;
count = 0;
match = -1;
for (hash = edgehash[hashindex];hash;hash = hash->next)
{
if (hash->element[0] == e2 && hash->element[1] == e1)
{
if (hash->triangle != i)
match = hash->triangle;
count++;
}
else if ((hash->element[0] == e1 && hash->element[1] == e2))
count++;
}
// detect edges shared by three triangles and make them seams
if (count > 2)
match = -1;
n[p] = match;
}
// also send a keepalive here (this can take a while too!)
CL_KeepaliveMessage(false);
}
// free the allocated buffer
Mem_Free(edgehashentries);
Mem_Free(edgehash);
}
#else
// very slow but simple way
static int Mod_FindTriangleWithEdge(const int *elements, int numtriangles, int start, int end, int ignore)
{
int i, match, count;
count = 0;
match = -1;
for (i = 0;i < numtriangles;i++, elements += 3)
{
if ((elements[0] == start && elements[1] == end)
|| (elements[1] == start && elements[2] == end)
|| (elements[2] == start && elements[0] == end))
{
if (i != ignore)
match = i;
count++;
}
else if ((elements[1] == start && elements[0] == end)
|| (elements[2] == start && elements[1] == end)
|| (elements[0] == start && elements[2] == end))
count++;
}
// detect edges shared by three triangles and make them seams
if (count > 2)
match = -1;
return match;
}
void Mod_BuildTriangleNeighbors(int *neighbors, const int *elements, int numtriangles)
{
int i, *n;
const int *e;
for (i = 0, e = elements, n = neighbors;i < numtriangles;i++, e += 3, n += 3)
{
n[0] = Mod_FindTriangleWithEdge(elements, numtriangles, e[1], e[0], i);
n[1] = Mod_FindTriangleWithEdge(elements, numtriangles, e[2], e[1], i);
n[2] = Mod_FindTriangleWithEdge(elements, numtriangles, e[0], e[2], i);
}
}
#endif
void Mod_ValidateElements(int *elements, int numtriangles, int firstvertex, int numverts, const char *filename, int fileline)
{
int i, warned = false, endvertex = firstvertex + numverts;
for (i = 0;i < numtriangles * 3;i++)
{
if (elements[i] < firstvertex || elements[i] >= endvertex)
{
if (!warned)
{
warned = true;
Con_Printf("Mod_ValidateElements: out of bounds elements detected at %s:%d\n", filename, fileline);
}
elements[i] = firstvertex;
}
}
}
// warning: this is an expensive function!
void Mod_BuildNormals(int firstvertex, int numvertices, int numtriangles, const float *vertex3f, const int *elements, float *normal3f, qboolean areaweighting)
{
int i, j;
const int *element;
float *vectorNormal;
float areaNormal[3];
// clear the vectors
memset(normal3f + 3 * firstvertex, 0, numvertices * sizeof(float[3]));
// process each vertex of each triangle and accumulate the results
// use area-averaging, to make triangles with a big area have a bigger
// weighting on the vertex normal than triangles with a small area
// to do so, just add the 'normals' together (the bigger the area
// the greater the length of the normal is
element = elements;
for (i = 0; i < numtriangles; i++, element += 3)
{
TriangleNormal(
vertex3f + element[0] * 3,
vertex3f + element[1] * 3,
vertex3f + element[2] * 3,
areaNormal
);
if (!areaweighting)
VectorNormalize(areaNormal);
for (j = 0;j < 3;j++)
{
vectorNormal = normal3f + element[j] * 3;
vectorNormal[0] += areaNormal[0];
vectorNormal[1] += areaNormal[1];
vectorNormal[2] += areaNormal[2];
}
}
// and just normalize the accumulated vertex normal in the end
vectorNormal = normal3f + 3 * firstvertex;
for (i = 0; i < numvertices; i++, vectorNormal += 3)
VectorNormalize(vectorNormal);
}
#if 0
static void Mod_BuildBumpVectors(const float *v0, const float *v1, const float *v2, const float *tc0, const float *tc1, const float *tc2, float *svector3f, float *tvector3f, float *normal3f)
{
float f, tangentcross[3], v10[3], v20[3], tc10[2], tc20[2];
// 79 add/sub/negate/multiply (1 cycle), 1 compare (3 cycle?), total cycles not counting load/store/exchange roughly 82 cycles
// 6 add, 28 subtract, 39 multiply, 1 compare, 50% chance of 6 negates
// 6 multiply, 9 subtract
VectorSubtract(v1, v0, v10);
VectorSubtract(v2, v0, v20);
normal3f[0] = v20[1] * v10[2] - v20[2] * v10[1];
normal3f[1] = v20[2] * v10[0] - v20[0] * v10[2];
normal3f[2] = v20[0] * v10[1] - v20[1] * v10[0];
// 12 multiply, 10 subtract
tc10[1] = tc1[1] - tc0[1];
tc20[1] = tc2[1] - tc0[1];
svector3f[0] = tc10[1] * v20[0] - tc20[1] * v10[0];
svector3f[1] = tc10[1] * v20[1] - tc20[1] * v10[1];
svector3f[2] = tc10[1] * v20[2] - tc20[1] * v10[2];
tc10[0] = tc1[0] - tc0[0];
tc20[0] = tc2[0] - tc0[0];
tvector3f[0] = tc10[0] * v20[0] - tc20[0] * v10[0];
tvector3f[1] = tc10[0] * v20[1] - tc20[0] * v10[1];
tvector3f[2] = tc10[0] * v20[2] - tc20[0] * v10[2];
// 12 multiply, 4 add, 6 subtract
f = DotProduct(svector3f, normal3f);
svector3f[0] -= f * normal3f[0];
svector3f[1] -= f * normal3f[1];
svector3f[2] -= f * normal3f[2];
f = DotProduct(tvector3f, normal3f);
tvector3f[0] -= f * normal3f[0];
tvector3f[1] -= f * normal3f[1];
tvector3f[2] -= f * normal3f[2];
// if texture is mapped the wrong way (counterclockwise), the tangents
// have to be flipped, this is detected by calculating a normal from the
// two tangents, and seeing if it is opposite the surface normal
// 9 multiply, 2 add, 3 subtract, 1 compare, 50% chance of: 6 negates
CrossProduct(tvector3f, svector3f, tangentcross);
if (DotProduct(tangentcross, normal3f) < 0)
{
VectorNegate(svector3f, svector3f);
VectorNegate(tvector3f, tvector3f);
}
}
#endif
// warning: this is a very expensive function!
void Mod_BuildTextureVectorsFromNormals(int firstvertex, int numvertices, int numtriangles, const float *vertex3f, const float *texcoord2f, const float *normal3f, const int *elements, float *svector3f, float *tvector3f, qboolean areaweighting)
{
int i, tnum;
float sdir[3], tdir[3], normal[3], *sv, *tv;
const float *v0, *v1, *v2, *tc0, *tc1, *tc2, *n;
float f, tangentcross[3], v10[3], v20[3], tc10[2], tc20[2];
const int *e;
// clear the vectors
memset(svector3f + 3 * firstvertex, 0, numvertices * sizeof(float[3]));
memset(tvector3f + 3 * firstvertex, 0, numvertices * sizeof(float[3]));
// process each vertex of each triangle and accumulate the results
for (tnum = 0, e = elements;tnum < numtriangles;tnum++, e += 3)
{
v0 = vertex3f + e[0] * 3;
v1 = vertex3f + e[1] * 3;
v2 = vertex3f + e[2] * 3;
tc0 = texcoord2f + e[0] * 2;
tc1 = texcoord2f + e[1] * 2;
tc2 = texcoord2f + e[2] * 2;
// 79 add/sub/negate/multiply (1 cycle), 1 compare (3 cycle?), total cycles not counting load/store/exchange roughly 82 cycles
// 6 add, 28 subtract, 39 multiply, 1 compare, 50% chance of 6 negates
// calculate the edge directions and surface normal
// 6 multiply, 9 subtract
VectorSubtract(v1, v0, v10);
VectorSubtract(v2, v0, v20);
normal[0] = v20[1] * v10[2] - v20[2] * v10[1];
normal[1] = v20[2] * v10[0] - v20[0] * v10[2];
normal[2] = v20[0] * v10[1] - v20[1] * v10[0];
// calculate the tangents
// 12 multiply, 10 subtract
tc10[1] = tc1[1] - tc0[1];
tc20[1] = tc2[1] - tc0[1];
sdir[0] = tc10[1] * v20[0] - tc20[1] * v10[0];
sdir[1] = tc10[1] * v20[1] - tc20[1] * v10[1];
sdir[2] = tc10[1] * v20[2] - tc20[1] * v10[2];
tc10[0] = tc1[0] - tc0[0];
tc20[0] = tc2[0] - tc0[0];
tdir[0] = tc10[0] * v20[0] - tc20[0] * v10[0];
tdir[1] = tc10[0] * v20[1] - tc20[0] * v10[1];
tdir[2] = tc10[0] * v20[2] - tc20[0] * v10[2];
// if texture is mapped the wrong way (counterclockwise), the tangents
// have to be flipped, this is detected by calculating a normal from the
// two tangents, and seeing if it is opposite the surface normal
// 9 multiply, 2 add, 3 subtract, 1 compare, 50% chance of: 6 negates
CrossProduct(tdir, sdir, tangentcross);
if (DotProduct(tangentcross, normal) < 0)
{
VectorNegate(sdir, sdir);
VectorNegate(tdir, tdir);
}
if (!areaweighting)
{
VectorNormalize(sdir);
VectorNormalize(tdir);
}
for (i = 0;i < 3;i++)
{
VectorAdd(svector3f + e[i]*3, sdir, svector3f + e[i]*3);
VectorAdd(tvector3f + e[i]*3, tdir, tvector3f + e[i]*3);
}
}
// make the tangents completely perpendicular to the surface normal, and
// then normalize them
// 16 assignments, 2 divide, 2 sqrt, 2 negates, 14 adds, 24 multiplies
for (i = 0, sv = svector3f + 3 * firstvertex, tv = tvector3f + 3 * firstvertex, n = normal3f + 3 * firstvertex;i < numvertices;i++, sv += 3, tv += 3, n += 3)
{
f = -DotProduct(sv, n);
VectorMA(sv, f, n, sv);
VectorNormalize(sv);
f = -DotProduct(tv, n);
VectorMA(tv, f, n, tv);
VectorNormalize(tv);
}
}
void Mod_AllocSurfMesh(mempool_t *mempool, int numvertices, int numtriangles, qboolean lightmapoffsets, qboolean vertexcolors, qboolean neighbors)
{
unsigned char *data;
data = (unsigned char *)Mem_Alloc(mempool, numvertices * (3 + 3 + 3 + 3 + 2 + 2 + (vertexcolors ? 4 : 0)) * sizeof(float) + numvertices * (lightmapoffsets ? 1 : 0) * sizeof(int) + numtriangles * (3 + (neighbors ? 3 : 0)) * sizeof(int) + (numvertices <= 65536 ? numtriangles * sizeof(unsigned short[3]) : 0));
loadmodel->surfmesh.num_vertices = numvertices;
loadmodel->surfmesh.num_triangles = numtriangles;
if (loadmodel->surfmesh.num_vertices)
{
loadmodel->surfmesh.data_vertex3f = (float *)data, data += sizeof(float[3]) * loadmodel->surfmesh.num_vertices;
loadmodel->surfmesh.data_svector3f = (float *)data, data += sizeof(float[3]) * loadmodel->surfmesh.num_vertices;
loadmodel->surfmesh.data_tvector3f = (float *)data, data += sizeof(float[3]) * loadmodel->surfmesh.num_vertices;
loadmodel->surfmesh.data_normal3f = (float *)data, data += sizeof(float[3]) * loadmodel->surfmesh.num_vertices;
loadmodel->surfmesh.data_texcoordtexture2f = (float *)data, data += sizeof(float[2]) * loadmodel->surfmesh.num_vertices;
loadmodel->surfmesh.data_texcoordlightmap2f = (float *)data, data += sizeof(float[2]) * loadmodel->surfmesh.num_vertices;
if (vertexcolors)
loadmodel->surfmesh.data_lightmapcolor4f = (float *)data, data += sizeof(float[4]) * loadmodel->surfmesh.num_vertices;
if (lightmapoffsets)
loadmodel->surfmesh.data_lightmapoffsets = (int *)data, data += sizeof(int) * loadmodel->surfmesh.num_vertices;
}
if (loadmodel->surfmesh.num_triangles)
{
loadmodel->surfmesh.data_element3i = (int *)data, data += sizeof(int[3]) * loadmodel->surfmesh.num_triangles;
if (neighbors)
loadmodel->surfmesh.data_neighbor3i = (int *)data, data += sizeof(int[3]) * loadmodel->surfmesh.num_triangles;
if (loadmodel->surfmesh.num_vertices <= 65536)
loadmodel->surfmesh.data_element3s = (unsigned short *)data, data += sizeof(unsigned short[3]) * loadmodel->surfmesh.num_triangles;
}
}
shadowmesh_t *Mod_ShadowMesh_Alloc(mempool_t *mempool, int maxverts, int maxtriangles, rtexture_t *map_diffuse, rtexture_t *map_specular, rtexture_t *map_normal, int light, int neighbors, int expandable)
{
shadowmesh_t *newmesh;
unsigned char *data;
int size;
size = sizeof(shadowmesh_t);
size += maxverts * sizeof(float[3]);
if (light)
size += maxverts * sizeof(float[11]);
size += maxtriangles * sizeof(int[3]);
if (maxverts <= 65536)
size += maxtriangles * sizeof(unsigned short[3]);
if (neighbors)
size += maxtriangles * sizeof(int[3]);
if (expandable)
size += SHADOWMESHVERTEXHASH * sizeof(shadowmeshvertexhash_t *) + maxverts * sizeof(shadowmeshvertexhash_t);
data = (unsigned char *)Mem_Alloc(mempool, size);
newmesh = (shadowmesh_t *)data;data += sizeof(*newmesh);
newmesh->map_diffuse = map_diffuse;
newmesh->map_specular = map_specular;
newmesh->map_normal = map_normal;
newmesh->maxverts = maxverts;
newmesh->maxtriangles = maxtriangles;
newmesh->numverts = 0;
newmesh->numtriangles = 0;
memset(newmesh->sideoffsets, 0, sizeof(newmesh->sideoffsets));
memset(newmesh->sidetotals, 0, sizeof(newmesh->sidetotals));
newmesh->vertex3f = (float *)data;data += maxverts * sizeof(float[3]);
if (light)
{
newmesh->svector3f = (float *)data;data += maxverts * sizeof(float[3]);
newmesh->tvector3f = (float *)data;data += maxverts * sizeof(float[3]);
newmesh->normal3f = (float *)data;data += maxverts * sizeof(float[3]);
newmesh->texcoord2f = (float *)data;data += maxverts * sizeof(float[2]);
}
newmesh->element3i = (int *)data;data += maxtriangles * sizeof(int[3]);
if (neighbors)
{
newmesh->neighbor3i = (int *)data;data += maxtriangles * sizeof(int[3]);
}
if (expandable)
{
newmesh->vertexhashtable = (shadowmeshvertexhash_t **)data;data += SHADOWMESHVERTEXHASH * sizeof(shadowmeshvertexhash_t *);
newmesh->vertexhashentries = (shadowmeshvertexhash_t *)data;data += maxverts * sizeof(shadowmeshvertexhash_t);
}
if (maxverts <= 65536)
newmesh->element3s = (unsigned short *)data;data += maxtriangles * sizeof(unsigned short[3]);
return newmesh;
}
shadowmesh_t *Mod_ShadowMesh_ReAlloc(mempool_t *mempool, shadowmesh_t *oldmesh, int light, int neighbors)
{
shadowmesh_t *newmesh;
newmesh = Mod_ShadowMesh_Alloc(mempool, oldmesh->numverts, oldmesh->numtriangles, oldmesh->map_diffuse, oldmesh->map_specular, oldmesh->map_normal, light, neighbors, false);
newmesh->numverts = oldmesh->numverts;
newmesh->numtriangles = oldmesh->numtriangles;
memcpy(newmesh->sideoffsets, oldmesh->sideoffsets, sizeof(oldmesh->sideoffsets));
memcpy(newmesh->sidetotals, oldmesh->sidetotals, sizeof(oldmesh->sidetotals));
memcpy(newmesh->vertex3f, oldmesh->vertex3f, oldmesh->numverts * sizeof(float[3]));
if (newmesh->svector3f && oldmesh->svector3f)
{
memcpy(newmesh->svector3f, oldmesh->svector3f, oldmesh->numverts * sizeof(float[3]));
memcpy(newmesh->tvector3f, oldmesh->tvector3f, oldmesh->numverts * sizeof(float[3]));
memcpy(newmesh->normal3f, oldmesh->normal3f, oldmesh->numverts * sizeof(float[3]));
memcpy(newmesh->texcoord2f, oldmesh->texcoord2f, oldmesh->numverts * sizeof(float[2]));
}
memcpy(newmesh->element3i, oldmesh->element3i, oldmesh->numtriangles * sizeof(int[3]));
if (newmesh->neighbor3i && oldmesh->neighbor3i)
memcpy(newmesh->neighbor3i, oldmesh->neighbor3i, oldmesh->numtriangles * sizeof(int[3]));
return newmesh;
}
int Mod_ShadowMesh_AddVertex(shadowmesh_t *mesh, float *vertex14f)
{
int hashindex, vnum;
shadowmeshvertexhash_t *hash;
// this uses prime numbers intentionally
hashindex = (unsigned int) (vertex14f[0] * 2003 + vertex14f[1] * 4001 + vertex14f[2] * 7919) % SHADOWMESHVERTEXHASH;
for (hash = mesh->vertexhashtable[hashindex];hash;hash = hash->next)
{
vnum = (hash - mesh->vertexhashentries);
if ((mesh->vertex3f == NULL || (mesh->vertex3f[vnum * 3 + 0] == vertex14f[0] && mesh->vertex3f[vnum * 3 + 1] == vertex14f[1] && mesh->vertex3f[vnum * 3 + 2] == vertex14f[2]))
&& (mesh->svector3f == NULL || (mesh->svector3f[vnum * 3 + 0] == vertex14f[3] && mesh->svector3f[vnum * 3 + 1] == vertex14f[4] && mesh->svector3f[vnum * 3 + 2] == vertex14f[5]))
&& (mesh->tvector3f == NULL || (mesh->tvector3f[vnum * 3 + 0] == vertex14f[6] && mesh->tvector3f[vnum * 3 + 1] == vertex14f[7] && mesh->tvector3f[vnum * 3 + 2] == vertex14f[8]))
&& (mesh->normal3f == NULL || (mesh->normal3f[vnum * 3 + 0] == vertex14f[9] && mesh->normal3f[vnum * 3 + 1] == vertex14f[10] && mesh->normal3f[vnum * 3 + 2] == vertex14f[11]))
&& (mesh->texcoord2f == NULL || (mesh->texcoord2f[vnum * 2 + 0] == vertex14f[12] && mesh->texcoord2f[vnum * 2 + 1] == vertex14f[13])))
return hash - mesh->vertexhashentries;
}
vnum = mesh->numverts++;
hash = mesh->vertexhashentries + vnum;
hash->next = mesh->vertexhashtable[hashindex];
mesh->vertexhashtable[hashindex] = hash;
if (mesh->vertex3f) {mesh->vertex3f[vnum * 3 + 0] = vertex14f[0];mesh->vertex3f[vnum * 3 + 1] = vertex14f[1];mesh->vertex3f[vnum * 3 + 2] = vertex14f[2];}
if (mesh->svector3f) {mesh->svector3f[vnum * 3 + 0] = vertex14f[3];mesh->svector3f[vnum * 3 + 1] = vertex14f[4];mesh->svector3f[vnum * 3 + 2] = vertex14f[5];}
if (mesh->tvector3f) {mesh->tvector3f[vnum * 3 + 0] = vertex14f[6];mesh->tvector3f[vnum * 3 + 1] = vertex14f[7];mesh->tvector3f[vnum * 3 + 2] = vertex14f[8];}
if (mesh->normal3f) {mesh->normal3f[vnum * 3 + 0] = vertex14f[9];mesh->normal3f[vnum * 3 + 1] = vertex14f[10];mesh->normal3f[vnum * 3 + 2] = vertex14f[11];}
if (mesh->texcoord2f) {mesh->texcoord2f[vnum * 2 + 0] = vertex14f[12];mesh->texcoord2f[vnum * 2 + 1] = vertex14f[13];}
return vnum;
}
void Mod_ShadowMesh_AddTriangle(mempool_t *mempool, shadowmesh_t *mesh, rtexture_t *map_diffuse, rtexture_t *map_specular, rtexture_t *map_normal, float *vertex14f)
{
if (mesh->numtriangles == 0)
{
// set the properties on this empty mesh to be more favorable...
// (note: this case only occurs for the first triangle added to a new mesh chain)
mesh->map_diffuse = map_diffuse;
mesh->map_specular = map_specular;
mesh->map_normal = map_normal;
}
while (mesh->map_diffuse != map_diffuse || mesh->map_specular != map_specular || mesh->map_normal != map_normal || mesh->numverts + 3 > mesh->maxverts || mesh->numtriangles + 1 > mesh->maxtriangles)
{
if (mesh->next == NULL)
mesh->next = Mod_ShadowMesh_Alloc(mempool, max(mesh->maxverts, 300), max(mesh->maxtriangles, 100), map_diffuse, map_specular, map_normal, mesh->svector3f != NULL, mesh->neighbor3i != NULL, true);
mesh = mesh->next;
}
mesh->element3i[mesh->numtriangles * 3 + 0] = Mod_ShadowMesh_AddVertex(mesh, vertex14f + 14 * 0);
mesh->element3i[mesh->numtriangles * 3 + 1] = Mod_ShadowMesh_AddVertex(mesh, vertex14f + 14 * 1);
mesh->element3i[mesh->numtriangles * 3 + 2] = Mod_ShadowMesh_AddVertex(mesh, vertex14f + 14 * 2);
mesh->numtriangles++;
}
void Mod_ShadowMesh_AddMesh(mempool_t *mempool, shadowmesh_t *mesh, rtexture_t *map_diffuse, rtexture_t *map_specular, rtexture_t *map_normal, const float *vertex3f, const float *svector3f, const float *tvector3f, const float *normal3f, const float *texcoord2f, int numtris, const int *element3i)
{
int i, j, e;
float vbuf[3*14], *v;
memset(vbuf, 0, sizeof(vbuf));
for (i = 0;i < numtris;i++)
{
for (j = 0, v = vbuf;j < 3;j++, v += 14)
{
e = *element3i++;
if (vertex3f)
{
v[0] = vertex3f[e * 3 + 0];
v[1] = vertex3f[e * 3 + 1];
v[2] = vertex3f[e * 3 + 2];
}
if (svector3f)
{
v[3] = svector3f[e * 3 + 0];
v[4] = svector3f[e * 3 + 1];
v[5] = svector3f[e * 3 + 2];
}
if (tvector3f)
{
v[6] = tvector3f[e * 3 + 0];
v[7] = tvector3f[e * 3 + 1];
v[8] = tvector3f[e * 3 + 2];
}
if (normal3f)
{
v[9] = normal3f[e * 3 + 0];
v[10] = normal3f[e * 3 + 1];
v[11] = normal3f[e * 3 + 2];
}
if (texcoord2f)
{
v[12] = texcoord2f[e * 2 + 0];
v[13] = texcoord2f[e * 2 + 1];
}
}
Mod_ShadowMesh_AddTriangle(mempool, mesh, map_diffuse, map_specular, map_normal, vbuf);
}
// the triangle calculation can take a while, so let's do a keepalive here
CL_KeepaliveMessage(false);
}
shadowmesh_t *Mod_ShadowMesh_Begin(mempool_t *mempool, int maxverts, int maxtriangles, rtexture_t *map_diffuse, rtexture_t *map_specular, rtexture_t *map_normal, int light, int neighbors, int expandable)
{
// the preparation before shadow mesh initialization can take a while, so let's do a keepalive here
CL_KeepaliveMessage(false);
return Mod_ShadowMesh_Alloc(mempool, maxverts, maxtriangles, map_diffuse, map_specular, map_normal, light, neighbors, expandable);
}
static void Mod_ShadowMesh_CreateVBOs(shadowmesh_t *mesh, mempool_t *mempool)
{
if (!mesh->numverts)
return;
// build r_vertexmesh_t array
// (compressed interleaved array for D3D)
if (!mesh->vertexmesh && mesh->texcoord2f && vid.useinterleavedarrays)
{
int vertexindex;
int numvertices = mesh->numverts;
r_vertexmesh_t *vertexmesh;
mesh->vertexmesh = vertexmesh = (r_vertexmesh_t*)Mem_Alloc(mempool, numvertices * sizeof(*mesh->vertexmesh));
for (vertexindex = 0;vertexindex < numvertices;vertexindex++, vertexmesh++)
{
VectorCopy(mesh->vertex3f + 3*vertexindex, vertexmesh->vertex3f);
VectorScale(mesh->svector3f + 3*vertexindex, 1.0f, vertexmesh->svector3f);
VectorScale(mesh->tvector3f + 3*vertexindex, 1.0f, vertexmesh->tvector3f);
VectorScale(mesh->normal3f + 3*vertexindex, 1.0f, vertexmesh->normal3f);
Vector2Copy(mesh->texcoord2f + 2*vertexindex, vertexmesh->texcoordtexture2f);
}
}
// upload short indices as a buffer
if (mesh->element3s && !mesh->element3s_indexbuffer)
mesh->element3s_indexbuffer = R_Mesh_CreateMeshBuffer(mesh->element3s, mesh->numtriangles * sizeof(short[3]), loadmodel->name, true, false, false, true);
// upload int indices as a buffer
if (mesh->element3i && !mesh->element3i_indexbuffer && !mesh->element3s)
mesh->element3i_indexbuffer = R_Mesh_CreateMeshBuffer(mesh->element3i, mesh->numtriangles * sizeof(int[3]), loadmodel->name, true, false, false, false);
// vertex buffer is several arrays and we put them in the same buffer
//
// is this wise? the texcoordtexture2f array is used with dynamic
// vertex/svector/tvector/normal when rendering animated models, on the
// other hand animated models don't use a lot of vertices anyway...
if (!mesh->vbo_vertexbuffer && !vid.useinterleavedarrays)
{
size_t size;
unsigned char *mem;
size = 0;
mesh->vbooffset_vertexmesh = size;if (mesh->vertexmesh ) size += mesh->numverts * sizeof(r_vertexmesh_t);
mesh->vbooffset_vertex3f = size;if (mesh->vertex3f ) size += mesh->numverts * sizeof(float[3]);
mesh->vbooffset_svector3f = size;if (mesh->svector3f ) size += mesh->numverts * sizeof(float[3]);
mesh->vbooffset_tvector3f = size;if (mesh->tvector3f ) size += mesh->numverts * sizeof(float[3]);
mesh->vbooffset_normal3f = size;if (mesh->normal3f ) size += mesh->numverts * sizeof(float[3]);
mesh->vbooffset_texcoord2f = size;if (mesh->texcoord2f ) size += mesh->numverts * sizeof(float[2]);
mem = (unsigned char *)Mem_Alloc(tempmempool, size);
if (mesh->vertexmesh ) memcpy(mem + mesh->vbooffset_vertexmesh , mesh->vertexmesh , mesh->numverts * sizeof(r_vertexmesh_t));
if (mesh->vertex3f ) memcpy(mem + mesh->vbooffset_vertex3f , mesh->vertex3f , mesh->numverts * sizeof(float[3]));
if (mesh->svector3f ) memcpy(mem + mesh->vbooffset_svector3f , mesh->svector3f , mesh->numverts * sizeof(float[3]));
if (mesh->tvector3f ) memcpy(mem + mesh->vbooffset_tvector3f , mesh->tvector3f , mesh->numverts * sizeof(float[3]));
if (mesh->normal3f ) memcpy(mem + mesh->vbooffset_normal3f , mesh->normal3f , mesh->numverts * sizeof(float[3]));
if (mesh->texcoord2f ) memcpy(mem + mesh->vbooffset_texcoord2f , mesh->texcoord2f , mesh->numverts * sizeof(float[2]));
mesh->vbo_vertexbuffer = R_Mesh_CreateMeshBuffer(mem, size, "shadowmesh", false, false, false, false);
Mem_Free(mem);
}
}
shadowmesh_t *Mod_ShadowMesh_Finish(mempool_t *mempool, shadowmesh_t *firstmesh, qboolean light, qboolean neighbors, qboolean createvbo)
{
shadowmesh_t *mesh, *newmesh, *nextmesh;
// reallocate meshs to conserve space
for (mesh = firstmesh, firstmesh = NULL;mesh;mesh = nextmesh)
{
nextmesh = mesh->next;
if (mesh->numverts >= 3 && mesh->numtriangles >= 1)
{
newmesh = Mod_ShadowMesh_ReAlloc(mempool, mesh, light, neighbors);
newmesh->next = firstmesh;
firstmesh = newmesh;
if (newmesh->element3s)
{
int i;
for (i = 0;i < newmesh->numtriangles*3;i++)
newmesh->element3s[i] = newmesh->element3i[i];
}
if (createvbo)
Mod_ShadowMesh_CreateVBOs(newmesh, mempool);
}
Mem_Free(mesh);
}
// this can take a while, so let's do a keepalive here
CL_KeepaliveMessage(false);
return firstmesh;
}
void Mod_ShadowMesh_CalcBBox(shadowmesh_t *firstmesh, vec3_t mins, vec3_t maxs, vec3_t center, float *radius)
{
int i;
shadowmesh_t *mesh;
vec3_t nmins, nmaxs, ncenter, temp;
float nradius2, dist2, *v;
VectorClear(nmins);
VectorClear(nmaxs);
// calculate bbox
for (mesh = firstmesh;mesh;mesh = mesh->next)
{
if (mesh == firstmesh)
{
VectorCopy(mesh->vertex3f, nmins);
VectorCopy(mesh->vertex3f, nmaxs);
}
for (i = 0, v = mesh->vertex3f;i < mesh->numverts;i++, v += 3)
{
if (nmins[0] > v[0]) nmins[0] = v[0];if (nmaxs[0] < v[0]) nmaxs[0] = v[0];
if (nmins[1] > v[1]) nmins[1] = v[1];if (nmaxs[1] < v[1]) nmaxs[1] = v[1];
if (nmins[2] > v[2]) nmins[2] = v[2];if (nmaxs[2] < v[2]) nmaxs[2] = v[2];
}
}
// calculate center and radius
ncenter[0] = (nmins[0] + nmaxs[0]) * 0.5f;
ncenter[1] = (nmins[1] + nmaxs[1]) * 0.5f;
ncenter[2] = (nmins[2] + nmaxs[2]) * 0.5f;
nradius2 = 0;
for (mesh = firstmesh;mesh;mesh = mesh->next)
{
for (i = 0, v = mesh->vertex3f;i < mesh->numverts;i++, v += 3)
{
VectorSubtract(v, ncenter, temp);
dist2 = DotProduct(temp, temp);
if (nradius2 < dist2)
nradius2 = dist2;
}
}
// return data
if (mins)
VectorCopy(nmins, mins);
if (maxs)
VectorCopy(nmaxs, maxs);
if (center)
VectorCopy(ncenter, center);
if (radius)
*radius = sqrt(nradius2);
}
void Mod_ShadowMesh_Free(shadowmesh_t *mesh)
{
shadowmesh_t *nextmesh;
for (;mesh;mesh = nextmesh)
{
if (mesh->element3i_indexbuffer)
R_Mesh_DestroyMeshBuffer(mesh->element3i_indexbuffer);
if (mesh->element3s_indexbuffer)
R_Mesh_DestroyMeshBuffer(mesh->element3s_indexbuffer);
if (mesh->vbo_vertexbuffer)
R_Mesh_DestroyMeshBuffer(mesh->vbo_vertexbuffer);
nextmesh = mesh->next;
Mem_Free(mesh);
}
}
void Mod_CreateCollisionMesh(dp_model_t *mod)
{
int k, numcollisionmeshtriangles;
qboolean usesinglecollisionmesh = false;
const msurface_t *surface = NULL;
mempool_t *mempool = mod->mempool;
if (!mempool && mod->brush.parentmodel)
mempool = mod->brush.parentmodel->mempool;
// make a single combined collision mesh for physics engine use
// TODO rewrite this to use the collision brushes as source, to fix issues with e.g. common/caulk which creates no drawsurface
numcollisionmeshtriangles = 0;
for (k = 0;k < mod->nummodelsurfaces;k++)
{
surface = mod->data_surfaces + mod->firstmodelsurface + k;
if (!strcmp(surface->texture->name, "collision") || !strcmp(surface->texture->name, "collisionconvex")) // found collision mesh
{
usesinglecollisionmesh = true;
numcollisionmeshtriangles = surface->num_triangles;
break;
}
if (!(surface->texture->supercontents & SUPERCONTENTS_SOLID))
continue;
numcollisionmeshtriangles += surface->num_triangles;
}
mod->brush.collisionmesh = Mod_ShadowMesh_Begin(mempool, numcollisionmeshtriangles * 3, numcollisionmeshtriangles, NULL, NULL, NULL, false, false, true);
if (usesinglecollisionmesh)
Mod_ShadowMesh_AddMesh(mempool, mod->brush.collisionmesh, NULL, NULL, NULL, mod->surfmesh.data_vertex3f, NULL, NULL, NULL, NULL, surface->num_triangles, (mod->surfmesh.data_element3i + 3 * surface->num_firsttriangle));
else
{
for (k = 0;k < mod->nummodelsurfaces;k++)
{
surface = mod->data_surfaces + mod->firstmodelsurface + k;
if (!(surface->texture->supercontents & SUPERCONTENTS_SOLID))
continue;
Mod_ShadowMesh_AddMesh(mempool, mod->brush.collisionmesh, NULL, NULL, NULL, mod->surfmesh.data_vertex3f, NULL, NULL, NULL, NULL, surface->num_triangles, (mod->surfmesh.data_element3i + 3 * surface->num_firsttriangle));
}
}
mod->brush.collisionmesh = Mod_ShadowMesh_Finish(mempool, mod->brush.collisionmesh, false, false, false);
}
#if 0
static void Mod_GetTerrainVertex3fTexCoord2fFromBGRA(const unsigned char *imagepixels, int imagewidth, int imageheight, int ix, int iy, float *vertex3f, float *texcoord2f, matrix4x4_t *pixelstepmatrix, matrix4x4_t *pixeltexturestepmatrix)
{
float v[3], tc[3];
v[0] = ix;
v[1] = iy;
if (ix >= 0 && iy >= 0 && ix < imagewidth && iy < imageheight)
v[2] = (imagepixels[((iy*imagewidth)+ix)*4+0] + imagepixels[((iy*imagewidth)+ix)*4+1] + imagepixels[((iy*imagewidth)+ix)*4+2]) * (1.0f / 765.0f);
else
v[2] = 0;
Matrix4x4_Transform(pixelstepmatrix, v, vertex3f);
Matrix4x4_Transform(pixeltexturestepmatrix, v, tc);
texcoord2f[0] = tc[0];
texcoord2f[1] = tc[1];
}
static void Mod_GetTerrainVertexFromBGRA(const unsigned char *imagepixels, int imagewidth, int imageheight, int ix, int iy, float *vertex3f, float *svector3f, float *tvector3f, float *normal3f, float *texcoord2f, matrix4x4_t *pixelstepmatrix, matrix4x4_t *pixeltexturestepmatrix)
{
float vup[3], vdown[3], vleft[3], vright[3];
float tcup[3], tcdown[3], tcleft[3], tcright[3];
float sv[3], tv[3], nl[3];
Mod_GetTerrainVertex3fTexCoord2fFromBGRA(imagepixels, imagewidth, imageheight, ix, iy, vertex3f, texcoord2f, pixelstepmatrix, pixeltexturestepmatrix);
Mod_GetTerrainVertex3fTexCoord2fFromBGRA(imagepixels, imagewidth, imageheight, ix, iy - 1, vup, tcup, pixelstepmatrix, pixeltexturestepmatrix);
Mod_GetTerrainVertex3fTexCoord2fFromBGRA(imagepixels, imagewidth, imageheight, ix, iy + 1, vdown, tcdown, pixelstepmatrix, pixeltexturestepmatrix);
Mod_GetTerrainVertex3fTexCoord2fFromBGRA(imagepixels, imagewidth, imageheight, ix - 1, iy, vleft, tcleft, pixelstepmatrix, pixeltexturestepmatrix);
Mod_GetTerrainVertex3fTexCoord2fFromBGRA(imagepixels, imagewidth, imageheight, ix + 1, iy, vright, tcright, pixelstepmatrix, pixeltexturestepmatrix);
Mod_BuildBumpVectors(vertex3f, vup, vright, texcoord2f, tcup, tcright, svector3f, tvector3f, normal3f);
Mod_BuildBumpVectors(vertex3f, vright, vdown, texcoord2f, tcright, tcdown, sv, tv, nl);
VectorAdd(svector3f, sv, svector3f);
VectorAdd(tvector3f, tv, tvector3f);
VectorAdd(normal3f, nl, normal3f);
Mod_BuildBumpVectors(vertex3f, vdown, vleft, texcoord2f, tcdown, tcleft, sv, tv, nl);
VectorAdd(svector3f, sv, svector3f);
VectorAdd(tvector3f, tv, tvector3f);
VectorAdd(normal3f, nl, normal3f);
Mod_BuildBumpVectors(vertex3f, vleft, vup, texcoord2f, tcleft, tcup, sv, tv, nl);
VectorAdd(svector3f, sv, svector3f);
VectorAdd(tvector3f, tv, tvector3f);
VectorAdd(normal3f, nl, normal3f);
}
static void Mod_ConstructTerrainPatchFromBGRA(const unsigned char *imagepixels, int imagewidth, int imageheight, int x1, int y1, int width, int height, int *element3i, int *neighbor3i, float *vertex3f, float *svector3f, float *tvector3f, float *normal3f, float *texcoord2f, matrix4x4_t *pixelstepmatrix, matrix4x4_t *pixeltexturestepmatrix)
{
int x, y, ix, iy, *e;
e = element3i;
for (y = 0;y < height;y++)
{
for (x = 0;x < width;x++)
{
e[0] = (y + 1) * (width + 1) + (x + 0);
e[1] = (y + 0) * (width + 1) + (x + 0);
e[2] = (y + 1) * (width + 1) + (x + 1);
e[3] = (y + 0) * (width + 1) + (x + 0);
e[4] = (y + 0) * (width + 1) + (x + 1);
e[5] = (y + 1) * (width + 1) + (x + 1);
e += 6;
}
}
Mod_BuildTriangleNeighbors(neighbor3i, element3i, width*height*2);
for (y = 0, iy = y1;y < height + 1;y++, iy++)
for (x = 0, ix = x1;x < width + 1;x++, ix++, vertex3f += 3, texcoord2f += 2, svector3f += 3, tvector3f += 3, normal3f += 3)
Mod_GetTerrainVertexFromBGRA(imagepixels, imagewidth, imageheight, ix, iy, vertex3f, texcoord2f, svector3f, tvector3f, normal3f, pixelstepmatrix, pixeltexturestepmatrix);
}
#endif
#if 0
void Mod_Terrain_SurfaceRecurseChunk(dp_model_t *model, int stepsize, int x, int y)
{
float mins[3];
float maxs[3];
float chunkwidth = min(stepsize, model->terrain.width - 1 - x);
float chunkheight = min(stepsize, model->terrain.height - 1 - y);
float viewvector[3];
unsigned int firstvertex;
unsigned int *e;
float *v;
if (chunkwidth < 2 || chunkheight < 2)
return;
VectorSet(mins, model->terrain.mins[0] + x * stepsize * model->terrain.scale[0], model->terrain.mins[1] + y * stepsize * model->terrain.scale[1], model->terrain.mins[2]);
VectorSet(maxs, model->terrain.mins[0] + (x+1) * stepsize * model->terrain.scale[0], model->terrain.mins[1] + (y+1) * stepsize * model->terrain.scale[1], model->terrain.maxs[2]);
viewvector[0] = bound(mins[0], localvieworigin, maxs[0]) - model->terrain.vieworigin[0];
viewvector[1] = bound(mins[1], localvieworigin, maxs[1]) - model->terrain.vieworigin[1];
viewvector[2] = bound(mins[2], localvieworigin, maxs[2]) - model->terrain.vieworigin[2];
if (stepsize > 1 && VectorLength(viewvector) < stepsize*model->terrain.scale[0]*r_terrain_lodscale.value)
{
// too close for this stepsize, emit as 4 chunks instead
stepsize /= 2;
Mod_Terrain_SurfaceRecurseChunk(model, stepsize, x, y);
Mod_Terrain_SurfaceRecurseChunk(model, stepsize, x+stepsize, y);
Mod_Terrain_SurfaceRecurseChunk(model, stepsize, x, y+stepsize);
Mod_Terrain_SurfaceRecurseChunk(model, stepsize, x+stepsize, y+stepsize);
return;
}
// emit the geometry at stepsize into our vertex buffer / index buffer
// we add two columns and two rows for skirt
outwidth = chunkwidth+2;
outheight = chunkheight+2;
outwidth2 = outwidth-1;
outheight2 = outheight-1;
outwidth3 = outwidth+1;
outheight3 = outheight+1;
firstvertex = numvertices;
e = model->terrain.element3i + numtriangles;
numtriangles += chunkwidth*chunkheight*2+chunkwidth*2*2+chunkheight*2*2;
v = model->terrain.vertex3f + numvertices;
numvertices += (chunkwidth+1)*(chunkheight+1)+(chunkwidth+1)*2+(chunkheight+1)*2;
// emit the triangles (note: the skirt is treated as two extra rows and two extra columns)
for (ty = 0;ty < outheight;ty++)
{
for (tx = 0;tx < outwidth;tx++)
{
*e++ = firstvertex + (ty )*outwidth3+(tx );
*e++ = firstvertex + (ty )*outwidth3+(tx+1);
*e++ = firstvertex + (ty+1)*outwidth3+(tx+1);
*e++ = firstvertex + (ty )*outwidth3+(tx );
*e++ = firstvertex + (ty+1)*outwidth3+(tx+1);
*e++ = firstvertex + (ty+1)*outwidth3+(tx );
}
}
// TODO: emit surface vertices (x+tx*stepsize, y+ty*stepsize)
for (ty = 0;ty <= outheight;ty++)
{
skirtrow = ty == 0 || ty == outheight;
ry = y+bound(1, ty, outheight)*stepsize;
for (tx = 0;tx <= outwidth;tx++)
{
skirt = skirtrow || tx == 0 || tx == outwidth;
rx = x+bound(1, tx, outwidth)*stepsize;
v[0] = rx*scale[0];
v[1] = ry*scale[1];
v[2] = heightmap[ry*terrainwidth+rx]*scale[2];
v += 3;
}
}
// TODO: emit skirt vertices
}
void Mod_Terrain_UpdateSurfacesForViewOrigin(dp_model_t *model)
{
for (y = 0;y < model->terrain.size[1];y += model->terrain.
Mod_Terrain_SurfaceRecurseChunk(model, model->terrain.maxstepsize, x, y);
Mod_Terrain_BuildChunk(model,
}
#endif
static int Mod_LoadQ3Shaders_EnumerateWaveFunc(const char *s)
{
int offset = 0;
if (!strncasecmp(s, "user", 4)) // parse stuff like "user1sin", always user<n>func
{
offset = bound(0, s[4] - '0', 9);
offset = (offset + 1) << Q3WAVEFUNC_USER_SHIFT;
s += 4;
if(*s)
++s;
}
if (!strcasecmp(s, "sin")) return offset | Q3WAVEFUNC_SIN;
if (!strcasecmp(s, "square")) return offset | Q3WAVEFUNC_SQUARE;
if (!strcasecmp(s, "triangle")) return offset | Q3WAVEFUNC_TRIANGLE;
if (!strcasecmp(s, "sawtooth")) return offset | Q3WAVEFUNC_SAWTOOTH;
if (!strcasecmp(s, "inversesawtooth")) return offset | Q3WAVEFUNC_INVERSESAWTOOTH;
if (!strcasecmp(s, "noise")) return offset | Q3WAVEFUNC_NOISE;
if (!strcasecmp(s, "none")) return offset | Q3WAVEFUNC_NONE;
Con_DPrintf("Mod_LoadQ3Shaders: unknown wavefunc %s\n", s);
return offset | Q3WAVEFUNC_NONE;
}
void Mod_FreeQ3Shaders(void)
{
Mem_FreePool(&q3shaders_mem);
}
static void Q3Shader_AddToHash (q3shaderinfo_t* shader)
{
unsigned short hash = CRC_Block_CaseInsensitive ((const unsigned char *)shader->name, strlen (shader->name));
q3shader_hash_entry_t* entry = q3shader_data->hash + (hash % Q3SHADER_HASH_SIZE);
q3shader_hash_entry_t* lastEntry = NULL;
while (entry != NULL)
{
if (strcasecmp (entry->shader.name, shader->name) == 0)
{
// redeclaration
if(shader->dpshaderkill)
{
// killed shader is a redeclarion? we can safely ignore it
return;
}
else if(entry->shader.dpshaderkill)
{
// replace the old shader!
// this will skip the entry allocating part
// below and just replace the shader
break;
}
else
{
unsigned char *start, *end, *start2;
start = (unsigned char *) (&shader->Q3SHADERINFO_COMPARE_START);
end = ((unsigned char *) (&shader->Q3SHADERINFO_COMPARE_END)) + sizeof(shader->Q3SHADERINFO_COMPARE_END);
start2 = (unsigned char *) (&entry->shader.Q3SHADERINFO_COMPARE_START);
if(memcmp(start, start2, end - start))
Con_DPrintf("Shader '%s' already defined, ignoring mismatching redeclaration\n", shader->name);
else
Con_DPrintf("Shader '%s' already defined\n", shader->name);
return;
}
}
lastEntry = entry;
entry = entry->chain;
}
if (entry == NULL)
{
if (lastEntry->shader.name[0] != 0)
{
/* Add to chain */
q3shader_hash_entry_t* newEntry = (q3shader_hash_entry_t*)
Mem_ExpandableArray_AllocRecord (&q3shader_data->hash_entries);
while (lastEntry->chain != NULL) lastEntry = lastEntry->chain;
lastEntry->chain = newEntry;
newEntry->chain = NULL;
lastEntry = newEntry;
}
/* else: head of chain, in hash entry array */
entry = lastEntry;
}
memcpy (&entry->shader, shader, sizeof (q3shaderinfo_t));
}
extern cvar_t mod_noshader_default_offsetmapping;
extern cvar_t mod_q3shader_default_offsetmapping;
extern cvar_t mod_q3shader_default_offsetmapping_scale;
extern cvar_t mod_q3shader_default_offsetmapping_bias;
extern cvar_t mod_q3shader_default_polygonoffset;
extern cvar_t mod_q3shader_default_polygonfactor;
extern cvar_t mod_q3shader_force_addalpha;
extern cvar_t mod_q3shader_force_terrain_alphaflag;
void Mod_LoadQ3Shaders(void)
{
int j;
int fileindex;
fssearch_t *search;
char *f;
const char *text;
q3shaderinfo_t shader;
q3shaderinfo_layer_t *layer;
int numparameters;
char parameter[TEXTURE_MAXFRAMES + 4][Q3PATHLENGTH];
char *custsurfaceparmnames[256]; // VorteX: q3map2 has 64 but well, someone will need more
unsigned long custsurfaceflags[256];
int numcustsurfaceflags;
qboolean dpshaderkill;
Mod_FreeQ3Shaders();
q3shaders_mem = Mem_AllocPool("q3shaders", 0, NULL);
q3shader_data = (q3shader_data_t*)Mem_Alloc (q3shaders_mem,
sizeof (q3shader_data_t));
Mem_ExpandableArray_NewArray (&q3shader_data->hash_entries,
q3shaders_mem, sizeof (q3shader_hash_entry_t), 256);
Mem_ExpandableArray_NewArray (&q3shader_data->char_ptrs,
q3shaders_mem, sizeof (char**), 256);
// parse custinfoparms.txt
numcustsurfaceflags = 0;
if ((text = f = (char *)FS_LoadFile("scripts/custinfoparms.txt", tempmempool, false, NULL)) != NULL)
{
if (!COM_ParseToken_QuakeC(&text, false) || strcasecmp(com_token, "{"))
Con_DPrintf("scripts/custinfoparms.txt: contentflags section parsing error - expected \"{\", found \"%s\"\n", com_token);
else
{
while (COM_ParseToken_QuakeC(&text, false))
if (!strcasecmp(com_token, "}"))
break;
// custom surfaceflags section
if (!COM_ParseToken_QuakeC(&text, false) || strcasecmp(com_token, "{"))
Con_DPrintf("scripts/custinfoparms.txt: surfaceflags section parsing error - expected \"{\", found \"%s\"\n", com_token);
else
{
while(COM_ParseToken_QuakeC(&text, false))
{
if (!strcasecmp(com_token, "}"))
break;
// register surfaceflag
if (numcustsurfaceflags >= 256)
{
Con_Printf("scripts/custinfoparms.txt: surfaceflags section parsing error - max 256 surfaceflags exceeded\n");
break;
}
// name
j = strlen(com_token)+1;
custsurfaceparmnames[numcustsurfaceflags] = (char *)Mem_Alloc(tempmempool, j);
strlcpy(custsurfaceparmnames[numcustsurfaceflags], com_token, j+1);
// value
if (COM_ParseToken_QuakeC(&text, false))
custsurfaceflags[numcustsurfaceflags] = strtol(com_token, NULL, 0);
else
custsurfaceflags[numcustsurfaceflags] = 0;
numcustsurfaceflags++;
}
}
}
Mem_Free(f);
}
// parse shaders
search = FS_Search("scripts/*.shader", true, false);
if (!search)
return;
for (fileindex = 0;fileindex < search->numfilenames;fileindex++)
{
text = f = (char *)FS_LoadFile(search->filenames[fileindex], tempmempool, false, NULL);
if (!f)
continue;
while (COM_ParseToken_QuakeC(&text, false))
{
memset (&shader, 0, sizeof(shader));
shader.name[0] = 0;
shader.surfaceparms = 0;
shader.surfaceflags = 0;
shader.textureflags = 0;
shader.numlayers = 0;
shader.lighting = false;
shader.vertexalpha = false;
shader.textureblendalpha = false;
shader.primarylayer = 0;
shader.backgroundlayer = 0;
shader.skyboxname[0] = 0;
shader.deforms[0].deform = Q3DEFORM_NONE;
shader.dpnortlight = false;
shader.dpshadow = false;
shader.dpnoshadow = false;
shader.dpmeshcollisions = false;
shader.dpshaderkill = false;
shader.dpreflectcube[0] = 0;
shader.reflectmin = 0;
shader.reflectmax = 1;
shader.refractfactor = 1;
Vector4Set(shader.refractcolor4f, 1, 1, 1, 1);
shader.reflectfactor = 1;
Vector4Set(shader.reflectcolor4f, 1, 1, 1, 1);
shader.r_water_wateralpha = 1;
shader.r_water_waterscroll[0] = 0;
shader.r_water_waterscroll[1] = 0;
shader.offsetmapping = (mod_q3shader_default_offsetmapping.value) ? OFFSETMAPPING_DEFAULT : OFFSETMAPPING_OFF;
shader.offsetscale = mod_q3shader_default_offsetmapping_scale.value;
shader.offsetbias = mod_q3shader_default_offsetmapping_bias.value;
shader.biaspolygonoffset = mod_q3shader_default_polygonoffset.value;
shader.biaspolygonfactor = mod_q3shader_default_polygonfactor.value;
shader.transparentsort = TRANSPARENTSORT_DISTANCE;
shader.specularscalemod = 1;
shader.specularpowermod = 1;
shader.rtlightambient = 0;
// WHEN ADDING DEFAULTS HERE, REMEMBER TO PUT DEFAULTS IN ALL LOADERS
// JUST GREP FOR "specularscalemod = 1".
strlcpy(shader.name, com_token, sizeof(shader.name));
if (!COM_ParseToken_QuakeC(&text, false) || strcasecmp(com_token, "{"))
{
Con_DPrintf("%s parsing error - expected \"{\", found \"%s\"\n", search->filenames[fileindex], com_token);
break;
}
while (COM_ParseToken_QuakeC(&text, false))
{
if (!strcasecmp(com_token, "}"))
break;
if (!strcasecmp(com_token, "{"))
{
static q3shaderinfo_layer_t dummy;
if (shader.numlayers < Q3SHADER_MAXLAYERS)
{
layer = shader.layers + shader.numlayers++;
}
else
{
// parse and process it anyway, just don't store it (so a map $lightmap or such stuff still is found)
memset(&dummy, 0, sizeof(dummy));
layer = &dummy;
}
layer->rgbgen.rgbgen = Q3RGBGEN_IDENTITY;
layer->alphagen.alphagen = Q3ALPHAGEN_IDENTITY;
layer->tcgen.tcgen = Q3TCGEN_TEXTURE;
layer->blendfunc[0] = GL_ONE;
layer->blendfunc[1] = GL_ZERO;
while (COM_ParseToken_QuakeC(&text, false))
{
if (!strcasecmp(com_token, "}"))
break;
if (!strcasecmp(com_token, "\n"))
continue;
numparameters = 0;
for (j = 0;strcasecmp(com_token, "\n") && strcasecmp(com_token, "}");j++)
{
if (j < TEXTURE_MAXFRAMES + 4)
{
// remap dp_water to dpwater, dp_reflect to dpreflect, etc.
if(j == 0 && !strncasecmp(com_token, "dp_", 3))
dpsnprintf(parameter[j], sizeof(parameter[j]), "dp%s", &com_token[3]);
else
strlcpy(parameter[j], com_token, sizeof(parameter[j]));
numparameters = j + 1;
}
if (!COM_ParseToken_QuakeC(&text, true))
break;
}
//for (j = numparameters;j < TEXTURE_MAXFRAMES + 4;j++)
// parameter[j][0] = 0;
if (developer_insane.integer)
{
Con_DPrintf("%s %i: ", shader.name, shader.numlayers - 1);
for (j = 0;j < numparameters;j++)
Con_DPrintf(" %s", parameter[j]);
Con_DPrint("\n");
}
if (numparameters >= 2 && !strcasecmp(parameter[0], "blendfunc"))
{
if (numparameters == 2)
{
if (!strcasecmp(parameter[1], "add"))
{
layer->blendfunc[0] = GL_ONE;
layer->blendfunc[1] = GL_ONE;
}
else if (!strcasecmp(parameter[1], "addalpha"))
{
layer->blendfunc[0] = GL_SRC_ALPHA;
layer->blendfunc[1] = GL_ONE;
}
else if (!strcasecmp(parameter[1], "filter"))
{
layer->blendfunc[0] = GL_DST_COLOR;
layer->blendfunc[1] = GL_ZERO;
}
else if (!strcasecmp(parameter[1], "blend"))
{
layer->blendfunc[0] = GL_SRC_ALPHA;
layer->blendfunc[1] = GL_ONE_MINUS_SRC_ALPHA;
}
}
else if (numparameters == 3)
{
int k;
for (k = 0;k < 2;k++)
{
if (!strcasecmp(parameter[k+1], "GL_ONE"))
layer->blendfunc[k] = GL_ONE;
else if (!strcasecmp(parameter[k+1], "GL_ZERO"))
layer->blendfunc[k] = GL_ZERO;
else if (!strcasecmp(parameter[k+1], "GL_SRC_COLOR"))
layer->blendfunc[k] = GL_SRC_COLOR;
else if (!strcasecmp(parameter[k+1], "GL_SRC_ALPHA"))
layer->blendfunc[k] = GL_SRC_ALPHA;
else if (!strcasecmp(parameter[k+1], "GL_DST_COLOR"))
layer->blendfunc[k] = GL_DST_COLOR;
else if (!strcasecmp(parameter[k+1], "GL_DST_ALPHA"))
layer->blendfunc[k] = GL_DST_ALPHA;
else if (!strcasecmp(parameter[k+1], "GL_ONE_MINUS_SRC_COLOR"))
layer->blendfunc[k] = GL_ONE_MINUS_SRC_COLOR;
else if (!strcasecmp(parameter[k+1], "GL_ONE_MINUS_SRC_ALPHA"))
layer->blendfunc[k] = GL_ONE_MINUS_SRC_ALPHA;
else if (!strcasecmp(parameter[k+1], "GL_ONE_MINUS_DST_COLOR"))
layer->blendfunc[k] = GL_ONE_MINUS_DST_COLOR;
else if (!strcasecmp(parameter[k+1], "GL_ONE_MINUS_DST_ALPHA"))
layer->blendfunc[k] = GL_ONE_MINUS_DST_ALPHA;
else
layer->blendfunc[k] = GL_ONE; // default in case of parsing error
}
}
}
if (numparameters >= 2 && !strcasecmp(parameter[0], "alphafunc"))
layer->alphatest = true;
if (numparameters >= 2 && (!strcasecmp(parameter[0], "map") || !strcasecmp(parameter[0], "clampmap")))
{
if (!strcasecmp(parameter[0], "clampmap"))
layer->clampmap = true;
layer->numframes = 1;
layer->framerate = 1;
layer->texturename = (char**)Mem_ExpandableArray_AllocRecord (
&q3shader_data->char_ptrs);
layer->texturename[0] = Mem_strdup (q3shaders_mem, parameter[1]);
if (!strcasecmp(parameter[1], "$lightmap"))
shader.lighting = true;
}
else if (numparameters >= 3 && (!strcasecmp(parameter[0], "animmap") || !strcasecmp(parameter[0], "animclampmap")))
{
int i;
layer->numframes = min(numparameters - 2, TEXTURE_MAXFRAMES);
layer->framerate = atof(parameter[1]);
layer->texturename = (char **) Mem_Alloc (q3shaders_mem, sizeof (char*) * layer->numframes);
for (i = 0;i < layer->numframes;i++)
layer->texturename[i] = Mem_strdup (q3shaders_mem, parameter[i + 2]);
}
else if (numparameters >= 2 && !strcasecmp(parameter[0], "rgbgen"))
{
int i;
for (i = 0;i < numparameters - 2 && i < Q3RGBGEN_MAXPARMS;i++)
layer->rgbgen.parms[i] = atof(parameter[i+2]);
if (!strcasecmp(parameter[1], "identity")) layer->rgbgen.rgbgen = Q3RGBGEN_IDENTITY;
else if (!strcasecmp(parameter[1], "const")) layer->rgbgen.rgbgen = Q3RGBGEN_CONST;
else if (!strcasecmp(parameter[1], "entity")) layer->rgbgen.rgbgen = Q3RGBGEN_ENTITY;
else if (!strcasecmp(parameter[1], "exactvertex")) layer->rgbgen.rgbgen = Q3RGBGEN_EXACTVERTEX;
else if (!strcasecmp(parameter[1], "identitylighting")) layer->rgbgen.rgbgen = Q3RGBGEN_IDENTITYLIGHTING;
else if (!strcasecmp(parameter[1], "lightingdiffuse")) layer->rgbgen.rgbgen = Q3RGBGEN_LIGHTINGDIFFUSE;
else if (!strcasecmp(parameter[1], "oneminusentity")) layer->rgbgen.rgbgen = Q3RGBGEN_ONEMINUSENTITY;
else if (!strcasecmp(parameter[1], "oneminusvertex")) layer->rgbgen.rgbgen = Q3RGBGEN_ONEMINUSVERTEX;
else if (!strcasecmp(parameter[1], "vertex")) layer->rgbgen.rgbgen = Q3RGBGEN_VERTEX;
else if (!strcasecmp(parameter[1], "wave"))
{
layer->rgbgen.rgbgen = Q3RGBGEN_WAVE;
layer->rgbgen.wavefunc = Mod_LoadQ3Shaders_EnumerateWaveFunc(parameter[2]);
for (i = 0;i < numparameters - 3 && i < Q3WAVEPARMS;i++)
layer->rgbgen.waveparms[i] = atof(parameter[i+3]);
}
else Con_DPrintf("%s parsing warning: unknown rgbgen %s\n", search->filenames[fileindex], parameter[1]);
}
else if (numparameters >= 2 && !strcasecmp(parameter[0], "alphagen"))
{
int i;
for (i = 0;i < numparameters - 2 && i < Q3ALPHAGEN_MAXPARMS;i++)
layer->alphagen.parms[i] = atof(parameter[i+2]);
if (!strcasecmp(parameter[1], "identity")) layer->alphagen.alphagen = Q3ALPHAGEN_IDENTITY;
else if (!strcasecmp(parameter[1], "const")) layer->alphagen.alphagen = Q3ALPHAGEN_CONST;
else if (!strcasecmp(parameter[1], "entity")) layer->alphagen.alphagen = Q3ALPHAGEN_ENTITY;
else if (!strcasecmp(parameter[1], "lightingspecular")) layer->alphagen.alphagen = Q3ALPHAGEN_LIGHTINGSPECULAR;
else if (!strcasecmp(parameter[1], "oneminusentity")) layer->alphagen.alphagen = Q3ALPHAGEN_ONEMINUSENTITY;
else if (!strcasecmp(parameter[1], "oneminusvertex")) layer->alphagen.alphagen = Q3ALPHAGEN_ONEMINUSVERTEX;
else if (!strcasecmp(parameter[1], "portal")) layer->alphagen.alphagen = Q3ALPHAGEN_PORTAL;
else if (!strcasecmp(parameter[1], "vertex")) layer->alphagen.alphagen = Q3ALPHAGEN_VERTEX;
else if (!strcasecmp(parameter[1], "wave"))
{
layer->alphagen.alphagen = Q3ALPHAGEN_WAVE;
layer->alphagen.wavefunc = Mod_LoadQ3Shaders_EnumerateWaveFunc(parameter[2]);
for (i = 0;i < numparameters - 3 && i < Q3WAVEPARMS;i++)
layer->alphagen.waveparms[i] = atof(parameter[i+3]);
}
else Con_DPrintf("%s parsing warning: unknown alphagen %s\n", search->filenames[fileindex], parameter[1]);
}
else if (numparameters >= 2 && (!strcasecmp(parameter[0], "texgen") || !strcasecmp(parameter[0], "tcgen")))
{
int i;
// observed values: tcgen environment
// no other values have been observed in real shaders
for (i = 0;i < numparameters - 2 && i < Q3TCGEN_MAXPARMS;i++)
layer->tcgen.parms[i] = atof(parameter[i+2]);
if (!strcasecmp(parameter[1], "base")) layer->tcgen.tcgen = Q3TCGEN_TEXTURE;
else if (!strcasecmp(parameter[1], "texture")) layer->tcgen.tcgen = Q3TCGEN_TEXTURE;
else if (!strcasecmp(parameter[1], "environment")) layer->tcgen.tcgen = Q3TCGEN_ENVIRONMENT;
else if (!strcasecmp(parameter[1], "lightmap")) layer->tcgen.tcgen = Q3TCGEN_LIGHTMAP;
else if (!strcasecmp(parameter[1], "vector")) layer->tcgen.tcgen = Q3TCGEN_VECTOR;
else Con_DPrintf("%s parsing warning: unknown tcgen mode %s\n", search->filenames[fileindex], parameter[1]);
}
else if (numparameters >= 2 && !strcasecmp(parameter[0], "tcmod"))
{
int i, tcmodindex;
// observed values:
// tcmod rotate #
// tcmod scale # #
// tcmod scroll # #
// tcmod stretch sin # # # #
// tcmod stretch triangle # # # #
// tcmod transform # # # # # #
// tcmod turb # # # #
// tcmod turb sin # # # # (this is bogus)
// no other values have been observed in real shaders
for (tcmodindex = 0;tcmodindex < Q3MAXTCMODS;tcmodindex++)
if (!layer->tcmods[tcmodindex].tcmod)
break;
if (tcmodindex < Q3MAXTCMODS)
{
for (i = 0;i < numparameters - 2 && i < Q3TCMOD_MAXPARMS;i++)
layer->tcmods[tcmodindex].parms[i] = atof(parameter[i+2]);
if (!strcasecmp(parameter[1], "entitytranslate")) layer->tcmods[tcmodindex].tcmod = Q3TCMOD_ENTITYTRANSLATE;
else if (!strcasecmp(parameter[1], "rotate")) layer->tcmods[tcmodindex].tcmod = Q3TCMOD_ROTATE;
else if (!strcasecmp(parameter[1], "scale")) layer->tcmods[tcmodindex].tcmod = Q3TCMOD_SCALE;
else if (!strcasecmp(parameter[1], "scroll")) layer->tcmods[tcmodindex].tcmod = Q3TCMOD_SCROLL;
else if (!strcasecmp(parameter[1], "page")) layer->tcmods[tcmodindex].tcmod = Q3TCMOD_PAGE;
else if (!strcasecmp(parameter[1], "stretch"))
{
layer->tcmods[tcmodindex].tcmod = Q3TCMOD_STRETCH;
layer->tcmods[tcmodindex].wavefunc = Mod_LoadQ3Shaders_EnumerateWaveFunc(parameter[2]);
for (i = 0;i < numparameters - 3 && i < Q3WAVEPARMS;i++)
layer->tcmods[tcmodindex].waveparms[i] = atof(parameter[i+3]);
}
else if (!strcasecmp(parameter[1], "transform")) layer->tcmods[tcmodindex].tcmod = Q3TCMOD_TRANSFORM;
else if (!strcasecmp(parameter[1], "turb")) layer->tcmods[tcmodindex].tcmod = Q3TCMOD_TURBULENT;
else Con_DPrintf("%s parsing warning: unknown tcmod mode %s\n", search->filenames[fileindex], parameter[1]);
}
else
Con_DPrintf("%s parsing warning: too many tcmods on one layer\n", search->filenames[fileindex]);
}
// break out a level if it was a closing brace (not using the character here to not confuse vim)
if (!strcasecmp(com_token, "}"))
break;
}
if (layer->rgbgen.rgbgen == Q3RGBGEN_LIGHTINGDIFFUSE || layer->rgbgen.rgbgen == Q3RGBGEN_VERTEX)
shader.lighting = true;
if (layer->alphagen.alphagen == Q3ALPHAGEN_VERTEX)
{
if (layer == shader.layers + 0)
{
// vertex controlled transparency
shader.vertexalpha = true;
}
else
{
// multilayer terrain shader or similar
shader.textureblendalpha = true;
if (mod_q3shader_force_terrain_alphaflag.integer)
shader.layers[0].texflags |= TEXF_ALPHA;
}
}
if(mod_q3shader_force_addalpha.integer)
{
// for a long while, DP treated GL_ONE GL_ONE as GL_SRC_ALPHA GL_ONE
// this cvar brings back this behaviour
if(layer->blendfunc[0] == GL_ONE && layer->blendfunc[1] == GL_ONE)
layer->blendfunc[0] = GL_SRC_ALPHA;
}
layer->texflags = 0;
if (layer->alphatest)
layer->texflags |= TEXF_ALPHA;
switch(layer->blendfunc[0])
{
case GL_SRC_ALPHA:
case GL_ONE_MINUS_SRC_ALPHA:
layer->texflags |= TEXF_ALPHA;
break;
}
switch(layer->blendfunc[1])
{
case GL_SRC_ALPHA:
case GL_ONE_MINUS_SRC_ALPHA:
layer->texflags |= TEXF_ALPHA;
break;
}
if (!(shader.surfaceparms & Q3SURFACEPARM_NOMIPMAPS))
layer->texflags |= TEXF_MIPMAP;
if (!(shader.textureflags & Q3TEXTUREFLAG_NOPICMIP))
layer->texflags |= TEXF_PICMIP | TEXF_COMPRESS;
if (layer->clampmap)
layer->texflags |= TEXF_CLAMP;
continue;
}
numparameters = 0;
for (j = 0;strcasecmp(com_token, "\n") && strcasecmp(com_token, "}");j++)
{
if (j < TEXTURE_MAXFRAMES + 4)
{
// remap dp_water to dpwater, dp_reflect to dpreflect, etc.
if(j == 0 && !strncasecmp(com_token, "dp_", 3))
dpsnprintf(parameter[j], sizeof(parameter[j]), "dp%s", &com_token[3]);
else
strlcpy(parameter[j], com_token, sizeof(parameter[j]));
numparameters = j + 1;
}
if (!COM_ParseToken_QuakeC(&text, true))
break;
}
//for (j = numparameters;j < TEXTURE_MAXFRAMES + 4;j++)
// parameter[j][0] = 0;
if (fileindex == 0 && !strcasecmp(com_token, "}"))
break;
if (developer_insane.integer)
{
Con_DPrintf("%s: ", shader.name);
for (j = 0;j < numparameters;j++)
Con_DPrintf(" %s", parameter[j]);
Con_DPrint("\n");
}
if (numparameters < 1)
continue;
if (!strcasecmp(parameter[0], "surfaceparm") && numparameters >= 2)
{
if (!strcasecmp(parameter[1], "alphashadow"))
shader.surfaceparms |= Q3SURFACEPARM_ALPHASHADOW;
else if (!strcasecmp(parameter[1], "areaportal"))
shader.surfaceparms |= Q3SURFACEPARM_AREAPORTAL;
else if (!strcasecmp(parameter[1], "botclip"))
shader.surfaceparms |= Q3SURFACEPARM_BOTCLIP;
else if (!strcasecmp(parameter[1], "clusterportal"))
shader.surfaceparms |= Q3SURFACEPARM_CLUSTERPORTAL;
else if (!strcasecmp(parameter[1], "detail"))
shader.surfaceparms |= Q3SURFACEPARM_DETAIL;
else if (!strcasecmp(parameter[1], "donotenter"))
shader.surfaceparms |= Q3SURFACEPARM_DONOTENTER;
else if (!strcasecmp(parameter[1], "dust"))
shader.surfaceparms |= Q3SURFACEPARM_DUST;
else if (!strcasecmp(parameter[1], "hint"))
shader.surfaceparms |= Q3SURFACEPARM_HINT;
else if (!strcasecmp(parameter[1], "fog"))
shader.surfaceparms |= Q3SURFACEPARM_FOG;
else if (!strcasecmp(parameter[1], "lava"))
shader.surfaceparms |= Q3SURFACEPARM_LAVA;
else if (!strcasecmp(parameter[1], "lightfilter"))
shader.surfaceparms |= Q3SURFACEPARM_LIGHTFILTER;
else if (!strcasecmp(parameter[1], "lightgrid"))
shader.surfaceparms |= Q3SURFACEPARM_LIGHTGRID;
else if (!strcasecmp(parameter[1], "metalsteps"))
shader.surfaceparms |= Q3SURFACEPARM_METALSTEPS;
else if (!strcasecmp(parameter[1], "nodamage"))
shader.surfaceparms |= Q3SURFACEPARM_NODAMAGE;
else if (!strcasecmp(parameter[1], "nodlight"))
shader.surfaceparms |= Q3SURFACEPARM_NODLIGHT;
else if (!strcasecmp(parameter[1], "nodraw"))
shader.surfaceparms |= Q3SURFACEPARM_NODRAW;
else if (!strcasecmp(parameter[1], "nodrop"))
shader.surfaceparms |= Q3SURFACEPARM_NODROP;
else if (!strcasecmp(parameter[1], "noimpact"))
shader.surfaceparms |= Q3SURFACEPARM_NOIMPACT;
else if (!strcasecmp(parameter[1], "nolightmap"))
shader.surfaceparms |= Q3SURFACEPARM_NOLIGHTMAP;
else if (!strcasecmp(parameter[1], "nomarks"))
shader.surfaceparms |= Q3SURFACEPARM_NOMARKS;
else if (!strcasecmp(parameter[1], "nomipmaps"))
shader.surfaceparms |= Q3SURFACEPARM_NOMIPMAPS;
else if (!strcasecmp(parameter[1], "nonsolid"))
shader.surfaceparms |= Q3SURFACEPARM_NONSOLID;
else if (!strcasecmp(parameter[1], "origin"))
shader.surfaceparms |= Q3SURFACEPARM_ORIGIN;
else if (!strcasecmp(parameter[1], "playerclip"))
shader.surfaceparms |= Q3SURFACEPARM_PLAYERCLIP;
else if (!strcasecmp(parameter[1], "sky"))
shader.surfaceparms |= Q3SURFACEPARM_SKY;
else if (!strcasecmp(parameter[1], "slick"))
shader.surfaceparms |= Q3SURFACEPARM_SLICK;
else if (!strcasecmp(parameter[1], "slime"))
shader.surfaceparms |= Q3SURFACEPARM_SLIME;
else if (!strcasecmp(parameter[1], "structural"))
shader.surfaceparms |= Q3SURFACEPARM_STRUCTURAL;
else if (!strcasecmp(parameter[1], "trans"))
shader.surfaceparms |= Q3SURFACEPARM_TRANS;
else if (!strcasecmp(parameter[1], "water"))
shader.surfaceparms |= Q3SURFACEPARM_WATER;
else if (!strcasecmp(parameter[1], "pointlight"))
shader.surfaceparms |= Q3SURFACEPARM_POINTLIGHT;
else if (!strcasecmp(parameter[1], "antiportal"))
shader.surfaceparms |= Q3SURFACEPARM_ANTIPORTAL;
else if (!strcasecmp(parameter[1], "skip"))
; // shader.surfaceparms |= Q3SURFACEPARM_SKIP; FIXME we don't have enough #defines for this any more, and the engine doesn't need this one anyway
else
{
// try custom surfaceparms
for (j = 0; j < numcustsurfaceflags; j++)
{
if (!strcasecmp(custsurfaceparmnames[j], parameter[1]))
{
shader.surfaceflags |= custsurfaceflags[j];
break;
}
}
// failed all
if (j == numcustsurfaceflags)
Con_DPrintf("%s parsing warning: unknown surfaceparm \"%s\"\n", search->filenames[fileindex], parameter[1]);
}
}
else if (!strcasecmp(parameter[0], "dpshadow"))
shader.dpshadow = true;
else if (!strcasecmp(parameter[0], "dpnoshadow"))
shader.dpnoshadow = true;
else if (!strcasecmp(parameter[0], "dpnortlight"))
shader.dpnortlight = true;
else if (!strcasecmp(parameter[0], "dpreflectcube"))
strlcpy(shader.dpreflectcube, parameter[1], sizeof(shader.dpreflectcube));
else if (!strcasecmp(parameter[0], "dpmeshcollisions"))
shader.dpmeshcollisions = true;
// this sets dpshaderkill to true if dpshaderkillifcvarzero was used, and to false if dpnoshaderkillifcvarzero was used
else if (((dpshaderkill = !strcasecmp(parameter[0], "dpshaderkillifcvarzero")) || !strcasecmp(parameter[0], "dpnoshaderkillifcvarzero")) && numparameters >= 2)
{
if (Cvar_VariableValue(parameter[1]) == 0.0f)
shader.dpshaderkill = dpshaderkill;
}
// this sets dpshaderkill to true if dpshaderkillifcvar was used, and to false if dpnoshaderkillifcvar was used
else if (((dpshaderkill = !strcasecmp(parameter[0], "dpshaderkillifcvar")) || !strcasecmp(parameter[0], "dpnoshaderkillifcvar")) && numparameters >= 2)
{
const char *op = NULL;
if (numparameters >= 3)
op = parameter[2];
if(!op)
{
if (Cvar_VariableValue(parameter[1]) != 0.0f)
shader.dpshaderkill = dpshaderkill;
}
else if (numparameters >= 4 && !strcmp(op, "=="))
{
if (Cvar_VariableValue(parameter[1]) == atof(parameter[3]))
shader.dpshaderkill = dpshaderkill;
}
else if (numparameters >= 4 && !strcmp(op, "!="))
{
if (Cvar_VariableValue(parameter[1]) != atof(parameter[3]))
shader.dpshaderkill = dpshaderkill;
}
else if (numparameters >= 4 && !strcmp(op, ">"))
{
if (Cvar_VariableValue(parameter[1]) > atof(parameter[3]))
shader.dpshaderkill = dpshaderkill;
}
else if (numparameters >= 4 && !strcmp(op, "<"))
{
if (Cvar_VariableValue(parameter[1]) < atof(parameter[3]))
shader.dpshaderkill = dpshaderkill;
}
else if (numparameters >= 4 && !strcmp(op, ">="))
{
if (Cvar_VariableValue(parameter[1]) >= atof(parameter[3]))
shader.dpshaderkill = dpshaderkill;
}
else if (numparameters >= 4 && !strcmp(op, "<="))
{
if (Cvar_VariableValue(parameter[1]) <= atof(parameter[3]))
shader.dpshaderkill = dpshaderkill;
}
else
{
Con_DPrintf("%s parsing warning: unknown dpshaderkillifcvar op \"%s\", or not enough arguments\n", search->filenames[fileindex], op);
}
}
else if (!strcasecmp(parameter[0], "sky") && numparameters >= 2)
{
// some q3 skies don't have the sky parm set
shader.surfaceparms |= Q3SURFACEPARM_SKY;
strlcpy(shader.skyboxname, parameter[1], sizeof(shader.skyboxname));
}
else if (!strcasecmp(parameter[0], "skyparms") && numparameters >= 2)
{
// some q3 skies don't have the sky parm set
shader.surfaceparms |= Q3SURFACEPARM_SKY;
if (!atoi(parameter[1]) && strcasecmp(parameter[1], "-"))
strlcpy(shader.skyboxname, parameter[1], sizeof(shader.skyboxname));
}
else if (!strcasecmp(parameter[0], "cull") && numparameters >= 2)
{
if (!strcasecmp(parameter[1], "disable") || !strcasecmp(parameter[1], "none") || !strcasecmp(parameter[1], "twosided"))
shader.textureflags |= Q3TEXTUREFLAG_TWOSIDED;
}
else if (!strcasecmp(parameter[0], "nomipmaps"))
shader.surfaceparms |= Q3SURFACEPARM_NOMIPMAPS;
else if (!strcasecmp(parameter[0], "nopicmip"))
shader.textureflags |= Q3TEXTUREFLAG_NOPICMIP;
else if (!strcasecmp(parameter[0], "polygonoffset"))
shader.textureflags |= Q3TEXTUREFLAG_POLYGONOFFSET;
else if (!strcasecmp(parameter[0], "dppolygonoffset"))
{
shader.textureflags |= Q3TEXTUREFLAG_POLYGONOFFSET;
if(numparameters >= 2)
{
shader.biaspolygonfactor = atof(parameter[1]);
if(numparameters >= 3)
shader.biaspolygonoffset = atof(parameter[2]);
else
shader.biaspolygonoffset = 0;
}
}
else if (!strcasecmp(parameter[0], "dptransparentsort") && numparameters >= 2)
{
shader.textureflags |= Q3TEXTUREFLAG_TRANSPARENTSORT;
if (!strcasecmp(parameter[1], "sky"))
shader.transparentsort = TRANSPARENTSORT_SKY;
else if (!strcasecmp(parameter[1], "distance"))
shader.transparentsort = TRANSPARENTSORT_DISTANCE;
else if (!strcasecmp(parameter[1], "hud"))
shader.transparentsort = TRANSPARENTSORT_HUD;
else
Con_DPrintf("%s parsing warning: unknown dptransparentsort category \"%s\", or not enough arguments\n", search->filenames[fileindex], parameter[1]);
}
else if (!strcasecmp(parameter[0], "dprefract") && numparameters >= 5)
{
shader.textureflags |= Q3TEXTUREFLAG_REFRACTION;
shader.refractfactor = atof(parameter[1]);
Vector4Set(shader.refractcolor4f, atof(parameter[2]), atof(parameter[3]), atof(parameter[4]), 1);
}
else if (!strcasecmp(parameter[0], "dpreflect") && numparameters >= 6)
{
shader.textureflags |= Q3TEXTUREFLAG_REFLECTION;
shader.reflectfactor = atof(parameter[1]);
Vector4Set(shader.reflectcolor4f, atof(parameter[2]), atof(parameter[3]), atof(parameter[4]), atof(parameter[5]));
}
else if (!strcasecmp(parameter[0], "dpcamera"))
{
shader.textureflags |= Q3TEXTUREFLAG_CAMERA;
}
else if (!strcasecmp(parameter[0], "dpwater") && numparameters >= 12)
{
shader.textureflags |= Q3TEXTUREFLAG_WATERSHADER;
shader.reflectmin = atof(parameter[1]);
shader.reflectmax = atof(parameter[2]);
shader.refractfactor = atof(parameter[3]);
shader.reflectfactor = atof(parameter[4]);
Vector4Set(shader.refractcolor4f, atof(parameter[5]), atof(parameter[6]), atof(parameter[7]), 1);
Vector4Set(shader.reflectcolor4f, atof(parameter[8]), atof(parameter[9]), atof(parameter[10]), 1);
shader.r_water_wateralpha = atof(parameter[11]);
}
else if (!strcasecmp(parameter[0], "dpwaterscroll") && numparameters >= 3)
{
shader.r_water_waterscroll[0] = 1/atof(parameter[1]);
shader.r_water_waterscroll[1] = 1/atof(parameter[2]);
}
else if (!strcasecmp(parameter[0], "dpglossintensitymod") && numparameters >= 2)
{
shader.specularscalemod = atof(parameter[1]);
}
else if (!strcasecmp(parameter[0], "dpglossexponentmod") && numparameters >= 2)
{
shader.specularpowermod = atof(parameter[1]);
}
else if (!strcasecmp(parameter[0], "dprtlightambient") && numparameters >= 2)
{
shader.rtlightambient = atof(parameter[1]);
}
else if (!strcasecmp(parameter[0], "dpoffsetmapping") && numparameters >= 2)
{
if (!strcasecmp(parameter[1], "disable") || !strcasecmp(parameter[1], "none") || !strcasecmp(parameter[1], "off"))
shader.offsetmapping = OFFSETMAPPING_OFF;
else if (!strcasecmp(parameter[1], "default") || !strcasecmp(parameter[1], "normal"))
shader.offsetmapping = OFFSETMAPPING_DEFAULT;
else if (!strcasecmp(parameter[1], "linear"))
shader.offsetmapping = OFFSETMAPPING_LINEAR;
else if (!strcasecmp(parameter[1], "relief"))
shader.offsetmapping = OFFSETMAPPING_RELIEF;
if (numparameters >= 3)
shader.offsetscale = atof(parameter[2]);
if (numparameters >= 5)
{
if(!strcasecmp(parameter[3], "bias"))
shader.offsetbias = atof(parameter[4]);
else if(!strcasecmp(parameter[3], "match"))
shader.offsetbias = 1.0f - atof(parameter[4]);
else if(!strcasecmp(parameter[3], "match8"))
shader.offsetbias = 1.0f - atof(parameter[4]) / 255.0f;
else if(!strcasecmp(parameter[3], "match16"))
shader.offsetbias = 1.0f - atof(parameter[4]) / 65535.0f;
}
}
else if (!strcasecmp(parameter[0], "deformvertexes") && numparameters >= 2)
{
int i, deformindex;
for (deformindex = 0;deformindex < Q3MAXDEFORMS;deformindex++)
if (!shader.deforms[deformindex].deform)
break;
if (deformindex < Q3MAXDEFORMS)
{
for (i = 0;i < numparameters - 2 && i < Q3DEFORM_MAXPARMS;i++)
shader.deforms[deformindex].parms[i] = atof(parameter[i+2]);
if (!strcasecmp(parameter[1], "projectionshadow")) shader.deforms[deformindex].deform = Q3DEFORM_PROJECTIONSHADOW;
else if (!strcasecmp(parameter[1], "autosprite" )) shader.deforms[deformindex].deform = Q3DEFORM_AUTOSPRITE;
else if (!strcasecmp(parameter[1], "autosprite2" )) shader.deforms[deformindex].deform = Q3DEFORM_AUTOSPRITE2;
else if (!strcasecmp(parameter[1], "text0" )) shader.deforms[deformindex].deform = Q3DEFORM_TEXT0;
else if (!strcasecmp(parameter[1], "text1" )) shader.deforms[deformindex].deform = Q3DEFORM_TEXT1;
else if (!strcasecmp(parameter[1], "text2" )) shader.deforms[deformindex].deform = Q3DEFORM_TEXT2;
else if (!strcasecmp(parameter[1], "text3" )) shader.deforms[deformindex].deform = Q3DEFORM_TEXT3;
else if (!strcasecmp(parameter[1], "text4" )) shader.deforms[deformindex].deform = Q3DEFORM_TEXT4;
else if (!strcasecmp(parameter[1], "text5" )) shader.deforms[deformindex].deform = Q3DEFORM_TEXT5;
else if (!strcasecmp(parameter[1], "text6" )) shader.deforms[deformindex].deform = Q3DEFORM_TEXT6;
else if (!strcasecmp(parameter[1], "text7" )) shader.deforms[deformindex].deform = Q3DEFORM_TEXT7;
else if (!strcasecmp(parameter[1], "bulge" )) shader.deforms[deformindex].deform = Q3DEFORM_BULGE;
else if (!strcasecmp(parameter[1], "normal" )) shader.deforms[deformindex].deform = Q3DEFORM_NORMAL;
else if (!strcasecmp(parameter[1], "wave" ))
{
shader.deforms[deformindex].deform = Q3DEFORM_WAVE;
shader.deforms[deformindex].wavefunc = Mod_LoadQ3Shaders_EnumerateWaveFunc(parameter[3]);
for (i = 0;i < numparameters - 4 && i < Q3WAVEPARMS;i++)
shader.deforms[deformindex].waveparms[i] = atof(parameter[i+4]);
}
else if (!strcasecmp(parameter[1], "move" ))
{
shader.deforms[deformindex].deform = Q3DEFORM_MOVE;
shader.deforms[deformindex].wavefunc = Mod_LoadQ3Shaders_EnumerateWaveFunc(parameter[5]);
for (i = 0;i < numparameters - 6 && i < Q3WAVEPARMS;i++)
shader.deforms[deformindex].waveparms[i] = atof(parameter[i+6]);
}
}
}
}
// hide this shader if a cvar said it should be killed
if (shader.dpshaderkill)
shader.numlayers = 0;
// pick the primary layer to render with
if (shader.numlayers)
{
shader.backgroundlayer = -1;
shader.primarylayer = 0;
// if lightmap comes first this is definitely an ordinary texture
// if the first two layers have the correct blendfuncs and use vertex alpha, it is a blended terrain shader
if ((shader.layers[shader.primarylayer].texturename != NULL)
&& !strcasecmp(shader.layers[shader.primarylayer].texturename[0], "$lightmap"))
{
shader.backgroundlayer = -1;
shader.primarylayer = 1;
}
else if (shader.numlayers >= 2
&& shader.layers[1].alphagen.alphagen == Q3ALPHAGEN_VERTEX
&& (shader.layers[0].blendfunc[0] == GL_ONE && shader.layers[0].blendfunc[1] == GL_ZERO && !shader.layers[0].alphatest)
&& ((shader.layers[1].blendfunc[0] == GL_SRC_ALPHA && shader.layers[1].blendfunc[1] == GL_ONE_MINUS_SRC_ALPHA)
|| (shader.layers[1].blendfunc[0] == GL_ONE && shader.layers[1].blendfunc[1] == GL_ZERO && shader.layers[1].alphatest)))
{
// terrain blending or other effects
shader.backgroundlayer = 0;
shader.primarylayer = 1;
}
}
// fix up multiple reflection types
if(shader.textureflags & Q3TEXTUREFLAG_WATERSHADER)
shader.textureflags &= ~(Q3TEXTUREFLAG_REFRACTION | Q3TEXTUREFLAG_REFLECTION | Q3TEXTUREFLAG_CAMERA);
Q3Shader_AddToHash (&shader);
}
Mem_Free(f);
}
FS_FreeSearch(search);
// free custinfoparm values
for (j = 0; j < numcustsurfaceflags; j++)
Mem_Free(custsurfaceparmnames[j]);
}
q3shaderinfo_t *Mod_LookupQ3Shader(const char *name)
{
unsigned short hash;
q3shader_hash_entry_t* entry;
if (!q3shaders_mem)
Mod_LoadQ3Shaders();
hash = CRC_Block_CaseInsensitive ((const unsigned char *)name, strlen (name));
entry = q3shader_data->hash + (hash % Q3SHADER_HASH_SIZE);
while (entry != NULL)
{
if (strcasecmp (entry->shader.name, name) == 0)
return &entry->shader;
entry = entry->chain;
}
return NULL;
}
qboolean Mod_LoadTextureFromQ3Shader(texture_t *texture, const char *name, qboolean warnmissing, qboolean fallback, int defaulttexflags)
{
int j;
int texflagsmask, texflagsor;
qboolean success = true;
q3shaderinfo_t *shader;
if (!name)
name = "";
strlcpy(texture->name, name, sizeof(texture->name));
shader = name[0] ? Mod_LookupQ3Shader(name) : NULL;
texflagsmask = ~0;
if(!(defaulttexflags & TEXF_PICMIP))
texflagsmask &= ~TEXF_PICMIP;
if(!(defaulttexflags & TEXF_COMPRESS))
texflagsmask &= ~TEXF_COMPRESS;
texflagsor = 0;
if(defaulttexflags & TEXF_ISWORLD)
texflagsor |= TEXF_ISWORLD;
if(defaulttexflags & TEXF_ISSPRITE)
texflagsor |= TEXF_ISSPRITE;
// unless later loaded from the shader
texture->offsetmapping = (mod_noshader_default_offsetmapping.value) ? OFFSETMAPPING_DEFAULT : OFFSETMAPPING_OFF;
texture->offsetscale = 1;
texture->offsetbias = 0;
texture->specularscalemod = 1;
texture->specularpowermod = 1;
texture->rtlightambient = 0;
texture->transparentsort = TRANSPARENTSORT_DISTANCE;
// WHEN ADDING DEFAULTS HERE, REMEMBER TO PUT DEFAULTS IN ALL LOADERS
// JUST GREP FOR "specularscalemod = 1".
if (shader)
{
if (developer_loading.integer)
Con_Printf("%s: loaded shader for %s\n", loadmodel->name, name);
// allow disabling of picmip or compression by defaulttexflags
texture->textureflags = (shader->textureflags & texflagsmask) | texflagsor;
if (shader->surfaceparms & Q3SURFACEPARM_SKY)
{
texture->basematerialflags = MATERIALFLAG_SKY | MATERIALFLAG_NOSHADOW;
if (shader->skyboxname[0])
{
// quake3 seems to append a _ to the skybox name, so this must do so as well
dpsnprintf(loadmodel->brush.skybox, sizeof(loadmodel->brush.skybox), "%s_", shader->skyboxname);
}
}
else if ((texture->surfaceflags & Q3SURFACEFLAG_NODRAW) || shader->numlayers == 0)
texture->basematerialflags = MATERIALFLAG_NODRAW | MATERIALFLAG_NOSHADOW;
else
texture->basematerialflags = MATERIALFLAG_WALL;
if (shader->layers[0].alphatest)
texture->basematerialflags |= MATERIALFLAG_ALPHATEST | MATERIALFLAG_NOSHADOW;
if (shader->textureflags & Q3TEXTUREFLAG_TWOSIDED)
texture->basematerialflags |= MATERIALFLAG_NOSHADOW | MATERIALFLAG_NOCULLFACE;
if (shader->textureflags & Q3TEXTUREFLAG_POLYGONOFFSET)
{
texture->biaspolygonoffset += shader->biaspolygonoffset;
texture->biaspolygonfactor += shader->biaspolygonfactor;
}
if (shader->textureflags & Q3TEXTUREFLAG_REFRACTION)
texture->basematerialflags |= MATERIALFLAG_REFRACTION;
if (shader->textureflags & Q3TEXTUREFLAG_REFLECTION)
texture->basematerialflags |= MATERIALFLAG_REFLECTION;
if (shader->textureflags & Q3TEXTUREFLAG_WATERSHADER)
texture->basematerialflags |= MATERIALFLAG_WATERSHADER;
if (shader->textureflags & Q3TEXTUREFLAG_CAMERA)
texture->basematerialflags |= MATERIALFLAG_CAMERA;
texture->customblendfunc[0] = GL_ONE;
texture->customblendfunc[1] = GL_ZERO;
texture->transparentsort = shader->transparentsort;
if (shader->numlayers > 0)
{
texture->customblendfunc[0] = shader->layers[0].blendfunc[0];
texture->customblendfunc[1] = shader->layers[0].blendfunc[1];
/*
Q3 shader blendfuncs actually used in the game (* = supported by DP)
* additive GL_ONE GL_ONE
additive weird GL_ONE GL_SRC_ALPHA
additive weird 2 GL_ONE GL_ONE_MINUS_SRC_ALPHA
* alpha GL_SRC_ALPHA GL_ONE_MINUS_SRC_ALPHA
alpha inverse GL_ONE_MINUS_SRC_ALPHA GL_SRC_ALPHA
brighten GL_DST_COLOR GL_ONE
brighten GL_ONE GL_SRC_COLOR
brighten weird GL_DST_COLOR GL_ONE_MINUS_DST_ALPHA
brighten weird 2 GL_DST_COLOR GL_SRC_ALPHA
* modulate GL_DST_COLOR GL_ZERO
* modulate GL_ZERO GL_SRC_COLOR
modulate inverse GL_ZERO GL_ONE_MINUS_SRC_COLOR
modulate inverse alpha GL_ZERO GL_SRC_ALPHA
modulate weird inverse GL_ONE_MINUS_DST_COLOR GL_ZERO
* modulate x2 GL_DST_COLOR GL_SRC_COLOR
* no blend GL_ONE GL_ZERO
nothing GL_ZERO GL_ONE
*/
// if not opaque, figure out what blendfunc to use
if (shader->layers[0].blendfunc[0] != GL_ONE || shader->layers[0].blendfunc[1] != GL_ZERO)
{
if (shader->layers[0].blendfunc[0] == GL_ONE && shader->layers[0].blendfunc[1] == GL_ONE)
texture->basematerialflags |= MATERIALFLAG_ADD | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
else if (shader->layers[0].blendfunc[0] == GL_SRC_ALPHA && shader->layers[0].blendfunc[1] == GL_ONE)
texture->basematerialflags |= MATERIALFLAG_ADD | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
else if (shader->layers[0].blendfunc[0] == GL_SRC_ALPHA && shader->layers[0].blendfunc[1] == GL_ONE_MINUS_SRC_ALPHA)
texture->basematerialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
else
texture->basematerialflags |= MATERIALFLAG_CUSTOMBLEND | MATERIALFLAG_FULLBRIGHT | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
}
}
if (!shader->lighting)
texture->basematerialflags |= MATERIALFLAG_FULLBRIGHT;
if (shader->primarylayer >= 0)
{
q3shaderinfo_layer_t* primarylayer = shader->layers + shader->primarylayer;
// copy over many primarylayer parameters
texture->rgbgen = primarylayer->rgbgen;
texture->alphagen = primarylayer->alphagen;
texture->tcgen = primarylayer->tcgen;
memcpy(texture->tcmods, primarylayer->tcmods, sizeof(texture->tcmods));
// load the textures
texture->numskinframes = primarylayer->numframes;
texture->skinframerate = primarylayer->framerate;
for (j = 0;j < primarylayer->numframes;j++)
{
if(cls.state == ca_dedicated)
{
texture->skinframes[j] = NULL;
}
else if (!(texture->skinframes[j] = R_SkinFrame_LoadExternal(primarylayer->texturename[j], (primarylayer->texflags & texflagsmask) | texflagsor, false)))
{
Con_Printf("^1%s:^7 could not load texture ^3\"%s\"^7 (frame %i) for shader ^2\"%s\"\n", loadmodel->name, primarylayer->texturename[j], j, texture->name);
texture->skinframes[j] = R_SkinFrame_LoadMissing();
}
}
}
if (shader->backgroundlayer >= 0)
{
q3shaderinfo_layer_t* backgroundlayer = shader->layers + shader->backgroundlayer;
// copy over one secondarylayer parameter
memcpy(texture->backgroundtcmods, backgroundlayer->tcmods, sizeof(texture->backgroundtcmods));
// load the textures
texture->backgroundnumskinframes = backgroundlayer->numframes;
texture->backgroundskinframerate = backgroundlayer->framerate;
for (j = 0;j < backgroundlayer->numframes;j++)
{
if(cls.state == ca_dedicated)
{
texture->skinframes[j] = NULL;
}
else if (!(texture->backgroundskinframes[j] = R_SkinFrame_LoadExternal(backgroundlayer->texturename[j], (backgroundlayer->texflags & texflagsmask) | texflagsor, false)))
{
Con_Printf("^1%s:^7 could not load texture ^3\"%s\"^7 (background frame %i) for shader ^2\"%s\"\n", loadmodel->name, backgroundlayer->texturename[j], j, texture->name);
texture->backgroundskinframes[j] = R_SkinFrame_LoadMissing();
}
}
}
if (shader->dpshadow)
texture->basematerialflags &= ~MATERIALFLAG_NOSHADOW;
if (shader->dpnoshadow)
texture->basematerialflags |= MATERIALFLAG_NOSHADOW;
if (shader->dpnortlight)
texture->basematerialflags |= MATERIALFLAG_NORTLIGHT;
if (shader->vertexalpha)
texture->basematerialflags |= MATERIALFLAG_ALPHAGEN_VERTEX;
memcpy(texture->deforms, shader->deforms, sizeof(texture->deforms));
texture->reflectmin = shader->reflectmin;
texture->reflectmax = shader->reflectmax;
texture->refractfactor = shader->refractfactor;
Vector4Copy(shader->refractcolor4f, texture->refractcolor4f);
texture->reflectfactor = shader->reflectfactor;
Vector4Copy(shader->reflectcolor4f, texture->reflectcolor4f);
texture->r_water_wateralpha = shader->r_water_wateralpha;
Vector2Copy(shader->r_water_waterscroll, texture->r_water_waterscroll);
texture->offsetmapping = shader->offsetmapping;
texture->offsetscale = shader->offsetscale;
texture->offsetbias = shader->offsetbias;
texture->specularscalemod = shader->specularscalemod;
texture->specularpowermod = shader->specularpowermod;
texture->rtlightambient = shader->rtlightambient;
if (shader->dpreflectcube[0])
texture->reflectcubetexture = R_GetCubemap(shader->dpreflectcube);
// set up default supercontents (on q3bsp this is overridden by the q3bsp loader)
texture->supercontents = SUPERCONTENTS_SOLID | SUPERCONTENTS_OPAQUE;
if (shader->surfaceparms & Q3SURFACEPARM_LAVA ) texture->supercontents = SUPERCONTENTS_LAVA ;
if (shader->surfaceparms & Q3SURFACEPARM_SLIME ) texture->supercontents = SUPERCONTENTS_SLIME ;
if (shader->surfaceparms & Q3SURFACEPARM_WATER ) texture->supercontents = SUPERCONTENTS_WATER ;
if (shader->surfaceparms & Q3SURFACEPARM_NONSOLID ) texture->supercontents = 0 ;
if (shader->surfaceparms & Q3SURFACEPARM_PLAYERCLIP ) texture->supercontents = SUPERCONTENTS_PLAYERCLIP ;
if (shader->surfaceparms & Q3SURFACEPARM_BOTCLIP ) texture->supercontents = SUPERCONTENTS_MONSTERCLIP ;
if (shader->surfaceparms & Q3SURFACEPARM_SKY ) texture->supercontents = SUPERCONTENTS_SKY ;
// if (shader->surfaceparms & Q3SURFACEPARM_ALPHASHADOW ) texture->supercontents |= SUPERCONTENTS_ALPHASHADOW ;
// if (shader->surfaceparms & Q3SURFACEPARM_AREAPORTAL ) texture->supercontents |= SUPERCONTENTS_AREAPORTAL ;
// if (shader->surfaceparms & Q3SURFACEPARM_CLUSTERPORTAL) texture->supercontents |= SUPERCONTENTS_CLUSTERPORTAL;
// if (shader->surfaceparms & Q3SURFACEPARM_DETAIL ) texture->supercontents |= SUPERCONTENTS_DETAIL ;
if (shader->surfaceparms & Q3SURFACEPARM_DONOTENTER ) texture->supercontents |= SUPERCONTENTS_DONOTENTER ;
// if (shader->surfaceparms & Q3SURFACEPARM_FOG ) texture->supercontents |= SUPERCONTENTS_FOG ;
if (shader->surfaceparms & Q3SURFACEPARM_LAVA ) texture->supercontents |= SUPERCONTENTS_LAVA ;
// if (shader->surfaceparms & Q3SURFACEPARM_LIGHTFILTER ) texture->supercontents |= SUPERCONTENTS_LIGHTFILTER ;
// if (shader->surfaceparms & Q3SURFACEPARM_METALSTEPS ) texture->supercontents |= SUPERCONTENTS_METALSTEPS ;
// if (shader->surfaceparms & Q3SURFACEPARM_NODAMAGE ) texture->supercontents |= SUPERCONTENTS_NODAMAGE ;
// if (shader->surfaceparms & Q3SURFACEPARM_NODLIGHT ) texture->supercontents |= SUPERCONTENTS_NODLIGHT ;
// if (shader->surfaceparms & Q3SURFACEPARM_NODRAW ) texture->supercontents |= SUPERCONTENTS_NODRAW ;
if (shader->surfaceparms & Q3SURFACEPARM_NODROP ) texture->supercontents |= SUPERCONTENTS_NODROP ;
// if (shader->surfaceparms & Q3SURFACEPARM_NOIMPACT ) texture->supercontents |= SUPERCONTENTS_NOIMPACT ;
// if (shader->surfaceparms & Q3SURFACEPARM_NOLIGHTMAP ) texture->supercontents |= SUPERCONTENTS_NOLIGHTMAP ;
// if (shader->surfaceparms & Q3SURFACEPARM_NOMARKS ) texture->supercontents |= SUPERCONTENTS_NOMARKS ;
// if (shader->surfaceparms & Q3SURFACEPARM_NOMIPMAPS ) texture->supercontents |= SUPERCONTENTS_NOMIPMAPS ;
if (shader->surfaceparms & Q3SURFACEPARM_NONSOLID ) texture->supercontents &=~SUPERCONTENTS_SOLID ;
// if (shader->surfaceparms & Q3SURFACEPARM_ORIGIN ) texture->supercontents |= SUPERCONTENTS_ORIGIN ;
if (shader->surfaceparms & Q3SURFACEPARM_PLAYERCLIP ) texture->supercontents |= SUPERCONTENTS_PLAYERCLIP ;
if (shader->surfaceparms & Q3SURFACEPARM_SKY ) texture->supercontents |= SUPERCONTENTS_SKY ;
// if (shader->surfaceparms & Q3SURFACEPARM_SLICK ) texture->supercontents |= SUPERCONTENTS_SLICK ;
if (shader->surfaceparms & Q3SURFACEPARM_SLIME ) texture->supercontents |= SUPERCONTENTS_SLIME ;
// if (shader->surfaceparms & Q3SURFACEPARM_STRUCTURAL ) texture->supercontents |= SUPERCONTENTS_STRUCTURAL ;
// if (shader->surfaceparms & Q3SURFACEPARM_TRANS ) texture->supercontents |= SUPERCONTENTS_TRANS ;
if (shader->surfaceparms & Q3SURFACEPARM_WATER ) texture->supercontents |= SUPERCONTENTS_WATER ;
// if (shader->surfaceparms & Q3SURFACEPARM_POINTLIGHT ) texture->supercontents |= SUPERCONTENTS_POINTLIGHT ;
// if (shader->surfaceparms & Q3SURFACEPARM_HINT ) texture->supercontents |= SUPERCONTENTS_HINT ;
// if (shader->surfaceparms & Q3SURFACEPARM_DUST ) texture->supercontents |= SUPERCONTENTS_DUST ;
if (shader->surfaceparms & Q3SURFACEPARM_BOTCLIP ) texture->supercontents |= SUPERCONTENTS_BOTCLIP | SUPERCONTENTS_MONSTERCLIP;
// if (shader->surfaceparms & Q3SURFACEPARM_LIGHTGRID ) texture->supercontents |= SUPERCONTENTS_LIGHTGRID ;
// if (shader->surfaceparms & Q3SURFACEPARM_ANTIPORTAL ) texture->supercontents |= SUPERCONTENTS_ANTIPORTAL ;
texture->surfaceflags = shader->surfaceflags;
if (shader->surfaceparms & Q3SURFACEPARM_ALPHASHADOW ) texture->surfaceflags |= Q3SURFACEFLAG_ALPHASHADOW ;
// if (shader->surfaceparms & Q3SURFACEPARM_AREAPORTAL ) texture->surfaceflags |= Q3SURFACEFLAG_AREAPORTAL ;
// if (shader->surfaceparms & Q3SURFACEPARM_CLUSTERPORTAL) texture->surfaceflags |= Q3SURFACEFLAG_CLUSTERPORTAL;
// if (shader->surfaceparms & Q3SURFACEPARM_DETAIL ) texture->surfaceflags |= Q3SURFACEFLAG_DETAIL ;
// if (shader->surfaceparms & Q3SURFACEPARM_DONOTENTER ) texture->surfaceflags |= Q3SURFACEFLAG_DONOTENTER ;
// if (shader->surfaceparms & Q3SURFACEPARM_FOG ) texture->surfaceflags |= Q3SURFACEFLAG_FOG ;
// if (shader->surfaceparms & Q3SURFACEPARM_LAVA ) texture->surfaceflags |= Q3SURFACEFLAG_LAVA ;
if (shader->surfaceparms & Q3SURFACEPARM_LIGHTFILTER ) texture->surfaceflags |= Q3SURFACEFLAG_LIGHTFILTER ;
if (shader->surfaceparms & Q3SURFACEPARM_METALSTEPS ) texture->surfaceflags |= Q3SURFACEFLAG_METALSTEPS ;
if (shader->surfaceparms & Q3SURFACEPARM_NODAMAGE ) texture->surfaceflags |= Q3SURFACEFLAG_NODAMAGE ;
if (shader->surfaceparms & Q3SURFACEPARM_NODLIGHT ) texture->surfaceflags |= Q3SURFACEFLAG_NODLIGHT ;
if (shader->surfaceparms & Q3SURFACEPARM_NODRAW ) texture->surfaceflags |= Q3SURFACEFLAG_NODRAW ;
// if (shader->surfaceparms & Q3SURFACEPARM_NODROP ) texture->surfaceflags |= Q3SURFACEFLAG_NODROP ;
if (shader->surfaceparms & Q3SURFACEPARM_NOIMPACT ) texture->surfaceflags |= Q3SURFACEFLAG_NOIMPACT ;
if (shader->surfaceparms & Q3SURFACEPARM_NOLIGHTMAP ) texture->surfaceflags |= Q3SURFACEFLAG_NOLIGHTMAP ;
if (shader->surfaceparms & Q3SURFACEPARM_NOMARKS ) texture->surfaceflags |= Q3SURFACEFLAG_NOMARKS ;
// if (shader->surfaceparms & Q3SURFACEPARM_NOMIPMAPS ) texture->surfaceflags |= Q3SURFACEFLAG_NOMIPMAPS ;
if (shader->surfaceparms & Q3SURFACEPARM_NONSOLID ) texture->surfaceflags |= Q3SURFACEFLAG_NONSOLID ;
// if (shader->surfaceparms & Q3SURFACEPARM_ORIGIN ) texture->surfaceflags |= Q3SURFACEFLAG_ORIGIN ;
// if (shader->surfaceparms & Q3SURFACEPARM_PLAYERCLIP ) texture->surfaceflags |= Q3SURFACEFLAG_PLAYERCLIP ;
if (shader->surfaceparms & Q3SURFACEPARM_SKY ) texture->surfaceflags |= Q3SURFACEFLAG_SKY ;
if (shader->surfaceparms & Q3SURFACEPARM_SLICK ) texture->surfaceflags |= Q3SURFACEFLAG_SLICK ;
// if (shader->surfaceparms & Q3SURFACEPARM_SLIME ) texture->surfaceflags |= Q3SURFACEFLAG_SLIME ;
// if (shader->surfaceparms & Q3SURFACEPARM_STRUCTURAL ) texture->surfaceflags |= Q3SURFACEFLAG_STRUCTURAL ;
// if (shader->surfaceparms & Q3SURFACEPARM_TRANS ) texture->surfaceflags |= Q3SURFACEFLAG_TRANS ;
// if (shader->surfaceparms & Q3SURFACEPARM_WATER ) texture->surfaceflags |= Q3SURFACEFLAG_WATER ;
if (shader->surfaceparms & Q3SURFACEPARM_POINTLIGHT ) texture->surfaceflags |= Q3SURFACEFLAG_POINTLIGHT ;
if (shader->surfaceparms & Q3SURFACEPARM_HINT ) texture->surfaceflags |= Q3SURFACEFLAG_HINT ;
if (shader->surfaceparms & Q3SURFACEPARM_DUST ) texture->surfaceflags |= Q3SURFACEFLAG_DUST ;
// if (shader->surfaceparms & Q3SURFACEPARM_BOTCLIP ) texture->surfaceflags |= Q3SURFACEFLAG_BOTCLIP ;
// if (shader->surfaceparms & Q3SURFACEPARM_LIGHTGRID ) texture->surfaceflags |= Q3SURFACEFLAG_LIGHTGRID ;
// if (shader->surfaceparms & Q3SURFACEPARM_ANTIPORTAL ) texture->surfaceflags |= Q3SURFACEFLAG_ANTIPORTAL ;
if (shader->dpmeshcollisions)
texture->basematerialflags |= MATERIALFLAG_MESHCOLLISIONS;
if (shader->dpshaderkill && developer_extra.integer)
Con_DPrintf("^1%s:^7 killing shader ^3\"%s\" because of cvar\n", loadmodel->name, name);
}
else if (!strcmp(texture->name, "noshader") || !texture->name[0])
{
if (developer_extra.integer)
Con_DPrintf("^1%s:^7 using fallback noshader material for ^3\"%s\"\n", loadmodel->name, name);
texture->supercontents = SUPERCONTENTS_SOLID | SUPERCONTENTS_OPAQUE;
}
else if (!strcmp(texture->name, "common/nodraw") || !strcmp(texture->name, "textures/common/nodraw"))
{
if (developer_extra.integer)
Con_DPrintf("^1%s:^7 using fallback nodraw material for ^3\"%s\"\n", loadmodel->name, name);
texture->basematerialflags = MATERIALFLAG_NODRAW | MATERIALFLAG_NOSHADOW;
texture->supercontents = SUPERCONTENTS_SOLID;
}
else
{
if (developer_extra.integer)
Con_DPrintf("^1%s:^7 No shader found for texture ^3\"%s\"\n", loadmodel->name, texture->name);
if (texture->surfaceflags & Q3SURFACEFLAG_NODRAW)
{
texture->basematerialflags |= MATERIALFLAG_NODRAW | MATERIALFLAG_NOSHADOW;
texture->supercontents = SUPERCONTENTS_SOLID;
}
else if (texture->surfaceflags & Q3SURFACEFLAG_SKY)
{
texture->basematerialflags |= MATERIALFLAG_SKY | MATERIALFLAG_NOSHADOW;
texture->supercontents = SUPERCONTENTS_SKY;
}
else
{
texture->basematerialflags |= MATERIALFLAG_WALL;
texture->supercontents = SUPERCONTENTS_SOLID | SUPERCONTENTS_OPAQUE;
}
texture->numskinframes = 1;
if(cls.state == ca_dedicated)
{
texture->skinframes[0] = NULL;
success = false;
}
else
{
if (fallback)
{
if ((texture->skinframes[0] = R_SkinFrame_LoadExternal(texture->name, defaulttexflags, false)))
{
if(texture->skinframes[0]->hasalpha)
texture->basematerialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
}
else
success = false;
}
else
success = false;
if (!success && warnmissing)
Con_Printf("^1%s:^7 could not load texture ^3\"%s\"\n", loadmodel->name, texture->name);
}
}
// init the animation variables
texture->currentframe = texture;
if (texture->numskinframes < 1)
texture->numskinframes = 1;
if (!texture->skinframes[0])
texture->skinframes[0] = R_SkinFrame_LoadMissing();
texture->currentskinframe = texture->skinframes[0];
texture->backgroundcurrentskinframe = texture->backgroundskinframes[0];
return success;
}
skinfile_t *Mod_LoadSkinFiles(void)
{
int i, words, line, wordsoverflow;
char *text;
const char *data;
skinfile_t *skinfile = NULL, *first = NULL;
skinfileitem_t *skinfileitem;
char word[10][MAX_QPATH];
char vabuf[1024];
/*
sample file:
U_bodyBox,models/players/Legoman/BikerA2.tga
U_RArm,models/players/Legoman/BikerA1.tga
U_LArm,models/players/Legoman/BikerA1.tga
U_armor,common/nodraw
U_sword,common/nodraw
U_shield,common/nodraw
U_homb,common/nodraw
U_backpack,common/nodraw
U_colcha,common/nodraw
tag_head,
tag_weapon,
tag_torso,
*/
memset(word, 0, sizeof(word));
for (i = 0;i < 256 && (data = text = (char *)FS_LoadFile(va(vabuf, sizeof(vabuf), "%s_%i.skin", loadmodel->name, i), tempmempool, true, NULL));i++)
{
// If it's the first file we parse
if (skinfile == NULL)
{
skinfile = (skinfile_t *)Mem_Alloc(loadmodel->mempool, sizeof(skinfile_t));
first = skinfile;
}
else
{
skinfile->next = (skinfile_t *)Mem_Alloc(loadmodel->mempool, sizeof(skinfile_t));
skinfile = skinfile->next;
}
skinfile->next = NULL;
for(line = 0;;line++)
{
// parse line
if (!COM_ParseToken_QuakeC(&data, true))
break;
if (!strcmp(com_token, "\n"))
continue;
words = 0;
wordsoverflow = false;
do
{
if (words < 10)
strlcpy(word[words++], com_token, sizeof (word[0]));
else
wordsoverflow = true;
}
while (COM_ParseToken_QuakeC(&data, true) && strcmp(com_token, "\n"));
if (wordsoverflow)
{
Con_Printf("Mod_LoadSkinFiles: parsing error in file \"%s_%i.skin\" on line #%i: line with too many statements, skipping\n", loadmodel->name, i, line);
continue;
}
// words is always >= 1
if (!strcmp(word[0], "replace"))
{
if (words == 3)
{
if (developer_loading.integer)
Con_Printf("Mod_LoadSkinFiles: parsed mesh \"%s\" shader replacement \"%s\"\n", word[1], word[2]);
skinfileitem = (skinfileitem_t *)Mem_Alloc(loadmodel->mempool, sizeof(skinfileitem_t));
skinfileitem->next = skinfile->items;
skinfile->items = skinfileitem;
strlcpy (skinfileitem->name, word[1], sizeof (skinfileitem->name));
strlcpy (skinfileitem->replacement, word[2], sizeof (skinfileitem->replacement));
}
else
Con_Printf("Mod_LoadSkinFiles: parsing error in file \"%s_%i.skin\" on line #%i: wrong number of parameters to command \"%s\", see documentation in DP_GFX_SKINFILES extension in dpextensions.qc\n", loadmodel->name, i, line, word[0]);
}
else if (words >= 2 && !strncmp(word[0], "tag_", 4))
{
// tag name, like "tag_weapon,"
// not used for anything (not even in Quake3)
}
else if (words >= 2 && !strcmp(word[1], ","))
{
// mesh shader name, like "U_RArm,models/players/Legoman/BikerA1.tga"
if (developer_loading.integer)
Con_Printf("Mod_LoadSkinFiles: parsed mesh \"%s\" shader replacement \"%s\"\n", word[0], word[2]);
skinfileitem = (skinfileitem_t *)Mem_Alloc(loadmodel->mempool, sizeof(skinfileitem_t));
skinfileitem->next = skinfile->items;
skinfile->items = skinfileitem;
strlcpy (skinfileitem->name, word[0], sizeof (skinfileitem->name));
strlcpy (skinfileitem->replacement, word[2], sizeof (skinfileitem->replacement));
}
else
Con_Printf("Mod_LoadSkinFiles: parsing error in file \"%s_%i.skin\" on line #%i: does not look like tag or mesh specification, or replace command, see documentation in DP_GFX_SKINFILES extension in dpextensions.qc\n", loadmodel->name, i, line);
}
Mem_Free(text);
}
if (i)
loadmodel->numskins = i;
return first;
}
void Mod_FreeSkinFiles(skinfile_t *skinfile)
{
skinfile_t *next;
skinfileitem_t *skinfileitem, *nextitem;
for (;skinfile;skinfile = next)
{
next = skinfile->next;
for (skinfileitem = skinfile->items;skinfileitem;skinfileitem = nextitem)
{
nextitem = skinfileitem->next;
Mem_Free(skinfileitem);
}
Mem_Free(skinfile);
}
}
int Mod_CountSkinFiles(skinfile_t *skinfile)
{
int i;
for (i = 0;skinfile;skinfile = skinfile->next, i++);
return i;
}
void Mod_SnapVertices(int numcomponents, int numvertices, float *vertices, float snap)
{
int i;
double isnap = 1.0 / snap;
for (i = 0;i < numvertices*numcomponents;i++)
vertices[i] = floor(vertices[i]*isnap)*snap;
}
int Mod_RemoveDegenerateTriangles(int numtriangles, const int *inelement3i, int *outelement3i, const float *vertex3f)
{
int i, outtriangles;
float edgedir1[3], edgedir2[3], temp[3];
// a degenerate triangle is one with no width (thickness, surface area)
// these are characterized by having all 3 points colinear (along a line)
// or having two points identical
// the simplest check is to calculate the triangle's area
for (i = 0, outtriangles = 0;i < numtriangles;i++, inelement3i += 3)
{
// calculate first edge
VectorSubtract(vertex3f + inelement3i[1] * 3, vertex3f + inelement3i[0] * 3, edgedir1);
VectorSubtract(vertex3f + inelement3i[2] * 3, vertex3f + inelement3i[0] * 3, edgedir2);
CrossProduct(edgedir1, edgedir2, temp);
if (VectorLength2(temp) < 0.001f)
continue; // degenerate triangle (no area)
// valid triangle (has area)
VectorCopy(inelement3i, outelement3i);
outelement3i += 3;
outtriangles++;
}
return outtriangles;
}
void Mod_VertexRangeFromElements(int numelements, const int *elements, int *firstvertexpointer, int *lastvertexpointer)
{
int i, e;
int firstvertex, lastvertex;
if (numelements > 0 && elements)
{
firstvertex = lastvertex = elements[0];
for (i = 1;i < numelements;i++)
{
e = elements[i];
firstvertex = min(firstvertex, e);
lastvertex = max(lastvertex, e);
}
}
else
firstvertex = lastvertex = 0;
if (firstvertexpointer)
*firstvertexpointer = firstvertex;
if (lastvertexpointer)
*lastvertexpointer = lastvertex;
}
void Mod_MakeSortedSurfaces(dp_model_t *mod)
{
// make an optimal set of texture-sorted batches to draw...
int j, t;
int *firstsurfacefortexture;
int *numsurfacesfortexture;
if (!mod->sortedmodelsurfaces)
mod->sortedmodelsurfaces = (int *) Mem_Alloc(loadmodel->mempool, mod->nummodelsurfaces * sizeof(*mod->sortedmodelsurfaces));
firstsurfacefortexture = (int *) Mem_Alloc(tempmempool, mod->num_textures * sizeof(*firstsurfacefortexture));
numsurfacesfortexture = (int *) Mem_Alloc(tempmempool, mod->num_textures * sizeof(*numsurfacesfortexture));
memset(numsurfacesfortexture, 0, mod->num_textures * sizeof(*numsurfacesfortexture));
for (j = 0;j < mod->nummodelsurfaces;j++)
{
const msurface_t *surface = mod->data_surfaces + j + mod->firstmodelsurface;
int t = (int)(surface->texture - mod->data_textures);
numsurfacesfortexture[t]++;
}
j = 0;
for (t = 0;t < mod->num_textures;t++)
{
firstsurfacefortexture[t] = j;
j += numsurfacesfortexture[t];
}
for (j = 0;j < mod->nummodelsurfaces;j++)
{
const msurface_t *surface = mod->data_surfaces + j + mod->firstmodelsurface;
int t = (int)(surface->texture - mod->data_textures);
mod->sortedmodelsurfaces[firstsurfacefortexture[t]++] = j + mod->firstmodelsurface;
}
Mem_Free(firstsurfacefortexture);
Mem_Free(numsurfacesfortexture);
}
void Mod_BuildVBOs(void)
{
if (!loadmodel->surfmesh.num_vertices)
return;
if (gl_paranoid.integer && loadmodel->surfmesh.data_element3s && loadmodel->surfmesh.data_element3i)
{
int i;
for (i = 0;i < loadmodel->surfmesh.num_triangles*3;i++)
{
if (loadmodel->surfmesh.data_element3s[i] != loadmodel->surfmesh.data_element3i[i])
{
Con_Printf("Mod_BuildVBOs: element %u is incorrect (%u should be %u)\n", i, loadmodel->surfmesh.data_element3s[i], loadmodel->surfmesh.data_element3i[i]);
loadmodel->surfmesh.data_element3s[i] = loadmodel->surfmesh.data_element3i[i];
}
}
}
// build r_vertexmesh_t array
// (compressed interleaved array for D3D)
if (!loadmodel->surfmesh.data_vertexmesh && vid.useinterleavedarrays)
{
int vertexindex;
int numvertices = loadmodel->surfmesh.num_vertices;
r_vertexmesh_t *vertexmesh;
loadmodel->surfmesh.data_vertexmesh = vertexmesh = (r_vertexmesh_t*)Mem_Alloc(loadmodel->mempool, numvertices * sizeof(r_vertexmesh_t));
for (vertexindex = 0;vertexindex < numvertices;vertexindex++, vertexmesh++)
{
VectorCopy(loadmodel->surfmesh.data_vertex3f + 3*vertexindex, vertexmesh->vertex3f);
VectorScale(loadmodel->surfmesh.data_svector3f + 3*vertexindex, 1.0f, vertexmesh->svector3f);
VectorScale(loadmodel->surfmesh.data_tvector3f + 3*vertexindex, 1.0f, vertexmesh->tvector3f);
VectorScale(loadmodel->surfmesh.data_normal3f + 3*vertexindex, 1.0f, vertexmesh->normal3f);
if (loadmodel->surfmesh.data_lightmapcolor4f)
Vector4Copy(loadmodel->surfmesh.data_lightmapcolor4f + 4*vertexindex, vertexmesh->color4f);
Vector2Copy(loadmodel->surfmesh.data_texcoordtexture2f + 2*vertexindex, vertexmesh->texcoordtexture2f);
if (loadmodel->surfmesh.data_texcoordlightmap2f)
Vector2Scale(loadmodel->surfmesh.data_texcoordlightmap2f + 2*vertexindex, 1.0f, vertexmesh->texcoordlightmap2f);
if (loadmodel->surfmesh.data_skeletalindex4ub)
Vector4Copy(loadmodel->surfmesh.data_skeletalindex4ub + 4*vertexindex, vertexmesh->skeletalindex4ub);
if (loadmodel->surfmesh.data_skeletalweight4ub)
Vector4Copy(loadmodel->surfmesh.data_skeletalweight4ub + 4*vertexindex, vertexmesh->skeletalweight4ub);
}
}
// upload short indices as a buffer
if (loadmodel->surfmesh.data_element3s && !loadmodel->surfmesh.data_element3s_indexbuffer)
loadmodel->surfmesh.data_element3s_indexbuffer = R_Mesh_CreateMeshBuffer(loadmodel->surfmesh.data_element3s, loadmodel->surfmesh.num_triangles * sizeof(short[3]), loadmodel->name, true, false, false, true);
// upload int indices as a buffer
if (loadmodel->surfmesh.data_element3i && !loadmodel->surfmesh.data_element3i_indexbuffer && !loadmodel->surfmesh.data_element3s)
loadmodel->surfmesh.data_element3i_indexbuffer = R_Mesh_CreateMeshBuffer(loadmodel->surfmesh.data_element3i, loadmodel->surfmesh.num_triangles * sizeof(int[3]), loadmodel->name, true, false, false, false);
// only build a vbo if one has not already been created (this is important for brush models which load specially)
// vertex buffer is several arrays and we put them in the same buffer
//
// is this wise? the texcoordtexture2f array is used with dynamic
// vertex/svector/tvector/normal when rendering animated models, on the
// other hand animated models don't use a lot of vertices anyway...
if (!loadmodel->surfmesh.vbo_vertexbuffer && !vid.useinterleavedarrays)
{
size_t size;
unsigned char *mem;
size = 0;
loadmodel->surfmesh.vbooffset_vertexmesh = size;if (loadmodel->surfmesh.data_vertexmesh ) size += loadmodel->surfmesh.num_vertices * sizeof(r_vertexmesh_t);
loadmodel->surfmesh.vbooffset_vertex3f = size;if (loadmodel->surfmesh.data_vertex3f ) size += loadmodel->surfmesh.num_vertices * sizeof(float[3]);
loadmodel->surfmesh.vbooffset_svector3f = size;if (loadmodel->surfmesh.data_svector3f ) size += loadmodel->surfmesh.num_vertices * sizeof(float[3]);
loadmodel->surfmesh.vbooffset_tvector3f = size;if (loadmodel->surfmesh.data_tvector3f ) size += loadmodel->surfmesh.num_vertices * sizeof(float[3]);
loadmodel->surfmesh.vbooffset_normal3f = size;if (loadmodel->surfmesh.data_normal3f ) size += loadmodel->surfmesh.num_vertices * sizeof(float[3]);
loadmodel->surfmesh.vbooffset_texcoordtexture2f = size;if (loadmodel->surfmesh.data_texcoordtexture2f ) size += loadmodel->surfmesh.num_vertices * sizeof(float[2]);
loadmodel->surfmesh.vbooffset_texcoordlightmap2f = size;if (loadmodel->surfmesh.data_texcoordlightmap2f) size += loadmodel->surfmesh.num_vertices * sizeof(float[2]);
loadmodel->surfmesh.vbooffset_lightmapcolor4f = size;if (loadmodel->surfmesh.data_lightmapcolor4f ) size += loadmodel->surfmesh.num_vertices * sizeof(float[4]);
loadmodel->surfmesh.vbooffset_skeletalindex4ub = size;if (loadmodel->surfmesh.data_skeletalindex4ub ) size += loadmodel->surfmesh.num_vertices * sizeof(unsigned char[4]);
loadmodel->surfmesh.vbooffset_skeletalweight4ub = size;if (loadmodel->surfmesh.data_skeletalweight4ub ) size += loadmodel->surfmesh.num_vertices * sizeof(unsigned char[4]);
mem = (unsigned char *)Mem_Alloc(tempmempool, size);
if (loadmodel->surfmesh.data_vertexmesh ) memcpy(mem + loadmodel->surfmesh.vbooffset_vertexmesh , loadmodel->surfmesh.data_vertexmesh , loadmodel->surfmesh.num_vertices * sizeof(r_vertexmesh_t));
if (loadmodel->surfmesh.data_vertex3f ) memcpy(mem + loadmodel->surfmesh.vbooffset_vertex3f , loadmodel->surfmesh.data_vertex3f , loadmodel->surfmesh.num_vertices * sizeof(float[3]));
if (loadmodel->surfmesh.data_svector3f ) memcpy(mem + loadmodel->surfmesh.vbooffset_svector3f , loadmodel->surfmesh.data_svector3f , loadmodel->surfmesh.num_vertices * sizeof(float[3]));
if (loadmodel->surfmesh.data_tvector3f ) memcpy(mem + loadmodel->surfmesh.vbooffset_tvector3f , loadmodel->surfmesh.data_tvector3f , loadmodel->surfmesh.num_vertices * sizeof(float[3]));
if (loadmodel->surfmesh.data_normal3f ) memcpy(mem + loadmodel->surfmesh.vbooffset_normal3f , loadmodel->surfmesh.data_normal3f , loadmodel->surfmesh.num_vertices * sizeof(float[3]));
if (loadmodel->surfmesh.data_texcoordtexture2f ) memcpy(mem + loadmodel->surfmesh.vbooffset_texcoordtexture2f , loadmodel->surfmesh.data_texcoordtexture2f , loadmodel->surfmesh.num_vertices * sizeof(float[2]));
if (loadmodel->surfmesh.data_texcoordlightmap2f) memcpy(mem + loadmodel->surfmesh.vbooffset_texcoordlightmap2f, loadmodel->surfmesh.data_texcoordlightmap2f, loadmodel->surfmesh.num_vertices * sizeof(float[2]));
if (loadmodel->surfmesh.data_lightmapcolor4f ) memcpy(mem + loadmodel->surfmesh.vbooffset_lightmapcolor4f , loadmodel->surfmesh.data_lightmapcolor4f , loadmodel->surfmesh.num_vertices * sizeof(float[4]));
if (loadmodel->surfmesh.data_skeletalindex4ub ) memcpy(mem + loadmodel->surfmesh.vbooffset_skeletalindex4ub , loadmodel->surfmesh.data_skeletalindex4ub , loadmodel->surfmesh.num_vertices * sizeof(unsigned char[4]));
if (loadmodel->surfmesh.data_skeletalweight4ub ) memcpy(mem + loadmodel->surfmesh.vbooffset_skeletalweight4ub , loadmodel->surfmesh.data_skeletalweight4ub , loadmodel->surfmesh.num_vertices * sizeof(unsigned char[4]));
loadmodel->surfmesh.vbo_vertexbuffer = R_Mesh_CreateMeshBuffer(mem, size, loadmodel->name, false, false, false, false);
Mem_Free(mem);
}
}
extern cvar_t mod_obj_orientation;
static void Mod_Decompile_OBJ(dp_model_t *model, const char *filename, const char *mtlfilename, const char *originalfilename)
{
int submodelindex, vertexindex, surfaceindex, triangleindex, textureindex, countvertices = 0, countsurfaces = 0, countfaces = 0, counttextures = 0;
int a, b, c;
const char *texname;
const int *e;
const float *v, *vn, *vt;
size_t l;
size_t outbufferpos = 0;
size_t outbuffermax = 0x100000;
char *outbuffer = (char *) Z_Malloc(outbuffermax), *oldbuffer;
const msurface_t *surface;
const int maxtextures = 256;
char *texturenames = (char *) Z_Malloc(maxtextures * MAX_QPATH);
dp_model_t *submodel;
// construct the mtllib file
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "# mtllib for %s exported by darkplaces engine\n", originalfilename);
if (l > 0)
outbufferpos += l;
for (surfaceindex = 0, surface = model->data_surfaces;surfaceindex < model->num_surfaces;surfaceindex++, surface++)
{
countsurfaces++;
countvertices += surface->num_vertices;
countfaces += surface->num_triangles;
texname = (surface->texture && surface->texture->name[0]) ? surface->texture->name : "default";
for (textureindex = 0;textureindex < counttextures;textureindex++)
if (!strcmp(texturenames + textureindex * MAX_QPATH, texname))
break;
if (textureindex < counttextures)
continue; // already wrote this material entry
if (textureindex >= maxtextures)
continue; // just a precaution
textureindex = counttextures++;
strlcpy(texturenames + textureindex * MAX_QPATH, texname, MAX_QPATH);
if (outbufferpos >= outbuffermax >> 1)
{
outbuffermax *= 2;
oldbuffer = outbuffer;
outbuffer = (char *) Z_Malloc(outbuffermax);
memcpy(outbuffer, oldbuffer, outbufferpos);
Z_Free(oldbuffer);
}
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "newmtl %s\nNs 96.078431\nKa 0 0 0\nKd 0.64 0.64 0.64\nKs 0.5 0.5 0.5\nNi 1\nd 1\nillum 2\nmap_Kd %s%s\n\n", texname, texname, strstr(texname, ".tga") ? "" : ".tga");
if (l > 0)
outbufferpos += l;
}
// write the mtllib file
FS_WriteFile(mtlfilename, outbuffer, outbufferpos);
// construct the obj file
outbufferpos = 0;
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "# model exported from %s by darkplaces engine\n# %i vertices, %i faces, %i surfaces\nmtllib %s\n", originalfilename, countvertices, countfaces, countsurfaces, mtlfilename);
if (l > 0)
outbufferpos += l;
for (vertexindex = 0, v = model->surfmesh.data_vertex3f, vn = model->surfmesh.data_normal3f, vt = model->surfmesh.data_texcoordtexture2f;vertexindex < model->surfmesh.num_vertices;vertexindex++, v += 3, vn += 3, vt += 2)
{
if (outbufferpos >= outbuffermax >> 1)
{
outbuffermax *= 2;
oldbuffer = outbuffer;
outbuffer = (char *) Z_Malloc(outbuffermax);
memcpy(outbuffer, oldbuffer, outbufferpos);
Z_Free(oldbuffer);
}
if(mod_obj_orientation.integer)
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "v %f %f %f\nvn %f %f %f\nvt %f %f\n", v[0], v[2], v[1], vn[0], vn[2], vn[1], vt[0], 1-vt[1]);
else
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "v %f %f %f\nvn %f %f %f\nvt %f %f\n", v[0], v[1], v[2], vn[0], vn[1], vn[2], vt[0], 1-vt[1]);
if (l > 0)
outbufferpos += l;
}
for (submodelindex = 0;submodelindex < max(1, model->brush.numsubmodels);submodelindex++)
{
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "o %i\n", submodelindex);
if (l > 0)
outbufferpos += l;
submodel = model->brush.numsubmodels ? model->brush.submodels[submodelindex] : model;
for (surfaceindex = 0;surfaceindex < submodel->nummodelsurfaces;surfaceindex++)
{
surface = model->data_surfaces + submodel->sortedmodelsurfaces[surfaceindex];
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "usemtl %s\n", (surface->texture && surface->texture->name[0]) ? surface->texture->name : "default");
if (l > 0)
outbufferpos += l;
for (triangleindex = 0, e = model->surfmesh.data_element3i + surface->num_firsttriangle * 3;triangleindex < surface->num_triangles;triangleindex++, e += 3)
{
if (outbufferpos >= outbuffermax >> 1)
{
outbuffermax *= 2;
oldbuffer = outbuffer;
outbuffer = (char *) Z_Malloc(outbuffermax);
memcpy(outbuffer, oldbuffer, outbufferpos);
Z_Free(oldbuffer);
}
a = e[0]+1;
b = e[1]+1;
c = e[2]+1;
if(mod_obj_orientation.integer)
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "f %i/%i/%i %i/%i/%i %i/%i/%i\n", a,a,a,b,b,b,c,c,c);
else
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "f %i/%i/%i %i/%i/%i %i/%i/%i\n", a,a,a,c,c,c,b,b,b);
if (l > 0)
outbufferpos += l;
}
}
}
// write the obj file
FS_WriteFile(filename, outbuffer, outbufferpos);
// clean up
Z_Free(outbuffer);
Z_Free(texturenames);
// print some stats
Con_Printf("Wrote %s (%i bytes, %i vertices, %i faces, %i surfaces with %i distinct textures)\n", filename, (int)outbufferpos, countvertices, countfaces, countsurfaces, counttextures);
}
static void Mod_Decompile_SMD(dp_model_t *model, const char *filename, int firstpose, int numposes, qboolean writetriangles)
{
int countnodes = 0, counttriangles = 0, countframes = 0;
int surfaceindex;
int triangleindex;
int transformindex;
int poseindex;
int cornerindex;
const int *e;
size_t l;
size_t outbufferpos = 0;
size_t outbuffermax = 0x100000;
char *outbuffer = (char *) Z_Malloc(outbuffermax), *oldbuffer;
const msurface_t *surface;
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "version 1\nnodes\n");
if (l > 0)
outbufferpos += l;
for (transformindex = 0;transformindex < model->num_bones;transformindex++)
{
if (outbufferpos >= outbuffermax >> 1)
{
outbuffermax *= 2;
oldbuffer = outbuffer;
outbuffer = (char *) Z_Malloc(outbuffermax);
memcpy(outbuffer, oldbuffer, outbufferpos);
Z_Free(oldbuffer);
}
countnodes++;
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "%3i \"%s\" %3i\n", transformindex, model->data_bones[transformindex].name, model->data_bones[transformindex].parent);
if (l > 0)
outbufferpos += l;
}
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "end\nskeleton\n");
if (l > 0)
outbufferpos += l;
for (poseindex = 0;poseindex < numposes;poseindex++)
{
countframes++;
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "time %i\n", poseindex);
if (l > 0)
outbufferpos += l;
for (transformindex = 0;transformindex < model->num_bones;transformindex++)
{
float angles[3];
float mtest[4][3];
matrix4x4_t posematrix;
if (outbufferpos >= outbuffermax >> 1)
{
outbuffermax *= 2;
oldbuffer = outbuffer;
outbuffer = (char *) Z_Malloc(outbuffermax);
memcpy(outbuffer, oldbuffer, outbufferpos);
Z_Free(oldbuffer);
}
// strangely the smd angles are for a transposed matrix, so we
// have to generate a transposed matrix, then convert that...
Matrix4x4_FromBonePose7s(&posematrix, model->num_posescale, model->data_poses7s + 7*(model->num_bones * poseindex + transformindex));
Matrix4x4_ToArray12FloatGL(&posematrix, mtest[0]);
AnglesFromVectors(angles, mtest[0], mtest[2], false);
if (angles[0] >= 180) angles[0] -= 360;
if (angles[1] >= 180) angles[1] -= 360;
if (angles[2] >= 180) angles[2] -= 360;
#if 0
{
float a = DEG2RAD(angles[ROLL]);
float b = DEG2RAD(angles[PITCH]);
float c = DEG2RAD(angles[YAW]);
float cy, sy, cp, sp, cr, sr;
float test[4][3];
// smd matrix construction, for comparing
sy = sin(c);
cy = cos(c);
sp = sin(b);
cp = cos(b);
sr = sin(a);
cr = cos(a);
test[0][0] = cp*cy;
test[0][1] = cp*sy;
test[0][2] = -sp;
test[1][0] = sr*sp*cy+cr*-sy;
test[1][1] = sr*sp*sy+cr*cy;
test[1][2] = sr*cp;
test[2][0] = (cr*sp*cy+-sr*-sy);
test[2][1] = (cr*sp*sy+-sr*cy);
test[2][2] = cr*cp;
test[3][0] = pose[9];
test[3][1] = pose[10];
test[3][2] = pose[11];
}
#endif
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "%3i %f %f %f %f %f %f\n", transformindex, mtest[3][0], mtest[3][1], mtest[3][2], DEG2RAD(angles[ROLL]), DEG2RAD(angles[PITCH]), DEG2RAD(angles[YAW]));
if (l > 0)
outbufferpos += l;
}
}
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "end\n");
if (l > 0)
outbufferpos += l;
if (writetriangles)
{
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "triangles\n");
if (l > 0)
outbufferpos += l;
for (surfaceindex = 0, surface = model->data_surfaces;surfaceindex < model->num_surfaces;surfaceindex++, surface++)
{
for (triangleindex = 0, e = model->surfmesh.data_element3i + surface->num_firsttriangle * 3;triangleindex < surface->num_triangles;triangleindex++, e += 3)
{
counttriangles++;
if (outbufferpos >= outbuffermax >> 1)
{
outbuffermax *= 2;
oldbuffer = outbuffer;
outbuffer = (char *) Z_Malloc(outbuffermax);
memcpy(outbuffer, oldbuffer, outbufferpos);
Z_Free(oldbuffer);
}
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "%s\n", surface->texture && surface->texture->name[0] ? surface->texture->name : "default.bmp");
if (l > 0)
outbufferpos += l;
for (cornerindex = 0;cornerindex < 3;cornerindex++)
{
const int index = e[2-cornerindex];
const float *v = model->surfmesh.data_vertex3f + index * 3;
const float *vn = model->surfmesh.data_normal3f + index * 3;
const float *vt = model->surfmesh.data_texcoordtexture2f + index * 2;
const int b = model->surfmesh.blends[index];
if (b < model->num_bones)
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "%3i %f %f %f %f %f %f %f %f\n" , b, v[0], v[1], v[2], vn[0], vn[1], vn[2], vt[0], 1 - vt[1]);
else
{
const blendweights_t *w = model->surfmesh.data_blendweights + b - model->num_bones;
const unsigned char *wi = w->index;
const unsigned char *wf = w->influence;
if (wf[3]) l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "%3i %f %f %f %f %f %f %f %f 4 %i %f %i %f %i %f %i %f\n", wi[0], v[0], v[1], v[2], vn[0], vn[1], vn[2], vt[0], 1 - vt[1], wi[0], wf[0]/255.0f, wi[1], wf[1]/255.0f, wi[2], wf[2]/255.0f, wi[3], wf[3]/255.0f);
else if (wf[2]) l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "%3i %f %f %f %f %f %f %f %f 3 %i %f %i %f %i %f\n" , wi[0], v[0], v[1], v[2], vn[0], vn[1], vn[2], vt[0], 1 - vt[1], wi[0], wf[0]/255.0f, wi[1], wf[1]/255.0f, wi[2], wf[2]/255.0f);
else if (wf[1]) l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "%3i %f %f %f %f %f %f %f %f 2 %i %f %i %f\n" , wi[0], v[0], v[1], v[2], vn[0], vn[1], vn[2], vt[0], 1 - vt[1], wi[0], wf[0]/255.0f, wi[1], wf[1]/255.0f);
else l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "%3i %f %f %f %f %f %f %f %f\n" , wi[0], v[0], v[1], v[2], vn[0], vn[1], vn[2], vt[0], 1 - vt[1]);
}
if (l > 0)
outbufferpos += l;
}
}
}
l = dpsnprintf(outbuffer + outbufferpos, outbuffermax - outbufferpos, "end\n");
if (l > 0)
outbufferpos += l;
}
FS_WriteFile(filename, outbuffer, outbufferpos);
Z_Free(outbuffer);
Con_Printf("Wrote %s (%i bytes, %i nodes, %i frames, %i triangles)\n", filename, (int)outbufferpos, countnodes, countframes, counttriangles);
}
/*
================
Mod_Decompile_f
decompiles a model to editable files
================
*/
static void Mod_Decompile_f(void)
{
int i, j, k, l, first, count;
dp_model_t *mod;
char inname[MAX_QPATH];
char outname[MAX_QPATH];
char mtlname[MAX_QPATH];
char basename[MAX_QPATH];
char animname[MAX_QPATH];
char animname2[MAX_QPATH];
char zymtextbuffer[16384];
char dpmtextbuffer[16384];
char framegroupstextbuffer[16384];
int zymtextsize = 0;
int dpmtextsize = 0;
int framegroupstextsize = 0;
char vabuf[1024];
if (Cmd_Argc() != 2)
{
Con_Print("usage: modeldecompile <filename>\n");
return;
}
strlcpy(inname, Cmd_Argv(1), sizeof(inname));
FS_StripExtension(inname, basename, sizeof(basename));
mod = Mod_ForName(inname, false, true, inname[0] == '*' ? cl.model_name[1] : NULL);
if (!mod)
{
Con_Print("No such model\n");
return;
}
if (mod->brush.submodel)
{
// if we're decompiling a submodel, be sure to give it a proper name based on its parent
FS_StripExtension(cl.model_name[1], outname, sizeof(outname));
dpsnprintf(basename, sizeof(basename), "%s/%s", outname, mod->name);
outname[0] = 0;
}
if (!mod->surfmesh.num_triangles)
{
Con_Print("Empty model (or sprite)\n");
return;
}
// export OBJ if possible (not on sprites)
if (mod->surfmesh.num_triangles)
{
dpsnprintf(outname, sizeof(outname), "%s_decompiled.obj", basename);
dpsnprintf(mtlname, sizeof(mtlname), "%s_decompiled.mtl", basename);
Mod_Decompile_OBJ(mod, outname, mtlname, inname);
}
// export SMD if possible (only for skeletal models)
if (mod->surfmesh.num_triangles && mod->num_bones)
{
dpsnprintf(outname, sizeof(outname), "%s_decompiled/ref1.smd", basename);
Mod_Decompile_SMD(mod, outname, 0, 1, true);
l = dpsnprintf(zymtextbuffer + zymtextsize, sizeof(zymtextbuffer) - zymtextsize, "output out.zym\nscale 1\norigin 0 0 0\nmesh ref1.smd\n");
if (l > 0) zymtextsize += l;
l = dpsnprintf(dpmtextbuffer + dpmtextsize, sizeof(dpmtextbuffer) - dpmtextsize, "outputdir .\nmodel out\nscale 1\norigin 0 0 0\nscene ref1.smd\n");
if (l > 0) dpmtextsize += l;
for (i = 0;i < mod->numframes;i = j)
{
strlcpy(animname, mod->animscenes[i].name, sizeof(animname));
first = mod->animscenes[i].firstframe;
if (mod->animscenes[i].framecount > 1)
{
// framegroup anim
count = mod->animscenes[i].framecount;
j = i + 1;
}
else
{
// individual frame
// check for additional frames with same name
for (l = 0, k = strlen(animname);animname[l];l++)
if(animname[l] < '0' || animname[l] > '9')
k = l + 1;
if(k > 0 && animname[k-1] == '_')
--k;
animname[k] = 0;
count = mod->num_poses - first;
for (j = i + 1;j < mod->numframes;j++)
{
strlcpy(animname2, mod->animscenes[j].name, sizeof(animname2));
for (l = 0, k = strlen(animname2);animname2[l];l++)
if(animname2[l] < '0' || animname2[l] > '9')
k = l + 1;
if(k > 0 && animname[k-1] == '_')
--k;
animname2[k] = 0;
if (strcmp(animname2, animname) || mod->animscenes[j].framecount > 1)
{
count = mod->animscenes[j].firstframe - first;
break;
}
}
// if it's only one frame, use the original frame name
if (j == i + 1)
strlcpy(animname, mod->animscenes[i].name, sizeof(animname));
}
dpsnprintf(outname, sizeof(outname), "%s_decompiled/%s.smd", basename, animname);
Mod_Decompile_SMD(mod, outname, first, count, false);
if (zymtextsize < (int)sizeof(zymtextbuffer) - 100)
{
l = dpsnprintf(zymtextbuffer + zymtextsize, sizeof(zymtextbuffer) - zymtextsize, "scene %s.smd fps %g %s\n", animname, mod->animscenes[i].framerate, mod->animscenes[i].loop ? "" : " noloop");
if (l > 0) zymtextsize += l;
}
if (dpmtextsize < (int)sizeof(dpmtextbuffer) - 100)
{
l = dpsnprintf(dpmtextbuffer + dpmtextsize, sizeof(dpmtextbuffer) - dpmtextsize, "scene %s.smd fps %g %s\n", animname, mod->animscenes[i].framerate, mod->animscenes[i].loop ? "" : " noloop");
if (l > 0) dpmtextsize += l;
}
if (framegroupstextsize < (int)sizeof(framegroupstextbuffer) - 100)
{
l = dpsnprintf(framegroupstextbuffer + framegroupstextsize, sizeof(framegroupstextbuffer) - framegroupstextsize, "%d %d %f %d // %s\n", first, count, mod->animscenes[i].framerate, mod->animscenes[i].loop, animname);
if (l > 0) framegroupstextsize += l;
}
}
if (zymtextsize)
FS_WriteFile(va(vabuf, sizeof(vabuf), "%s_decompiled/out_zym.txt", basename), zymtextbuffer, (fs_offset_t)zymtextsize);
if (dpmtextsize)
FS_WriteFile(va(vabuf, sizeof(vabuf), "%s_decompiled/out_dpm.txt", basename), dpmtextbuffer, (fs_offset_t)dpmtextsize);
if (framegroupstextsize)
FS_WriteFile(va(vabuf, sizeof(vabuf), "%s_decompiled.framegroups", basename), framegroupstextbuffer, (fs_offset_t)framegroupstextsize);
}
}
void Mod_AllocLightmap_Init(mod_alloclightmap_state_t *state, int width, int height)
{
int y;
memset(state, 0, sizeof(*state));
state->width = width;
state->height = height;
state->currentY = 0;
state->rows = (mod_alloclightmap_row_t *)Mem_Alloc(loadmodel->mempool, state->height * sizeof(*state->rows));
for (y = 0;y < state->height;y++)
{
state->rows[y].currentX = 0;
state->rows[y].rowY = -1;
}
}
void Mod_AllocLightmap_Reset(mod_alloclightmap_state_t *state)
{
int y;
state->currentY = 0;
for (y = 0;y < state->height;y++)
{
state->rows[y].currentX = 0;
state->rows[y].rowY = -1;
}
}
void Mod_AllocLightmap_Free(mod_alloclightmap_state_t *state)
{
if (state->rows)
Mem_Free(state->rows);
memset(state, 0, sizeof(*state));
}
qboolean Mod_AllocLightmap_Block(mod_alloclightmap_state_t *state, int blockwidth, int blockheight, int *outx, int *outy)
{
mod_alloclightmap_row_t *row;
int y;
row = state->rows + blockheight;
if ((row->rowY < 0) || (row->currentX + blockwidth > state->width))
{
if (state->currentY + blockheight <= state->height)
{
// use the current allocation position
row->rowY = state->currentY;
row->currentX = 0;
state->currentY += blockheight;
}
else
{
// find another position
for (y = blockheight;y < state->height;y++)
{
if ((state->rows[y].rowY >= 0) && (state->rows[y].currentX + blockwidth <= state->width))
{
row = state->rows + y;
break;
}
}
if (y == state->height)
return false;
}
}
*outy = row->rowY;
*outx = row->currentX;
row->currentX += blockwidth;
return true;
}
typedef struct lightmapsample_s
{
float pos[3];
float sh1[4][3];
float *vertex_color;
unsigned char *lm_bgr;
unsigned char *lm_dir;
}
lightmapsample_t;
typedef struct lightmapvertex_s
{
int index;
float pos[3];
float normal[3];
float texcoordbase[2];
float texcoordlightmap[2];
float lightcolor[4];
}
lightmapvertex_t;
typedef struct lightmaptriangle_s
{
int triangleindex;
int surfaceindex;
int lightmapindex;
int axis;
int lmoffset[2];
int lmsize[2];
// 2D modelspace coordinates of min corner
// snapped to lightmap grid but not in grid coordinates
float lmbase[2];
// 2D modelspace to lightmap coordinate scale
float lmscale[2];
float vertex[3][3];
float mins[3];
float maxs[3];
}
lightmaptriangle_t;
typedef struct lightmaplight_s
{
float origin[3];
float radius;
float iradius;
float radius2;
float color[3];
svbsp_t svbsp;
}
lightmaplight_t;
lightmaptriangle_t *mod_generatelightmaps_lightmaptriangles;
#define MAX_LIGHTMAPSAMPLES 64
static int mod_generatelightmaps_numoffsets[3];
static float mod_generatelightmaps_offsets[3][MAX_LIGHTMAPSAMPLES][3];
static int mod_generatelightmaps_numlights;
static lightmaplight_t *mod_generatelightmaps_lightinfo;
extern cvar_t r_shadow_lightattenuationdividebias;
extern cvar_t r_shadow_lightattenuationlinearscale;
static void Mod_GenerateLightmaps_LightPoint(dp_model_t *model, const vec3_t pos, vec3_t ambient, vec3_t diffuse, vec3_t lightdir)
{
int i;
int index;
int result;
float relativepoint[3];
float color[3];
float dir[3];
float dist;
float dist2;
float intensity;
float sample[5*3];
float lightorigin[3];
float lightradius;
float lightradius2;
float lightiradius;
float lightcolor[3];
trace_t trace;
for (i = 0;i < 5*3;i++)
sample[i] = 0.0f;
for (index = 0;;index++)
{
result = R_Shadow_GetRTLightInfo(index, lightorigin, &lightradius, lightcolor);
if (result < 0)
break;
if (result == 0)
continue;
lightradius2 = lightradius * lightradius;
VectorSubtract(lightorigin, pos, relativepoint);
dist2 = VectorLength2(relativepoint);
if (dist2 >= lightradius2)
continue;
lightiradius = 1.0f / lightradius;
dist = sqrt(dist2) * lightiradius;
intensity = (1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist);
if (intensity <= 0.0f)
continue;
if (model && model->TraceLine)
{
model->TraceLine(model, NULL, NULL, &trace, pos, lightorigin, SUPERCONTENTS_VISBLOCKERMASK);
if (trace.fraction < 1)
continue;
}
// scale down intensity to add to both ambient and diffuse
//intensity *= 0.5f;
VectorNormalize(relativepoint);
VectorScale(lightcolor, intensity, color);
VectorMA(sample , 0.5f , color, sample );
VectorMA(sample + 3, relativepoint[0], color, sample + 3);
VectorMA(sample + 6, relativepoint[1], color, sample + 6);
VectorMA(sample + 9, relativepoint[2], color, sample + 9);
// calculate a weighted average light direction as well
intensity *= VectorLength(color);
VectorMA(sample + 12, intensity, relativepoint, sample + 12);
}
// calculate the direction we'll use to reduce the sample to a directional light source
VectorCopy(sample + 12, dir);
//VectorSet(dir, sample[3] + sample[4] + sample[5], sample[6] + sample[7] + sample[8], sample[9] + sample[10] + sample[11]);
VectorNormalize(dir);
// extract the diffuse color along the chosen direction and scale it
diffuse[0] = (dir[0]*sample[3] + dir[1]*sample[6] + dir[2]*sample[ 9] + sample[ 0]);
diffuse[1] = (dir[0]*sample[4] + dir[1]*sample[7] + dir[2]*sample[10] + sample[ 1]);
diffuse[2] = (dir[0]*sample[5] + dir[1]*sample[8] + dir[2]*sample[11] + sample[ 2]);
// subtract some of diffuse from ambient
VectorMA(sample, -0.333f, diffuse, ambient);
// store the normalized lightdir
VectorCopy(dir, lightdir);
}
static void Mod_GenerateLightmaps_CreateLights_ComputeSVBSP_InsertSurfaces(const dp_model_t *model, svbsp_t *svbsp, const float *mins, const float *maxs)
{
int surfaceindex;
int triangleindex;
const msurface_t *surface;
const float *vertex3f = model->surfmesh.data_vertex3f;
const int *element3i = model->surfmesh.data_element3i;
const int *e;
float v2[3][3];
for (surfaceindex = 0, surface = model->data_surfaces;surfaceindex < model->nummodelsurfaces;surfaceindex++, surface++)
{
if (!BoxesOverlap(surface->mins, surface->maxs, mins, maxs))
continue;
if (surface->texture->basematerialflags & MATERIALFLAG_NOSHADOW)
continue;
for (triangleindex = 0, e = element3i + 3*surface->num_firsttriangle;triangleindex < surface->num_triangles;triangleindex++, e += 3)
{
VectorCopy(vertex3f + 3*e[0], v2[0]);
VectorCopy(vertex3f + 3*e[1], v2[1]);
VectorCopy(vertex3f + 3*e[2], v2[2]);
SVBSP_AddPolygon(svbsp, 3, v2[0], true, NULL, NULL, 0);
}
}
}
static void Mod_GenerateLightmaps_CreateLights_ComputeSVBSP(dp_model_t *model, lightmaplight_t *lightinfo)
{
int maxnodes = 1<<14;
svbsp_node_t *nodes;
float origin[3];
float mins[3];
float maxs[3];
svbsp_t svbsp;
VectorSet(mins, lightinfo->origin[0] - lightinfo->radius, lightinfo->origin[1] - lightinfo->radius, lightinfo->origin[2] - lightinfo->radius);
VectorSet(maxs, lightinfo->origin[0] + lightinfo->radius, lightinfo->origin[1] + lightinfo->radius, lightinfo->origin[2] + lightinfo->radius);
VectorCopy(lightinfo->origin, origin);
nodes = (svbsp_node_t *)Mem_Alloc(tempmempool, maxnodes * sizeof(*nodes));
for (;;)
{
SVBSP_Init(&svbsp, origin, maxnodes, nodes);
Mod_GenerateLightmaps_CreateLights_ComputeSVBSP_InsertSurfaces(model, &svbsp, mins, maxs);
if (svbsp.ranoutofnodes)
{
maxnodes *= 16;
if (maxnodes > 1<<22)
{
Mem_Free(nodes);
return;
}
Mem_Free(nodes);
nodes = (svbsp_node_t *)Mem_Alloc(tempmempool, maxnodes * sizeof(*nodes));
}
else
break;
}
if (svbsp.numnodes > 0)
{
svbsp.nodes = (svbsp_node_t *)Mem_Alloc(tempmempool, svbsp.numnodes * sizeof(*nodes));
memcpy(svbsp.nodes, nodes, svbsp.numnodes * sizeof(*nodes));
lightinfo->svbsp = svbsp;
}
Mem_Free(nodes);
}
static void Mod_GenerateLightmaps_CreateLights(dp_model_t *model)
{
int index;
int result;
lightmaplight_t *lightinfo;
float origin[3];
float radius;
float color[3];
mod_generatelightmaps_numlights = 0;
for (index = 0;;index++)
{
result = R_Shadow_GetRTLightInfo(index, origin, &radius, color);
if (result < 0)
break;
if (result > 0)
mod_generatelightmaps_numlights++;
}
if (mod_generatelightmaps_numlights > 0)
{
mod_generatelightmaps_lightinfo = (lightmaplight_t *)Mem_Alloc(tempmempool, mod_generatelightmaps_numlights * sizeof(*mod_generatelightmaps_lightinfo));
lightinfo = mod_generatelightmaps_lightinfo;
for (index = 0;;index++)
{
result = R_Shadow_GetRTLightInfo(index, lightinfo->origin, &lightinfo->radius, lightinfo->color);
if (result < 0)
break;
if (result > 0)
lightinfo++;
}
}
for (index = 0, lightinfo = mod_generatelightmaps_lightinfo;index < mod_generatelightmaps_numlights;index++, lightinfo++)
{
lightinfo->iradius = 1.0f / lightinfo->radius;
lightinfo->radius2 = lightinfo->radius * lightinfo->radius;
// TODO: compute svbsp
Mod_GenerateLightmaps_CreateLights_ComputeSVBSP(model, lightinfo);
}
}
static void Mod_GenerateLightmaps_DestroyLights(dp_model_t *model)
{
int i;
if (mod_generatelightmaps_lightinfo)
{
for (i = 0;i < mod_generatelightmaps_numlights;i++)
if (mod_generatelightmaps_lightinfo[i].svbsp.nodes)
Mem_Free(mod_generatelightmaps_lightinfo[i].svbsp.nodes);
Mem_Free(mod_generatelightmaps_lightinfo);
}
mod_generatelightmaps_lightinfo = NULL;
mod_generatelightmaps_numlights = 0;
}
static qboolean Mod_GenerateLightmaps_SamplePoint_SVBSP(const svbsp_t *svbsp, const float *pos)
{
const svbsp_node_t *node;
const svbsp_node_t *nodes = svbsp->nodes;
int num = 0;
while (num >= 0)
{
node = nodes + num;
num = node->children[DotProduct(node->plane, pos) < node->plane[3]];
}
return num == -1; // true if empty, false if solid (shadowed)
}
static void Mod_GenerateLightmaps_SamplePoint(const float *pos, const float *normal, float *sample, int numoffsets, const float *offsets)
{
int i;
float relativepoint[3];
float color[3];
float offsetpos[3];
float dist;
float dist2;
float intensity;
int offsetindex;
int hits;
int tests;
const lightmaplight_t *lightinfo;
trace_t trace;
for (i = 0;i < 5*3;i++)
sample[i] = 0.0f;
for (i = 0, lightinfo = mod_generatelightmaps_lightinfo;i < mod_generatelightmaps_numlights;i++, lightinfo++)
{
//R_SampleRTLights(pos, sample, numoffsets, offsets);
VectorSubtract(lightinfo->origin, pos, relativepoint);
// don't accept light from behind a surface, it causes bad shading
if (normal && DotProduct(relativepoint, normal) <= 0)
continue;
dist2 = VectorLength2(relativepoint);
if (dist2 >= lightinfo->radius2)
continue;
dist = sqrt(dist2) * lightinfo->iradius;
intensity = dist < 1 ? ((1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist)) : 0;
if (intensity <= 0)
continue;
if (cl.worldmodel && cl.worldmodel->TraceLine && numoffsets > 0)
{
hits = 0;
tests = 1;
if (Mod_GenerateLightmaps_SamplePoint_SVBSP(&lightinfo->svbsp, pos))
hits++;
for (offsetindex = 1;offsetindex < numoffsets;offsetindex++)
{
VectorAdd(pos, offsets + 3*offsetindex, offsetpos);
if (!normal)
{
// for light grid we'd better check visibility of the offset point
cl.worldmodel->TraceLine(cl.worldmodel, NULL, NULL, &trace, pos, offsetpos, SUPERCONTENTS_VISBLOCKERMASK);
if (trace.fraction < 1)
VectorLerp(pos, trace.fraction, offsetpos, offsetpos);
}
tests++;
if (Mod_GenerateLightmaps_SamplePoint_SVBSP(&lightinfo->svbsp, offsetpos))
hits++;
}
if (!hits)
continue;
// scale intensity according to how many rays succeeded
// we know one test is valid, half of the rest will fail...
//if (normal && tests > 1)
// intensity *= (tests - 1.0f) / tests;
intensity *= (float)hits / tests;
}
// scale down intensity to add to both ambient and diffuse
//intensity *= 0.5f;
VectorNormalize(relativepoint);
VectorScale(lightinfo->color, intensity, color);
VectorMA(sample , 0.5f , color, sample );
VectorMA(sample + 3, relativepoint[0], color, sample + 3);
VectorMA(sample + 6, relativepoint[1], color, sample + 6);
VectorMA(sample + 9, relativepoint[2], color, sample + 9);
// calculate a weighted average light direction as well
intensity *= VectorLength(color);
VectorMA(sample + 12, intensity, relativepoint, sample + 12);
}
}
static void Mod_GenerateLightmaps_LightmapSample(const float *pos, const float *normal, unsigned char *lm_bgr, unsigned char *lm_dir)
{
float sample[5*3];
float color[3];
float dir[3];
float f;
Mod_GenerateLightmaps_SamplePoint(pos, normal, sample, mod_generatelightmaps_numoffsets[0], mod_generatelightmaps_offsets[0][0]);
//VectorSet(dir, sample[3] + sample[4] + sample[5], sample[6] + sample[7] + sample[8], sample[9] + sample[10] + sample[11]);
VectorCopy(sample + 12, dir);
VectorNormalize(dir);
//VectorAdd(dir, normal, dir);
//VectorNormalize(dir);
f = DotProduct(dir, normal);
f = max(0, f) * 255.0f;
VectorScale(sample, f, color);
//VectorCopy(normal, dir);
VectorSet(dir, (dir[0]+1.0f)*127.5f, (dir[1]+1.0f)*127.5f, (dir[2]+1.0f)*127.5f);
lm_bgr[0] = (unsigned char)bound(0.0f, color[2], 255.0f);
lm_bgr[1] = (unsigned char)bound(0.0f, color[1], 255.0f);
lm_bgr[2] = (unsigned char)bound(0.0f, color[0], 255.0f);
lm_bgr[3] = 255;
lm_dir[0] = (unsigned char)dir[2];
lm_dir[1] = (unsigned char)dir[1];
lm_dir[2] = (unsigned char)dir[0];
lm_dir[3] = 255;
}
static void Mod_GenerateLightmaps_VertexSample(const float *pos, const float *normal, float *vertex_color)
{
float sample[5*3];
Mod_GenerateLightmaps_SamplePoint(pos, normal, sample, mod_generatelightmaps_numoffsets[1], mod_generatelightmaps_offsets[1][0]);
VectorCopy(sample, vertex_color);
}
static void Mod_GenerateLightmaps_GridSample(const float *pos, q3dlightgrid_t *s)
{
float sample[5*3];
float ambient[3];
float diffuse[3];
float dir[3];
Mod_GenerateLightmaps_SamplePoint(pos, NULL, sample, mod_generatelightmaps_numoffsets[2], mod_generatelightmaps_offsets[2][0]);
// calculate the direction we'll use to reduce the sample to a directional light source
VectorCopy(sample + 12, dir);
//VectorSet(dir, sample[3] + sample[4] + sample[5], sample[6] + sample[7] + sample[8], sample[9] + sample[10] + sample[11]);
VectorNormalize(dir);
// extract the diffuse color along the chosen direction and scale it
diffuse[0] = (dir[0]*sample[3] + dir[1]*sample[6] + dir[2]*sample[ 9] + sample[ 0]) * 127.5f;
diffuse[1] = (dir[0]*sample[4] + dir[1]*sample[7] + dir[2]*sample[10] + sample[ 1]) * 127.5f;
diffuse[2] = (dir[0]*sample[5] + dir[1]*sample[8] + dir[2]*sample[11] + sample[ 2]) * 127.5f;
// scale the ambient from 0-2 to 0-255 and subtract some of diffuse
VectorScale(sample, 127.5f, ambient);
VectorMA(ambient, -0.333f, diffuse, ambient);
// encode to the grid format
s->ambientrgb[0] = (unsigned char)bound(0.0f, ambient[0], 255.0f);
s->ambientrgb[1] = (unsigned char)bound(0.0f, ambient[1], 255.0f);
s->ambientrgb[2] = (unsigned char)bound(0.0f, ambient[2], 255.0f);
s->diffusergb[0] = (unsigned char)bound(0.0f, diffuse[0], 255.0f);
s->diffusergb[1] = (unsigned char)bound(0.0f, diffuse[1], 255.0f);
s->diffusergb[2] = (unsigned char)bound(0.0f, diffuse[2], 255.0f);
if (dir[2] >= 0.99f) {s->diffusepitch = 0;s->diffuseyaw = 0;}
else if (dir[2] <= -0.99f) {s->diffusepitch = 128;s->diffuseyaw = 0;}
else {s->diffusepitch = (unsigned char)(acos(dir[2]) * (127.5f/M_PI));s->diffuseyaw = (unsigned char)(atan2(dir[1], dir[0]) * (127.5f/M_PI));}
}
static void Mod_GenerateLightmaps_InitSampleOffsets(dp_model_t *model)
{
float radius[3];
float temp[3];
int i, j;
memset(mod_generatelightmaps_offsets, 0, sizeof(mod_generatelightmaps_offsets));
mod_generatelightmaps_numoffsets[0] = min(MAX_LIGHTMAPSAMPLES, mod_generatelightmaps_lightmapsamples.integer);
mod_generatelightmaps_numoffsets[1] = min(MAX_LIGHTMAPSAMPLES, mod_generatelightmaps_vertexsamples.integer);
mod_generatelightmaps_numoffsets[2] = min(MAX_LIGHTMAPSAMPLES, mod_generatelightmaps_gridsamples.integer);
radius[0] = mod_generatelightmaps_lightmapradius.value;
radius[1] = mod_generatelightmaps_vertexradius.value;
radius[2] = mod_generatelightmaps_gridradius.value;
for (i = 0;i < 3;i++)
{
for (j = 1;j < mod_generatelightmaps_numoffsets[i];j++)
{
VectorRandom(temp);
VectorScale(temp, radius[i], mod_generatelightmaps_offsets[i][j]);
}
}
}
static void Mod_GenerateLightmaps_DestroyLightmaps(dp_model_t *model)
{
msurface_t *surface;
int surfaceindex;
int i;
for (surfaceindex = 0;surfaceindex < model->num_surfaces;surfaceindex++)
{
surface = model->data_surfaces + surfaceindex;
surface->lightmaptexture = NULL;
surface->deluxemaptexture = NULL;
}
if (model->brushq3.data_lightmaps)
{
for (i = 0;i < model->brushq3.num_mergedlightmaps;i++)
if (model->brushq3.data_lightmaps[i])
R_FreeTexture(model->brushq3.data_lightmaps[i]);
Mem_Free(model->brushq3.data_lightmaps);
model->brushq3.data_lightmaps = NULL;
}
if (model->brushq3.data_deluxemaps)
{
for (i = 0;i < model->brushq3.num_mergedlightmaps;i++)
if (model->brushq3.data_deluxemaps[i])
R_FreeTexture(model->brushq3.data_deluxemaps[i]);
Mem_Free(model->brushq3.data_deluxemaps);
model->brushq3.data_deluxemaps = NULL;
}
}
static void Mod_GenerateLightmaps_UnweldTriangles(dp_model_t *model)
{
msurface_t *surface;
int surfaceindex;
int vertexindex;
int outvertexindex;
int i;
const int *e;
surfmesh_t oldsurfmesh;
size_t size;
unsigned char *data;
oldsurfmesh = model->surfmesh;
model->surfmesh.num_triangles = oldsurfmesh.num_triangles;
model->surfmesh.num_vertices = oldsurfmesh.num_triangles * 3;
size = 0;
size += model->surfmesh.num_vertices * sizeof(float[3]);
size += model->surfmesh.num_vertices * sizeof(float[3]);
size += model->surfmesh.num_vertices * sizeof(float[3]);
size += model->surfmesh.num_vertices * sizeof(float[3]);
size += model->surfmesh.num_vertices * sizeof(float[2]);
size += model->surfmesh.num_vertices * sizeof(float[2]);
size += model->surfmesh.num_vertices * sizeof(float[4]);
data = (unsigned char *)Mem_Alloc(model->mempool, size);
model->surfmesh.data_vertex3f = (float *)data;data += model->surfmesh.num_vertices * sizeof(float[3]);
model->surfmesh.data_normal3f = (float *)data;data += model->surfmesh.num_vertices * sizeof(float[3]);
model->surfmesh.data_svector3f = (float *)data;data += model->surfmesh.num_vertices * sizeof(float[3]);
model->surfmesh.data_tvector3f = (float *)data;data += model->surfmesh.num_vertices * sizeof(float[3]);
model->surfmesh.data_texcoordtexture2f = (float *)data;data += model->surfmesh.num_vertices * sizeof(float[2]);
model->surfmesh.data_texcoordlightmap2f = (float *)data;data += model->surfmesh.num_vertices * sizeof(float[2]);
model->surfmesh.data_lightmapcolor4f = (float *)data;data += model->surfmesh.num_vertices * sizeof(float[4]);
if (model->surfmesh.num_vertices > 65536)
model->surfmesh.data_element3s = NULL;
if (model->surfmesh.data_element3i_indexbuffer)
R_Mesh_DestroyMeshBuffer(model->surfmesh.data_element3i_indexbuffer);
model->surfmesh.data_element3i_indexbuffer = NULL;
if (model->surfmesh.data_element3s_indexbuffer)
R_Mesh_DestroyMeshBuffer(model->surfmesh.data_element3s_indexbuffer);
model->surfmesh.data_element3s_indexbuffer = NULL;
if (model->surfmesh.vbo_vertexbuffer)
R_Mesh_DestroyMeshBuffer(model->surfmesh.vbo_vertexbuffer);
model->surfmesh.vbo_vertexbuffer = 0;
// convert all triangles to unique vertex data
outvertexindex = 0;
for (surfaceindex = 0;surfaceindex < model->num_surfaces;surfaceindex++)
{
surface = model->data_surfaces + surfaceindex;
surface->num_firstvertex = outvertexindex;
surface->num_vertices = surface->num_triangles*3;
e = oldsurfmesh.data_element3i + surface->num_firsttriangle*3;
for (i = 0;i < surface->num_triangles*3;i++)
{
vertexindex = e[i];
model->surfmesh.data_vertex3f[outvertexindex*3+0] = oldsurfmesh.data_vertex3f[vertexindex*3+0];
model->surfmesh.data_vertex3f[outvertexindex*3+1] = oldsurfmesh.data_vertex3f[vertexindex*3+1];
model->surfmesh.data_vertex3f[outvertexindex*3+2] = oldsurfmesh.data_vertex3f[vertexindex*3+2];
model->surfmesh.data_normal3f[outvertexindex*3+0] = oldsurfmesh.data_normal3f[vertexindex*3+0];
model->surfmesh.data_normal3f[outvertexindex*3+1] = oldsurfmesh.data_normal3f[vertexindex*3+1];
model->surfmesh.data_normal3f[outvertexindex*3+2] = oldsurfmesh.data_normal3f[vertexindex*3+2];
model->surfmesh.data_svector3f[outvertexindex*3+0] = oldsurfmesh.data_svector3f[vertexindex*3+0];
model->surfmesh.data_svector3f[outvertexindex*3+1] = oldsurfmesh.data_svector3f[vertexindex*3+1];
model->surfmesh.data_svector3f[outvertexindex*3+2] = oldsurfmesh.data_svector3f[vertexindex*3+2];
model->surfmesh.data_tvector3f[outvertexindex*3+0] = oldsurfmesh.data_tvector3f[vertexindex*3+0];
model->surfmesh.data_tvector3f[outvertexindex*3+1] = oldsurfmesh.data_tvector3f[vertexindex*3+1];
model->surfmesh.data_tvector3f[outvertexindex*3+2] = oldsurfmesh.data_tvector3f[vertexindex*3+2];
model->surfmesh.data_texcoordtexture2f[outvertexindex*2+0] = oldsurfmesh.data_texcoordtexture2f[vertexindex*2+0];
model->surfmesh.data_texcoordtexture2f[outvertexindex*2+1] = oldsurfmesh.data_texcoordtexture2f[vertexindex*2+1];
if (oldsurfmesh.data_texcoordlightmap2f)
{
model->surfmesh.data_texcoordlightmap2f[outvertexindex*2+0] = oldsurfmesh.data_texcoordlightmap2f[vertexindex*2+0];
model->surfmesh.data_texcoordlightmap2f[outvertexindex*2+1] = oldsurfmesh.data_texcoordlightmap2f[vertexindex*2+1];
}
if (oldsurfmesh.data_lightmapcolor4f)
{
model->surfmesh.data_lightmapcolor4f[outvertexindex*4+0] = oldsurfmesh.data_lightmapcolor4f[vertexindex*4+0];
model->surfmesh.data_lightmapcolor4f[outvertexindex*4+1] = oldsurfmesh.data_lightmapcolor4f[vertexindex*4+1];
model->surfmesh.data_lightmapcolor4f[outvertexindex*4+2] = oldsurfmesh.data_lightmapcolor4f[vertexindex*4+2];
model->surfmesh.data_lightmapcolor4f[outvertexindex*4+3] = oldsurfmesh.data_lightmapcolor4f[vertexindex*4+3];
}
else
Vector4Set(model->surfmesh.data_lightmapcolor4f + 4*outvertexindex, 1, 1, 1, 1);
model->surfmesh.data_element3i[surface->num_firsttriangle*3+i] = outvertexindex;
outvertexindex++;
}
}
if (model->surfmesh.data_element3s)
for (i = 0;i < model->surfmesh.num_triangles*3;i++)
model->surfmesh.data_element3s[i] = model->surfmesh.data_element3i[i];
// find and update all submodels to use this new surfmesh data
for (i = 0;i < model->brush.numsubmodels;i++)
model->brush.submodels[i]->surfmesh = model->surfmesh;
}
static void Mod_GenerateLightmaps_CreateTriangleInformation(dp_model_t *model)
{
msurface_t *surface;
int surfaceindex;
int i;
int axis;
float normal[3];
const int *e;
lightmaptriangle_t *triangle;
// generate lightmap triangle structs
mod_generatelightmaps_lightmaptriangles = (lightmaptriangle_t *)Mem_Alloc(model->mempool, model->surfmesh.num_triangles * sizeof(lightmaptriangle_t));
for (surfaceindex = 0;surfaceindex < model->num_surfaces;surfaceindex++)
{
surface = model->data_surfaces + surfaceindex;
e = model->surfmesh.data_element3i + surface->num_firsttriangle*3;
for (i = 0;i < surface->num_triangles;i++)
{
triangle = &mod_generatelightmaps_lightmaptriangles[surface->num_firsttriangle+i];
triangle->triangleindex = surface->num_firsttriangle+i;
triangle->surfaceindex = surfaceindex;
VectorCopy(model->surfmesh.data_vertex3f + 3*e[i*3+0], triangle->vertex[0]);
VectorCopy(model->surfmesh.data_vertex3f + 3*e[i*3+1], triangle->vertex[1]);
VectorCopy(model->surfmesh.data_vertex3f + 3*e[i*3+2], triangle->vertex[2]);
// calculate bounds of triangle
triangle->mins[0] = min(triangle->vertex[0][0], min(triangle->vertex[1][0], triangle->vertex[2][0]));
triangle->mins[1] = min(triangle->vertex[0][1], min(triangle->vertex[1][1], triangle->vertex[2][1]));
triangle->mins[2] = min(triangle->vertex[0][2], min(triangle->vertex[1][2], triangle->vertex[2][2]));
triangle->maxs[0] = max(triangle->vertex[0][0], max(triangle->vertex[1][0], triangle->vertex[2][0]));
triangle->maxs[1] = max(triangle->vertex[0][1], max(triangle->vertex[1][1], triangle->vertex[2][1]));
triangle->maxs[2] = max(triangle->vertex[0][2], max(triangle->vertex[1][2], triangle->vertex[2][2]));
// pick an axial projection based on the triangle normal
TriangleNormal(triangle->vertex[0], triangle->vertex[1], triangle->vertex[2], normal);
axis = 0;
if (fabs(normal[1]) > fabs(normal[axis]))
axis = 1;
if (fabs(normal[2]) > fabs(normal[axis]))
axis = 2;
triangle->axis = axis;
}
}
}
static void Mod_GenerateLightmaps_DestroyTriangleInformation(dp_model_t *model)
{
if (mod_generatelightmaps_lightmaptriangles)
Mem_Free(mod_generatelightmaps_lightmaptriangles);
mod_generatelightmaps_lightmaptriangles = NULL;
}
float lmaxis[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
static void Mod_GenerateLightmaps_CreateLightmaps(dp_model_t *model)
{
msurface_t *surface;
int surfaceindex;
int lightmapindex;
int lightmapnumber;
int i;
int j;
int k;
int x;
int y;
int axis;
int axis1;
int axis2;
int retry;
int pixeloffset;
float trianglenormal[3];
float samplecenter[3];
float samplenormal[3];
float temp[3];
float lmiscale[2];
float slopex;
float slopey;
float slopebase;
float lmscalepixels;
float lmmins;
float lmmaxs;
float lm_basescalepixels;
int lm_borderpixels;
int lm_texturesize;
//int lm_maxpixels;
const int *e;
lightmaptriangle_t *triangle;
unsigned char *lightmappixels;
unsigned char *deluxemappixels;
mod_alloclightmap_state_t lmstate;
char vabuf[1024];
// generate lightmap projection information for all triangles
if (model->texturepool == NULL)
model->texturepool = R_AllocTexturePool();
lm_basescalepixels = 1.0f / max(0.0001f, mod_generatelightmaps_unitspersample.value);
lm_borderpixels = mod_generatelightmaps_borderpixels.integer;
lm_texturesize = bound(lm_borderpixels*2+1, 64, (int)vid.maxtexturesize_2d);
//lm_maxpixels = lm_texturesize-(lm_borderpixels*2+1);
Mod_AllocLightmap_Init(&lmstate, lm_texturesize, lm_texturesize);
lightmapnumber = 0;
for (surfaceindex = 0;surfaceindex < model->num_surfaces;surfaceindex++)
{
surface = model->data_surfaces + surfaceindex;
e = model->surfmesh.data_element3i + surface->num_firsttriangle*3;
lmscalepixels = lm_basescalepixels;
for (retry = 0;retry < 30;retry++)
{
// after a couple failed attempts, degrade quality to make it fit
if (retry > 1)
lmscalepixels *= 0.5f;
for (i = 0;i < surface->num_triangles;i++)
{
triangle = &mod_generatelightmaps_lightmaptriangles[surface->num_firsttriangle+i];
triangle->lightmapindex = lightmapnumber;
// calculate lightmap bounds in 3D pixel coordinates, limit size,
// pick two planar axes for projection
// lightmap coordinates here are in pixels
// lightmap projections are snapped to pixel grid explicitly, such
// that two neighboring triangles sharing an edge and projection
// axis will have identical sampl espacing along their shared edge
k = 0;
for (j = 0;j < 3;j++)
{
if (j == triangle->axis)
continue;
lmmins = floor(triangle->mins[j]*lmscalepixels)-lm_borderpixels;
lmmaxs = floor(triangle->maxs[j]*lmscalepixels)+lm_borderpixels;
triangle->lmsize[k] = (int)(lmmaxs-lmmins);
triangle->lmbase[k] = lmmins/lmscalepixels;
triangle->lmscale[k] = lmscalepixels;
k++;
}
if (!Mod_AllocLightmap_Block(&lmstate, triangle->lmsize[0], triangle->lmsize[1], &triangle->lmoffset[0], &triangle->lmoffset[1]))
break;
}
// if all fit in this texture, we're done with this surface
if (i == surface->num_triangles)
break;
// if we haven't maxed out the lightmap size yet, we retry the
// entire surface batch...
if (lm_texturesize * 2 <= min(mod_generatelightmaps_texturesize.integer, (int)vid.maxtexturesize_2d))
{
lm_texturesize *= 2;
surfaceindex = -1;
lightmapnumber = 0;
Mod_AllocLightmap_Free(&lmstate);
Mod_AllocLightmap_Init(&lmstate, lm_texturesize, lm_texturesize);
break;
}
// if we have maxed out the lightmap size, and this triangle does
// not fit in the same texture as the rest of the surface, we have
// to retry the entire surface in a new texture (can only use one)
// with multiple retries, the lightmap quality degrades until it
// fits (or gives up)
if (surfaceindex > 0)
lightmapnumber++;
Mod_AllocLightmap_Reset(&lmstate);
}
}
lightmapnumber++;
Mod_AllocLightmap_Free(&lmstate);
// now put triangles together into lightmap textures, and do not allow
// triangles of a surface to go into different textures (as that would
// require rewriting the surface list)
model->brushq3.deluxemapping_modelspace = true;
model->brushq3.deluxemapping = true;
model->brushq3.num_mergedlightmaps = lightmapnumber;
model->brushq3.data_lightmaps = (rtexture_t **)Mem_Alloc(model->mempool, model->brushq3.num_mergedlightmaps * sizeof(rtexture_t *));
model->brushq3.data_deluxemaps = (rtexture_t **)Mem_Alloc(model->mempool, model->brushq3.num_mergedlightmaps * sizeof(rtexture_t *));
lightmappixels = (unsigned char *)Mem_Alloc(tempmempool, model->brushq3.num_mergedlightmaps * lm_texturesize * lm_texturesize * 4);
deluxemappixels = (unsigned char *)Mem_Alloc(tempmempool, model->brushq3.num_mergedlightmaps * lm_texturesize * lm_texturesize * 4);
for (surfaceindex = 0;surfaceindex < model->num_surfaces;surfaceindex++)
{
surface = model->data_surfaces + surfaceindex;
e = model->surfmesh.data_element3i + surface->num_firsttriangle*3;
for (i = 0;i < surface->num_triangles;i++)
{
triangle = &mod_generatelightmaps_lightmaptriangles[surface->num_firsttriangle+i];
TriangleNormal(triangle->vertex[0], triangle->vertex[1], triangle->vertex[2], trianglenormal);
VectorNormalize(trianglenormal);
VectorCopy(trianglenormal, samplenormal); // FIXME: this is supposed to be interpolated per pixel from vertices
axis = triangle->axis;
axis1 = axis == 0 ? 1 : 0;
axis2 = axis == 2 ? 1 : 2;
lmiscale[0] = 1.0f / triangle->lmscale[0];
lmiscale[1] = 1.0f / triangle->lmscale[1];
if (trianglenormal[axis] < 0)
VectorNegate(trianglenormal, trianglenormal);
CrossProduct(lmaxis[axis2], trianglenormal, temp);slopex = temp[axis] / temp[axis1];
CrossProduct(lmaxis[axis1], trianglenormal, temp);slopey = temp[axis] / temp[axis2];
slopebase = triangle->vertex[0][axis] - triangle->vertex[0][axis1]*slopex - triangle->vertex[0][axis2]*slopey;
for (j = 0;j < 3;j++)
{
float *t2f = model->surfmesh.data_texcoordlightmap2f + e[i*3+j]*2;
t2f[0] = ((triangle->vertex[j][axis1] - triangle->lmbase[0]) * triangle->lmscale[0] + triangle->lmoffset[0]) / lm_texturesize;
t2f[1] = ((triangle->vertex[j][axis2] - triangle->lmbase[1]) * triangle->lmscale[1] + triangle->lmoffset[1]) / lm_texturesize;
#if 0
samplecenter[axis1] = (t2f[0]*lm_texturesize-triangle->lmoffset[0])*lmiscale[0] + triangle->lmbase[0];
samplecenter[axis2] = (t2f[1]*lm_texturesize-triangle->lmoffset[1])*lmiscale[1] + triangle->lmbase[1];
samplecenter[axis] = samplecenter[axis1]*slopex + samplecenter[axis2]*slopey + slopebase;
Con_Printf("%f:%f %f:%f %f:%f = %f %f\n", triangle->vertex[j][axis1], samplecenter[axis1], triangle->vertex[j][axis2], samplecenter[axis2], triangle->vertex[j][axis], samplecenter[axis], t2f[0], t2f[1]);
#endif
}
#if 0
switch (axis)
{
default:
case 0:
forward[0] = 0;
forward[1] = 1.0f / triangle->lmscale[0];
forward[2] = 0;
left[0] = 0;
left[1] = 0;
left[2] = 1.0f / triangle->lmscale[1];
up[0] = 1.0f;
up[1] = 0;
up[2] = 0;
origin[0] = 0;
origin[1] = triangle->lmbase[0];
origin[2] = triangle->lmbase[1];
break;
case 1:
forward[0] = 1.0f / triangle->lmscale[0];
forward[1] = 0;
forward[2] = 0;
left[0] = 0;
left[1] = 0;
left[2] = 1.0f / triangle->lmscale[1];
up[0] = 0;
up[1] = 1.0f;
up[2] = 0;
origin[0] = triangle->lmbase[0];
origin[1] = 0;
origin[2] = triangle->lmbase[1];
break;
case 2:
forward[0] = 1.0f / triangle->lmscale[0];
forward[1] = 0;
forward[2] = 0;
left[0] = 0;
left[1] = 1.0f / triangle->lmscale[1];
left[2] = 0;
up[0] = 0;
up[1] = 0;
up[2] = 1.0f;
origin[0] = triangle->lmbase[0];
origin[1] = triangle->lmbase[1];
origin[2] = 0;
break;
}
Matrix4x4_FromVectors(&backmatrix, forward, left, up, origin);
#endif
#define LM_DIST_EPSILON (1.0f / 32.0f)
for (y = 0;y < triangle->lmsize[1];y++)
{
pixeloffset = ((triangle->lightmapindex * lm_texturesize + y + triangle->lmoffset[1]) * lm_texturesize + triangle->lmoffset[0]) * 4;
for (x = 0;x < triangle->lmsize[0];x++, pixeloffset += 4)
{
samplecenter[axis1] = (x+0.5f)*lmiscale[0] + triangle->lmbase[0];
samplecenter[axis2] = (y+0.5f)*lmiscale[1] + triangle->lmbase[1];
samplecenter[axis] = samplecenter[axis1]*slopex + samplecenter[axis2]*slopey + slopebase;
VectorMA(samplecenter, 0.125f, samplenormal, samplecenter);
Mod_GenerateLightmaps_LightmapSample(samplecenter, samplenormal, lightmappixels + pixeloffset, deluxemappixels + pixeloffset);
}
}
}
}
for (lightmapindex = 0;lightmapindex < model->brushq3.num_mergedlightmaps;lightmapindex++)
{
model->brushq3.data_lightmaps[lightmapindex] = R_LoadTexture2D(model->texturepool, va(vabuf, sizeof(vabuf), "lightmap%i", lightmapindex), lm_texturesize, lm_texturesize, lightmappixels + lightmapindex * lm_texturesize * lm_texturesize * 4, TEXTYPE_BGRA, TEXF_FORCELINEAR, -1, NULL);
model->brushq3.data_deluxemaps[lightmapindex] = R_LoadTexture2D(model->texturepool, va(vabuf, sizeof(vabuf), "deluxemap%i", lightmapindex), lm_texturesize, lm_texturesize, deluxemappixels + lightmapindex * lm_texturesize * lm_texturesize * 4, TEXTYPE_BGRA, TEXF_FORCELINEAR, -1, NULL);
}
if (lightmappixels)
Mem_Free(lightmappixels);
if (deluxemappixels)
Mem_Free(deluxemappixels);
for (surfaceindex = 0;surfaceindex < model->num_surfaces;surfaceindex++)
{
surface = model->data_surfaces + surfaceindex;
if (!surface->num_triangles)
continue;
lightmapindex = mod_generatelightmaps_lightmaptriangles[surface->num_firsttriangle].lightmapindex;
surface->lightmaptexture = model->brushq3.data_lightmaps[lightmapindex];
surface->deluxemaptexture = model->brushq3.data_deluxemaps[lightmapindex];
surface->lightmapinfo = NULL;
}
model->brush.LightPoint = Mod_GenerateLightmaps_LightPoint;
model->brushq1.lightdata = NULL;
model->brushq1.lightmapupdateflags = NULL;
model->brushq1.firstrender = false;
model->brushq1.num_lightstyles = 0;
model->brushq1.data_lightstyleinfo = NULL;
for (i = 0;i < model->brush.numsubmodels;i++)
{
model->brush.submodels[i]->brushq1.lightmapupdateflags = NULL;
model->brush.submodels[i]->brushq1.firstrender = false;
model->brush.submodels[i]->brushq1.num_lightstyles = 0;
model->brush.submodels[i]->brushq1.data_lightstyleinfo = NULL;
}
}
static void Mod_GenerateLightmaps_UpdateVertexColors(dp_model_t *model)
{
int i;
for (i = 0;i < model->surfmesh.num_vertices;i++)
Mod_GenerateLightmaps_VertexSample(model->surfmesh.data_vertex3f + 3*i, model->surfmesh.data_normal3f + 3*i, model->surfmesh.data_lightmapcolor4f + 4*i);
}
static void Mod_GenerateLightmaps_UpdateLightGrid(dp_model_t *model)
{
int x;
int y;
int z;
int index = 0;
float pos[3];
for (z = 0;z < model->brushq3.num_lightgrid_isize[2];z++)
{
pos[2] = (model->brushq3.num_lightgrid_imins[2] + z + 0.5f) * model->brushq3.num_lightgrid_cellsize[2];
for (y = 0;y < model->brushq3.num_lightgrid_isize[1];y++)
{
pos[1] = (model->brushq3.num_lightgrid_imins[1] + y + 0.5f) * model->brushq3.num_lightgrid_cellsize[1];
for (x = 0;x < model->brushq3.num_lightgrid_isize[0];x++, index++)
{
pos[0] = (model->brushq3.num_lightgrid_imins[0] + x + 0.5f) * model->brushq3.num_lightgrid_cellsize[0];
Mod_GenerateLightmaps_GridSample(pos, model->brushq3.data_lightgrid + index);
}
}
}
}
extern cvar_t mod_q3bsp_nolightmaps;
static void Mod_GenerateLightmaps(dp_model_t *model)
{
//lightmaptriangle_t *lightmaptriangles = Mem_Alloc(model->mempool, model->surfmesh.num_triangles * sizeof(lightmaptriangle_t));
dp_model_t *oldloadmodel = loadmodel;
loadmodel = model;
Mod_GenerateLightmaps_InitSampleOffsets(model);
Mod_GenerateLightmaps_DestroyLightmaps(model);
Mod_GenerateLightmaps_UnweldTriangles(model);
Mod_GenerateLightmaps_CreateTriangleInformation(model);
Mod_GenerateLightmaps_CreateLights(model);
if(!mod_q3bsp_nolightmaps.integer)
Mod_GenerateLightmaps_CreateLightmaps(model);
Mod_GenerateLightmaps_UpdateVertexColors(model);
Mod_GenerateLightmaps_UpdateLightGrid(model);
Mod_GenerateLightmaps_DestroyLights(model);
Mod_GenerateLightmaps_DestroyTriangleInformation(model);
loadmodel = oldloadmodel;
}
static void Mod_GenerateLightmaps_f(void)
{
if (Cmd_Argc() != 1)
{
Con_Printf("usage: mod_generatelightmaps\n");
return;
}
if (!cl.worldmodel)
{
Con_Printf("no worldmodel loaded\n");
return;
}
Mod_GenerateLightmaps(cl.worldmodel);
}