quakequest/Projects/Android/jni/zone.c

985 lines
30 KiB
C
Raw Normal View History

2019-05-30 05:57:57 +00:00
/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// Z_zone.c
#include "quakedef.h"
#include "thread.h"
#ifdef WIN32
#include <windows.h>
#include <winbase.h>
#else
#include <unistd.h>
#endif
#ifdef _MSC_VER
#include <vadefs.h>
#else
#include <stdint.h>
#endif
#define MEMHEADER_SENTINEL_FOR_ADDRESS(p) ((sentinel_seed ^ (unsigned int) (uintptr_t) (p)) + sentinel_seed)
unsigned int sentinel_seed;
qboolean mem_bigendian = false;
void *mem_mutex = NULL;
// divVerent: enables file backed malloc using mmap to conserve swap space (instead of malloc)
#ifndef FILE_BACKED_MALLOC
# define FILE_BACKED_MALLOC 0
#endif
// LordHavoc: enables our own low-level allocator (instead of malloc)
#ifndef MEMCLUMPING
# define MEMCLUMPING 0
#endif
#ifndef MEMCLUMPING_FREECLUMPS
# define MEMCLUMPING_FREECLUMPS 0
#endif
#if MEMCLUMPING
// smallest unit we care about is this many bytes
#define MEMUNIT 128
// try to do 32MB clumps, but overhead eats into this
#ifndef MEMWANTCLUMPSIZE
# define MEMWANTCLUMPSIZE (1<<27)
#endif
// give malloc padding so we can't waste most of a page at the end
#define MEMCLUMPSIZE (MEMWANTCLUMPSIZE - MEMWANTCLUMPSIZE/MEMUNIT/32 - 128)
#define MEMBITS (MEMCLUMPSIZE / MEMUNIT)
#define MEMBITINTS (MEMBITS / 32)
typedef struct memclump_s
{
// contents of the clump
unsigned char block[MEMCLUMPSIZE];
// should always be MEMCLUMP_SENTINEL
unsigned int sentinel1;
// if a bit is on, it means that the MEMUNIT bytes it represents are
// allocated, otherwise free
unsigned int bits[MEMBITINTS];
// should always be MEMCLUMP_SENTINEL
unsigned int sentinel2;
// if this drops to 0, the clump is freed
size_t blocksinuse;
// largest block of memory available (this is reset to an optimistic
// number when anything is freed, and updated when alloc fails the clump)
size_t largestavailable;
// next clump in the chain
struct memclump_s *chain;
}
memclump_t;
#if MEMCLUMPING == 2
static memclump_t masterclump;
#endif
static memclump_t *clumpchain = NULL;
#endif
cvar_t developer_memory = {0, "developer_memory", "0", "prints debugging information about memory allocations"};
cvar_t developer_memorydebug = {0, "developer_memorydebug", "0", "enables memory corruption checks (very slow)"};
cvar_t sys_memsize_physical = {CVAR_READONLY, "sys_memsize_physical", "", "physical memory size in MB (or empty if unknown)"};
cvar_t sys_memsize_virtual = {CVAR_READONLY, "sys_memsize_virtual", "", "virtual memory size in MB (or empty if unknown)"};
static mempool_t *poolchain = NULL;
void Mem_PrintStats(void);
void Mem_PrintList(size_t minallocationsize);
#if FILE_BACKED_MALLOC
#include <stdlib.h>
#include <sys/mman.h>
typedef struct mmap_data_s
{
size_t len;
}
mmap_data_t;
static void *mmap_malloc(size_t size)
{
char vabuf[MAX_OSPATH + 1];
char *tmpdir = getenv("TEMP");
mmap_data_t *data;
int fd;
size += sizeof(mmap_data_t); // waste block
dpsnprintf(vabuf, sizeof(vabuf), "%s/darkplaces.XXXXXX", tmpdir ? tmpdir : "/tmp");
fd = mkstemp(vabuf);
if(fd < 0)
return NULL;
ftruncate(fd, size);
data = (unsigned char *) mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_NORESERVE, fd, 0);
close(fd);
unlink(vabuf);
if(!data)
return NULL;
data->len = size;
return (void *) (data + 1);
}
static void mmap_free(void *mem)
{
mmap_data_t *data;
if(!mem)
return;
data = ((mmap_data_t *) mem) - 1;
munmap(data, data->len);
}
#define malloc mmap_malloc
#define free mmap_free
#endif
#if MEMCLUMPING != 2
// some platforms have a malloc that returns NULL but succeeds later
// (Windows growing its swapfile for example)
static void *attempt_malloc(size_t size)
{
void *base;
// try for half a second or so
unsigned int attempts = 500;
while (attempts--)
{
base = (void *)malloc(size);
if (base)
return base;
Sys_Sleep(1000);
}
return NULL;
}
#endif
#if MEMCLUMPING
static memclump_t *Clump_NewClump(void)
{
memclump_t **clumpchainpointer;
memclump_t *clump;
#if MEMCLUMPING == 2
if (clumpchain)
return NULL;
clump = &masterclump;
#else
clump = (memclump_t*)attempt_malloc(sizeof(memclump_t));
if (!clump)
return NULL;
#endif
// initialize clump
if (developer_memorydebug.integer)
memset(clump, 0xEF, sizeof(*clump));
clump->sentinel1 = MEMHEADER_SENTINEL_FOR_ADDRESS(&clump->sentinel1);
memset(clump->bits, 0, sizeof(clump->bits));
clump->sentinel2 = MEMHEADER_SENTINEL_FOR_ADDRESS(&clump->sentinel2);
clump->blocksinuse = 0;
clump->largestavailable = 0;
clump->chain = NULL;
// link clump into chain
for (clumpchainpointer = &clumpchain;*clumpchainpointer;clumpchainpointer = &(*clumpchainpointer)->chain)
;
*clumpchainpointer = clump;
return clump;
}
#endif
// low level clumping functions, all other memory functions use these
static void *Clump_AllocBlock(size_t size)
{
unsigned char *base;
#if MEMCLUMPING
if (size <= MEMCLUMPSIZE)
{
int index;
unsigned int bit;
unsigned int needbits;
unsigned int startbit;
unsigned int endbit;
unsigned int needints;
int startindex;
int endindex;
unsigned int value;
unsigned int mask;
unsigned int *array;
memclump_t **clumpchainpointer;
memclump_t *clump;
needbits = (size + MEMUNIT - 1) / MEMUNIT;
needints = (needbits+31)>>5;
for (clumpchainpointer = &clumpchain;;clumpchainpointer = &(*clumpchainpointer)->chain)
{
clump = *clumpchainpointer;
if (!clump)
{
clump = Clump_NewClump();
if (!clump)
return NULL;
}
if (clump->sentinel1 != MEMHEADER_SENTINEL_FOR_ADDRESS(&clump->sentinel1))
Sys_Error("Clump_AllocBlock: trashed sentinel1\n");
if (clump->sentinel2 != MEMHEADER_SENTINEL_FOR_ADDRESS(&clump->sentinel2))
Sys_Error("Clump_AllocBlock: trashed sentinel2\n");
startbit = 0;
endbit = startbit + needbits;
array = clump->bits;
// do as fast a search as possible, even if it means crude alignment
if (needbits >= 32)
{
// large allocations are aligned to large boundaries
// furthermore, they are allocated downward from the top...
endindex = MEMBITINTS;
startindex = endindex - needints;
index = endindex;
while (--index >= startindex)
{
if (array[index])
{
endindex = index;
startindex = endindex - needints;
if (startindex < 0)
goto nofreeblock;
}
}
startbit = startindex*32;
goto foundblock;
}
else
{
// search for a multi-bit gap in a single int
// (not dealing with the cases that cross two ints)
mask = (1<<needbits)-1;
endbit = 32-needbits;
bit = endbit;
for (index = 0;index < MEMBITINTS;index++)
{
value = array[index];
if (value != 0xFFFFFFFFu)
{
// there may be room in this one...
for (bit = 0;bit < endbit;bit++)
{
if (!(value & (mask<<bit)))
{
startbit = index*32+bit;
goto foundblock;
}
}
}
}
goto nofreeblock;
}
foundblock:
endbit = startbit + needbits;
// mark this range as used
// TODO: optimize
for (bit = startbit;bit < endbit;bit++)
if (clump->bits[bit>>5] & (1<<(bit & 31)))
Sys_Error("Clump_AllocBlock: internal error (%i needbits)\n", needbits);
for (bit = startbit;bit < endbit;bit++)
clump->bits[bit>>5] |= (1<<(bit & 31));
clump->blocksinuse += needbits;
base = clump->block + startbit * MEMUNIT;
if (developer_memorydebug.integer)
memset(base, 0xBF, needbits * MEMUNIT);
return base;
nofreeblock:
;
}
// never reached
return NULL;
}
// too big, allocate it directly
#endif
#if MEMCLUMPING == 2
return NULL;
#else
base = (unsigned char *)attempt_malloc(size);
if (base && developer_memorydebug.integer)
memset(base, 0xAF, size);
return base;
#endif
}
static void Clump_FreeBlock(void *base, size_t size)
{
#if MEMCLUMPING
unsigned int needbits;
unsigned int startbit;
unsigned int endbit;
unsigned int bit;
memclump_t **clumpchainpointer;
memclump_t *clump;
unsigned char *start = (unsigned char *)base;
for (clumpchainpointer = &clumpchain;(clump = *clumpchainpointer);clumpchainpointer = &(*clumpchainpointer)->chain)
{
if (start >= clump->block && start < clump->block + MEMCLUMPSIZE)
{
if (clump->sentinel1 != MEMHEADER_SENTINEL_FOR_ADDRESS(&clump->sentinel1))
Sys_Error("Clump_FreeBlock: trashed sentinel1\n");
if (clump->sentinel2 != MEMHEADER_SENTINEL_FOR_ADDRESS(&clump->sentinel2))
Sys_Error("Clump_FreeBlock: trashed sentinel2\n");
if (start + size > clump->block + MEMCLUMPSIZE)
Sys_Error("Clump_FreeBlock: block overrun\n");
// the block belongs to this clump, clear the range
needbits = (size + MEMUNIT - 1) / MEMUNIT;
startbit = (start - clump->block) / MEMUNIT;
endbit = startbit + needbits;
// first verify all bits are set, otherwise this may be misaligned or a double free
for (bit = startbit;bit < endbit;bit++)
if ((clump->bits[bit>>5] & (1<<(bit & 31))) == 0)
Sys_Error("Clump_FreeBlock: double free\n");
for (bit = startbit;bit < endbit;bit++)
clump->bits[bit>>5] &= ~(1<<(bit & 31));
clump->blocksinuse -= needbits;
memset(base, 0xFF, needbits * MEMUNIT);
// if all has been freed, free the clump itself
if (clump->blocksinuse == 0)
{
*clumpchainpointer = clump->chain;
if (developer_memorydebug.integer)
memset(clump, 0xFF, sizeof(*clump));
#if MEMCLUMPING != 2
free(clump);
#endif
}
return;
}
}
// does not belong to any known chunk... assume it was a direct allocation
#endif
#if MEMCLUMPING != 2
memset(base, 0xFF, size);
free(base);
#endif
}
void *_Mem_Alloc(mempool_t *pool, void *olddata, size_t size, size_t alignment, const char *filename, int fileline)
{
unsigned int sentinel1;
unsigned int sentinel2;
size_t realsize;
size_t sharedsize;
size_t remainsize;
memheader_t *mem;
memheader_t *oldmem;
unsigned char *base;
if (size <= 0)
{
if (olddata)
_Mem_Free(olddata, filename, fileline);
return NULL;
}
if (pool == NULL)
{
if(olddata)
pool = ((memheader_t *)((unsigned char *) olddata - sizeof(memheader_t)))->pool;
else
Sys_Error("Mem_Alloc: pool == NULL (alloc at %s:%i)", filename, fileline);
}
if (mem_mutex)
Thread_LockMutex(mem_mutex);
if (developer_memory.integer)
Con_DPrintf("Mem_Alloc: pool %s, file %s:%i, size %i bytes\n", pool->name, filename, fileline, (int)size);
//if (developer.integer > 0 && developer_memorydebug.integer)
// _Mem_CheckSentinelsGlobal(filename, fileline);
pool->totalsize += size;
realsize = alignment + sizeof(memheader_t) + size + sizeof(sentinel2);
pool->realsize += realsize;
base = (unsigned char *)Clump_AllocBlock(realsize);
if (base== NULL)
{
Mem_PrintList(0);
Mem_PrintStats();
Mem_PrintList(1<<30);
Mem_PrintStats();
Sys_Error("Mem_Alloc: out of memory (alloc at %s:%i)", filename, fileline);
}
// calculate address that aligns the end of the memheader_t to the specified alignment
mem = (memheader_t*)((((size_t)base + sizeof(memheader_t) + (alignment-1)) & ~(alignment-1)) - sizeof(memheader_t));
mem->baseaddress = (void*)base;
mem->filename = filename;
mem->fileline = fileline;
mem->size = size;
mem->pool = pool;
// calculate sentinels (detects buffer overruns, in a way that is hard to exploit)
sentinel1 = MEMHEADER_SENTINEL_FOR_ADDRESS(&mem->sentinel);
sentinel2 = MEMHEADER_SENTINEL_FOR_ADDRESS((unsigned char *) mem + sizeof(memheader_t) + mem->size);
mem->sentinel = sentinel1;
memcpy((unsigned char *) mem + sizeof(memheader_t) + mem->size, &sentinel2, sizeof(sentinel2));
// append to head of list
mem->next = pool->chain;
mem->prev = NULL;
pool->chain = mem;
if (mem->next)
mem->next->prev = mem;
if (mem_mutex)
Thread_UnlockMutex(mem_mutex);
// copy the shared portion in the case of a realloc, then memset the rest
sharedsize = 0;
remainsize = size;
if (olddata)
{
oldmem = (memheader_t*)olddata - 1;
sharedsize = min(oldmem->size, size);
memcpy((void *)((unsigned char *) mem + sizeof(memheader_t)), olddata, sharedsize);
remainsize -= sharedsize;
_Mem_Free(olddata, filename, fileline);
}
memset((void *)((unsigned char *) mem + sizeof(memheader_t) + sharedsize), 0, remainsize);
return (void *)((unsigned char *) mem + sizeof(memheader_t));
}
// only used by _Mem_Free and _Mem_FreePool
static void _Mem_FreeBlock(memheader_t *mem, const char *filename, int fileline)
{
mempool_t *pool;
size_t size;
size_t realsize;
unsigned int sentinel1;
unsigned int sentinel2;
// check sentinels (detects buffer overruns, in a way that is hard to exploit)
sentinel1 = MEMHEADER_SENTINEL_FOR_ADDRESS(&mem->sentinel);
sentinel2 = MEMHEADER_SENTINEL_FOR_ADDRESS((unsigned char *) mem + sizeof(memheader_t) + mem->size);
if (mem->sentinel != sentinel1)
Sys_Error("Mem_Free: trashed head sentinel (alloc at %s:%i, free at %s:%i)", mem->filename, mem->fileline, filename, fileline);
if (memcmp((unsigned char *) mem + sizeof(memheader_t) + mem->size, &sentinel2, sizeof(sentinel2)))
Sys_Error("Mem_Free: trashed tail sentinel (alloc at %s:%i, free at %s:%i)", mem->filename, mem->fileline, filename, fileline);
pool = mem->pool;
if (developer_memory.integer)
Con_DPrintf("Mem_Free: pool %s, alloc %s:%i, free %s:%i, size %i bytes\n", pool->name, mem->filename, mem->fileline, filename, fileline, (int)(mem->size));
// unlink memheader from doubly linked list
if ((mem->prev ? mem->prev->next != mem : pool->chain != mem) || (mem->next && mem->next->prev != mem))
Sys_Error("Mem_Free: not allocated or double freed (free at %s:%i)", filename, fileline);
if (mem_mutex)
Thread_LockMutex(mem_mutex);
if (mem->prev)
mem->prev->next = mem->next;
else
pool->chain = mem->next;
if (mem->next)
mem->next->prev = mem->prev;
// memheader has been unlinked, do the actual free now
size = mem->size;
realsize = sizeof(memheader_t) + size + sizeof(sentinel2);
pool->totalsize -= size;
pool->realsize -= realsize;
Clump_FreeBlock(mem->baseaddress, realsize);
if (mem_mutex)
Thread_UnlockMutex(mem_mutex);
}
void _Mem_Free(void *data, const char *filename, int fileline)
{
if (data == NULL)
{
Con_DPrintf("Mem_Free: data == NULL (called at %s:%i)\n", filename, fileline);
return;
}
if (developer_memorydebug.integer)
{
//_Mem_CheckSentinelsGlobal(filename, fileline);
if (!Mem_IsAllocated(NULL, data))
Sys_Error("Mem_Free: data is not allocated (called at %s:%i)", filename, fileline);
}
_Mem_FreeBlock((memheader_t *)((unsigned char *) data - sizeof(memheader_t)), filename, fileline);
}
mempool_t *_Mem_AllocPool(const char *name, int flags, mempool_t *parent, const char *filename, int fileline)
{
mempool_t *pool;
if (developer_memorydebug.integer)
_Mem_CheckSentinelsGlobal(filename, fileline);
pool = (mempool_t *)Clump_AllocBlock(sizeof(mempool_t));
if (pool == NULL)
{
Mem_PrintList(0);
Mem_PrintStats();
Mem_PrintList(1<<30);
Mem_PrintStats();
Sys_Error("Mem_AllocPool: out of memory (allocpool at %s:%i)", filename, fileline);
}
memset(pool, 0, sizeof(mempool_t));
pool->sentinel1 = MEMHEADER_SENTINEL_FOR_ADDRESS(&pool->sentinel1);
pool->sentinel2 = MEMHEADER_SENTINEL_FOR_ADDRESS(&pool->sentinel2);
pool->filename = filename;
pool->fileline = fileline;
pool->flags = flags;
pool->chain = NULL;
pool->totalsize = 0;
pool->realsize = sizeof(mempool_t);
strlcpy (pool->name, name, sizeof (pool->name));
pool->parent = parent;
pool->next = poolchain;
poolchain = pool;
return pool;
}
void _Mem_FreePool(mempool_t **poolpointer, const char *filename, int fileline)
{
mempool_t *pool = *poolpointer;
mempool_t **chainaddress, *iter, *temp;
if (developer_memorydebug.integer)
_Mem_CheckSentinelsGlobal(filename, fileline);
if (pool)
{
// unlink pool from chain
for (chainaddress = &poolchain;*chainaddress && *chainaddress != pool;chainaddress = &((*chainaddress)->next));
if (*chainaddress != pool)
Sys_Error("Mem_FreePool: pool already free (freepool at %s:%i)", filename, fileline);
if (pool->sentinel1 != MEMHEADER_SENTINEL_FOR_ADDRESS(&pool->sentinel1))
Sys_Error("Mem_FreePool: trashed pool sentinel 1 (allocpool at %s:%i, freepool at %s:%i)", pool->filename, pool->fileline, filename, fileline);
if (pool->sentinel2 != MEMHEADER_SENTINEL_FOR_ADDRESS(&pool->sentinel2))
Sys_Error("Mem_FreePool: trashed pool sentinel 2 (allocpool at %s:%i, freepool at %s:%i)", pool->filename, pool->fileline, filename, fileline);
*chainaddress = pool->next;
// free memory owned by the pool
while (pool->chain)
_Mem_FreeBlock(pool->chain, filename, fileline);
// free child pools, too
for(iter = poolchain; iter; temp = iter = iter->next)
if(iter->parent == pool)
_Mem_FreePool(&temp, filename, fileline);
// free the pool itself
Clump_FreeBlock(pool, sizeof(*pool));
*poolpointer = NULL;
}
}
void _Mem_EmptyPool(mempool_t *pool, const char *filename, int fileline)
{
mempool_t *chainaddress;
if (developer_memorydebug.integer)
{
//_Mem_CheckSentinelsGlobal(filename, fileline);
// check if this pool is in the poolchain
for (chainaddress = poolchain;chainaddress;chainaddress = chainaddress->next)
if (chainaddress == pool)
break;
if (!chainaddress)
Sys_Error("Mem_EmptyPool: pool is already free (emptypool at %s:%i)", filename, fileline);
}
if (pool == NULL)
Sys_Error("Mem_EmptyPool: pool == NULL (emptypool at %s:%i)", filename, fileline);
if (pool->sentinel1 != MEMHEADER_SENTINEL_FOR_ADDRESS(&pool->sentinel1))
Sys_Error("Mem_EmptyPool: trashed pool sentinel 1 (allocpool at %s:%i, emptypool at %s:%i)", pool->filename, pool->fileline, filename, fileline);
if (pool->sentinel2 != MEMHEADER_SENTINEL_FOR_ADDRESS(&pool->sentinel2))
Sys_Error("Mem_EmptyPool: trashed pool sentinel 2 (allocpool at %s:%i, emptypool at %s:%i)", pool->filename, pool->fileline, filename, fileline);
// free memory owned by the pool
while (pool->chain)
_Mem_FreeBlock(pool->chain, filename, fileline);
// empty child pools, too
for(chainaddress = poolchain; chainaddress; chainaddress = chainaddress->next)
if(chainaddress->parent == pool)
_Mem_EmptyPool(chainaddress, filename, fileline);
}
void _Mem_CheckSentinels(void *data, const char *filename, int fileline)
{
memheader_t *mem;
unsigned int sentinel1;
unsigned int sentinel2;
if (data == NULL)
Sys_Error("Mem_CheckSentinels: data == NULL (sentinel check at %s:%i)", filename, fileline);
mem = (memheader_t *)((unsigned char *) data - sizeof(memheader_t));
sentinel1 = MEMHEADER_SENTINEL_FOR_ADDRESS(&mem->sentinel);
sentinel2 = MEMHEADER_SENTINEL_FOR_ADDRESS((unsigned char *) mem + sizeof(memheader_t) + mem->size);
if (mem->sentinel != sentinel1)
Sys_Error("Mem_Free: trashed head sentinel (alloc at %s:%i, sentinel check at %s:%i)", mem->filename, mem->fileline, filename, fileline);
if (memcmp((unsigned char *) mem + sizeof(memheader_t) + mem->size, &sentinel2, sizeof(sentinel2)))
Sys_Error("Mem_Free: trashed tail sentinel (alloc at %s:%i, sentinel check at %s:%i)", mem->filename, mem->fileline, filename, fileline);
}
#if MEMCLUMPING
static void _Mem_CheckClumpSentinels(memclump_t *clump, const char *filename, int fileline)
{
// this isn't really very useful
if (clump->sentinel1 != MEMHEADER_SENTINEL_FOR_ADDRESS(&clump->sentinel1))
Sys_Error("Mem_CheckClumpSentinels: trashed sentinel 1 (sentinel check at %s:%i)", filename, fileline);
if (clump->sentinel2 != MEMHEADER_SENTINEL_FOR_ADDRESS(&clump->sentinel2))
Sys_Error("Mem_CheckClumpSentinels: trashed sentinel 2 (sentinel check at %s:%i)", filename, fileline);
}
#endif
void _Mem_CheckSentinelsGlobal(const char *filename, int fileline)
{
memheader_t *mem;
#if MEMCLUMPING
memclump_t *clump;
#endif
mempool_t *pool;
for (pool = poolchain;pool;pool = pool->next)
{
if (pool->sentinel1 != MEMHEADER_SENTINEL_FOR_ADDRESS(&pool->sentinel1))
Sys_Error("Mem_CheckSentinelsGlobal: trashed pool sentinel 1 (allocpool at %s:%i, sentinel check at %s:%i)", pool->filename, pool->fileline, filename, fileline);
if (pool->sentinel2 != MEMHEADER_SENTINEL_FOR_ADDRESS(&pool->sentinel2))
Sys_Error("Mem_CheckSentinelsGlobal: trashed pool sentinel 2 (allocpool at %s:%i, sentinel check at %s:%i)", pool->filename, pool->fileline, filename, fileline);
}
for (pool = poolchain;pool;pool = pool->next)
for (mem = pool->chain;mem;mem = mem->next)
_Mem_CheckSentinels((void *)((unsigned char *) mem + sizeof(memheader_t)), filename, fileline);
#if MEMCLUMPING
for (pool = poolchain;pool;pool = pool->next)
for (clump = clumpchain;clump;clump = clump->chain)
_Mem_CheckClumpSentinels(clump, filename, fileline);
#endif
}
qboolean Mem_IsAllocated(mempool_t *pool, void *data)
{
memheader_t *header;
memheader_t *target;
if (pool)
{
// search only one pool
target = (memheader_t *)((unsigned char *) data - sizeof(memheader_t));
for( header = pool->chain ; header ; header = header->next )
if( header == target )
return true;
}
else
{
// search all pools
for (pool = poolchain;pool;pool = pool->next)
if (Mem_IsAllocated(pool, data))
return true;
}
return false;
}
void Mem_ExpandableArray_NewArray(memexpandablearray_t *l, mempool_t *mempool, size_t recordsize, int numrecordsperarray)
{
memset(l, 0, sizeof(*l));
l->mempool = mempool;
l->recordsize = recordsize;
l->numrecordsperarray = numrecordsperarray;
}
void Mem_ExpandableArray_FreeArray(memexpandablearray_t *l)
{
size_t i;
if (l->maxarrays)
{
for (i = 0;i != l->numarrays;i++)
Mem_Free(l->arrays[i].data);
Mem_Free(l->arrays);
}
memset(l, 0, sizeof(*l));
}
void *Mem_ExpandableArray_AllocRecord(memexpandablearray_t *l)
{
size_t i, j;
for (i = 0;;i++)
{
if (i == l->numarrays)
{
if (l->numarrays == l->maxarrays)
{
memexpandablearray_array_t *oldarrays = l->arrays;
l->maxarrays = max(l->maxarrays * 2, 128);
l->arrays = (memexpandablearray_array_t*) Mem_Alloc(l->mempool, l->maxarrays * sizeof(*l->arrays));
if (oldarrays)
{
memcpy(l->arrays, oldarrays, l->numarrays * sizeof(*l->arrays));
Mem_Free(oldarrays);
}
}
l->arrays[i].numflaggedrecords = 0;
l->arrays[i].data = (unsigned char *) Mem_Alloc(l->mempool, (l->recordsize + 1) * l->numrecordsperarray);
l->arrays[i].allocflags = l->arrays[i].data + l->recordsize * l->numrecordsperarray;
l->numarrays++;
}
if (l->arrays[i].numflaggedrecords < l->numrecordsperarray)
{
for (j = 0;j < l->numrecordsperarray;j++)
{
if (!l->arrays[i].allocflags[j])
{
l->arrays[i].allocflags[j] = true;
l->arrays[i].numflaggedrecords++;
memset(l->arrays[i].data + l->recordsize * j, 0, l->recordsize);
return (void *)(l->arrays[i].data + l->recordsize * j);
}
}
}
}
}
/*****************************************************************************
* IF YOU EDIT THIS:
* If this function was to change the size of the "expandable" array, you have
* to update r_shadow.c
* Just do a search for "range =", R_ShadowClearWorldLights would be the first
* function to look at. (And also seems like the only one?) You might have to
* move the call to Mem_ExpandableArray_IndexRange back into for(...) loop's
* condition
*/
void Mem_ExpandableArray_FreeRecord(memexpandablearray_t *l, void *record) // const!
{
size_t i, j;
unsigned char *p = (unsigned char *)record;
for (i = 0;i != l->numarrays;i++)
{
if (p >= l->arrays[i].data && p < (l->arrays[i].data + l->recordsize * l->numrecordsperarray))
{
j = (p - l->arrays[i].data) / l->recordsize;
if (p != l->arrays[i].data + j * l->recordsize)
Sys_Error("Mem_ExpandableArray_FreeRecord: no such record %p\n", p);
if (!l->arrays[i].allocflags[j])
Sys_Error("Mem_ExpandableArray_FreeRecord: record %p is already free!\n", p);
l->arrays[i].allocflags[j] = false;
l->arrays[i].numflaggedrecords--;
return;
}
}
}
size_t Mem_ExpandableArray_IndexRange(const memexpandablearray_t *l)
{
size_t i, j, k, end = 0;
for (i = 0;i < l->numarrays;i++)
{
for (j = 0, k = 0;k < l->arrays[i].numflaggedrecords;j++)
{
if (l->arrays[i].allocflags[j])
{
end = l->numrecordsperarray * i + j + 1;
k++;
}
}
}
return end;
}
void *Mem_ExpandableArray_RecordAtIndex(const memexpandablearray_t *l, size_t index)
{
size_t i, j;
i = index / l->numrecordsperarray;
j = index % l->numrecordsperarray;
if (i >= l->numarrays || !l->arrays[i].allocflags[j])
return NULL;
return (void *)(l->arrays[i].data + j * l->recordsize);
}
// used for temporary memory allocations around the engine, not for longterm
// storage, if anything in this pool stays allocated during gameplay, it is
// considered a leak
mempool_t *tempmempool;
// only for zone
mempool_t *zonemempool;
void Mem_PrintStats(void)
{
size_t count = 0, size = 0, realsize = 0;
mempool_t *pool;
memheader_t *mem;
Mem_CheckSentinelsGlobal();
for (pool = poolchain;pool;pool = pool->next)
{
count++;
size += pool->totalsize;
realsize += pool->realsize;
}
Con_Printf("%lu memory pools, totalling %lu bytes (%.3fMB)\n", (unsigned long)count, (unsigned long)size, size / 1048576.0);
Con_Printf("total allocated size: %lu bytes (%.3fMB)\n", (unsigned long)realsize, realsize / 1048576.0);
for (pool = poolchain;pool;pool = pool->next)
{
if ((pool->flags & POOLFLAG_TEMP) && pool->chain)
{
Con_Printf("Memory pool %p has sprung a leak totalling %lu bytes (%.3fMB)! Listing contents...\n", (void *)pool, (unsigned long)pool->totalsize, pool->totalsize / 1048576.0);
for (mem = pool->chain;mem;mem = mem->next)
Con_Printf("%10lu bytes allocated at %s:%i\n", (unsigned long)mem->size, mem->filename, mem->fileline);
}
}
}
void Mem_PrintList(size_t minallocationsize)
{
mempool_t *pool;
memheader_t *mem;
Mem_CheckSentinelsGlobal();
Con_Print("memory pool list:\n"
"size name\n");
for (pool = poolchain;pool;pool = pool->next)
{
Con_Printf("%10luk (%10luk actual) %s (%+li byte change) %s\n", (unsigned long) ((pool->totalsize + 1023) / 1024), (unsigned long)((pool->realsize + 1023) / 1024), pool->name, (long)(pool->totalsize - pool->lastchecksize), (pool->flags & POOLFLAG_TEMP) ? "TEMP" : "");
pool->lastchecksize = pool->totalsize;
for (mem = pool->chain;mem;mem = mem->next)
if (mem->size >= minallocationsize)
Con_Printf("%10lu bytes allocated at %s:%i\n", (unsigned long)mem->size, mem->filename, mem->fileline);
}
}
static void MemList_f(void)
{
switch(Cmd_Argc())
{
case 1:
Mem_PrintList(1<<30);
Mem_PrintStats();
break;
case 2:
Mem_PrintList(atoi(Cmd_Argv(1)) * 1024);
Mem_PrintStats();
break;
default:
Con_Print("MemList_f: unrecognized options\nusage: memlist [all]\n");
break;
}
}
static void MemStats_f(void)
{
Mem_CheckSentinelsGlobal();
R_TextureStats_Print(false, false, true);
GL_Mesh_ListVBOs(false);
Mem_PrintStats();
}
char* Mem_strdup (mempool_t *pool, const char* s)
{
char* p;
size_t sz;
if (s == NULL)
return NULL;
sz = strlen (s) + 1;
p = (char*)Mem_Alloc (pool, sz);
strlcpy (p, s, sz);
return p;
}
/*
========================
Memory_Init
========================
*/
void Memory_Init (void)
{
static union {unsigned short s;unsigned char b[2];} u;
u.s = 0x100;
mem_bigendian = u.b[0] != 0;
sentinel_seed = rand();
poolchain = NULL;
tempmempool = Mem_AllocPool("Temporary Memory", POOLFLAG_TEMP, NULL);
zonemempool = Mem_AllocPool("Zone", 0, NULL);
if (Thread_HasThreads())
mem_mutex = Thread_CreateMutex();
}
void Memory_Shutdown (void)
{
// Mem_FreePool (&zonemempool);
// Mem_FreePool (&tempmempool);
if (mem_mutex)
Thread_DestroyMutex(mem_mutex);
mem_mutex = NULL;
}
void Memory_Init_Commands (void)
{
Cmd_AddCommand ("memstats", MemStats_f, "prints memory system statistics");
Cmd_AddCommand ("memlist", MemList_f, "prints memory pool information (or if used as memlist 5 lists individual allocations of 5K or larger, 0 lists all allocations)");
Cvar_RegisterVariable (&developer_memory);
Cvar_RegisterVariable (&developer_memorydebug);
Cvar_RegisterVariable (&sys_memsize_physical);
Cvar_RegisterVariable (&sys_memsize_virtual);
#if defined(WIN32)
#ifdef _WIN64
{
MEMORYSTATUSEX status;
// first guess
Cvar_SetValueQuick(&sys_memsize_virtual, 8388608);
// then improve
status.dwLength = sizeof(status);
if(GlobalMemoryStatusEx(&status))
{
Cvar_SetValueQuick(&sys_memsize_physical, status.ullTotalPhys / 1048576.0);
Cvar_SetValueQuick(&sys_memsize_virtual, min(sys_memsize_virtual.value, status.ullTotalVirtual / 1048576.0));
}
}
#else
{
MEMORYSTATUS status;
// first guess
Cvar_SetValueQuick(&sys_memsize_virtual, 2048);
// then improve
status.dwLength = sizeof(status);
GlobalMemoryStatus(&status);
Cvar_SetValueQuick(&sys_memsize_physical, status.dwTotalPhys / 1048576.0);
Cvar_SetValueQuick(&sys_memsize_virtual, min(sys_memsize_virtual.value, status.dwTotalVirtual / 1048576.0));
}
#endif
#else
{
// first guess
Cvar_SetValueQuick(&sys_memsize_virtual, (sizeof(void*) == 4) ? 2048 : 268435456);
// then improve
{
// Linux, and BSD with linprocfs mounted
FILE *f = fopen("/proc/meminfo", "r");
if(f)
{
static char buf[1024];
while(fgets(buf, sizeof(buf), f))
{
const char *p = buf;
if(!COM_ParseToken_Console(&p))
continue;
if(!strcmp(com_token, "MemTotal:"))
{
if(!COM_ParseToken_Console(&p))
continue;
Cvar_SetValueQuick(&sys_memsize_physical, atof(com_token) / 1024.0);
}
if(!strcmp(com_token, "SwapTotal:"))
{
if(!COM_ParseToken_Console(&p))
continue;
Cvar_SetValueQuick(&sys_memsize_virtual, min(sys_memsize_virtual.value , atof(com_token) / 1024.0 + sys_memsize_physical.value));
}
}
fclose(f);
}
}
}
#endif
}