quakequest/Projects/Android/jni/gl_backend.c

4864 lines
171 KiB
C
Raw Normal View History

2019-05-30 05:57:57 +00:00
#include "quakedef.h"
#include "cl_collision.h"
#include "dpsoftrast.h"
#include "glquake.h"
// on GLES we have to use some proper #define's
#ifndef GL_FRAMEBUFFER
#define GL_FRAMEBUFFER 0x8D40
#define GL_DEPTH_ATTACHMENT 0x8D00
#define GL_COLOR_ATTACHMENT0 0x8CE0
#define GL_INVALID_FRAMEBUFFER_OPERATION 0x0506
#endif
#ifndef GL_COLOR_ATTACHMENT1
#define GL_COLOR_ATTACHMENT1 0x8CE1
#define GL_COLOR_ATTACHMENT2 0x8CE2
#define GL_COLOR_ATTACHMENT3 0x8CE3
#define GL_COLOR_ATTACHMENT4 0x8CE4
#define GL_COLOR_ATTACHMENT5 0x8CE5
#define GL_COLOR_ATTACHMENT6 0x8CE6
#define GL_COLOR_ATTACHMENT7 0x8CE7
#define GL_COLOR_ATTACHMENT8 0x8CE8
#define GL_COLOR_ATTACHMENT9 0x8CE9
#define GL_COLOR_ATTACHMENT10 0x8CEA
#define GL_COLOR_ATTACHMENT11 0x8CEB
#define GL_COLOR_ATTACHMENT12 0x8CEC
#define GL_COLOR_ATTACHMENT13 0x8CED
#define GL_COLOR_ATTACHMENT14 0x8CEE
#define GL_COLOR_ATTACHMENT15 0x8CEF
#endif
#ifndef GL_ARRAY_BUFFER
#define GL_ARRAY_BUFFER 0x8892
#define GL_ELEMENT_ARRAY_BUFFER 0x8893
#endif
//#ifndef GL_VERTEX_ARRAY
//#define GL_VERTEX_ARRAY 0x8074
//#define GL_COLOR_ARRAY 0x8076
//#define GL_TEXTURE_COORD_ARRAY 0x8078
//#endif
#ifndef GL_TEXTURE0
#define GL_TEXTURE0 0x84C0
#define GL_TEXTURE1 0x84C1
#define GL_TEXTURE2 0x84C2
#define GL_TEXTURE3 0x84C3
#define GL_TEXTURE4 0x84C4
#define GL_TEXTURE5 0x84C5
#define GL_TEXTURE6 0x84C6
#define GL_TEXTURE7 0x84C7
#define GL_TEXTURE8 0x84C8
#define GL_TEXTURE9 0x84C9
#define GL_TEXTURE10 0x84CA
#define GL_TEXTURE11 0x84CB
#define GL_TEXTURE12 0x84CC
#define GL_TEXTURE13 0x84CD
#define GL_TEXTURE14 0x84CE
#define GL_TEXTURE15 0x84CF
#define GL_TEXTURE16 0x84D0
#define GL_TEXTURE17 0x84D1
#define GL_TEXTURE18 0x84D2
#define GL_TEXTURE19 0x84D3
#define GL_TEXTURE20 0x84D4
#define GL_TEXTURE21 0x84D5
#define GL_TEXTURE22 0x84D6
#define GL_TEXTURE23 0x84D7
#define GL_TEXTURE24 0x84D8
#define GL_TEXTURE25 0x84D9
#define GL_TEXTURE26 0x84DA
#define GL_TEXTURE27 0x84DB
#define GL_TEXTURE28 0x84DC
#define GL_TEXTURE29 0x84DD
#define GL_TEXTURE30 0x84DE
#define GL_TEXTURE31 0x84DF
#endif
#ifndef GL_TEXTURE_3D
#define GL_TEXTURE_3D 0x806F
#endif
#ifndef GL_TEXTURE_CUBE_MAP
#define GL_TEXTURE_CUBE_MAP 0x8513
#endif
//#ifndef GL_MODELVIEW
//#define GL_MODELVIEW 0x1700
//#endif
//#ifndef GL_PROJECTION
//#define GL_PROJECTION 0x1701
//#endif
//#ifndef GL_DECAL
//#define GL_DECAL 0x2101
//#endif
//#ifndef GL_INTERPOLATE
//#define GL_INTERPOLATE 0x8575
//#endif
#define MAX_RENDERTARGETS 4
cvar_t gl_mesh_drawrangeelements = {0, "gl_mesh_drawrangeelements", "1", "use glDrawRangeElements function if available instead of glDrawElements (for performance comparisons or bug testing)"};
cvar_t gl_mesh_testmanualfeeding = {0, "gl_mesh_testmanualfeeding", "0", "use glBegin(GL_TRIANGLES);glTexCoord2f();glVertex3f();glEnd(); primitives instead of glDrawElements (useful to test for driver bugs with glDrawElements)"};
cvar_t gl_paranoid = {0, "gl_paranoid", "0", "enables OpenGL error checking and other tests"};
cvar_t gl_printcheckerror = {0, "gl_printcheckerror", "0", "prints all OpenGL error checks, useful to identify location of driver crashes"};
cvar_t r_render = {0, "r_render", "1", "enables rendering 3D views (you want this on!)"};
cvar_t r_renderview = {0, "r_renderview", "1", "enables rendering 3D views (you want this on!)"};
cvar_t r_waterwarp = {CVAR_SAVE, "r_waterwarp", "1", "warp view while underwater"};
cvar_t gl_polyblend = {CVAR_SAVE, "gl_polyblend", "1", "tints view while underwater, hurt, etc"};
cvar_t gl_dither = {CVAR_SAVE, "gl_dither", "1", "enables OpenGL dithering (16bit looks bad with this off)"};
cvar_t gl_vbo = {CVAR_SAVE, "gl_vbo", "3", "make use of GL_ARB_vertex_buffer_object extension to store static geometry in video memory for faster rendering, 0 disables VBO allocation or use, 1 enables VBOs for vertex and triangle data, 2 only for vertex data, 3 for vertex data and triangle data of simple meshes (ones with only one surface)"};
cvar_t gl_vbo_dynamicvertex = {CVAR_SAVE, "gl_vbo_dynamicvertex", "0", "make use of GL_ARB_vertex_buffer_object extension when rendering dynamic (animated/procedural) geometry such as text and particles"};
cvar_t gl_vbo_dynamicindex = {CVAR_SAVE, "gl_vbo_dynamicindex", "0", "make use of GL_ARB_vertex_buffer_object extension when rendering dynamic (animated/procedural) geometry such as text and particles"};
cvar_t gl_fbo = {CVAR_SAVE, "gl_fbo", "1", "make use of GL_ARB_framebuffer_object extension to enable shadowmaps and other features using pixel formats different from the framebuffer"};
cvar_t v_flipped = {0, "v_flipped", "0", "mirror the screen (poor man's left handed mode)"};
qboolean v_flipped_state = false;
r_viewport_t gl_viewport;
matrix4x4_t gl_modelmatrix;
matrix4x4_t gl_viewmatrix;
matrix4x4_t gl_modelviewmatrix;
matrix4x4_t gl_projectionmatrix;
matrix4x4_t gl_modelviewprojectionmatrix;
float gl_modelview16f[16];
float gl_modelviewprojection16f[16];
qboolean gl_modelmatrixchanged;
int gl_maxdrawrangeelementsvertices;
int gl_maxdrawrangeelementsindices;
#ifdef DEBUGGL
int errornumber = 0;
void GL_PrintError(int errornumber, const char *filename, int linenumber)
{
switch(errornumber)
{
#ifdef GL_INVALID_ENUM
case GL_INVALID_ENUM:
Con_Printf("GL_INVALID_ENUM at %s:%i\n", filename, linenumber);
break;
#endif
#ifdef GL_INVALID_VALUE
case GL_INVALID_VALUE:
Con_Printf("GL_INVALID_VALUE at %s:%i\n", filename, linenumber);
break;
#endif
#ifdef GL_INVALID_OPERATION
case GL_INVALID_OPERATION:
Con_Printf("GL_INVALID_OPERATION at %s:%i\n", filename, linenumber);
break;
#endif
#ifdef GL_STACK_OVERFLOW
case GL_STACK_OVERFLOW:
Con_Printf("GL_STACK_OVERFLOW at %s:%i\n", filename, linenumber);
break;
#endif
#ifdef GL_STACK_UNDERFLOW
case GL_STACK_UNDERFLOW:
Con_Printf("GL_STACK_UNDERFLOW at %s:%i\n", filename, linenumber);
break;
#endif
#ifdef GL_OUT_OF_MEMORY
case GL_OUT_OF_MEMORY:
Con_Printf("GL_OUT_OF_MEMORY at %s:%i\n", filename, linenumber);
break;
#endif
#ifdef GL_TABLE_TOO_LARGE
case GL_TABLE_TOO_LARGE:
Con_Printf("GL_TABLE_TOO_LARGE at %s:%i\n", filename, linenumber);
break;
#endif
#ifdef GL_INVALID_FRAMEBUFFER_OPERATION
case GL_INVALID_FRAMEBUFFER_OPERATION:
Con_Printf("GL_INVALID_FRAMEBUFFER_OPERATION at %s:%i\n", filename, linenumber);
break;
#endif
default:
Con_Printf("GL UNKNOWN (%i) at %s:%i\n", errornumber, filename, linenumber);
break;
}
}
#endif
#define BACKENDACTIVECHECK if (!gl_state.active) Sys_Error("GL backend function called when backend is not active");
void SCR_ScreenShot_f (void);
typedef struct gltextureunit_s
{
int pointer_texcoord_components;
int pointer_texcoord_gltype;
size_t pointer_texcoord_stride;
const void *pointer_texcoord_pointer;
const r_meshbuffer_t *pointer_texcoord_vertexbuffer;
size_t pointer_texcoord_offset;
rtexture_t *texture;
int t2d, t3d, tcubemap;
int arrayenabled;
int rgbscale, alphascale;
int combine;
int combinergb, combinealpha;
// texmatrixenabled exists only to avoid unnecessary texmatrix compares
int texmatrixenabled;
matrix4x4_t matrix;
}
gltextureunit_t;
typedef struct gl_state_s
{
int cullface;
int cullfaceenable;
int blendfunc1;
int blendfunc2;
qboolean blend;
GLboolean depthmask;
int colormask; // stored as bottom 4 bits: r g b a (3 2 1 0 order)
int depthtest;
int depthfunc;
float depthrange[2];
float polygonoffset[2];
int alphatest;
int alphafunc;
float alphafuncvalue;
qboolean alphatocoverage;
int scissortest;
unsigned int unit;
unsigned int clientunit;
gltextureunit_t units[MAX_TEXTUREUNITS];
float color4f[4];
int lockrange_first;
int lockrange_count;
int vertexbufferobject;
int elementbufferobject;
int uniformbufferobject;
int framebufferobject;
int defaultframebufferobject; // deal with platforms that use a non-zero default fbo
qboolean pointer_color_enabled;
int pointer_vertex_components;
int pointer_vertex_gltype;
size_t pointer_vertex_stride;
const void *pointer_vertex_pointer;
const r_meshbuffer_t *pointer_vertex_vertexbuffer;
size_t pointer_vertex_offset;
int pointer_color_components;
int pointer_color_gltype;
size_t pointer_color_stride;
const void *pointer_color_pointer;
const r_meshbuffer_t *pointer_color_vertexbuffer;
size_t pointer_color_offset;
void *preparevertices_tempdata;
size_t preparevertices_tempdatamaxsize;
r_vertexgeneric_t *preparevertices_vertexgeneric;
r_vertexmesh_t *preparevertices_vertexmesh;
int preparevertices_numvertices;
qboolean usevbo_staticvertex;
qboolean usevbo_staticindex;
qboolean usevbo_dynamicvertex;
qboolean usevbo_dynamicindex;
memexpandablearray_t meshbufferarray;
qboolean active;
#ifdef SUPPORTD3D
// rtexture_t *d3drt_depthtexture;
// rtexture_t *d3drt_colortextures[MAX_RENDERTARGETS];
IDirect3DSurface9 *d3drt_depthsurface;
IDirect3DSurface9 *d3drt_colorsurfaces[MAX_RENDERTARGETS];
IDirect3DSurface9 *d3drt_backbufferdepthsurface;
IDirect3DSurface9 *d3drt_backbuffercolorsurface;
void *d3dvertexbuffer;
void *d3dvertexdata;
size_t d3dvertexsize;
#endif
}
gl_state_t;
static gl_state_t gl_state;
void android_kostyl()
{
gl_state.pointer_vertex_pointer=0;
gl_state.pointer_color_pointer=0;
}
/*
note: here's strip order for a terrain row:
0--1--2--3--4
|\ |\ |\ |\ |
| \| \| \| \|
A--B--C--D--E
clockwise
A0B, 01B, B1C, 12C, C2D, 23D, D3E, 34E
*elements++ = i + row;
*elements++ = i;
*elements++ = i + row + 1;
*elements++ = i;
*elements++ = i + 1;
*elements++ = i + row + 1;
for (y = 0;y < rows - 1;y++)
{
for (x = 0;x < columns - 1;x++)
{
i = y * rows + x;
*elements++ = i + columns;
*elements++ = i;
*elements++ = i + columns + 1;
*elements++ = i;
*elements++ = i + 1;
*elements++ = i + columns + 1;
}
}
alternative:
0--1--2--3--4
| /| /|\ | /|
|/ |/ | \|/ |
A--B--C--D--E
counterclockwise
for (y = 0;y < rows - 1;y++)
{
for (x = 0;x < columns - 1;x++)
{
i = y * rows + x;
*elements++ = i;
*elements++ = i + columns;
*elements++ = i + columns + 1;
*elements++ = i + columns;
*elements++ = i + columns + 1;
*elements++ = i + 1;
}
}
*/
int polygonelement3i[(POLYGONELEMENTS_MAXPOINTS-2)*3];
unsigned short polygonelement3s[(POLYGONELEMENTS_MAXPOINTS-2)*3];
int quadelement3i[QUADELEMENTS_MAXQUADS*6];
unsigned short quadelement3s[QUADELEMENTS_MAXQUADS*6];
static void GL_VBOStats_f(void)
{
GL_Mesh_ListVBOs(true);
}
static void GL_Backend_ResetState(void);
static void R_Mesh_InitVertexDeclarations(void);
static void R_Mesh_DestroyVertexDeclarations(void);
static void R_Mesh_SetUseVBO(void)
{
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
gl_state.usevbo_staticvertex = (vid.support.arb_vertex_buffer_object && gl_vbo.integer) || vid.forcevbo;
gl_state.usevbo_staticindex = (vid.support.arb_vertex_buffer_object && (gl_vbo.integer == 1 || gl_vbo.integer == 3)) || vid.forcevbo;
gl_state.usevbo_dynamicvertex = (vid.support.arb_vertex_buffer_object && gl_vbo_dynamicvertex.integer && gl_vbo.integer) || vid.forcevbo;
gl_state.usevbo_dynamicindex = (vid.support.arb_vertex_buffer_object && gl_vbo_dynamicindex.integer && gl_vbo.integer) || vid.forcevbo;
break;
case RENDERPATH_D3D9:
gl_state.usevbo_staticvertex = gl_state.usevbo_staticindex = (vid.support.arb_vertex_buffer_object && gl_vbo.integer) || vid.forcevbo;
gl_state.usevbo_dynamicvertex = gl_state.usevbo_dynamicindex = (vid.support.arb_vertex_buffer_object && gl_vbo_dynamicvertex.integer && gl_vbo_dynamicindex.integer && gl_vbo.integer) || vid.forcevbo;
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
gl_state.usevbo_staticvertex = false;
gl_state.usevbo_staticindex = false;
gl_state.usevbo_dynamicvertex = false;
gl_state.usevbo_dynamicindex = false;
break;
case RENDERPATH_GLES2:
gl_state.usevbo_staticvertex = (vid.support.arb_vertex_buffer_object && gl_vbo.integer) || vid.forcevbo;
gl_state.usevbo_staticindex = (vid.support.arb_vertex_buffer_object && gl_vbo.integer) || vid.forcevbo;
gl_state.usevbo_dynamicvertex = (vid.support.arb_vertex_buffer_object && gl_vbo_dynamicvertex.integer) || vid.forcevbo;
gl_state.usevbo_dynamicindex = (vid.support.arb_vertex_buffer_object && gl_vbo_dynamicindex.integer) || vid.forcevbo;
break;
}
}
static void gl_backend_start(void)
{
memset(&gl_state, 0, sizeof(gl_state));
R_Mesh_InitVertexDeclarations();
R_Mesh_SetUseVBO();
Mem_ExpandableArray_NewArray(&gl_state.meshbufferarray, r_main_mempool, sizeof(r_meshbuffer_t), 128);
Con_DPrintf("OpenGL backend started.\n");
CHECKGLERROR
GL_Backend_ResetState();
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
// fetch current fbo here (default fbo is not 0 on some GLES devices)
if (vid.support.ext_framebuffer_object)
qglGetIntegerv(GL_FRAMEBUFFER_BINDING, &gl_state.defaultframebufferobject);
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DDevice9_GetDepthStencilSurface(vid_d3d9dev, &gl_state.d3drt_backbufferdepthsurface);
IDirect3DDevice9_GetRenderTarget(vid_d3d9dev, 0, &gl_state.d3drt_backbuffercolorsurface);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
break;
}
}
static void gl_backend_shutdown(void)
{
Con_DPrint("OpenGL Backend shutting down\n");
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_SOFT:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DSurface9_Release(gl_state.d3drt_backbufferdepthsurface);
IDirect3DSurface9_Release(gl_state.d3drt_backbuffercolorsurface);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
}
if (gl_state.preparevertices_tempdata)
Mem_Free(gl_state.preparevertices_tempdata);
Mem_ExpandableArray_FreeArray(&gl_state.meshbufferarray);
R_Mesh_DestroyVertexDeclarations();
memset(&gl_state, 0, sizeof(gl_state));
}
static void gl_backend_newmap(void)
{
}
static void gl_backend_devicelost(void)
{
int i, endindex;
r_meshbuffer_t *buffer;
#ifdef SUPPORTD3D
gl_state.d3dvertexbuffer = NULL;
#endif
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_SOFT:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DSurface9_Release(gl_state.d3drt_backbufferdepthsurface);
IDirect3DSurface9_Release(gl_state.d3drt_backbuffercolorsurface);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
}
endindex = Mem_ExpandableArray_IndexRange(&gl_state.meshbufferarray);
for (i = 0;i < endindex;i++)
{
buffer = (r_meshbuffer_t *) Mem_ExpandableArray_RecordAtIndex(&gl_state.meshbufferarray, i);
if (!buffer || !buffer->isdynamic)
continue;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_SOFT:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
if (buffer->devicebuffer)
{
if (buffer->isindexbuffer)
IDirect3DIndexBuffer9_Release((IDirect3DIndexBuffer9*)buffer->devicebuffer);
else
IDirect3DVertexBuffer9_Release((IDirect3DVertexBuffer9*)buffer->devicebuffer);
buffer->devicebuffer = NULL;
}
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
}
}
}
static void gl_backend_devicerestored(void)
{
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_SOFT:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DDevice9_GetDepthStencilSurface(vid_d3d9dev, &gl_state.d3drt_backbufferdepthsurface);
IDirect3DDevice9_GetRenderTarget(vid_d3d9dev, 0, &gl_state.d3drt_backbuffercolorsurface);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
}
}
void gl_backend_init(void)
{
int i;
for (i = 0;i < POLYGONELEMENTS_MAXPOINTS - 2;i++)
{
polygonelement3s[i * 3 + 0] = 0;
polygonelement3s[i * 3 + 1] = i + 1;
polygonelement3s[i * 3 + 2] = i + 2;
}
// elements for rendering a series of quads as triangles
for (i = 0;i < QUADELEMENTS_MAXQUADS;i++)
{
quadelement3s[i * 6 + 0] = i * 4;
quadelement3s[i * 6 + 1] = i * 4 + 1;
quadelement3s[i * 6 + 2] = i * 4 + 2;
quadelement3s[i * 6 + 3] = i * 4;
quadelement3s[i * 6 + 4] = i * 4 + 2;
quadelement3s[i * 6 + 5] = i * 4 + 3;
}
for (i = 0;i < (POLYGONELEMENTS_MAXPOINTS - 2)*3;i++)
polygonelement3i[i] = polygonelement3s[i];
for (i = 0;i < QUADELEMENTS_MAXQUADS*6;i++)
quadelement3i[i] = quadelement3s[i];
Cvar_RegisterVariable(&r_render);
Cvar_RegisterVariable(&r_renderview);
Cvar_RegisterVariable(&r_waterwarp);
Cvar_RegisterVariable(&gl_polyblend);
Cvar_RegisterVariable(&v_flipped);
Cvar_RegisterVariable(&gl_dither);
Cvar_RegisterVariable(&gl_vbo);
Cvar_RegisterVariable(&gl_vbo_dynamicvertex);
Cvar_RegisterVariable(&gl_vbo_dynamicindex);
Cvar_RegisterVariable(&gl_paranoid);
Cvar_RegisterVariable(&gl_printcheckerror);
Cvar_RegisterVariable(&gl_mesh_drawrangeelements);
Cvar_RegisterVariable(&gl_mesh_testmanualfeeding);
Cmd_AddCommand("gl_vbostats", GL_VBOStats_f, "prints a list of all buffer objects (vertex data and triangle elements) and total video memory used by them");
R_RegisterModule("GL_Backend", gl_backend_start, gl_backend_shutdown, gl_backend_newmap, gl_backend_devicelost, gl_backend_devicerestored);
}
void GL_SetMirrorState(qboolean state);
void R_Viewport_TransformToScreen(const r_viewport_t *v, const vec4_t in, vec4_t out)
{
vec4_t temp;
float iw;
Matrix4x4_Transform4 (&v->viewmatrix, in, temp);
Matrix4x4_Transform4 (&v->projectmatrix, temp, out);
iw = 1.0f / out[3];
out[0] = v->x + (out[0] * iw + 1.0f) * v->width * 0.5f;
// for an odd reason, inverting this is wrong for R_Shadow_ScissorForBBox (we then get badly scissored lights)
//out[1] = v->y + v->height - (out[1] * iw + 1.0f) * v->height * 0.5f;
out[1] = v->y + (out[1] * iw + 1.0f) * v->height * 0.5f;
out[2] = v->z + (out[2] * iw + 1.0f) * v->depth * 0.5f;
}
void GL_Finish(void)
{
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
qglFinish();
break;
case RENDERPATH_D3D9:
//Con_DPrintf("FIXME D3D9 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_Finish();
break;
}
}
static int bboxedges[12][2] =
{
// top
{0, 1}, // +X
{0, 2}, // +Y
{1, 3}, // Y, +X
{2, 3}, // X, +Y
// bottom
{4, 5}, // +X
{4, 6}, // +Y
{5, 7}, // Y, +X
{6, 7}, // X, +Y
// verticals
{0, 4}, // +Z
{1, 5}, // X, +Z
{2, 6}, // Y, +Z
{3, 7}, // XY, +Z
};
qboolean R_ScissorForBBox(const float *mins, const float *maxs, int *scissor)
{
int i, ix1, iy1, ix2, iy2;
float x1, y1, x2, y2;
vec4_t v, v2;
float vertex[20][3];
int j, k;
vec4_t plane4f;
int numvertices;
float corner[8][4];
float dist[8];
int sign[8];
float f;
scissor[0] = r_refdef.view.viewport.x;
scissor[1] = r_refdef.view.viewport.y;
scissor[2] = r_refdef.view.viewport.width;
scissor[3] = r_refdef.view.viewport.height;
// if view is inside the box, just say yes it's visible
if (BoxesOverlap(r_refdef.view.origin, r_refdef.view.origin, mins, maxs))
return false;
// transform all corners that are infront of the nearclip plane
VectorNegate(r_refdef.view.frustum[4].normal, plane4f);
plane4f[3] = r_refdef.view.frustum[4].dist;
numvertices = 0;
for (i = 0;i < 8;i++)
{
Vector4Set(corner[i], (i & 1) ? maxs[0] : mins[0], (i & 2) ? maxs[1] : mins[1], (i & 4) ? maxs[2] : mins[2], 1);
dist[i] = DotProduct4(corner[i], plane4f);
sign[i] = dist[i] > 0;
if (!sign[i])
{
VectorCopy(corner[i], vertex[numvertices]);
numvertices++;
}
}
// if some points are behind the nearclip, add clipped edge points to make
// sure that the scissor boundary is complete
if (numvertices > 0 && numvertices < 8)
{
// add clipped edge points
for (i = 0;i < 12;i++)
{
j = bboxedges[i][0];
k = bboxedges[i][1];
if (sign[j] != sign[k])
{
f = dist[j] / (dist[j] - dist[k]);
VectorLerp(corner[j], f, corner[k], vertex[numvertices]);
numvertices++;
}
}
}
// if we have no points to check, it is behind the view plane
if (!numvertices)
return true;
// if we have some points to transform, check what screen area is covered
x1 = y1 = x2 = y2 = 0;
v[3] = 1.0f;
//Con_Printf("%i vertices to transform...\n", numvertices);
for (i = 0;i < numvertices;i++)
{
VectorCopy(vertex[i], v);
R_Viewport_TransformToScreen(&r_refdef.view.viewport, v, v2);
//Con_Printf("%.3f %.3f %.3f %.3f transformed to %.3f %.3f %.3f %.3f\n", v[0], v[1], v[2], v[3], v2[0], v2[1], v2[2], v2[3]);
if (i)
{
if (x1 > v2[0]) x1 = v2[0];
if (x2 < v2[0]) x2 = v2[0];
if (y1 > v2[1]) y1 = v2[1];
if (y2 < v2[1]) y2 = v2[1];
}
else
{
x1 = x2 = v2[0];
y1 = y2 = v2[1];
}
}
// now convert the scissor rectangle to integer screen coordinates
ix1 = (int)(x1 - 1.0f);
//iy1 = vid.height - (int)(y2 - 1.0f);
//iy1 = r_refdef.view.viewport.width + 2 * r_refdef.view.viewport.x - (int)(y2 - 1.0f);
iy1 = (int)(y1 - 1.0f);
ix2 = (int)(x2 + 1.0f);
//iy2 = vid.height - (int)(y1 + 1.0f);
//iy2 = r_refdef.view.viewport.height + 2 * r_refdef.view.viewport.y - (int)(y1 + 1.0f);
iy2 = (int)(y2 + 1.0f);
//Con_Printf("%f %f %f %f\n", x1, y1, x2, y2);
// clamp it to the screen
if (ix1 < r_refdef.view.viewport.x) ix1 = r_refdef.view.viewport.x;
if (iy1 < r_refdef.view.viewport.y) iy1 = r_refdef.view.viewport.y;
if (ix2 > r_refdef.view.viewport.x + r_refdef.view.viewport.width) ix2 = r_refdef.view.viewport.x + r_refdef.view.viewport.width;
if (iy2 > r_refdef.view.viewport.y + r_refdef.view.viewport.height) iy2 = r_refdef.view.viewport.y + r_refdef.view.viewport.height;
// if it is inside out, it's not visible
if (ix2 <= ix1 || iy2 <= iy1)
return true;
// the light area is visible, set up the scissor rectangle
scissor[0] = ix1;
scissor[1] = iy1;
scissor[2] = ix2 - ix1;
scissor[3] = iy2 - iy1;
// D3D Y coordinate is top to bottom, OpenGL is bottom to top, fix the D3D one
switch(vid.renderpath)
{
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
scissor[1] = vid.height - scissor[1] - scissor[3];
break;
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_SOFT:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
break;
}
return false;
}
static void R_Viewport_ApplyNearClipPlaneFloatGL(const r_viewport_t *v, float *m, float normalx, float normaly, float normalz, float dist)
{
float q[4];
float d;
float clipPlane[4], v3[3], v4[3];
float normal[3];
// This is inspired by Oblique Depth Projection from http://www.terathon.com/code/oblique.php
VectorSet(normal, normalx, normaly, normalz);
Matrix4x4_Transform3x3(&v->viewmatrix, normal, clipPlane);
VectorScale(normal, -dist, v3);
Matrix4x4_Transform(&v->viewmatrix, v3, v4);
// FIXME: LordHavoc: I think this can be done more efficiently somehow but I can't remember the technique
clipPlane[3] = -DotProduct(v4, clipPlane);
#if 0
{
// testing code for comparing results
float clipPlane2[4];
VectorCopy4(clipPlane, clipPlane2);
R_EntityMatrix(&identitymatrix);
VectorSet(q, normal[0], normal[1], normal[2], -dist);
qglClipPlane(GL_CLIP_PLANE0, q);
qglGetClipPlane(GL_CLIP_PLANE0, q);
VectorCopy4(q, clipPlane);
}
#endif
// Calculate the clip-space corner point opposite the clipping plane
// as (sgn(clipPlane.x), sgn(clipPlane.y), 1, 1) and
// transform it into camera space by multiplying it
// by the inverse of the projection matrix
q[0] = ((clipPlane[0] < 0.0f ? -1.0f : clipPlane[0] > 0.0f ? 1.0f : 0.0f) + m[8]) / m[0];
q[1] = ((clipPlane[1] < 0.0f ? -1.0f : clipPlane[1] > 0.0f ? 1.0f : 0.0f) + m[9]) / m[5];
q[2] = -1.0f;
q[3] = (1.0f + m[10]) / m[14];
// Calculate the scaled plane vector
d = 2.0f / DotProduct4(clipPlane, q);
// Replace the third row of the projection matrix
m[2] = clipPlane[0] * d;
m[6] = clipPlane[1] * d;
m[10] = clipPlane[2] * d + 1.0f;
m[14] = clipPlane[3] * d;
}
void R_Viewport_InitOrtho(r_viewport_t *v, const matrix4x4_t *cameramatrix, int x, int y, int width, int height, float x1, float y1, float x2, float y2, float nearclip, float farclip, const float *nearplane)
{
float left = x1, right = x2, bottom = y2, top = y1, zNear = nearclip, zFar = farclip;
float m[16];
memset(v, 0, sizeof(*v));
v->type = R_VIEWPORTTYPE_ORTHO;
v->cameramatrix = *cameramatrix;
v->x = x;
v->y = y;
v->z = 0;
v->width = width;
v->height = height;
v->depth = 1;
memset(m, 0, sizeof(m));
m[0] = 2/(right - left);
m[5] = 2/(top - bottom);
m[10] = -2/(zFar - zNear);
m[12] = - (right + left)/(right - left);
m[13] = - (top + bottom)/(top - bottom);
m[14] = - (zFar + zNear)/(zFar - zNear);
m[15] = 1;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_SOFT:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
break;
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
m[10] = -1/(zFar - zNear);
m[14] = -zNear/(zFar-zNear);
break;
}
v->screentodepth[0] = -farclip / (farclip - nearclip);
v->screentodepth[1] = farclip * nearclip / (farclip - nearclip);
Matrix4x4_Invert_Full(&v->viewmatrix, &v->cameramatrix);
if (nearplane)
R_Viewport_ApplyNearClipPlaneFloatGL(v, m, nearplane[0], nearplane[1], nearplane[2], nearplane[3]);
Matrix4x4_FromArrayFloatGL(&v->projectmatrix, m);
#if 0
{
vec4_t test1;
vec4_t test2;
Vector4Set(test1, (x1+x2)*0.5f, (y1+y2)*0.5f, 0.0f, 1.0f);
R_Viewport_TransformToScreen(v, test1, test2);
Con_Printf("%f %f %f -> %f %f %f\n", test1[0], test1[1], test1[2], test2[0], test2[1], test2[2]);
}
#endif
}
void R_Viewport_InitPerspective(r_viewport_t *v, const matrix4x4_t *cameramatrix, int x, int y, int width, int height, float frustumx, float frustumy, float nearclip, float farclip, const float *nearplane)
{
matrix4x4_t tempmatrix, basematrix;
float m[16];
memset(v, 0, sizeof(*v));
v->type = R_VIEWPORTTYPE_PERSPECTIVE;
v->cameramatrix = *cameramatrix;
v->x = x;
v->y = y;
v->z = 0;
v->width = width;
v->height = height;
v->depth = 1;
memset(m, 0, sizeof(m));
m[0] = 1.0 / frustumx;
m[5] = 1.0 / frustumy;
m[10] = -(farclip + nearclip) / (farclip - nearclip);
m[11] = -1;
m[14] = -2 * nearclip * farclip / (farclip - nearclip);
v->screentodepth[0] = -farclip / (farclip - nearclip);
v->screentodepth[1] = farclip * nearclip / (farclip - nearclip);
Matrix4x4_Invert_Full(&tempmatrix, &v->cameramatrix);
Matrix4x4_CreateRotate(&basematrix, -90, 1, 0, 0);
Matrix4x4_ConcatRotate(&basematrix, 90, 0, 0, 1);
Matrix4x4_Concat(&v->viewmatrix, &basematrix, &tempmatrix);
if (nearplane)
R_Viewport_ApplyNearClipPlaneFloatGL(v, m, nearplane[0], nearplane[1], nearplane[2], nearplane[3]);
if(v_flipped.integer)
{
m[0] = -m[0];
m[4] = -m[4];
m[8] = -m[8];
m[12] = -m[12];
}
Matrix4x4_FromArrayFloatGL(&v->projectmatrix, m);
}
void R_Viewport_InitPerspectiveInfinite(r_viewport_t *v, const matrix4x4_t *cameramatrix, int x, int y, int width, int height, float frustumx, float frustumy, float nearclip, const float *nearplane)
{
matrix4x4_t tempmatrix, basematrix;
const float nudge = 1.0 - 1.0 / (1<<23);
float m[16];
memset(v, 0, sizeof(*v));
v->type = R_VIEWPORTTYPE_PERSPECTIVE_INFINITEFARCLIP;
v->cameramatrix = *cameramatrix;
v->x = x;
v->y = y;
v->z = 0;
v->width = width;
v->height = height;
v->depth = 1;
memset(m, 0, sizeof(m));
m[ 0] = 1.0 / frustumx;
m[ 5] = 1.0 / frustumy;
m[10] = -nudge;
m[11] = -1;
m[14] = -2 * nearclip * nudge;
v->screentodepth[0] = (m[10] + 1) * 0.5 - 1;
v->screentodepth[1] = m[14] * -0.5;
Matrix4x4_Invert_Full(&tempmatrix, &v->cameramatrix);
Matrix4x4_CreateRotate(&basematrix, -90, 1, 0, 0);
Matrix4x4_ConcatRotate(&basematrix, 90, 0, 0, 1);
Matrix4x4_Concat(&v->viewmatrix, &basematrix, &tempmatrix);
if (nearplane)
R_Viewport_ApplyNearClipPlaneFloatGL(v, m, nearplane[0], nearplane[1], nearplane[2], nearplane[3]);
if(v_flipped.integer)
{
m[0] = -m[0];
m[4] = -m[4];
m[8] = -m[8];
m[12] = -m[12];
}
Matrix4x4_FromArrayFloatGL(&v->projectmatrix, m);
}
float cubeviewmatrix[6][16] =
{
// standard cubemap projections
{ // +X
0, 0,-1, 0,
0,-1, 0, 0,
-1, 0, 0, 0,
0, 0, 0, 1,
},
{ // -X
0, 0, 1, 0,
0,-1, 0, 0,
1, 0, 0, 0,
0, 0, 0, 1,
},
{ // +Y
1, 0, 0, 0,
0, 0,-1, 0,
0, 1, 0, 0,
0, 0, 0, 1,
},
{ // -Y
1, 0, 0, 0,
0, 0, 1, 0,
0,-1, 0, 0,
0, 0, 0, 1,
},
{ // +Z
1, 0, 0, 0,
0,-1, 0, 0,
0, 0,-1, 0,
0, 0, 0, 1,
},
{ // -Z
-1, 0, 0, 0,
0,-1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1,
},
};
float rectviewmatrix[6][16] =
{
// sign-preserving cubemap projections
{ // +X
0, 0,-1, 0,
0, 1, 0, 0,
1, 0, 0, 0,
0, 0, 0, 1,
},
{ // -X
0, 0, 1, 0,
0, 1, 0, 0,
1, 0, 0, 0,
0, 0, 0, 1,
},
{ // +Y
1, 0, 0, 0,
0, 0,-1, 0,
0, 1, 0, 0,
0, 0, 0, 1,
},
{ // -Y
1, 0, 0, 0,
0, 0, 1, 0,
0, 1, 0, 0,
0, 0, 0, 1,
},
{ // +Z
1, 0, 0, 0,
0, 1, 0, 0,
0, 0,-1, 0,
0, 0, 0, 1,
},
{ // -Z
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1,
},
};
void R_Viewport_InitCubeSideView(r_viewport_t *v, const matrix4x4_t *cameramatrix, int side, int size, float nearclip, float farclip, const float *nearplane)
{
matrix4x4_t tempmatrix, basematrix;
float m[16];
memset(v, 0, sizeof(*v));
v->type = R_VIEWPORTTYPE_PERSPECTIVECUBESIDE;
v->cameramatrix = *cameramatrix;
v->width = size;
v->height = size;
v->depth = 1;
memset(m, 0, sizeof(m));
m[0] = m[5] = 1.0f;
m[10] = -(farclip + nearclip) / (farclip - nearclip);
m[11] = -1;
m[14] = -2 * nearclip * farclip / (farclip - nearclip);
Matrix4x4_FromArrayFloatGL(&basematrix, cubeviewmatrix[side]);
Matrix4x4_Invert_Simple(&tempmatrix, &v->cameramatrix);
Matrix4x4_Concat(&v->viewmatrix, &basematrix, &tempmatrix);
if (nearplane)
R_Viewport_ApplyNearClipPlaneFloatGL(v, m, nearplane[0], nearplane[1], nearplane[2], nearplane[3]);
Matrix4x4_FromArrayFloatGL(&v->projectmatrix, m);
}
void R_Viewport_InitRectSideView(r_viewport_t *v, const matrix4x4_t *cameramatrix, int side, int size, int border, float nearclip, float farclip, const float *nearplane)
{
matrix4x4_t tempmatrix, basematrix;
float m[16];
memset(v, 0, sizeof(*v));
v->type = R_VIEWPORTTYPE_PERSPECTIVECUBESIDE;
v->cameramatrix = *cameramatrix;
v->x = (side & 1) * size;
v->y = (side >> 1) * size;
v->width = size;
v->height = size;
v->depth = 1;
memset(m, 0, sizeof(m));
m[0] = m[5] = 1.0f * ((float)size - border) / size;
m[10] = -(farclip + nearclip) / (farclip - nearclip);
m[11] = -1;
m[14] = -2 * nearclip * farclip / (farclip - nearclip);
Matrix4x4_FromArrayFloatGL(&basematrix, rectviewmatrix[side]);
Matrix4x4_Invert_Simple(&tempmatrix, &v->cameramatrix);
Matrix4x4_Concat(&v->viewmatrix, &basematrix, &tempmatrix);
switch(vid.renderpath)
{
case RENDERPATH_GL20:
case RENDERPATH_GL13:
case RENDERPATH_GL11:
case RENDERPATH_SOFT:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
break;
case RENDERPATH_D3D9:
m[5] *= -1;
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
}
if (nearplane)
R_Viewport_ApplyNearClipPlaneFloatGL(v, m, nearplane[0], nearplane[1], nearplane[2], nearplane[3]);
Matrix4x4_FromArrayFloatGL(&v->projectmatrix, m);
}
void R_SetViewport(const r_viewport_t *v)
{
float m[16];
gl_viewport = *v;
// FIXME: v_flipped_state is evil, this probably breaks somewhere
GL_SetMirrorState(v_flipped.integer && (v->type == R_VIEWPORTTYPE_PERSPECTIVE || v->type == R_VIEWPORTTYPE_PERSPECTIVE_INFINITEFARCLIP));
// copy over the matrices to our state
gl_viewmatrix = v->viewmatrix;
gl_projectionmatrix = v->projectmatrix;
switch(vid.renderpath)
{
case RENDERPATH_GL13:
case RENDERPATH_GL11:
case RENDERPATH_GLES1:
#ifdef GL_PROJECTION
CHECKGLERROR
qglViewport(v->x, v->y, v->width, v->height);CHECKGLERROR
// Load the projection matrix into OpenGL
qglMatrixMode(GL_PROJECTION);CHECKGLERROR
Matrix4x4_ToArrayFloatGL(&gl_projectionmatrix, m);
qglLoadMatrixf(m);CHECKGLERROR
qglMatrixMode(GL_MODELVIEW);CHECKGLERROR
#endif
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
{
D3DVIEWPORT9 d3dviewport;
d3dviewport.X = gl_viewport.x;
d3dviewport.Y = gl_viewport.y;
d3dviewport.Width = gl_viewport.width;
d3dviewport.Height = gl_viewport.height;
d3dviewport.MinZ = gl_state.depthrange[0];
d3dviewport.MaxZ = gl_state.depthrange[1];
IDirect3DDevice9_SetViewport(vid_d3d9dev, &d3dviewport);
}
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_Viewport(v->x, v->y, v->width, v->height);
break;
case RENDERPATH_GL20:
case RENDERPATH_GLES2:
CHECKGLERROR
qglViewport(v->x, v->y, v->width, v->height);CHECKGLERROR
break;
}
// force an update of the derived matrices
gl_modelmatrixchanged = true;
R_EntityMatrix(&gl_modelmatrix);
}
void R_GetViewport(r_viewport_t *v)
{
*v = gl_viewport;
}
static void GL_BindVBO(int bufferobject)
{
if (gl_state.vertexbufferobject != bufferobject)
{
gl_state.vertexbufferobject = bufferobject;
CHECKGLERROR
qglBindBufferARB(GL_ARRAY_BUFFER, bufferobject);CHECKGLERROR
}
}
static void GL_BindEBO(int bufferobject)
{
if (gl_state.elementbufferobject != bufferobject)
{
gl_state.elementbufferobject = bufferobject;
CHECKGLERROR
qglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, bufferobject);CHECKGLERROR
}
}
static void GL_BindUBO(int bufferobject)
{
if (gl_state.uniformbufferobject != bufferobject)
{
gl_state.uniformbufferobject = bufferobject;
CHECKGLERROR
qglBindBufferARB(GL_UNIFORM_BUFFER, bufferobject);CHECKGLERROR
}
}
static const GLuint drawbuffers[4] = {GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1, GL_COLOR_ATTACHMENT2, GL_COLOR_ATTACHMENT3};
int R_Mesh_CreateFramebufferObject(rtexture_t *depthtexture, rtexture_t *colortexture, rtexture_t *colortexture2, rtexture_t *colortexture3, rtexture_t *colortexture4)
{
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
if (vid.support.arb_framebuffer_object)
{
int temp;
GLuint status;
qglGenFramebuffers(1, (GLuint*)&temp);CHECKGLERROR
R_Mesh_SetRenderTargets(temp, NULL, NULL, NULL, NULL, NULL);
// GL_ARB_framebuffer_object (GL3-class hardware) - depth stencil attachment
#ifdef USE_GLES2
// FIXME: separate stencil attachment on GLES
if (depthtexture && depthtexture->texnum ) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT , depthtexture->gltexturetypeenum , depthtexture->texnum , 0);CHECKGLERROR
#else
if (depthtexture && depthtexture->texnum ) qglFramebufferTexture2D(GL_FRAMEBUFFER, depthtexture->glisdepthstencil ? GL_DEPTH_STENCIL_ATTACHMENT : GL_DEPTH_ATTACHMENT , depthtexture->gltexturetypeenum , depthtexture->texnum , 0);CHECKGLERROR
#endif
if (depthtexture && depthtexture->renderbuffernum ) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, /*depthtexture->glisdepthstencil ? GL_DEPTH_STENCIL_ATTACHMENT : */GL_DEPTH_ATTACHMENT , GL_RENDERBUFFER, depthtexture->renderbuffernum );CHECKGLERROR
if (colortexture && colortexture->texnum ) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 , colortexture->gltexturetypeenum , colortexture->texnum , 0);CHECKGLERROR
if (colortexture2 && colortexture2->texnum) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1 , colortexture2->gltexturetypeenum, colortexture2->texnum, 0);CHECKGLERROR
if (colortexture3 && colortexture3->texnum) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT2 , colortexture3->gltexturetypeenum, colortexture3->texnum, 0);CHECKGLERROR
if (colortexture4 && colortexture4->texnum) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT3 , colortexture4->gltexturetypeenum, colortexture4->texnum, 0);CHECKGLERROR
if (colortexture && colortexture->renderbuffernum ) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 , GL_RENDERBUFFER, colortexture->renderbuffernum );CHECKGLERROR
if (colortexture2 && colortexture2->renderbuffernum) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1 , GL_RENDERBUFFER, colortexture2->renderbuffernum);CHECKGLERROR
if (colortexture3 && colortexture3->renderbuffernum) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT2 , GL_RENDERBUFFER, colortexture3->renderbuffernum);CHECKGLERROR
if (colortexture4 && colortexture4->renderbuffernum) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT3 , GL_RENDERBUFFER, colortexture4->renderbuffernum);CHECKGLERROR
#ifndef USE_GLES2
if (colortexture4 && qglDrawBuffersARB)
{
qglDrawBuffersARB(4, drawbuffers);CHECKGLERROR
qglReadBuffer(GL_NONE);CHECKGLERROR
}
else if (colortexture3 && qglDrawBuffersARB)
{
qglDrawBuffersARB(3, drawbuffers);CHECKGLERROR
qglReadBuffer(GL_NONE);CHECKGLERROR
}
else if (colortexture2 && qglDrawBuffersARB)
{
qglDrawBuffersARB(2, drawbuffers);CHECKGLERROR
qglReadBuffer(GL_NONE);CHECKGLERROR
}
else if (colortexture && qglDrawBuffer)
{
qglDrawBuffer(GL_COLOR_ATTACHMENT0);CHECKGLERROR
qglReadBuffer(GL_COLOR_ATTACHMENT0);CHECKGLERROR
}
else if (qglDrawBuffer)
{
qglDrawBuffer(GL_NONE);CHECKGLERROR
qglReadBuffer(GL_NONE);CHECKGLERROR
}
#endif
status = qglCheckFramebufferStatus(GL_FRAMEBUFFER);CHECKGLERROR
if (status != GL_FRAMEBUFFER_COMPLETE)
{
Con_Printf("R_Mesh_CreateFramebufferObject: glCheckFramebufferStatus returned %i\n", status);
gl_state.framebufferobject = 0; // GL unbinds it for us
qglDeleteFramebuffers(1, (GLuint*)&temp);
temp = 0;
}
return temp;
}
else if (vid.support.ext_framebuffer_object)
{
int temp;
GLuint status;
qglGenFramebuffers(1, (GLuint*)&temp);CHECKGLERROR
R_Mesh_SetRenderTargets(temp, NULL, NULL, NULL, NULL, NULL);
// GL_EXT_framebuffer_object (GL2-class hardware) - no depth stencil attachment, let it break stencil
if (depthtexture && depthtexture->texnum ) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT , depthtexture->gltexturetypeenum , depthtexture->texnum , 0);CHECKGLERROR
if (depthtexture && depthtexture->renderbuffernum ) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT , GL_RENDERBUFFER, depthtexture->renderbuffernum );CHECKGLERROR
if (colortexture && colortexture->texnum ) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 , colortexture->gltexturetypeenum , colortexture->texnum , 0);CHECKGLERROR
if (colortexture2 && colortexture2->texnum) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1 , colortexture2->gltexturetypeenum, colortexture2->texnum, 0);CHECKGLERROR
if (colortexture3 && colortexture3->texnum) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT2 , colortexture3->gltexturetypeenum, colortexture3->texnum, 0);CHECKGLERROR
if (colortexture4 && colortexture4->texnum) qglFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT3 , colortexture4->gltexturetypeenum, colortexture4->texnum, 0);CHECKGLERROR
if (colortexture && colortexture->renderbuffernum ) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 , GL_RENDERBUFFER, colortexture->renderbuffernum );CHECKGLERROR
if (colortexture2 && colortexture2->renderbuffernum) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1 , GL_RENDERBUFFER, colortexture2->renderbuffernum);CHECKGLERROR
if (colortexture3 && colortexture3->renderbuffernum) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT2 , GL_RENDERBUFFER, colortexture3->renderbuffernum);CHECKGLERROR
if (colortexture4 && colortexture4->renderbuffernum) qglFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT3 , GL_RENDERBUFFER, colortexture4->renderbuffernum);CHECKGLERROR
#ifndef USE_GLES2
if (colortexture4 && qglDrawBuffersARB)
{
qglDrawBuffersARB(4, drawbuffers);CHECKGLERROR
qglReadBuffer(GL_NONE);CHECKGLERROR
}
else if (colortexture3 && qglDrawBuffersARB)
{
qglDrawBuffersARB(3, drawbuffers);CHECKGLERROR
qglReadBuffer(GL_NONE);CHECKGLERROR
}
else if (colortexture2 && qglDrawBuffersARB)
{
qglDrawBuffersARB(2, drawbuffers);CHECKGLERROR
qglReadBuffer(GL_NONE);CHECKGLERROR
}
else if (colortexture && qglDrawBuffer)
{
qglDrawBuffer(GL_COLOR_ATTACHMENT0);CHECKGLERROR
qglReadBuffer(GL_COLOR_ATTACHMENT0);CHECKGLERROR
}
else if (qglDrawBuffer)
{
qglDrawBuffer(GL_NONE);CHECKGLERROR
qglReadBuffer(GL_NONE);CHECKGLERROR
}
#endif
status = qglCheckFramebufferStatus(GL_FRAMEBUFFER);CHECKGLERROR
if (status != GL_FRAMEBUFFER_COMPLETE)
{
Con_Printf("R_Mesh_CreateFramebufferObject: glCheckFramebufferStatus returned %i\n", status);
gl_state.framebufferobject = 0; // GL unbinds it for us
qglDeleteFramebuffers(1, (GLuint*)&temp);
temp = 0;
}
return temp;
}
return 0;
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
return 1;
case RENDERPATH_SOFT:
return 1;
}
return 0;
}
void R_Mesh_DestroyFramebufferObject(int fbo)
{
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
if (fbo)
{
// GL clears the binding if we delete something bound
if (gl_state.framebufferobject == fbo)
gl_state.framebufferobject = 0;
qglDeleteFramebuffers(1, (GLuint*)&fbo);
}
break;
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
break;
case RENDERPATH_SOFT:
break;
}
}
#ifdef SUPPORTD3D
void R_Mesh_SetRenderTargetsD3D9(IDirect3DSurface9 *depthsurface, IDirect3DSurface9 *colorsurface0, IDirect3DSurface9 *colorsurface1, IDirect3DSurface9 *colorsurface2, IDirect3DSurface9 *colorsurface3)
{
gl_state.framebufferobject = depthsurface != gl_state.d3drt_backbufferdepthsurface || colorsurface0 != gl_state.d3drt_backbuffercolorsurface;
if (gl_state.d3drt_depthsurface != depthsurface)
{
gl_state.d3drt_depthsurface = depthsurface;
IDirect3DDevice9_SetDepthStencilSurface(vid_d3d9dev, gl_state.d3drt_depthsurface);
}
if (gl_state.d3drt_colorsurfaces[0] != colorsurface0)
{
gl_state.d3drt_colorsurfaces[0] = colorsurface0;
IDirect3DDevice9_SetRenderTarget(vid_d3d9dev, 0, gl_state.d3drt_colorsurfaces[0]);
}
if (gl_state.d3drt_colorsurfaces[1] != colorsurface1)
{
gl_state.d3drt_colorsurfaces[1] = colorsurface1;
IDirect3DDevice9_SetRenderTarget(vid_d3d9dev, 1, gl_state.d3drt_colorsurfaces[1]);
}
if (gl_state.d3drt_colorsurfaces[2] != colorsurface2)
{
gl_state.d3drt_colorsurfaces[2] = colorsurface2;
IDirect3DDevice9_SetRenderTarget(vid_d3d9dev, 2, gl_state.d3drt_colorsurfaces[2]);
}
if (gl_state.d3drt_colorsurfaces[3] != colorsurface3)
{
gl_state.d3drt_colorsurfaces[3] = colorsurface3;
IDirect3DDevice9_SetRenderTarget(vid_d3d9dev, 3, gl_state.d3drt_colorsurfaces[3]);
}
}
#endif
void R_Mesh_SetRenderTargets(int fbo, rtexture_t *depthtexture, rtexture_t *colortexture, rtexture_t *colortexture2, rtexture_t *colortexture3, rtexture_t *colortexture4)
{
unsigned int i;
unsigned int j;
rtexture_t *textures[5];
Vector4Set(textures, colortexture, colortexture2, colortexture3, colortexture4);
textures[4] = depthtexture;
// unbind any matching textures immediately, otherwise D3D will complain about a bound texture being used as a render target
for (j = 0;j < 5;j++)
if (textures[j])
for (i = 0;i < vid.teximageunits;i++)
if (gl_state.units[i].texture == textures[j])
R_Mesh_TexBind(i, NULL);
// set up framebuffer object or render targets for the active rendering API
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
if (gl_state.framebufferobject != fbo)
{
gl_state.framebufferobject = fbo;
qglBindFramebuffer(GL_FRAMEBUFFER, gl_state.framebufferobject ? gl_state.framebufferobject : gl_state.defaultframebufferobject);
}
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
// set up the new render targets, a NULL depthtexture intentionally binds nothing
// TODO: optimize: keep surface pointer around in rtexture_t until texture is freed or lost
if (fbo)
{
IDirect3DSurface9 *surfaces[5];
for (i = 0;i < 5;i++)
{
surfaces[i] = NULL;
if (textures[i])
{
if (textures[i]->d3dsurface)
surfaces[i] = (IDirect3DSurface9 *)textures[i]->d3dsurface;
else
IDirect3DTexture9_GetSurfaceLevel((IDirect3DTexture9 *)textures[i]->d3dtexture, 0, &surfaces[i]);
}
}
// set the render targets for real
R_Mesh_SetRenderTargetsD3D9(surfaces[4], surfaces[0], surfaces[1], surfaces[2], surfaces[3]);
// release the texture surface levels (they won't be lost while bound...)
for (i = 0;i < 5;i++)
if (textures[i] && !textures[i]->d3dsurface)
IDirect3DSurface9_Release(surfaces[i]);
}
else
R_Mesh_SetRenderTargetsD3D9(gl_state.d3drt_backbufferdepthsurface, gl_state.d3drt_backbuffercolorsurface, NULL, NULL, NULL);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
if (fbo)
{
int width, height;
unsigned int *pointers[5];
memset(pointers, 0, sizeof(pointers));
for (i = 0;i < 5;i++)
pointers[i] = textures[i] ? (unsigned int *)DPSOFTRAST_Texture_GetPixelPointer(textures[i]->texnum, 0) : NULL;
width = DPSOFTRAST_Texture_GetWidth(textures[0] ? textures[0]->texnum : textures[4]->texnum, 0);
height = DPSOFTRAST_Texture_GetHeight(textures[0] ? textures[0]->texnum : textures[4]->texnum, 0);
DPSOFTRAST_SetRenderTargets(width, height, pointers[4], pointers[0], pointers[1], pointers[2], pointers[3]);
}
else
DPSOFTRAST_SetRenderTargets(vid.width, vid.height, vid.softdepthpixels, vid.softpixels, NULL, NULL, NULL);
break;
}
}
#ifdef SUPPORTD3D
static int d3dcmpforglfunc(int f)
{
switch(f)
{
case GL_NEVER: return D3DCMP_NEVER;
case GL_LESS: return D3DCMP_LESS;
case GL_EQUAL: return D3DCMP_EQUAL;
case GL_LEQUAL: return D3DCMP_LESSEQUAL;
case GL_GREATER: return D3DCMP_GREATER;
case GL_NOTEQUAL: return D3DCMP_NOTEQUAL;
case GL_GEQUAL: return D3DCMP_GREATEREQUAL;
case GL_ALWAYS: return D3DCMP_ALWAYS;
default: Con_DPrintf("Unknown GL_DepthFunc\n");return D3DCMP_ALWAYS;
}
}
static int d3dstencilopforglfunc(int f)
{
switch(f)
{
case GL_KEEP: return D3DSTENCILOP_KEEP;
case GL_INCR: return D3DSTENCILOP_INCR; // note: GL_INCR is clamped, D3DSTENCILOP_INCR wraps
case GL_DECR: return D3DSTENCILOP_DECR; // note: GL_DECR is clamped, D3DSTENCILOP_DECR wraps
default: Con_DPrintf("Unknown GL_StencilFunc\n");return D3DSTENCILOP_KEEP;
}
}
#endif
static void GL_Backend_ResetState(void)
{
unsigned int i;
gl_state.active = true;
gl_state.depthtest = true;
gl_state.alphatest = false;
gl_state.alphafunc = GL_GEQUAL;
gl_state.alphafuncvalue = 0.5f;
gl_state.alphatocoverage = false;
gl_state.blendfunc1 = GL_ONE;
gl_state.blendfunc2 = GL_ZERO;
gl_state.blend = false;
gl_state.depthmask = GL_TRUE;
gl_state.colormask = 15;
gl_state.color4f[0] = gl_state.color4f[1] = gl_state.color4f[2] = gl_state.color4f[3] = 1;
gl_state.lockrange_first = 0;
gl_state.lockrange_count = 0;
gl_state.cullface = GL_FRONT;
gl_state.cullfaceenable = false;
gl_state.polygonoffset[0] = 0;
gl_state.polygonoffset[1] = 0;
gl_state.framebufferobject = 0;
gl_state.depthfunc = GL_LEQUAL;
switch(vid.renderpath)
{
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
{
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_COLORWRITEENABLE, gl_state.colormask);
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CULLMODE, D3DCULL_NONE);
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_ZFUNC, d3dcmpforglfunc(gl_state.depthfunc));
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_ZENABLE, gl_state.depthtest);
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_ZWRITEENABLE, gl_state.depthmask);
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_SLOPESCALEDEPTHBIAS, gl_state.polygonoffset[0]);
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_DEPTHBIAS, gl_state.polygonoffset[1] * (1.0f / 16777216.0f));
}
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GLES1:
#ifdef GL_ALPHA_TEST
CHECKGLERROR
qglColorMask(1, 1, 1, 1);CHECKGLERROR
qglAlphaFunc(gl_state.alphafunc, gl_state.alphafuncvalue);CHECKGLERROR
qglDisable(GL_ALPHA_TEST);CHECKGLERROR
qglBlendFunc(gl_state.blendfunc1, gl_state.blendfunc2);CHECKGLERROR
qglDisable(GL_BLEND);CHECKGLERROR
qglCullFace(gl_state.cullface);CHECKGLERROR
qglDisable(GL_CULL_FACE);CHECKGLERROR
qglDepthFunc(GL_LEQUAL);CHECKGLERROR
qglEnable(GL_DEPTH_TEST);CHECKGLERROR
qglDepthMask(gl_state.depthmask);CHECKGLERROR
qglPolygonOffset(gl_state.polygonoffset[0], gl_state.polygonoffset[1]);
if (vid.support.arb_vertex_buffer_object)
{
qglBindBufferARB(GL_ARRAY_BUFFER, 0);
qglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, 0);
}
if (vid.support.ext_framebuffer_object)
{
//qglBindRenderbuffer(GL_RENDERBUFFER, 0);
qglBindFramebuffer(GL_FRAMEBUFFER, 0);
}
qglVertexPointer(3, GL_FLOAT, sizeof(float[3]), NULL);CHECKGLERROR
qglEnableClientState(GL_VERTEX_ARRAY);CHECKGLERROR
qglColorPointer(4, GL_FLOAT, sizeof(float[4]), NULL);CHECKGLERROR
qglDisableClientState(GL_COLOR_ARRAY);CHECKGLERROR
qglColor4f(1, 1, 1, 1);CHECKGLERROR
if (vid.support.ext_framebuffer_object)
qglBindFramebuffer(GL_FRAMEBUFFER, gl_state.framebufferobject);
gl_state.unit = MAX_TEXTUREUNITS;
gl_state.clientunit = MAX_TEXTUREUNITS;
for (i = 0;i < vid.texunits;i++)
{
GL_ActiveTexture(i);
GL_ClientActiveTexture(i);
qglDisable(GL_TEXTURE_2D);CHECKGLERROR
qglBindTexture(GL_TEXTURE_2D, 0);CHECKGLERROR
if (vid.support.ext_texture_3d)
{
qglDisable(GL_TEXTURE_3D);CHECKGLERROR
qglBindTexture(GL_TEXTURE_3D, 0);CHECKGLERROR
}
if (vid.support.arb_texture_cube_map)
{
qglDisable(GL_TEXTURE_CUBE_MAP);CHECKGLERROR
qglBindTexture(GL_TEXTURE_CUBE_MAP, 0);CHECKGLERROR
}
GL_BindVBO(0);
qglTexCoordPointer(2, GL_FLOAT, sizeof(float[2]), NULL);CHECKGLERROR
qglDisableClientState(GL_TEXTURE_COORD_ARRAY);CHECKGLERROR
qglMatrixMode(GL_TEXTURE);CHECKGLERROR
qglLoadIdentity();CHECKGLERROR
qglMatrixMode(GL_MODELVIEW);CHECKGLERROR
qglTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);CHECKGLERROR
}
CHECKGLERROR
#endif
break;
case RENDERPATH_SOFT:
DPSOFTRAST_ColorMask(1,1,1,1);
DPSOFTRAST_BlendFunc(gl_state.blendfunc1, gl_state.blendfunc2);
DPSOFTRAST_CullFace(gl_state.cullface);
DPSOFTRAST_DepthFunc(gl_state.depthfunc);
DPSOFTRAST_DepthMask(gl_state.depthmask);
DPSOFTRAST_PolygonOffset(gl_state.polygonoffset[0], gl_state.polygonoffset[1]);
DPSOFTRAST_SetRenderTargets(vid.width, vid.height, vid.softdepthpixels, vid.softpixels, NULL, NULL, NULL);
DPSOFTRAST_Viewport(0, 0, vid.width, vid.height);
break;
case RENDERPATH_GL20:
case RENDERPATH_GLES2:
CHECKGLERROR
qglColorMask(1, 1, 1, 1);CHECKGLERROR
qglBlendFunc(gl_state.blendfunc1, gl_state.blendfunc2);CHECKGLERROR
qglDisable(GL_BLEND);CHECKGLERROR
qglCullFace(gl_state.cullface);CHECKGLERROR
qglDisable(GL_CULL_FACE);CHECKGLERROR
qglDepthFunc(GL_LEQUAL);CHECKGLERROR
qglEnable(GL_DEPTH_TEST);CHECKGLERROR
qglDepthMask(gl_state.depthmask);CHECKGLERROR
qglPolygonOffset(gl_state.polygonoffset[0], gl_state.polygonoffset[1]);
if (vid.support.arb_vertex_buffer_object)
{
qglBindBufferARB(GL_ARRAY_BUFFER, 0);
qglBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, 0);
}
if (vid.support.ext_framebuffer_object)
qglBindFramebuffer(GL_FRAMEBUFFER, gl_state.defaultframebufferobject);
qglEnableVertexAttribArray(GLSLATTRIB_POSITION);
qglVertexAttribPointer(GLSLATTRIB_POSITION, 3, GL_FLOAT, false, sizeof(float[3]), NULL);CHECKGLERROR
qglDisableVertexAttribArray(GLSLATTRIB_COLOR);
qglVertexAttribPointer(GLSLATTRIB_COLOR, 4, GL_FLOAT, false, sizeof(float[4]), NULL);CHECKGLERROR
qglVertexAttrib4f(GLSLATTRIB_COLOR, 1, 1, 1, 1);
gl_state.unit = MAX_TEXTUREUNITS;
gl_state.clientunit = MAX_TEXTUREUNITS;
for (i = 0;i < vid.teximageunits;i++)
{
GL_ActiveTexture(i);
qglBindTexture(GL_TEXTURE_2D, 0);CHECKGLERROR
if (vid.support.ext_texture_3d)
{
qglBindTexture(GL_TEXTURE_3D, 0);CHECKGLERROR
}
if (vid.support.arb_texture_cube_map)
{
qglBindTexture(GL_TEXTURE_CUBE_MAP, 0);CHECKGLERROR
}
}
for (i = 0;i < vid.texarrayunits;i++)
{
GL_BindVBO(0);
qglVertexAttribPointer(i+GLSLATTRIB_TEXCOORD0, 2, GL_FLOAT, false, sizeof(float[2]), NULL);CHECKGLERROR
qglDisableVertexAttribArray(i+GLSLATTRIB_TEXCOORD0);CHECKGLERROR
}
CHECKGLERROR
break;
}
}
void GL_ActiveTexture(unsigned int num)
{
if (gl_state.unit != num)
{
gl_state.unit = num;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
if (1)
{
CHECKGLERROR
glActiveTexture(GL_TEXTURE0 + gl_state.unit);
CHECKGLERROR
}
break;
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
break;
case RENDERPATH_SOFT:
break;
}
}
}
void GL_ClientActiveTexture(unsigned int num)
{
if (gl_state.clientunit != num)
{
gl_state.clientunit = num;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GLES1:
if (1)
{
CHECKGLERROR
qglClientActiveTexture(GL_TEXTURE0 + gl_state.clientunit);
CHECKGLERROR
}
break;
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
break;
case RENDERPATH_SOFT:
break;
case RENDERPATH_GL20:
case RENDERPATH_GLES2:
break;
}
}
}
void GL_BlendFunc(int blendfunc1, int blendfunc2)
{
if (gl_state.blendfunc1 != blendfunc1 || gl_state.blendfunc2 != blendfunc2)
{
qboolean blendenable;
gl_state.blendfunc1 = blendfunc1;
gl_state.blendfunc2 = blendfunc2;
blendenable = (gl_state.blendfunc1 != GL_ONE || gl_state.blendfunc2 != GL_ZERO);
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
CHECKGLERROR
qglBlendFunc(gl_state.blendfunc1, gl_state.blendfunc2);CHECKGLERROR
if (gl_state.blend != blendenable)
{
gl_state.blend = blendenable;
if (!gl_state.blend)
{
qglDisable(GL_BLEND);CHECKGLERROR
}
else
{
qglEnable(GL_BLEND);CHECKGLERROR
}
}
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
{
int i;
int glblendfunc[2];
D3DBLEND d3dblendfunc[2];
glblendfunc[0] = gl_state.blendfunc1;
glblendfunc[1] = gl_state.blendfunc2;
for (i = 0;i < 2;i++)
{
switch(glblendfunc[i])
{
case GL_ZERO: d3dblendfunc[i] = D3DBLEND_ZERO;break;
case GL_ONE: d3dblendfunc[i] = D3DBLEND_ONE;break;
case GL_SRC_COLOR: d3dblendfunc[i] = D3DBLEND_SRCCOLOR;break;
case GL_ONE_MINUS_SRC_COLOR: d3dblendfunc[i] = D3DBLEND_INVSRCCOLOR;break;
case GL_SRC_ALPHA: d3dblendfunc[i] = D3DBLEND_SRCALPHA;break;
case GL_ONE_MINUS_SRC_ALPHA: d3dblendfunc[i] = D3DBLEND_INVSRCALPHA;break;
case GL_DST_ALPHA: d3dblendfunc[i] = D3DBLEND_DESTALPHA;break;
case GL_ONE_MINUS_DST_ALPHA: d3dblendfunc[i] = D3DBLEND_INVDESTALPHA;break;
case GL_DST_COLOR: d3dblendfunc[i] = D3DBLEND_DESTCOLOR;break;
case GL_ONE_MINUS_DST_COLOR: d3dblendfunc[i] = D3DBLEND_INVDESTCOLOR;break;
}
}
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_SRCBLEND, d3dblendfunc[0]);
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_DESTBLEND, d3dblendfunc[1]);
if (gl_state.blend != blendenable)
{
gl_state.blend = blendenable;
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_ALPHABLENDENABLE, gl_state.blend);
}
}
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_BlendFunc(gl_state.blendfunc1, gl_state.blendfunc2);
break;
}
}
}
void GL_DepthMask(int state)
{
if (gl_state.depthmask != state)
{
gl_state.depthmask = state;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
CHECKGLERROR
qglDepthMask(gl_state.depthmask);CHECKGLERROR
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_ZWRITEENABLE, gl_state.depthmask);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_DepthMask(gl_state.depthmask);
break;
}
}
}
void GL_DepthTest(int state)
{
if (gl_state.depthtest != state)
{
gl_state.depthtest = state;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
CHECKGLERROR
if (gl_state.depthtest)
{
qglEnable(GL_DEPTH_TEST);CHECKGLERROR
}
else
{
qglDisable(GL_DEPTH_TEST);CHECKGLERROR
}
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_ZENABLE, gl_state.depthtest);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_DepthTest(gl_state.depthtest);
break;
}
}
}
void GL_DepthFunc(int state)
{
if (gl_state.depthfunc != state)
{
gl_state.depthfunc = state;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
CHECKGLERROR
qglDepthFunc(gl_state.depthfunc);CHECKGLERROR
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_ZFUNC, d3dcmpforglfunc(gl_state.depthfunc));
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_DepthFunc(gl_state.depthfunc);
break;
}
}
}
void GL_DepthRange(float nearfrac, float farfrac)
{
if (gl_state.depthrange[0] != nearfrac || gl_state.depthrange[1] != farfrac)
{
gl_state.depthrange[0] = nearfrac;
gl_state.depthrange[1] = farfrac;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
#ifdef USE_GLES2
qglDepthRangef(gl_state.depthrange[0], gl_state.depthrange[1]);
#else
qglDepthRange(gl_state.depthrange[0], gl_state.depthrange[1]);
#endif
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
{
D3DVIEWPORT9 d3dviewport;
d3dviewport.X = gl_viewport.x;
d3dviewport.Y = gl_viewport.y;
d3dviewport.Width = gl_viewport.width;
d3dviewport.Height = gl_viewport.height;
d3dviewport.MinZ = gl_state.depthrange[0];
d3dviewport.MaxZ = gl_state.depthrange[1];
IDirect3DDevice9_SetViewport(vid_d3d9dev, &d3dviewport);
}
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_DepthRange(gl_state.depthrange[0], gl_state.depthrange[1]);
break;
}
}
}
void R_SetStencilSeparate(qboolean enable, int writemask, int frontfail, int frontzfail, int frontzpass, int backfail, int backzfail, int backzpass, int frontcompare, int backcompare, int comparereference, int comparemask)
{
switch (vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
CHECKGLERROR
if (enable)
{
qglEnable(GL_STENCIL_TEST);CHECKGLERROR
}
else
{
qglDisable(GL_STENCIL_TEST);CHECKGLERROR
}
if (vid.support.ati_separate_stencil)
{
qglStencilMask(writemask);CHECKGLERROR
qglStencilOpSeparate(GL_FRONT, frontfail, frontzfail, frontzpass);CHECKGLERROR
qglStencilOpSeparate(GL_BACK, backfail, backzfail, backzpass);CHECKGLERROR
qglStencilFuncSeparate(GL_FRONT, frontcompare, comparereference, comparereference);CHECKGLERROR
qglStencilFuncSeparate(GL_BACK, backcompare, comparereference, comparereference);CHECKGLERROR
}
else if (vid.support.ext_stencil_two_side)
{
#ifdef GL_STENCIL_TEST_TWO_SIDE_EXT
qglEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);CHECKGLERROR
qglActiveStencilFaceEXT(GL_FRONT);CHECKGLERROR
qglStencilMask(writemask);CHECKGLERROR
qglStencilOp(frontfail, frontzfail, frontzpass);CHECKGLERROR
qglStencilFunc(frontcompare, comparereference, comparemask);CHECKGLERROR
qglActiveStencilFaceEXT(GL_BACK);CHECKGLERROR
qglStencilMask(writemask);CHECKGLERROR
qglStencilOp(backfail, backzfail, backzpass);CHECKGLERROR
qglStencilFunc(backcompare, comparereference, comparemask);CHECKGLERROR
#endif
}
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_TWOSIDEDSTENCILMODE, true);
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILENABLE, enable);
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILWRITEMASK, writemask);
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILFAIL, d3dstencilopforglfunc(frontfail));
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILZFAIL, d3dstencilopforglfunc(frontzfail));
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILPASS, d3dstencilopforglfunc(frontzpass));
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILFUNC, d3dcmpforglfunc(frontcompare));
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CCW_STENCILFAIL, d3dstencilopforglfunc(backfail));
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CCW_STENCILZFAIL, d3dstencilopforglfunc(backzfail));
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CCW_STENCILPASS, d3dstencilopforglfunc(backzpass));
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CCW_STENCILFUNC, d3dcmpforglfunc(backcompare));
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILREF, comparereference);
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILMASK, comparemask);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
//Con_DPrintf("FIXME SOFT %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
}
}
void R_SetStencil(qboolean enable, int writemask, int fail, int zfail, int zpass, int compare, int comparereference, int comparemask)
{
switch (vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
CHECKGLERROR
if (enable)
{
qglEnable(GL_STENCIL_TEST);CHECKGLERROR
}
else
{
qglDisable(GL_STENCIL_TEST);CHECKGLERROR
}
if (vid.support.ext_stencil_two_side)
{
#ifdef GL_STENCIL_TEST_TWO_SIDE_EXT
qglDisable(GL_STENCIL_TEST_TWO_SIDE_EXT);CHECKGLERROR
#endif
}
qglStencilMask(writemask);CHECKGLERROR
qglStencilOp(fail, zfail, zpass);CHECKGLERROR
qglStencilFunc(compare, comparereference, comparemask);CHECKGLERROR
CHECKGLERROR
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
if (vid.support.ati_separate_stencil)
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_TWOSIDEDSTENCILMODE, true);
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILENABLE, enable);
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILWRITEMASK, writemask);
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILFAIL, d3dstencilopforglfunc(fail));
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILZFAIL, d3dstencilopforglfunc(zfail));
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILPASS, d3dstencilopforglfunc(zpass));
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILFUNC, d3dcmpforglfunc(compare));
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILREF, comparereference);
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_STENCILMASK, comparemask);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
//Con_DPrintf("FIXME SOFT %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
}
}
void GL_PolygonOffset(float planeoffset, float depthoffset)
{
if (gl_state.polygonoffset[0] != planeoffset || gl_state.polygonoffset[1] != depthoffset)
{
gl_state.polygonoffset[0] = planeoffset;
gl_state.polygonoffset[1] = depthoffset;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
qglPolygonOffset(gl_state.polygonoffset[0], gl_state.polygonoffset[1]);
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_SLOPESCALEDEPTHBIAS, gl_state.polygonoffset[0]);
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_DEPTHBIAS, gl_state.polygonoffset[1] * (1.0f / 16777216.0f));
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_PolygonOffset(gl_state.polygonoffset[0], gl_state.polygonoffset[1]);
break;
}
}
}
void GL_SetMirrorState(qboolean state)
{
if (v_flipped_state != state)
{
v_flipped_state = state;
if (gl_state.cullface == GL_BACK)
gl_state.cullface = GL_FRONT;
else if (gl_state.cullface == GL_FRONT)
gl_state.cullface = GL_BACK;
else
return;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
qglCullFace(gl_state.cullface);CHECKGLERROR
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CULLMODE, gl_state.cullface == GL_FRONT ? D3DCULL_CCW : D3DCULL_CW);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_CullFace(gl_state.cullface);
break;
}
}
}
void GL_CullFace(int state)
{
if(v_flipped_state)
{
if(state == GL_FRONT)
state = GL_BACK;
else if(state == GL_BACK)
state = GL_FRONT;
}
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
CHECKGLERROR
if (state != GL_NONE)
{
if (!gl_state.cullfaceenable)
{
gl_state.cullfaceenable = true;
qglEnable(GL_CULL_FACE);CHECKGLERROR
}
if (gl_state.cullface != state)
{
gl_state.cullface = state;
qglCullFace(gl_state.cullface);CHECKGLERROR
}
}
else
{
if (gl_state.cullfaceenable)
{
gl_state.cullfaceenable = false;
qglDisable(GL_CULL_FACE);CHECKGLERROR
}
}
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
if (gl_state.cullface != state)
{
gl_state.cullface = state;
switch(gl_state.cullface)
{
case GL_NONE:
gl_state.cullfaceenable = false;
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CULLMODE, D3DCULL_NONE);
break;
case GL_FRONT:
gl_state.cullfaceenable = true;
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CULLMODE, D3DCULL_CCW);
break;
case GL_BACK:
gl_state.cullfaceenable = true;
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_CULLMODE, D3DCULL_CW);
break;
}
}
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
if (gl_state.cullface != state)
{
gl_state.cullface = state;
gl_state.cullfaceenable = state != GL_NONE ? true : false;
DPSOFTRAST_CullFace(gl_state.cullface);
}
break;
}
}
void GL_AlphaTest(int state)
{
if (gl_state.alphatest != state)
{
gl_state.alphatest = state;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GLES1:
#ifdef GL_ALPHA_TEST
// only fixed function uses alpha test, other paths use pixel kill capability in shaders
CHECKGLERROR
if (gl_state.alphatest)
{
qglEnable(GL_ALPHA_TEST);CHECKGLERROR
}
else
{
qglDisable(GL_ALPHA_TEST);CHECKGLERROR
}
#endif
break;
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
case RENDERPATH_SOFT:
case RENDERPATH_GL20:
case RENDERPATH_GLES2:
break;
}
}
}
void GL_AlphaToCoverage(qboolean state)
{
if (gl_state.alphatocoverage != state)
{
gl_state.alphatocoverage = state;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
case RENDERPATH_SOFT:
break;
case RENDERPATH_GL20:
#ifdef GL_SAMPLE_ALPHA_TO_COVERAGE_ARB
// alpha to coverage turns the alpha value of the pixel into 0%, 25%, 50%, 75% or 100% by masking the multisample fragments accordingly
CHECKGLERROR
if (gl_state.alphatocoverage)
{
qglEnable(GL_SAMPLE_ALPHA_TO_COVERAGE_ARB);CHECKGLERROR
// qglEnable(GL_MULTISAMPLE_ARB);CHECKGLERROR
}
else
{
qglDisable(GL_SAMPLE_ALPHA_TO_COVERAGE_ARB);CHECKGLERROR
// qglDisable(GL_MULTISAMPLE_ARB);CHECKGLERROR
}
#endif
break;
}
}
}
void GL_ColorMask(int r, int g, int b, int a)
{
// NOTE: this matches D3DCOLORWRITEENABLE_RED, GREEN, BLUE, ALPHA
int state = (r ? 1 : 0) | (g ? 2 : 0) | (b ? 4 : 0) | (a ? 8 : 0);
if (gl_state.colormask != state)
{
gl_state.colormask = state;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
CHECKGLERROR
qglColorMask((GLboolean)r, (GLboolean)g, (GLboolean)b, (GLboolean)a);CHECKGLERROR
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_COLORWRITEENABLE, state);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_ColorMask(r, g, b, a);
break;
}
}
}
void GL_Color(float cr, float cg, float cb, float ca)
{
if (gl_state.pointer_color_enabled || gl_state.color4f[0] != cr || gl_state.color4f[1] != cg || gl_state.color4f[2] != cb || gl_state.color4f[3] != ca)
{
gl_state.color4f[0] = cr;
gl_state.color4f[1] = cg;
gl_state.color4f[2] = cb;
gl_state.color4f[3] = ca;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GLES1:
CHECKGLERROR
qglColor4f(gl_state.color4f[0], gl_state.color4f[1], gl_state.color4f[2], gl_state.color4f[3]);
CHECKGLERROR
break;
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
// no equivalent in D3D
break;
case RENDERPATH_SOFT:
DPSOFTRAST_Color4f(cr, cg, cb, ca);
break;
case RENDERPATH_GL20:
case RENDERPATH_GLES2:
qglVertexAttrib4f(GLSLATTRIB_COLOR, cr, cg, cb, ca);
break;
}
}
}
void GL_Scissor (int x, int y, int width, int height)
{
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
CHECKGLERROR
qglScissor(x, y,width,height);
CHECKGLERROR
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
{
RECT d3drect;
d3drect.left = x;
d3drect.top = y;
d3drect.right = x + width;
d3drect.bottom = y + height;
IDirect3DDevice9_SetScissorRect(vid_d3d9dev, &d3drect);
}
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_Scissor(x, y, width, height);
break;
}
}
void GL_ScissorTest(int state)
{
if (gl_state.scissortest != state)
{
gl_state.scissortest = state;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
CHECKGLERROR
if(gl_state.scissortest)
qglEnable(GL_SCISSOR_TEST);
else
qglDisable(GL_SCISSOR_TEST);
CHECKGLERROR
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_SCISSORTESTENABLE, gl_state.scissortest);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_ScissorTest(gl_state.scissortest);
break;
}
}
}
void GL_Clear(int mask, const float *colorvalue, float depthvalue, int stencilvalue)
{
static const float blackcolor[4] = {0, 0, 0, 0};
// prevent warnings when trying to clear a buffer that does not exist
if (!colorvalue)
colorvalue = blackcolor;
if (!vid.stencil)
{
mask &= ~GL_STENCIL_BUFFER_BIT;
stencilvalue = 0;
}
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
CHECKGLERROR
if (mask & GL_COLOR_BUFFER_BIT)
{
qglClearColor(colorvalue[0], colorvalue[1], colorvalue[2], colorvalue[3]);CHECKGLERROR
}
if (mask & GL_DEPTH_BUFFER_BIT)
{
#ifdef USE_GLES2
qglClearDepthf(depthvalue);CHECKGLERROR
#else
qglClearDepth(depthvalue);CHECKGLERROR
#endif
}
if (mask & GL_STENCIL_BUFFER_BIT)
{
qglClearStencil(stencilvalue);CHECKGLERROR
}
qglClear(mask);CHECKGLERROR
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DDevice9_Clear(vid_d3d9dev, 0, NULL, ((mask & GL_COLOR_BUFFER_BIT) ? D3DCLEAR_TARGET : 0) | ((mask & GL_STENCIL_BUFFER_BIT) ? D3DCLEAR_STENCIL : 0) | ((mask & GL_DEPTH_BUFFER_BIT) ? D3DCLEAR_ZBUFFER : 0), D3DCOLOR_COLORVALUE(colorvalue[0], colorvalue[1], colorvalue[2], colorvalue[3]), depthvalue, stencilvalue);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
if (mask & GL_COLOR_BUFFER_BIT)
DPSOFTRAST_ClearColor(colorvalue[0], colorvalue[1], colorvalue[2], colorvalue[3]);
if (mask & GL_DEPTH_BUFFER_BIT)
DPSOFTRAST_ClearDepth(depthvalue);
break;
}
}
void GL_ReadPixelsBGRA(int x, int y, int width, int height, unsigned char *outpixels)
{
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
CHECKGLERROR
qglReadPixels(x, y, width, height, GL_BGRA, GL_UNSIGNED_BYTE, outpixels);CHECKGLERROR
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
{
// LordHavoc: we can't directly download the backbuffer because it may be
// multisampled, and it may not be lockable, so we blit it to a lockable
// surface of the same dimensions (but without multisample) to resolve the
// multisample buffer to a normal image, and then lock that...
IDirect3DSurface9 *stretchsurface = NULL;
if (!FAILED(IDirect3DDevice9_CreateRenderTarget(vid_d3d9dev, vid.width, vid.height, D3DFMT_A8R8G8B8, D3DMULTISAMPLE_NONE, 0, TRUE, &stretchsurface, NULL)))
{
D3DLOCKED_RECT lockedrect;
if (!FAILED(IDirect3DDevice9_StretchRect(vid_d3d9dev, gl_state.d3drt_backbuffercolorsurface, NULL, stretchsurface, NULL, D3DTEXF_POINT)))
{
if (!FAILED(IDirect3DSurface9_LockRect(stretchsurface, &lockedrect, NULL, D3DLOCK_READONLY)))
{
int line;
unsigned char *row = (unsigned char *)lockedrect.pBits + x * 4 + lockedrect.Pitch * (vid.height - 1 - y);
for (line = 0;line < height;line++, row -= lockedrect.Pitch)
memcpy(outpixels + line * width * 4, row, width * 4);
IDirect3DSurface9_UnlockRect(stretchsurface);
}
}
IDirect3DSurface9_Release(stretchsurface);
}
// code scraps
//IDirect3DSurface9 *syssurface = NULL;
//if (!FAILED(IDirect3DDevice9_CreateRenderTarget(vid_d3d9dev, vid.width, vid.height, D3DFMT_A8R8G8B8, D3DMULTISAMPLE_NONE, 0, FALSE, &stretchsurface, NULL)))
//if (!FAILED(IDirect3DDevice9_CreateOffscreenPlainSurface(vid_d3d9dev, vid.width, vid.height, D3DFMT_A8R8G8B8, D3DPOOL_SCRATCH, &syssurface, NULL)))
//IDirect3DDevice9_GetRenderTargetData(vid_d3d9dev, gl_state.d3drt_backbuffercolorsurface, syssurface);
//if (!FAILED(IDirect3DDevice9_GetFrontBufferData(vid_d3d9dev, 0, syssurface)))
//if (!FAILED(IDirect3DSurface9_LockRect(syssurface, &lockedrect, NULL, D3DLOCK_READONLY)))
//IDirect3DSurface9_UnlockRect(syssurface);
//IDirect3DSurface9_Release(syssurface);
}
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_GetPixelsBGRA(x, y, width, height, outpixels);
break;
}
}
// called at beginning of frame
void R_Mesh_Start(void)
{
BACKENDACTIVECHECK
R_Mesh_SetRenderTargets(0, NULL, NULL, NULL, NULL, NULL);
R_Mesh_SetUseVBO();
if (gl_printcheckerror.integer && !gl_paranoid.integer)
{
Con_Printf("WARNING: gl_printcheckerror is on but gl_paranoid is off, turning it on...\n");
Cvar_SetValueQuick(&gl_paranoid, 1);
}
}
static qboolean GL_Backend_CompileShader(int programobject, GLenum shadertypeenum, const char *shadertype, int numstrings, const char **strings)
{
int shaderobject;
int shadercompiled;
char compilelog[MAX_INPUTLINE];
shaderobject = qglCreateShader(shadertypeenum);CHECKGLERROR
if (!shaderobject)
return false;
qglShaderSource(shaderobject, numstrings, strings, NULL);CHECKGLERROR
qglCompileShader(shaderobject);CHECKGLERROR
qglGetShaderiv(shaderobject, GL_COMPILE_STATUS, &shadercompiled);CHECKGLERROR
qglGetShaderInfoLog(shaderobject, sizeof(compilelog), NULL, compilelog);CHECKGLERROR
if (compilelog[0] && ((strstr(compilelog, "error") || strstr(compilelog, "ERROR") || strstr(compilelog, "Error")) || ((strstr(compilelog, "WARNING") || strstr(compilelog, "warning") || strstr(compilelog, "Warning")) && developer.integer) || developer_extra.integer))
{
int i, j, pretextlines = 0;
for (i = 0;i < numstrings - 1;i++)
for (j = 0;strings[i][j];j++)
if (strings[i][j] == '\n')
pretextlines++;
Con_Printf("%s shader compile log:\n%s\n(line offset for any above warnings/errors: %i)\n", shadertype, compilelog, pretextlines);
}
if (!shadercompiled)
{
qglDeleteShader(shaderobject);CHECKGLERROR
return false;
}
qglAttachShader(programobject, shaderobject);CHECKGLERROR
qglDeleteShader(shaderobject);CHECKGLERROR
return true;
}
unsigned int GL_Backend_CompileProgram(int vertexstrings_count, const char **vertexstrings_list, int geometrystrings_count, const char **geometrystrings_list, int fragmentstrings_count, const char **fragmentstrings_list)
{
GLint programlinked;
GLuint programobject = 0;
char linklog[MAX_INPUTLINE];
CHECKGLERROR
programobject = qglCreateProgram();CHECKGLERROR
if (!programobject)
return 0;
qglBindAttribLocation(programobject, GLSLATTRIB_POSITION , "Attrib_Position" );
qglBindAttribLocation(programobject, GLSLATTRIB_COLOR , "Attrib_Color" );
qglBindAttribLocation(programobject, GLSLATTRIB_TEXCOORD0, "Attrib_TexCoord0");
qglBindAttribLocation(programobject, GLSLATTRIB_TEXCOORD1, "Attrib_TexCoord1");
qglBindAttribLocation(programobject, GLSLATTRIB_TEXCOORD2, "Attrib_TexCoord2");
qglBindAttribLocation(programobject, GLSLATTRIB_TEXCOORD3, "Attrib_TexCoord3");
qglBindAttribLocation(programobject, GLSLATTRIB_TEXCOORD4, "Attrib_TexCoord4");
qglBindAttribLocation(programobject, GLSLATTRIB_TEXCOORD5, "Attrib_TexCoord5");
qglBindAttribLocation(programobject, GLSLATTRIB_TEXCOORD6, "Attrib_SkeletalIndex");
qglBindAttribLocation(programobject, GLSLATTRIB_TEXCOORD7, "Attrib_SkeletalWeight");
#ifndef USE_GLES2
if(vid.support.gl20shaders130)
qglBindFragDataLocation(programobject, 0, "dp_FragColor");
#endif
if (vertexstrings_count && !GL_Backend_CompileShader(programobject, GL_VERTEX_SHADER, "vertex", vertexstrings_count, vertexstrings_list))
goto cleanup;
#ifdef GL_GEOMETRY_SHADER
if (geometrystrings_count && !GL_Backend_CompileShader(programobject, GL_GEOMETRY_SHADER, "geometry", geometrystrings_count, geometrystrings_list))
goto cleanup;
#endif
if (fragmentstrings_count && !GL_Backend_CompileShader(programobject, GL_FRAGMENT_SHADER, "fragment", fragmentstrings_count, fragmentstrings_list))
goto cleanup;
qglLinkProgram(programobject);CHECKGLERROR
qglGetProgramiv(programobject, GL_LINK_STATUS, &programlinked);CHECKGLERROR
qglGetProgramInfoLog(programobject, sizeof(linklog), NULL, linklog);CHECKGLERROR
if (linklog[0])
{
if (strstr(linklog, "error") || strstr(linklog, "ERROR") || strstr(linklog, "Error") || strstr(linklog, "WARNING") || strstr(linklog, "warning") || strstr(linklog, "Warning") || developer_extra.integer)
Con_DPrintf("program link log:\n%s\n", linklog);
// software vertex shader is ok but software fragment shader is WAY
// too slow, fail program if so.
// NOTE: this string might be ATI specific, but that's ok because the
// ATI R300 chip (Radeon 9500-9800/X300) is the most likely to use a
// software fragment shader due to low instruction and dependent
// texture limits.
if (strstr(linklog, "fragment shader will run in software"))
programlinked = false;
}
if (!programlinked)
goto cleanup;
return programobject;
cleanup:
qglDeleteProgram(programobject);CHECKGLERROR
return 0;
}
void GL_Backend_FreeProgram(unsigned int prog)
{
CHECKGLERROR
qglDeleteProgram(prog);
CHECKGLERROR
}
// renders triangles using vertices from the active arrays
int paranoidblah = 0;
void R_Mesh_Draw(int firstvertex, int numvertices, int firsttriangle, int numtriangles, const int *element3i, const r_meshbuffer_t *element3i_indexbuffer, int element3i_bufferoffset, const unsigned short *element3s, const r_meshbuffer_t *element3s_indexbuffer, int element3s_bufferoffset)
{
unsigned int numelements = numtriangles * 3;
int bufferobject3i;
size_t bufferoffset3i;
int bufferobject3s;
size_t bufferoffset3s;
if (numvertices < 3 || numtriangles < 1)
{
if (numvertices < 0 || numtriangles < 0 || developer_extra.integer)
Con_DPrintf("R_Mesh_Draw(%d, %d, %d, %d, %8p, %8p, %8x, %8p, %8p, %8x);\n", firstvertex, numvertices, firsttriangle, numtriangles, (void *)element3i, (void *)element3i_indexbuffer, (int)element3i_bufferoffset, (void *)element3s, (void *)element3s_indexbuffer, (int)element3s_bufferoffset);
return;
}
// adjust the pointers for firsttriangle
if (element3i)
element3i += firsttriangle * 3;
if (element3i_indexbuffer)
element3i_bufferoffset += firsttriangle * 3 * sizeof(*element3i);
if (element3s)
element3s += firsttriangle * 3;
if (element3s_indexbuffer)
element3s_bufferoffset += firsttriangle * 3 * sizeof(*element3s);
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
// check if the user specified to ignore static index buffers
if (!gl_state.usevbo_staticindex || (gl_vbo.integer == 3 && !vid.forcevbo && (element3i_bufferoffset || element3s_bufferoffset)))
{
element3i_indexbuffer = NULL;
element3s_indexbuffer = NULL;
}
break;
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
break;
case RENDERPATH_SOFT:
break;
}
// upload a dynamic index buffer if needed
if (element3s)
{
if (!element3s_indexbuffer && gl_state.usevbo_dynamicindex)
element3s_indexbuffer = R_BufferData_Store(numelements * sizeof(*element3s), (void *)element3s, R_BUFFERDATA_INDEX16, &element3s_bufferoffset);
}
else if (element3i)
{
if (!element3i_indexbuffer && gl_state.usevbo_dynamicindex)
element3i_indexbuffer = R_BufferData_Store(numelements * sizeof(*element3i), (void *)element3i, R_BUFFERDATA_INDEX32, &element3i_bufferoffset);
}
bufferobject3i = element3i_indexbuffer ? element3i_indexbuffer->bufferobject : 0;
bufferoffset3i = element3i_bufferoffset;
bufferobject3s = element3s_indexbuffer ? element3s_indexbuffer->bufferobject : 0;
bufferoffset3s = element3s_bufferoffset;
r_refdef.stats[r_stat_draws]++;
r_refdef.stats[r_stat_draws_vertices] += numvertices;
r_refdef.stats[r_stat_draws_elements] += numelements;
if (gl_paranoid.integer)
{
unsigned int i;
// LordHavoc: disabled this - it needs to be updated to handle components and gltype and stride in each array
#if 0
unsigned int j, size;
const int *p;
// note: there's no validation done here on buffer objects because it
// is somewhat difficult to get at the data, and gl_paranoid can be
// used without buffer objects if the need arises
// (the data could be gotten using glMapBuffer but it would be very
// slow due to uncachable video memory reads)
if (!qglIsEnabled(GL_VERTEX_ARRAY))
Con_Print("R_Mesh_Draw: vertex array not enabled\n");
CHECKGLERROR
if (gl_state.pointer_vertex_pointer)
for (j = 0, size = numvertices * 3, p = (int *)((float *)gl_state.pointer_vertex + firstvertex * 3);j < size;j++, p++)
paranoidblah += *p;
if (gl_state.pointer_color_enabled)
{
if (!qglIsEnabled(GL_COLOR_ARRAY))
Con_Print("R_Mesh_Draw: color array set but not enabled\n");
CHECKGLERROR
if (gl_state.pointer_color && gl_state.pointer_color_enabled)
for (j = 0, size = numvertices * 4, p = (int *)((float *)gl_state.pointer_color + firstvertex * 4);j < size;j++, p++)
paranoidblah += *p;
}
for (i = 0;i < vid.texarrayunits;i++)
{
if (gl_state.units[i].arrayenabled)
{
GL_ClientActiveTexture(i);
if (!qglIsEnabled(GL_TEXTURE_COORD_ARRAY))
Con_Print("R_Mesh_Draw: texcoord array set but not enabled\n");
CHECKGLERROR
if (gl_state.units[i].pointer_texcoord && gl_state.units[i].arrayenabled)
for (j = 0, size = numvertices * gl_state.units[i].arraycomponents, p = (int *)((float *)gl_state.units[i].pointer_texcoord + firstvertex * gl_state.units[i].arraycomponents);j < size;j++, p++)
paranoidblah += *p;
}
}
#endif
if (element3i)
{
for (i = 0;i < (unsigned int) numtriangles * 3;i++)
{
if (element3i[i] < firstvertex || element3i[i] >= firstvertex + numvertices)
{
Con_Printf("R_Mesh_Draw: invalid vertex index %i (outside range %i - %i) in element3i array\n", element3i[i], firstvertex, firstvertex + numvertices);
return;
}
}
}
if (element3s)
{
for (i = 0;i < (unsigned int) numtriangles * 3;i++)
{
if (element3s[i] < firstvertex || element3s[i] >= firstvertex + numvertices)
{
Con_Printf("R_Mesh_Draw: invalid vertex index %i (outside range %i - %i) in element3s array\n", element3s[i], firstvertex, firstvertex + numvertices);
return;
}
}
}
}
if (r_render.integer || r_refdef.draw2dstage)
{
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
CHECKGLERROR
if (gl_mesh_testmanualfeeding.integer)
{
#ifndef USE_GLES2
unsigned int i, j, element;
const GLfloat *p;
qglBegin(GL_TRIANGLES);
if(vid.renderpath == RENDERPATH_GL20)
{
for (i = 0;i < (unsigned int) numtriangles * 3;i++)
{
if (element3i)
element = element3i[i];
else if (element3s)
element = element3s[i];
else
element = firstvertex + i;
for (j = 0;j < vid.texarrayunits;j++)
{
if (gl_state.units[j].pointer_texcoord_pointer && gl_state.units[j].arrayenabled)
{
if (gl_state.units[j].pointer_texcoord_gltype == GL_FLOAT)
{
p = (const GLfloat *)((const unsigned char *)gl_state.units[j].pointer_texcoord_pointer + element * gl_state.units[j].pointer_texcoord_stride);
if (gl_state.units[j].pointer_texcoord_components == 4)
qglVertexAttrib4f(GLSLATTRIB_TEXCOORD0 + j, p[0], p[1], p[2], p[3]);
else if (gl_state.units[j].pointer_texcoord_components == 3)
qglVertexAttrib3f(GLSLATTRIB_TEXCOORD0 + j, p[0], p[1], p[2]);
else if (gl_state.units[j].pointer_texcoord_components == 2)
qglVertexAttrib2f(GLSLATTRIB_TEXCOORD0 + j, p[0], p[1]);
else
qglVertexAttrib1f(GLSLATTRIB_TEXCOORD0 + j, p[0]);
}
else if (gl_state.units[j].pointer_texcoord_gltype == (int)(GL_SHORT | 0x80000000))
{
const GLshort *s = (const GLshort *)((const unsigned char *)gl_state.units[j].pointer_texcoord_pointer + element * gl_state.units[j].pointer_texcoord_stride);
if (gl_state.units[j].pointer_texcoord_components == 4)
qglVertexAttrib4f(GLSLATTRIB_TEXCOORD0 + j, s[0], s[1], s[2], s[3]);
else if (gl_state.units[j].pointer_texcoord_components == 3)
qglVertexAttrib3f(GLSLATTRIB_TEXCOORD0 + j, s[0], s[1], s[2]);
else if (gl_state.units[j].pointer_texcoord_components == 2)
qglVertexAttrib2f(GLSLATTRIB_TEXCOORD0 + j, s[0], s[1]);
else if (gl_state.units[j].pointer_texcoord_components == 1)
qglVertexAttrib1f(GLSLATTRIB_TEXCOORD0 + j, s[0]);
}
else if (gl_state.units[j].pointer_texcoord_gltype == GL_BYTE)
{
const GLbyte *sb = (const GLbyte *)((const unsigned char *)gl_state.units[j].pointer_texcoord_pointer + element * gl_state.units[j].pointer_texcoord_stride);
if (gl_state.units[j].pointer_texcoord_components == 4)
qglVertexAttrib4f(GLSLATTRIB_TEXCOORD0 + j, sb[0] * (1.0f / 127.0f), sb[1] * (1.0f / 127.0f), sb[2] * (1.0f / 127.0f), sb[3] * (1.0f / 127.0f));
else if (gl_state.units[j].pointer_texcoord_components == 3)
qglVertexAttrib3f(GLSLATTRIB_TEXCOORD0 + j, sb[0] * (1.0f / 127.0f), sb[1] * (1.0f / 127.0f), sb[2] * (1.0f / 127.0f));
else if (gl_state.units[j].pointer_texcoord_components == 2)
qglVertexAttrib2f(GLSLATTRIB_TEXCOORD0 + j, sb[0] * (1.0f / 127.0f), sb[1] * (1.0f / 127.0f));
else if (gl_state.units[j].pointer_texcoord_components == 1)
qglVertexAttrib1f(GLSLATTRIB_TEXCOORD0 + j, sb[0] * (1.0f / 127.0f));
}
else if (gl_state.units[j].pointer_texcoord_gltype == GL_UNSIGNED_BYTE)
{
const GLubyte *sb = (const GLubyte *)((const unsigned char *)gl_state.units[j].pointer_texcoord_pointer + element * gl_state.units[j].pointer_texcoord_stride);
if (gl_state.units[j].pointer_texcoord_components == 4)
qglVertexAttrib4f(GLSLATTRIB_TEXCOORD0 + j, sb[0] * (1.0f / 255.0f), sb[1] * (1.0f / 255.0f), sb[2] * (1.0f / 255.0f), sb[3] * (1.0f / 255.0f));
else if (gl_state.units[j].pointer_texcoord_components == 3)
qglVertexAttrib3f(GLSLATTRIB_TEXCOORD0 + j, sb[0] * (1.0f / 255.0f), sb[1] * (1.0f / 255.0f), sb[2] * (1.0f / 255.0f));
else if (gl_state.units[j].pointer_texcoord_components == 2)
qglVertexAttrib2f(GLSLATTRIB_TEXCOORD0 + j, sb[0] * (1.0f / 255.0f), sb[1] * (1.0f / 255.0f));
else if (gl_state.units[j].pointer_texcoord_components == 1)
qglVertexAttrib1f(GLSLATTRIB_TEXCOORD0 + j, sb[0] * (1.0f / 255.0f));
}
else if (gl_state.units[j].pointer_texcoord_gltype == (int)(GL_UNSIGNED_BYTE | 0x80000000))
{
const GLubyte *sb = (const GLubyte *)((const unsigned char *)gl_state.units[j].pointer_texcoord_pointer + element * gl_state.units[j].pointer_texcoord_stride);
if (gl_state.units[j].pointer_texcoord_components == 4)
qglVertexAttrib4f(GLSLATTRIB_TEXCOORD0 + j, sb[0], sb[1], sb[2], sb[3]);
else if (gl_state.units[j].pointer_texcoord_components == 3)
qglVertexAttrib3f(GLSLATTRIB_TEXCOORD0 + j, sb[0], sb[1], sb[2]);
else if (gl_state.units[j].pointer_texcoord_components == 2)
qglVertexAttrib2f(GLSLATTRIB_TEXCOORD0 + j, sb[0], sb[1]);
else if (gl_state.units[j].pointer_texcoord_components == 1)
qglVertexAttrib1f(GLSLATTRIB_TEXCOORD0 + j, sb[0]);
}
}
}
if (gl_state.pointer_color_pointer && gl_state.pointer_color_enabled && gl_state.pointer_color_components == 4)
{
if (gl_state.pointer_color_gltype == GL_FLOAT)
{
p = (const GLfloat *)((const unsigned char *)gl_state.pointer_color_pointer + element * gl_state.pointer_color_stride);
qglVertexAttrib4f(GLSLATTRIB_COLOR, p[0], p[1], p[2], p[3]);
}
else if (gl_state.pointer_color_gltype == GL_UNSIGNED_BYTE)
{
const GLubyte *ub = (const GLubyte *)((const unsigned char *)gl_state.pointer_color_pointer + element * gl_state.pointer_color_stride);
qglVertexAttrib4Nub(GLSLATTRIB_COLOR, ub[0], ub[1], ub[2], ub[3]);
}
}
if (gl_state.pointer_vertex_gltype == GL_FLOAT)
{
p = (const GLfloat *)((const unsigned char *)gl_state.pointer_vertex_pointer + element * gl_state.pointer_vertex_stride);
if (gl_state.pointer_vertex_components == 4)
qglVertexAttrib4f(GLSLATTRIB_POSITION, p[0], p[1], p[2], p[3]);
else if (gl_state.pointer_vertex_components == 3)
qglVertexAttrib3f(GLSLATTRIB_POSITION, p[0], p[1], p[2]);
else
qglVertexAttrib2f(GLSLATTRIB_POSITION, p[0], p[1]);
}
}
}
else
{
for (i = 0;i < (unsigned int) numtriangles * 3;i++)
{
if (element3i)
element = element3i[i];
else if (element3s)
element = element3s[i];
else
element = firstvertex + i;
for (j = 0;j < vid.texarrayunits;j++)
{
if (gl_state.units[j].pointer_texcoord_pointer && gl_state.units[j].arrayenabled)
{
if (gl_state.units[j].pointer_texcoord_gltype == GL_FLOAT)
{
p = (const GLfloat *)((const unsigned char *)gl_state.units[j].pointer_texcoord_pointer + element * gl_state.units[j].pointer_texcoord_stride);
if (vid.texarrayunits > 1)
{
if (gl_state.units[j].pointer_texcoord_components == 4)
qglMultiTexCoord4f(GL_TEXTURE0 + j, p[0], p[1], p[2], p[3]);
else if (gl_state.units[j].pointer_texcoord_components == 3)
qglMultiTexCoord3f(GL_TEXTURE0 + j, p[0], p[1], p[2]);
else if (gl_state.units[j].pointer_texcoord_components == 2)
qglMultiTexCoord2f(GL_TEXTURE0 + j, p[0], p[1]);
else
qglMultiTexCoord1f(GL_TEXTURE0 + j, p[0]);
}
else
{
if (gl_state.units[j].pointer_texcoord_components == 4)
qglTexCoord4f(p[0], p[1], p[2], p[3]);
else if (gl_state.units[j].pointer_texcoord_components == 3)
qglTexCoord3f(p[0], p[1], p[2]);
else if (gl_state.units[j].pointer_texcoord_components == 2)
qglTexCoord2f(p[0], p[1]);
else
qglTexCoord1f(p[0]);
}
}
else if (gl_state.units[j].pointer_texcoord_gltype == GL_SHORT)
{
const GLshort *s = (const GLshort *)((const unsigned char *)gl_state.units[j].pointer_texcoord_pointer + element * gl_state.units[j].pointer_texcoord_stride);
if (vid.texarrayunits > 1)
{
if (gl_state.units[j].pointer_texcoord_components == 4)
qglMultiTexCoord4f(GL_TEXTURE0 + j, s[0], s[1], s[2], s[3]);
else if (gl_state.units[j].pointer_texcoord_components == 3)
qglMultiTexCoord3f(GL_TEXTURE0 + j, s[0], s[1], s[2]);
else if (gl_state.units[j].pointer_texcoord_components == 2)
qglMultiTexCoord2f(GL_TEXTURE0 + j, s[0], s[1]);
else if (gl_state.units[j].pointer_texcoord_components == 1)
qglMultiTexCoord1f(GL_TEXTURE0 + j, s[0]);
}
else
{
if (gl_state.units[j].pointer_texcoord_components == 4)
qglTexCoord4f(s[0], s[1], s[2], s[3]);
else if (gl_state.units[j].pointer_texcoord_components == 3)
qglTexCoord3f(s[0], s[1], s[2]);
else if (gl_state.units[j].pointer_texcoord_components == 2)
qglTexCoord2f(s[0], s[1]);
else if (gl_state.units[j].pointer_texcoord_components == 1)
qglTexCoord1f(s[0]);
}
}
else if (gl_state.units[j].pointer_texcoord_gltype == GL_BYTE)
{
const GLbyte *sb = (const GLbyte *)((const unsigned char *)gl_state.units[j].pointer_texcoord_pointer + element * gl_state.units[j].pointer_texcoord_stride);
if (vid.texarrayunits > 1)
{
if (gl_state.units[j].pointer_texcoord_components == 4)
qglMultiTexCoord4f(GL_TEXTURE0 + j, sb[0], sb[1], sb[2], sb[3]);
else if (gl_state.units[j].pointer_texcoord_components == 3)
qglMultiTexCoord3f(GL_TEXTURE0 + j, sb[0], sb[1], sb[2]);
else if (gl_state.units[j].pointer_texcoord_components == 2)
qglMultiTexCoord2f(GL_TEXTURE0 + j, sb[0], sb[1]);
else if (gl_state.units[j].pointer_texcoord_components == 1)
qglMultiTexCoord1f(GL_TEXTURE0 + j, sb[0]);
}
else
{
if (gl_state.units[j].pointer_texcoord_components == 4)
qglTexCoord4f(sb[0], sb[1], sb[2], sb[3]);
else if (gl_state.units[j].pointer_texcoord_components == 3)
qglTexCoord3f(sb[0], sb[1], sb[2]);
else if (gl_state.units[j].pointer_texcoord_components == 2)
qglTexCoord2f(sb[0], sb[1]);
else if (gl_state.units[j].pointer_texcoord_components == 1)
qglTexCoord1f(sb[0]);
}
}
}
}
if (gl_state.pointer_color_pointer && gl_state.pointer_color_enabled && gl_state.pointer_color_components == 4)
{
if (gl_state.pointer_color_gltype == GL_FLOAT)
{
p = (const GLfloat *)((const unsigned char *)gl_state.pointer_color_pointer + element * gl_state.pointer_color_stride);
qglColor4f(p[0], p[1], p[2], p[3]);
}
else if (gl_state.pointer_color_gltype == GL_UNSIGNED_BYTE)
{
const GLubyte *ub = (const GLubyte *)((const unsigned char *)gl_state.pointer_color_pointer + element * gl_state.pointer_color_stride);
qglColor4ub(ub[0], ub[1], ub[2], ub[3]);
}
}
if (gl_state.pointer_vertex_gltype == GL_FLOAT)
{
p = (const GLfloat *)((const unsigned char *)gl_state.pointer_vertex_pointer + element * gl_state.pointer_vertex_stride);
if (gl_state.pointer_vertex_components == 4)
qglVertex4f(p[0], p[1], p[2], p[3]);
else if (gl_state.pointer_vertex_components == 3)
qglVertex3f(p[0], p[1], p[2]);
else
qglVertex2f(p[0], p[1]);
}
}
}
qglEnd();
CHECKGLERROR
#endif
}
else if (bufferobject3s)
{
GL_BindEBO(bufferobject3s);
#ifndef USE_GLES2
if (gl_mesh_drawrangeelements.integer && qglDrawRangeElements != NULL)
{
qglDrawRangeElements(GL_TRIANGLES, firstvertex, firstvertex + numvertices - 1, numelements, GL_UNSIGNED_SHORT, (void *)bufferoffset3s);
CHECKGLERROR
}
else
#endif
{
qglDrawElements(GL_TRIANGLES, numelements, GL_UNSIGNED_SHORT, (void *)bufferoffset3s);
CHECKGLERROR
}
}
else if (bufferobject3i)
{
GL_BindEBO(bufferobject3i);
#ifndef USE_GLES2
if (gl_mesh_drawrangeelements.integer && qglDrawRangeElements != NULL)
{
qglDrawRangeElements(GL_TRIANGLES, firstvertex, firstvertex + numvertices - 1, numelements, GL_UNSIGNED_INT, (void *)bufferoffset3i);
CHECKGLERROR
}
else
#endif
{
qglDrawElements(GL_TRIANGLES, numelements, GL_UNSIGNED_INT, (void *)bufferoffset3i);
CHECKGLERROR
}
}
else if (element3s)
{
GL_BindEBO(0);
#ifndef USE_GLES2
if (gl_mesh_drawrangeelements.integer && qglDrawRangeElements != NULL)
{
qglDrawRangeElements(GL_TRIANGLES, firstvertex, firstvertex + numvertices - 1, numelements, GL_UNSIGNED_SHORT, element3s);
CHECKGLERROR
}
else
#endif
{
qglDrawElements(GL_TRIANGLES, numelements, GL_UNSIGNED_SHORT, element3s);
CHECKGLERROR
}
}
else if (element3i)
{
GL_BindEBO(0);
#ifndef USE_GLES2
if (gl_mesh_drawrangeelements.integer && qglDrawRangeElements != NULL)
{
qglDrawRangeElements(GL_TRIANGLES, firstvertex, firstvertex + numvertices - 1, numelements, GL_UNSIGNED_INT, element3i);
CHECKGLERROR
}
else
#endif
{
qglDrawElements(GL_TRIANGLES, numelements, GL_UNSIGNED_INT, element3i);
CHECKGLERROR
}
}
else
{
qglDrawArrays(GL_TRIANGLES, firstvertex, numvertices);
CHECKGLERROR
}
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
if (gl_state.d3dvertexbuffer && ((element3s && element3s_indexbuffer) || (element3i && element3i_indexbuffer)))
{
if (element3s_indexbuffer)
{
IDirect3DDevice9_SetIndices(vid_d3d9dev, (IDirect3DIndexBuffer9 *)element3s_indexbuffer->devicebuffer);
IDirect3DDevice9_DrawIndexedPrimitive(vid_d3d9dev, D3DPT_TRIANGLELIST, 0, firstvertex, numvertices, element3s_bufferoffset>>1, numtriangles);
}
else if (element3i_indexbuffer)
{
IDirect3DDevice9_SetIndices(vid_d3d9dev, (IDirect3DIndexBuffer9 *)element3i_indexbuffer->devicebuffer);
IDirect3DDevice9_DrawIndexedPrimitive(vid_d3d9dev, D3DPT_TRIANGLELIST, 0, firstvertex, numvertices, element3i_bufferoffset>>2, numtriangles);
}
else
IDirect3DDevice9_DrawPrimitive(vid_d3d9dev, D3DPT_TRIANGLELIST, firstvertex, numvertices);
}
else
{
if (element3s)
IDirect3DDevice9_DrawIndexedPrimitiveUP(vid_d3d9dev, D3DPT_TRIANGLELIST, firstvertex, numvertices, numtriangles, element3s, D3DFMT_INDEX16, gl_state.d3dvertexdata, gl_state.d3dvertexsize);
else if (element3i)
IDirect3DDevice9_DrawIndexedPrimitiveUP(vid_d3d9dev, D3DPT_TRIANGLELIST, firstvertex, numvertices, numtriangles, element3i, D3DFMT_INDEX32, gl_state.d3dvertexdata, gl_state.d3dvertexsize);
else
IDirect3DDevice9_DrawPrimitiveUP(vid_d3d9dev, D3DPT_TRIANGLELIST, numvertices, (void *)gl_state.d3dvertexdata, gl_state.d3dvertexsize);
}
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_DrawTriangles(firstvertex, numvertices, numtriangles, element3i, element3s);
break;
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
// GLES does not have glDrawRangeElements so this is a bit shorter than the GL20 path
if (bufferobject3s)
{
GL_BindEBO(bufferobject3s);
qglDrawElements(GL_TRIANGLES, numelements, GL_UNSIGNED_SHORT, (void *)bufferoffset3s);
CHECKGLERROR
}
else if (bufferobject3i)
{
GL_BindEBO(bufferobject3i);
qglDrawElements(GL_TRIANGLES, numelements, GL_UNSIGNED_INT, (void *)bufferoffset3i);
CHECKGLERROR
}
else if (element3s)
{
GL_BindEBO(0);
qglDrawElements(GL_TRIANGLES, numelements, GL_UNSIGNED_SHORT, element3s);
CHECKGLERROR
}
else if (element3i)
{
static int enableandroidhack=0;//Tegra 3 doesn't list uint extension: using the most precise & dirty way of detection
GL_BindEBO(0);
if (!enableandroidhack)
{
CHECKGLERROR
qglDrawElements(GL_TRIANGLES, numelements, GL_UNSIGNED_INT, element3i);
if (glGetError()!=GL_NO_ERROR)
enableandroidhack=1;
}
if (enableandroidhack)
{
unsigned short tmpconv[numelements];
int i;
for (i=0;i<numelements;i++) tmpconv[i]=element3i[i];
qglDrawElements(GL_TRIANGLES, numelements, GL_UNSIGNED_SHORT, tmpconv);
CHECKGLERROR
}
}
else
{
qglDrawArrays(GL_TRIANGLES, firstvertex, numvertices);
CHECKGLERROR
}
break;
}
}
}
// restores backend state, used when done with 3D rendering
void R_Mesh_Finish(void)
{
R_Mesh_SetRenderTargets(0, NULL, NULL, NULL, NULL, NULL);
}
r_meshbuffer_t *R_Mesh_CreateMeshBuffer(const void *data, size_t size, const char *name, qboolean isindexbuffer, qboolean isuniformbuffer, qboolean isdynamic, qboolean isindex16)
{
r_meshbuffer_t *buffer;
if (isuniformbuffer)
{
if (!vid.support.arb_uniform_buffer_object)
return NULL;
}
else
{
if (!vid.support.arb_vertex_buffer_object)
return NULL;
if (!isdynamic && !(isindexbuffer ? gl_state.usevbo_staticindex : gl_state.usevbo_staticvertex))
return NULL;
}
buffer = (r_meshbuffer_t *)Mem_ExpandableArray_AllocRecord(&gl_state.meshbufferarray);
memset(buffer, 0, sizeof(*buffer));
buffer->bufferobject = 0;
buffer->devicebuffer = NULL;
buffer->size = size;
buffer->isindexbuffer = isindexbuffer;
buffer->isuniformbuffer = isuniformbuffer;
buffer->isdynamic = isdynamic;
buffer->isindex16 = isindex16;
strlcpy(buffer->name, name, sizeof(buffer->name));
R_Mesh_UpdateMeshBuffer(buffer, data, size, false, 0);
return buffer;
}
void R_Mesh_UpdateMeshBuffer(r_meshbuffer_t *buffer, const void *data, size_t size, qboolean subdata, size_t offset)
{
if (!buffer)
return;
if (buffer->isindexbuffer)
{
r_refdef.stats[r_stat_indexbufferuploadcount]++;
r_refdef.stats[r_stat_indexbufferuploadsize] += size;
}
else
{
r_refdef.stats[r_stat_vertexbufferuploadcount]++;
r_refdef.stats[r_stat_vertexbufferuploadsize] += size;
}
if (!subdata)
buffer->size = size;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
if (!buffer->bufferobject)
qglGenBuffersARB(1, (GLuint *)&buffer->bufferobject);
if (buffer->isuniformbuffer)
GL_BindUBO(buffer->bufferobject);
else if (buffer->isindexbuffer)
GL_BindEBO(buffer->bufferobject);
else
GL_BindVBO(buffer->bufferobject);
if (subdata)
qglBufferSubDataARB(buffer->isuniformbuffer ? GL_UNIFORM_BUFFER : (buffer->isindexbuffer ? GL_ELEMENT_ARRAY_BUFFER : GL_ARRAY_BUFFER), offset, size, data);
else
qglBufferDataARB(buffer->isuniformbuffer ? GL_UNIFORM_BUFFER : (buffer->isindexbuffer ? GL_ELEMENT_ARRAY_BUFFER : GL_ARRAY_BUFFER), size, data, buffer->isdynamic ? GL_STREAM_DRAW : GL_STATIC_DRAW);
if (buffer->isuniformbuffer)
GL_BindUBO(0);
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
{
int result;
void *datapointer = NULL;
if (buffer->isindexbuffer)
{
IDirect3DIndexBuffer9 *d3d9indexbuffer = (IDirect3DIndexBuffer9 *)buffer->devicebuffer;
if (offset+size > buffer->size || !buffer->devicebuffer)
{
if (buffer->devicebuffer)
IDirect3DIndexBuffer9_Release((IDirect3DIndexBuffer9*)buffer->devicebuffer);
buffer->devicebuffer = NULL;
if (FAILED(result = IDirect3DDevice9_CreateIndexBuffer(vid_d3d9dev, offset+size, buffer->isdynamic ? D3DUSAGE_WRITEONLY | D3DUSAGE_DYNAMIC : 0, buffer->isindex16 ? D3DFMT_INDEX16 : D3DFMT_INDEX32, buffer->isdynamic ? D3DPOOL_DEFAULT : D3DPOOL_MANAGED, &d3d9indexbuffer, NULL)))
Sys_Error("IDirect3DDevice9_CreateIndexBuffer(%p, %d, %x, %x, %x, %p, NULL) returned %x\n", vid_d3d9dev, (int)size, buffer->isdynamic ? (int)D3DUSAGE_DYNAMIC : 0, buffer->isindex16 ? (int)D3DFMT_INDEX16 : (int)D3DFMT_INDEX32, buffer->isdynamic ? (int)D3DPOOL_DEFAULT : (int)D3DPOOL_MANAGED, &d3d9indexbuffer, (int)result);
buffer->devicebuffer = (void *)d3d9indexbuffer;
buffer->size = offset+size;
}
if (!FAILED(IDirect3DIndexBuffer9_Lock(d3d9indexbuffer, (unsigned int)offset, (unsigned int)size, &datapointer, buffer->isdynamic ? D3DLOCK_DISCARD : 0)))
{
if (data)
memcpy(datapointer, data, size);
else
memset(datapointer, 0, size);
IDirect3DIndexBuffer9_Unlock(d3d9indexbuffer);
}
}
else
{
IDirect3DVertexBuffer9 *d3d9vertexbuffer = (IDirect3DVertexBuffer9 *)buffer->devicebuffer;
if (offset+size > buffer->size || !buffer->devicebuffer)
{
if (buffer->devicebuffer)
IDirect3DVertexBuffer9_Release((IDirect3DVertexBuffer9*)buffer->devicebuffer);
buffer->devicebuffer = NULL;
if (FAILED(result = IDirect3DDevice9_CreateVertexBuffer(vid_d3d9dev, offset+size, buffer->isdynamic ? D3DUSAGE_WRITEONLY | D3DUSAGE_DYNAMIC : 0, 0, buffer->isdynamic ? D3DPOOL_DEFAULT : D3DPOOL_MANAGED, &d3d9vertexbuffer, NULL)))
Sys_Error("IDirect3DDevice9_CreateVertexBuffer(%p, %d, %x, %x, %x, %p, NULL) returned %x\n", vid_d3d9dev, (int)size, buffer->isdynamic ? (int)D3DUSAGE_DYNAMIC : 0, 0, buffer->isdynamic ? (int)D3DPOOL_DEFAULT : (int)D3DPOOL_MANAGED, &d3d9vertexbuffer, (int)result);
buffer->devicebuffer = (void *)d3d9vertexbuffer;
buffer->size = offset+size;
}
if (!FAILED(IDirect3DVertexBuffer9_Lock(d3d9vertexbuffer, (unsigned int)offset, (unsigned int)size, &datapointer, buffer->isdynamic ? D3DLOCK_DISCARD : 0)))
{
if (data)
memcpy(datapointer, data, size);
else
memset(datapointer, 0, size);
IDirect3DVertexBuffer9_Unlock(d3d9vertexbuffer);
}
}
}
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
break;
}
}
void R_Mesh_DestroyMeshBuffer(r_meshbuffer_t *buffer)
{
if (!buffer)
return;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
// GL clears the binding if we delete something bound
if (gl_state.uniformbufferobject == buffer->bufferobject)
gl_state.uniformbufferobject = 0;
if (gl_state.vertexbufferobject == buffer->bufferobject)
gl_state.vertexbufferobject = 0;
if (gl_state.elementbufferobject == buffer->bufferobject)
gl_state.elementbufferobject = 0;
qglDeleteBuffersARB(1, (GLuint *)&buffer->bufferobject);
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
if (gl_state.d3dvertexbuffer == (void *)buffer)
gl_state.d3dvertexbuffer = NULL;
if (buffer->devicebuffer)
{
if (buffer->isindexbuffer)
IDirect3DIndexBuffer9_Release((IDirect3DIndexBuffer9 *)buffer->devicebuffer);
else
IDirect3DVertexBuffer9_Release((IDirect3DVertexBuffer9 *)buffer->devicebuffer);
buffer->devicebuffer = NULL;
}
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
break;
}
Mem_ExpandableArray_FreeRecord(&gl_state.meshbufferarray, (void *)buffer);
}
static const char *buffertypename[R_BUFFERDATA_COUNT] = {"vertex", "index16", "index32", "uniform"};
void GL_Mesh_ListVBOs(qboolean printeach)
{
int i, endindex;
int type;
int isdynamic;
int index16count, index16mem;
int index32count, index32mem;
int vertexcount, vertexmem;
int uniformcount, uniformmem;
int totalcount, totalmem;
size_t bufferstat[R_BUFFERDATA_COUNT][2][2];
r_meshbuffer_t *buffer;
memset(bufferstat, 0, sizeof(bufferstat));
endindex = Mem_ExpandableArray_IndexRange(&gl_state.meshbufferarray);
for (i = 0;i < endindex;i++)
{
buffer = (r_meshbuffer_t *) Mem_ExpandableArray_RecordAtIndex(&gl_state.meshbufferarray, i);
if (!buffer)
continue;
if (buffer->isuniformbuffer)
type = R_BUFFERDATA_UNIFORM;
else if (buffer->isindexbuffer && buffer->isindex16)
type = R_BUFFERDATA_INDEX16;
else if (buffer->isindexbuffer)
type = R_BUFFERDATA_INDEX32;
else
type = R_BUFFERDATA_VERTEX;
isdynamic = buffer->isdynamic;
bufferstat[type][isdynamic][0]++;
bufferstat[type][isdynamic][1] += buffer->size;
if (printeach)
Con_Printf("buffer #%i %s = %i bytes (%s %s)\n", i, buffer->name, (int)buffer->size, isdynamic ? "dynamic" : "static", buffertypename[type]);
}
index16count = (int)(bufferstat[R_BUFFERDATA_INDEX16][0][0] + bufferstat[R_BUFFERDATA_INDEX16][1][0]);
index16mem = (int)(bufferstat[R_BUFFERDATA_INDEX16][0][1] + bufferstat[R_BUFFERDATA_INDEX16][1][1]);
index32count = (int)(bufferstat[R_BUFFERDATA_INDEX32][0][0] + bufferstat[R_BUFFERDATA_INDEX32][1][0]);
index32mem = (int)(bufferstat[R_BUFFERDATA_INDEX32][0][1] + bufferstat[R_BUFFERDATA_INDEX32][1][1]);
vertexcount = (int)(bufferstat[R_BUFFERDATA_VERTEX ][0][0] + bufferstat[R_BUFFERDATA_VERTEX ][1][0]);
vertexmem = (int)(bufferstat[R_BUFFERDATA_VERTEX ][0][1] + bufferstat[R_BUFFERDATA_VERTEX ][1][1]);
uniformcount = (int)(bufferstat[R_BUFFERDATA_UNIFORM][0][0] + bufferstat[R_BUFFERDATA_UNIFORM][1][0]);
uniformmem = (int)(bufferstat[R_BUFFERDATA_UNIFORM][0][1] + bufferstat[R_BUFFERDATA_UNIFORM][1][1]);
totalcount = index16count + index32count + vertexcount + uniformcount;
totalmem = index16mem + index32mem + vertexmem + uniformmem;
Con_Printf("%i 16bit indexbuffers totalling %i bytes (%.3f MB)\n%i 32bit indexbuffers totalling %i bytes (%.3f MB)\n%i vertexbuffers totalling %i bytes (%.3f MB)\n%i uniformbuffers totalling %i bytes (%.3f MB)\ncombined %i buffers totalling %i bytes (%.3fMB)\n", index16count, index16mem, index16mem / 10248576.0, index32count, index32mem, index32mem / 10248576.0, vertexcount, vertexmem, vertexmem / 10248576.0, uniformcount, uniformmem, uniformmem / 10248576.0, totalcount, totalmem, totalmem / 10248576.0);
}
void R_Mesh_VertexPointer(int components, int gltype, size_t stride, const void *pointer, const r_meshbuffer_t *vertexbuffer, size_t bufferoffset)
{
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GLES1:
if (gl_state.pointer_vertex_components != components || gl_state.pointer_vertex_gltype != gltype || gl_state.pointer_vertex_stride != stride || gl_state.pointer_vertex_pointer != pointer || gl_state.pointer_vertex_vertexbuffer != vertexbuffer || gl_state.pointer_vertex_offset != bufferoffset)
{
int bufferobject = vertexbuffer ? vertexbuffer->bufferobject : 0;
gl_state.pointer_vertex_components = components;
gl_state.pointer_vertex_gltype = gltype;
gl_state.pointer_vertex_stride = stride;
gl_state.pointer_vertex_pointer = pointer;
gl_state.pointer_vertex_vertexbuffer = vertexbuffer;
gl_state.pointer_vertex_offset = bufferoffset;
CHECKGLERROR
GL_BindVBO(bufferobject);
qglVertexPointer(components, gltype, stride, bufferobject ? (void *)bufferoffset : pointer);CHECKGLERROR
}
break;
case RENDERPATH_GL20:
case RENDERPATH_GLES2:
if (gl_state.pointer_vertex_components != components || gl_state.pointer_vertex_gltype != gltype || gl_state.pointer_vertex_stride != stride || gl_state.pointer_vertex_pointer != pointer || gl_state.pointer_vertex_vertexbuffer != vertexbuffer || gl_state.pointer_vertex_offset != bufferoffset)
{
int bufferobject = vertexbuffer ? vertexbuffer->bufferobject : 0;
gl_state.pointer_vertex_components = components;
gl_state.pointer_vertex_gltype = gltype;
gl_state.pointer_vertex_stride = stride;
gl_state.pointer_vertex_pointer = pointer;
gl_state.pointer_vertex_vertexbuffer = vertexbuffer;
gl_state.pointer_vertex_offset = bufferoffset;
CHECKGLERROR
GL_BindVBO(bufferobject);
// LordHavoc: special flag added to gltype for unnormalized types
qglVertexAttribPointer(GLSLATTRIB_POSITION, components, gltype & ~0x80000000, (gltype & 0x80000000) == 0, stride, bufferobject ? (void *)bufferoffset : pointer);CHECKGLERROR
}
break;
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
case RENDERPATH_SOFT:
break;
}
}
void R_Mesh_ColorPointer(int components, int gltype, size_t stride, const void *pointer, const r_meshbuffer_t *vertexbuffer, size_t bufferoffset)
{
// note: vertexbuffer may be non-NULL even if pointer is NULL, so check
// the pointer only.
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GLES1:
#ifdef GL_MODELVIEW
CHECKGLERROR
if (pointer)
{
// caller wants color array enabled
int bufferobject = vertexbuffer ? vertexbuffer->bufferobject : 0;
if (!gl_state.pointer_color_enabled)
{
gl_state.pointer_color_enabled = true;
CHECKGLERROR
qglEnableClientState(GL_COLOR_ARRAY);CHECKGLERROR
}
if (gl_state.pointer_color_components != components || gl_state.pointer_color_gltype != gltype || gl_state.pointer_color_stride != stride || gl_state.pointer_color_pointer != pointer || gl_state.pointer_color_vertexbuffer != vertexbuffer || gl_state.pointer_color_offset != bufferoffset)
{
gl_state.pointer_color_components = components;
gl_state.pointer_color_gltype = gltype;
gl_state.pointer_color_stride = stride;
gl_state.pointer_color_pointer = pointer;
gl_state.pointer_color_vertexbuffer = vertexbuffer;
gl_state.pointer_color_offset = bufferoffset;
CHECKGLERROR
GL_BindVBO(bufferobject);
qglColorPointer(components, gltype, stride, bufferobject ? (void *)bufferoffset : pointer);CHECKGLERROR
}
}
else
{
// caller wants color array disabled
if (gl_state.pointer_color_enabled)
{
gl_state.pointer_color_enabled = false;
CHECKGLERROR
qglDisableClientState(GL_COLOR_ARRAY);CHECKGLERROR
// when color array is on the glColor gets trashed, set it again
qglColor4f(gl_state.color4f[0], gl_state.color4f[1], gl_state.color4f[2], gl_state.color4f[3]);CHECKGLERROR
}
}
#endif
break;
case RENDERPATH_GL20:
case RENDERPATH_GLES2:
CHECKGLERROR
if (pointer)
{
// caller wants color array enabled
int bufferobject = vertexbuffer ? vertexbuffer->bufferobject : 0;
if (!gl_state.pointer_color_enabled)
{
gl_state.pointer_color_enabled = true;
CHECKGLERROR
qglEnableVertexAttribArray(GLSLATTRIB_COLOR);CHECKGLERROR
}
if (gl_state.pointer_color_components != components || gl_state.pointer_color_gltype != gltype || gl_state.pointer_color_stride != stride || gl_state.pointer_color_pointer != pointer || gl_state.pointer_color_vertexbuffer != vertexbuffer || gl_state.pointer_color_offset != bufferoffset)
{
gl_state.pointer_color_components = components;
gl_state.pointer_color_gltype = gltype;
gl_state.pointer_color_stride = stride;
gl_state.pointer_color_pointer = pointer;
gl_state.pointer_color_vertexbuffer = vertexbuffer;
gl_state.pointer_color_offset = bufferoffset;
CHECKGLERROR
GL_BindVBO(bufferobject);
// LordHavoc: special flag added to gltype for unnormalized types
qglVertexAttribPointer(GLSLATTRIB_COLOR, components, gltype & ~0x80000000, (gltype & 0x80000000) == 0, stride, bufferobject ? (void *)bufferoffset : pointer);CHECKGLERROR
}
}
else
{
// caller wants color array disabled
if (gl_state.pointer_color_enabled)
{
gl_state.pointer_color_enabled = false;
CHECKGLERROR
qglDisableVertexAttribArray(GLSLATTRIB_COLOR);CHECKGLERROR
// when color array is on the glColor gets trashed, set it again
qglVertexAttrib4f(GLSLATTRIB_COLOR, gl_state.color4f[0], gl_state.color4f[1], gl_state.color4f[2], gl_state.color4f[3]);CHECKGLERROR
}
}
break;
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
case RENDERPATH_SOFT:
break;
}
}
void R_Mesh_TexCoordPointer(unsigned int unitnum, int components, int gltype, size_t stride, const void *pointer, const r_meshbuffer_t *vertexbuffer, size_t bufferoffset)
{
gltextureunit_t *unit = gl_state.units + unitnum;
// update array settings
// note: there is no need to check bufferobject here because all cases
// that involve a valid bufferobject also supply a texcoord array
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GLES1:
#ifdef GL_MODELVIEW
CHECKGLERROR
if (pointer)
{
int bufferobject = vertexbuffer ? vertexbuffer->bufferobject : 0;
// texture array unit is enabled, enable the array
if (!unit->arrayenabled)
{
unit->arrayenabled = true;
GL_ClientActiveTexture(unitnum);
qglEnableClientState(GL_TEXTURE_COORD_ARRAY);CHECKGLERROR
}
// texcoord array
if (unit->pointer_texcoord_components != components || unit->pointer_texcoord_gltype != gltype || unit->pointer_texcoord_stride != stride || unit->pointer_texcoord_pointer != pointer || unit->pointer_texcoord_vertexbuffer != vertexbuffer || unit->pointer_texcoord_offset != bufferoffset)
{
unit->pointer_texcoord_components = components;
unit->pointer_texcoord_gltype = gltype;
unit->pointer_texcoord_stride = stride;
unit->pointer_texcoord_pointer = pointer;
unit->pointer_texcoord_vertexbuffer = vertexbuffer;
unit->pointer_texcoord_offset = bufferoffset;
GL_ClientActiveTexture(unitnum);
GL_BindVBO(bufferobject);
qglTexCoordPointer(components, gltype, stride, bufferobject ? (void *)bufferoffset : pointer);CHECKGLERROR
}
}
else
{
// texture array unit is disabled, disable the array
if (unit->arrayenabled)
{
unit->arrayenabled = false;
GL_ClientActiveTexture(unitnum);
qglDisableClientState(GL_TEXTURE_COORD_ARRAY);CHECKGLERROR
}
}
#endif
break;
case RENDERPATH_GL20:
case RENDERPATH_GLES2:
CHECKGLERROR
if (pointer)
{
int bufferobject = vertexbuffer ? vertexbuffer->bufferobject : 0;
// texture array unit is enabled, enable the array
if (!unit->arrayenabled)
{
unit->arrayenabled = true;
qglEnableVertexAttribArray(unitnum+GLSLATTRIB_TEXCOORD0);CHECKGLERROR
}
// texcoord array
if (unit->pointer_texcoord_components != components || unit->pointer_texcoord_gltype != gltype || unit->pointer_texcoord_stride != stride || unit->pointer_texcoord_pointer != pointer || unit->pointer_texcoord_vertexbuffer != vertexbuffer || unit->pointer_texcoord_offset != bufferoffset)
{
unit->pointer_texcoord_components = components;
unit->pointer_texcoord_gltype = gltype;
unit->pointer_texcoord_stride = stride;
unit->pointer_texcoord_pointer = pointer;
unit->pointer_texcoord_vertexbuffer = vertexbuffer;
unit->pointer_texcoord_offset = bufferoffset;
GL_BindVBO(bufferobject);
// LordHavoc: special flag added to gltype for unnormalized types
qglVertexAttribPointer(unitnum+GLSLATTRIB_TEXCOORD0, components, gltype & ~0x80000000, (gltype & 0x80000000) == 0, stride, bufferobject ? (void *)bufferoffset : pointer);CHECKGLERROR
}
}
else
{
// texture array unit is disabled, disable the array
if (unit->arrayenabled)
{
unit->arrayenabled = false;
qglDisableVertexAttribArray(unitnum+GLSLATTRIB_TEXCOORD0);CHECKGLERROR
}
}
break;
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
case RENDERPATH_SOFT:
break;
}
}
int R_Mesh_TexBound(unsigned int unitnum, int id)
{
gltextureunit_t *unit = gl_state.units + unitnum;
if (unitnum >= vid.teximageunits)
return 0;
if (id == GL_TEXTURE_2D)
return unit->t2d;
if (id == GL_TEXTURE_3D)
return unit->t3d;
if (id == GL_TEXTURE_CUBE_MAP)
return unit->tcubemap;
return 0;
}
void R_Mesh_CopyToTexture(rtexture_t *tex, int tx, int ty, int sx, int sy, int width, int height)
{
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
R_Mesh_TexBind(0, tex);
GL_ActiveTexture(0);CHECKGLERROR
qglCopyTexSubImage2D(GL_TEXTURE_2D, 0, tx, ty, sx, sy, width, height);CHECKGLERROR
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
{
IDirect3DSurface9 *currentsurface = NULL;
IDirect3DSurface9 *texturesurface = NULL;
RECT sourcerect;
RECT destrect;
sourcerect.left = sx;
sourcerect.top = sy;
sourcerect.right = sx + width;
sourcerect.bottom = sy + height;
destrect.left = tx;
destrect.top = ty;
destrect.right = tx + width;
destrect.bottom = ty + height;
if (!FAILED(IDirect3DTexture9_GetSurfaceLevel(((IDirect3DTexture9 *)tex->d3dtexture), 0, &texturesurface)))
{
if (!FAILED(IDirect3DDevice9_GetRenderTarget(vid_d3d9dev, 0, &currentsurface)))
{
IDirect3DDevice9_StretchRect(vid_d3d9dev, currentsurface, &sourcerect, texturesurface, &destrect, D3DTEXF_NONE);
IDirect3DSurface9_Release(currentsurface);
}
IDirect3DSurface9_Release(texturesurface);
}
}
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_CopyRectangleToTexture(tex->texnum, 0, tx, ty, sx, sy, width, height);
break;
}
}
#ifdef SUPPORTD3D
int d3drswrap[16] = {D3DRS_WRAP0, D3DRS_WRAP1, D3DRS_WRAP2, D3DRS_WRAP3, D3DRS_WRAP4, D3DRS_WRAP5, D3DRS_WRAP6, D3DRS_WRAP7, D3DRS_WRAP8, D3DRS_WRAP9, D3DRS_WRAP10, D3DRS_WRAP11, D3DRS_WRAP12, D3DRS_WRAP13, D3DRS_WRAP14, D3DRS_WRAP15};
#endif
void R_Mesh_ClearBindingsForTexture(int texnum)
{
gltextureunit_t *unit;
unsigned int unitnum;
// this doesn't really unbind the texture, but it does prevent a mistaken "do nothing" behavior on the next time this same texnum is bound on the same unit as the same type (this mainly affects r_shadow_bouncegrid because 3D textures are so rarely used)
for (unitnum = 0;unitnum < vid.teximageunits;unitnum++)
{
unit = gl_state.units + unitnum;
if (unit->t2d == texnum)
unit->t2d = -1;
if (unit->t3d == texnum)
unit->t3d = -1;
if (unit->tcubemap == texnum)
unit->tcubemap = -1;
}
}
void R_Mesh_TexBind(unsigned int unitnum, rtexture_t *tex)
{
gltextureunit_t *unit = gl_state.units + unitnum;
int tex2d, tex3d, texcubemap, texnum;
if (unitnum >= vid.teximageunits)
return;
// if (unit->texture == tex)
// return;
switch(vid.renderpath)
{
case RENDERPATH_GL20:
case RENDERPATH_GLES2:
if (!tex)
{
tex = r_texture_white;
// not initialized enough yet...
if (!tex)
return;
}
unit->texture = tex;
texnum = R_GetTexture(tex);
switch(tex->gltexturetypeenum)
{
case GL_TEXTURE_2D: if (unit->t2d != texnum) {GL_ActiveTexture(unitnum);unit->t2d = texnum;qglBindTexture(GL_TEXTURE_2D, unit->t2d);CHECKGLERROR}break;
case GL_TEXTURE_3D: if (unit->t3d != texnum) {GL_ActiveTexture(unitnum);unit->t3d = texnum;qglBindTexture(GL_TEXTURE_3D, unit->t3d);CHECKGLERROR}break;
case GL_TEXTURE_CUBE_MAP: if (unit->tcubemap != texnum) {GL_ActiveTexture(unitnum);unit->tcubemap = texnum;qglBindTexture(GL_TEXTURE_CUBE_MAP, unit->tcubemap);CHECKGLERROR}break;
}
break;
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GLES1:
unit->texture = tex;
tex2d = 0;
tex3d = 0;
texcubemap = 0;
if (tex)
{
texnum = R_GetTexture(tex);
switch(tex->gltexturetypeenum)
{
case GL_TEXTURE_2D:
tex2d = texnum;
break;
case GL_TEXTURE_3D:
tex3d = texnum;
break;
case GL_TEXTURE_CUBE_MAP:
texcubemap = texnum;
break;
}
}
// update 2d texture binding
if (unit->t2d != tex2d)
{
GL_ActiveTexture(unitnum);
if (tex2d)
{
if (unit->t2d == 0)
{
qglEnable(GL_TEXTURE_2D);CHECKGLERROR
}
}
else
{
if (unit->t2d)
{
qglDisable(GL_TEXTURE_2D);CHECKGLERROR
}
}
unit->t2d = tex2d;
qglBindTexture(GL_TEXTURE_2D, unit->t2d);CHECKGLERROR
}
// update 3d texture binding
if (unit->t3d != tex3d)
{
GL_ActiveTexture(unitnum);
if (tex3d)
{
if (unit->t3d == 0)
{
qglEnable(GL_TEXTURE_3D);CHECKGLERROR
}
}
else
{
if (unit->t3d)
{
qglDisable(GL_TEXTURE_3D);CHECKGLERROR
}
}
unit->t3d = tex3d;
qglBindTexture(GL_TEXTURE_3D, unit->t3d);CHECKGLERROR
}
// update cubemap texture binding
if (unit->tcubemap != texcubemap)
{
GL_ActiveTexture(unitnum);
if (texcubemap)
{
if (unit->tcubemap == 0)
{
qglEnable(GL_TEXTURE_CUBE_MAP);CHECKGLERROR
}
}
else
{
if (unit->tcubemap)
{
qglDisable(GL_TEXTURE_CUBE_MAP);CHECKGLERROR
}
}
unit->tcubemap = texcubemap;
qglBindTexture(GL_TEXTURE_CUBE_MAP, unit->tcubemap);CHECKGLERROR
}
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
{
extern cvar_t gl_texture_anisotropy;
if (!tex)
{
tex = r_texture_white;
// not initialized enough yet...
if (!tex)
return;
}
// upload texture if needed
R_GetTexture(tex);
if (unit->texture == tex)
return;
unit->texture = tex;
IDirect3DDevice9_SetTexture(vid_d3d9dev, unitnum, (IDirect3DBaseTexture9*)tex->d3dtexture);
//IDirect3DDevice9_SetRenderState(vid_d3d9dev, d3drswrap[unitnum], (tex->flags & TEXF_CLAMP) ? (D3DWRAPCOORD_0 | D3DWRAPCOORD_1 | D3DWRAPCOORD_2) : 0);
IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_ADDRESSU, tex->d3daddressu);
IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_ADDRESSV, tex->d3daddressv);
if (tex->d3daddressw)
IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_ADDRESSW, tex->d3daddressw);
IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_MAGFILTER, tex->d3dmagfilter);
IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_MINFILTER, tex->d3dminfilter);
IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_MIPFILTER, tex->d3dmipfilter);
IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_MIPMAPLODBIAS, tex->d3dmipmaplodbias);
IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_MAXMIPLEVEL, tex->d3dmaxmiplevelfilter);
IDirect3DDevice9_SetSamplerState(vid_d3d9dev, unitnum, D3DSAMP_MAXANISOTROPY, gl_texture_anisotropy.integer);
}
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
if (!tex)
{
tex = r_texture_white;
// not initialized enough yet...
if (!tex)
return;
}
texnum = R_GetTexture(tex);
if (unit->texture == tex)
return;
unit->texture = tex;
DPSOFTRAST_SetTexture(unitnum, texnum);
break;
}
}
void R_Mesh_TexMatrix(unsigned int unitnum, const matrix4x4_t *matrix)
{
gltextureunit_t *unit = gl_state.units + unitnum;
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
#ifdef GL_MODELVIEW
if (matrix && matrix->m[3][3])
{
// texmatrix specified, check if it is different
if (!unit->texmatrixenabled || memcmp(&unit->matrix, matrix, sizeof(matrix4x4_t)))
{
float glmatrix[16];
unit->texmatrixenabled = true;
unit->matrix = *matrix;
CHECKGLERROR
Matrix4x4_ToArrayFloatGL(&unit->matrix, glmatrix);
GL_ActiveTexture(unitnum);
qglMatrixMode(GL_TEXTURE);CHECKGLERROR
qglLoadMatrixf(glmatrix);CHECKGLERROR
qglMatrixMode(GL_MODELVIEW);CHECKGLERROR
}
}
else
{
// no texmatrix specified, revert to identity
if (unit->texmatrixenabled)
{
unit->texmatrixenabled = false;
unit->matrix = identitymatrix;
CHECKGLERROR
GL_ActiveTexture(unitnum);
qglMatrixMode(GL_TEXTURE);CHECKGLERROR
qglLoadIdentity();CHECKGLERROR
qglMatrixMode(GL_MODELVIEW);CHECKGLERROR
}
}
#endif
break;
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
break;
case RENDERPATH_SOFT:
break;
}
}
void R_Mesh_TexCombine(unsigned int unitnum, int combinergb, int combinealpha, int rgbscale, int alphascale)
{
gltextureunit_t *unit = gl_state.units + unitnum;
CHECKGLERROR
switch(vid.renderpath)
{
case RENDERPATH_GL20:
case RENDERPATH_GLES2:
// do nothing
break;
case RENDERPATH_GL13:
case RENDERPATH_GLES1:
#ifdef GL_TEXTURE_ENV
// GL_ARB_texture_env_combine
if (!combinergb)
combinergb = GL_MODULATE;
if (!combinealpha)
combinealpha = GL_MODULATE;
if (!rgbscale)
rgbscale = 1;
if (!alphascale)
alphascale = 1;
if (combinergb != combinealpha || rgbscale != 1 || alphascale != 1)
{
if (combinergb == GL_DECAL)
combinergb = GL_INTERPOLATE;
if (unit->combine != GL_COMBINE)
{
unit->combine = GL_COMBINE;
GL_ActiveTexture(unitnum);
qglTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);CHECKGLERROR
qglTexEnvi(GL_TEXTURE_ENV, GL_SOURCE2_RGB, GL_TEXTURE);CHECKGLERROR // for GL_INTERPOLATE mode
}
if (unit->combinergb != combinergb)
{
unit->combinergb = combinergb;
GL_ActiveTexture(unitnum);
qglTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, unit->combinergb);CHECKGLERROR
}
if (unit->combinealpha != combinealpha)
{
unit->combinealpha = combinealpha;
GL_ActiveTexture(unitnum);
qglTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, unit->combinealpha);CHECKGLERROR
}
if (unit->rgbscale != rgbscale)
{
unit->rgbscale = rgbscale;
GL_ActiveTexture(unitnum);
qglTexEnvi(GL_TEXTURE_ENV, GL_RGB_SCALE, unit->rgbscale);CHECKGLERROR
}
if (unit->alphascale != alphascale)
{
unit->alphascale = alphascale;
GL_ActiveTexture(unitnum);
qglTexEnvi(GL_TEXTURE_ENV, GL_ALPHA_SCALE, unit->alphascale);CHECKGLERROR
}
}
else
{
if (unit->combine != combinergb)
{
unit->combine = combinergb;
GL_ActiveTexture(unitnum);
qglTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, unit->combine);CHECKGLERROR
}
}
#endif
break;
case RENDERPATH_GL11:
// normal GL texenv
#ifdef GL_TEXTURE_ENV
if (!combinergb)
combinergb = GL_MODULATE;
if (unit->combine != combinergb)
{
unit->combine = combinergb;
GL_ActiveTexture(unitnum);
qglTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, unit->combine);CHECKGLERROR
}
#endif
break;
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
break;
case RENDERPATH_SOFT:
break;
}
}
void R_Mesh_ResetTextureState(void)
{
unsigned int unitnum;
BACKENDACTIVECHECK
for (unitnum = 0;unitnum < vid.teximageunits;unitnum++)
R_Mesh_TexBind(unitnum, NULL);
for (unitnum = 0;unitnum < vid.texarrayunits;unitnum++)
R_Mesh_TexCoordPointer(unitnum, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
switch(vid.renderpath)
{
case RENDERPATH_GL20:
case RENDERPATH_GLES2:
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
case RENDERPATH_SOFT:
break;
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GLES1:
for (unitnum = 0;unitnum < vid.texunits;unitnum++)
{
R_Mesh_TexCombine(unitnum, GL_MODULATE, GL_MODULATE, 1, 1);
R_Mesh_TexMatrix(unitnum, NULL);
}
break;
}
}
#ifdef SUPPORTD3D
//#define r_vertex3f_d3d9fvf (D3DFVF_XYZ)
//#define r_vertexgeneric_d3d9fvf (D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_TEX1)
//#define r_vertexmesh_d3d9fvf (D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_TEX5 | D3DFVF_TEXCOORDSIZE1(3) | D3DFVF_TEXCOORDSIZE2(3) | D3DFVF_TEXCOORDSIZE3(3))
D3DVERTEXELEMENT9 r_vertex3f_d3d9elements[] =
{
{0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0},
D3DDECL_END()
};
D3DVERTEXELEMENT9 r_vertexgeneric_d3d9elements[] =
{
{0, (int)((size_t)&((r_vertexgeneric_t *)0)->vertex3f ), D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0},
{0, (int)((size_t)&((r_vertexgeneric_t *)0)->color4f ), D3DDECLTYPE_FLOAT4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR, 0},
{0, (int)((size_t)&((r_vertexgeneric_t *)0)->texcoord2f), D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0},
D3DDECL_END()
};
D3DVERTEXELEMENT9 r_vertexmesh_d3d9elements[] =
{
{0, (int)((size_t)&((r_vertexmesh_t *)0)->vertex3f ), D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0},
{0, (int)((size_t)&((r_vertexmesh_t *)0)->color4f ), D3DDECLTYPE_FLOAT4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR, 0},
{0, (int)((size_t)&((r_vertexmesh_t *)0)->texcoordtexture2f ), D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0},
{0, (int)((size_t)&((r_vertexmesh_t *)0)->svector3f ), D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 1},
{0, (int)((size_t)&((r_vertexmesh_t *)0)->tvector3f ), D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 2},
{0, (int)((size_t)&((r_vertexmesh_t *)0)->normal3f ), D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 3},
{0, (int)((size_t)&((r_vertexmesh_t *)0)->texcoordlightmap2f), D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 4},
{0, (int)((size_t)&((r_vertexmesh_t *)0)->skeletalindex4ub ), D3DDECLTYPE_UBYTE4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 6},
{0, (int)((size_t)&((r_vertexmesh_t *)0)->skeletalweight4ub ), D3DDECLTYPE_UBYTE4N, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 7},
D3DDECL_END()
};
IDirect3DVertexDeclaration9 *r_vertex3f_d3d9decl;
IDirect3DVertexDeclaration9 *r_vertexgeneric_d3d9decl;
IDirect3DVertexDeclaration9 *r_vertexmesh_d3d9decl;
#endif
static void R_Mesh_InitVertexDeclarations(void)
{
#ifdef SUPPORTD3D
r_vertex3f_d3d9decl = NULL;
r_vertexgeneric_d3d9decl = NULL;
r_vertexmesh_d3d9decl = NULL;
switch(vid.renderpath)
{
case RENDERPATH_GL20:
case RENDERPATH_GL13:
case RENDERPATH_GL11:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
break;
case RENDERPATH_D3D9:
IDirect3DDevice9_CreateVertexDeclaration(vid_d3d9dev, r_vertex3f_d3d9elements, &r_vertex3f_d3d9decl);
IDirect3DDevice9_CreateVertexDeclaration(vid_d3d9dev, r_vertexgeneric_d3d9elements, &r_vertexgeneric_d3d9decl);
IDirect3DDevice9_CreateVertexDeclaration(vid_d3d9dev, r_vertexmesh_d3d9elements, &r_vertexmesh_d3d9decl);
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
break;
}
#endif
}
static void R_Mesh_DestroyVertexDeclarations(void)
{
#ifdef SUPPORTD3D
if (r_vertex3f_d3d9decl)
IDirect3DVertexDeclaration9_Release(r_vertex3f_d3d9decl);
r_vertex3f_d3d9decl = NULL;
if (r_vertexgeneric_d3d9decl)
IDirect3DVertexDeclaration9_Release(r_vertexgeneric_d3d9decl);
r_vertexgeneric_d3d9decl = NULL;
if (r_vertexmesh_d3d9decl)
IDirect3DVertexDeclaration9_Release(r_vertexmesh_d3d9decl);
r_vertexmesh_d3d9decl = NULL;
#endif
}
void R_Mesh_PrepareVertices_Vertex3f(int numvertices, const float *vertex3f, const r_meshbuffer_t *vertexbuffer, int bufferoffset)
{
// upload temporary vertexbuffer for this rendering
if (!gl_state.usevbo_staticvertex)
vertexbuffer = NULL;
if (!vertexbuffer && gl_state.usevbo_dynamicvertex)
vertexbuffer = R_BufferData_Store(numvertices * sizeof(float[3]), (void *)vertex3f, R_BUFFERDATA_VERTEX, &bufferoffset);
switch(vid.renderpath)
{
case RENDERPATH_GL20:
case RENDERPATH_GLES2:
if (vertexbuffer)
{
R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, vertexbuffer, bufferoffset);
R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(3, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0);
}
else
{
R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, vertexbuffer, 0);
R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(3, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0);
}
break;
case RENDERPATH_GL13:
case RENDERPATH_GLES1:
if (vertexbuffer)
{
R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, vertexbuffer, bufferoffset);
R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
}
else
{
R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, vertexbuffer, 0);
R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
}
break;
case RENDERPATH_GL11:
if (vertexbuffer)
{
R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, vertexbuffer, bufferoffset);
R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
}
else
{
R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, vertexbuffer, 0);
R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
}
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DDevice9_SetVertexDeclaration(vid_d3d9dev, r_vertex3f_d3d9decl);
if (vertexbuffer)
IDirect3DDevice9_SetStreamSource(vid_d3d9dev, 0, (IDirect3DVertexBuffer9*)vertexbuffer->devicebuffer, bufferoffset, sizeof(float[3]));
else
IDirect3DDevice9_SetStreamSource(vid_d3d9dev, 0, NULL, 0, 0);
gl_state.d3dvertexbuffer = (void *)vertexbuffer;
gl_state.d3dvertexdata = (void *)vertex3f;
gl_state.d3dvertexsize = sizeof(float[3]);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_SetVertexPointer(vertex3f, sizeof(float[3]));
DPSOFTRAST_SetColorPointer(NULL, 0);
DPSOFTRAST_SetTexCoordPointer(0, 2, sizeof(float[2]), NULL);
DPSOFTRAST_SetTexCoordPointer(1, 2, sizeof(float[2]), NULL);
DPSOFTRAST_SetTexCoordPointer(2, 2, sizeof(float[2]), NULL);
DPSOFTRAST_SetTexCoordPointer(3, 2, sizeof(float[2]), NULL);
DPSOFTRAST_SetTexCoordPointer(4, 2, sizeof(float[2]), NULL);
break;
}
}
r_vertexgeneric_t *R_Mesh_PrepareVertices_Generic_Lock(int numvertices)
{
size_t size;
size = sizeof(r_vertexgeneric_t) * numvertices;
if (gl_state.preparevertices_tempdatamaxsize < size)
{
gl_state.preparevertices_tempdatamaxsize = size;
gl_state.preparevertices_tempdata = Mem_Realloc(r_main_mempool, gl_state.preparevertices_tempdata, gl_state.preparevertices_tempdatamaxsize);
}
gl_state.preparevertices_vertexgeneric = (r_vertexgeneric_t *)gl_state.preparevertices_tempdata;
gl_state.preparevertices_numvertices = numvertices;
return gl_state.preparevertices_vertexgeneric;
}
qboolean R_Mesh_PrepareVertices_Generic_Unlock(void)
{
R_Mesh_PrepareVertices_Generic(gl_state.preparevertices_numvertices, gl_state.preparevertices_vertexgeneric, NULL, 0);
gl_state.preparevertices_vertexgeneric = NULL;
gl_state.preparevertices_numvertices = 0;
return true;
}
void R_Mesh_PrepareVertices_Generic_Arrays(int numvertices, const float *vertex3f, const float *color4f, const float *texcoord2f)
{
int i;
r_vertexgeneric_t *vertex;
switch(vid.renderpath)
{
case RENDERPATH_GL20:
case RENDERPATH_GLES2:
if (gl_state.usevbo_dynamicvertex)
{
r_meshbuffer_t *buffer_vertex3f = NULL;
r_meshbuffer_t *buffer_color4f = NULL;
r_meshbuffer_t *buffer_texcoord2f = NULL;
int bufferoffset_vertex3f = 0;
int bufferoffset_color4f = 0;
int bufferoffset_texcoord2f = 0;
buffer_color4f = R_BufferData_Store(numvertices * sizeof(float[4]), color4f , R_BUFFERDATA_VERTEX, &bufferoffset_color4f );
buffer_vertex3f = R_BufferData_Store(numvertices * sizeof(float[3]), vertex3f , R_BUFFERDATA_VERTEX, &bufferoffset_vertex3f );
buffer_texcoord2f = R_BufferData_Store(numvertices * sizeof(float[2]), texcoord2f, R_BUFFERDATA_VERTEX, &bufferoffset_texcoord2f);
R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(float[3]) , vertex3f , buffer_vertex3f , bufferoffset_vertex3f );
R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(float[4]) , color4f , buffer_color4f , bufferoffset_color4f );
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(float[2]) , texcoord2f , buffer_texcoord2f , bufferoffset_texcoord2f );
R_Mesh_TexCoordPointer(1, 3, GL_FLOAT , sizeof(float[3]) , NULL , NULL , 0 );
R_Mesh_TexCoordPointer(2, 3, GL_FLOAT , sizeof(float[3]) , NULL , NULL , 0 );
R_Mesh_TexCoordPointer(3, 3, GL_FLOAT , sizeof(float[3]) , NULL , NULL , 0 );
R_Mesh_TexCoordPointer(4, 2, GL_FLOAT , sizeof(float[2]) , NULL , NULL , 0 );
R_Mesh_TexCoordPointer(5, 2, GL_FLOAT , sizeof(float[2]) , NULL , NULL , 0 );
R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL , NULL , 0 );
R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL , NULL , 0 );
}
else if (!vid.useinterleavedarrays)
{
R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, NULL, 0);
R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), color4f, NULL, 0);
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), texcoord2f, NULL, 0);
R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(3, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0);
return;
}
break;
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GLES1:
if (!vid.useinterleavedarrays)
{
R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, NULL, 0);
R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), color4f, NULL, 0);
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), texcoord2f, NULL, 0);
if (vid.texunits >= 2)
R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
if (vid.texunits >= 3)
R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
return;
}
break;
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
break;
case RENDERPATH_SOFT:
DPSOFTRAST_SetVertexPointer(vertex3f, sizeof(float[3]));
DPSOFTRAST_SetColorPointer(color4f, sizeof(float[4]));
DPSOFTRAST_SetTexCoordPointer(0, 2, sizeof(float[2]), texcoord2f);
DPSOFTRAST_SetTexCoordPointer(1, 2, sizeof(float[2]), NULL);
DPSOFTRAST_SetTexCoordPointer(2, 2, sizeof(float[2]), NULL);
DPSOFTRAST_SetTexCoordPointer(3, 2, sizeof(float[2]), NULL);
DPSOFTRAST_SetTexCoordPointer(4, 2, sizeof(float[2]), NULL);
return;
}
// no quick path for this case, convert to vertex structs
vertex = R_Mesh_PrepareVertices_Generic_Lock(numvertices);
for (i = 0;i < numvertices;i++)
VectorCopy(vertex3f + 3*i, vertex[i].vertex3f);
if (color4f)
{
for (i = 0;i < numvertices;i++)
Vector4Copy(color4f + 4*i, vertex[i].color4f);
}
else
{
for (i = 0;i < numvertices;i++)
Vector4Copy(gl_state.color4f, vertex[i].color4f);
}
if (texcoord2f)
for (i = 0;i < numvertices;i++)
Vector2Copy(texcoord2f + 2*i, vertex[i].texcoord2f);
R_Mesh_PrepareVertices_Generic_Unlock();
R_Mesh_PrepareVertices_Generic(numvertices, vertex, NULL, 0);
}
void R_Mesh_PrepareVertices_Generic(int numvertices, const r_vertexgeneric_t *vertex, const r_meshbuffer_t *vertexbuffer, int bufferoffset)
{
// upload temporary vertexbuffer for this rendering
if (!gl_state.usevbo_staticvertex)
vertexbuffer = NULL;
if (!vertexbuffer && gl_state.usevbo_dynamicvertex)
vertexbuffer = R_BufferData_Store(numvertices * sizeof(*vertex), (void *)vertex, R_BUFFERDATA_VERTEX, &bufferoffset);
switch(vid.renderpath)
{
case RENDERPATH_GL20:
case RENDERPATH_GLES2:
if (vertexbuffer)
{
R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->vertex3f - (unsigned char *)vertex));
R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->color4f - (unsigned char *)vertex));
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoord2f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->texcoord2f - (unsigned char *)vertex));
R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(3, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0);
}
else
{
R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , NULL, 0);
R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , NULL, 0);
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoord2f , NULL, 0);
R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(3, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0);
}
break;
case RENDERPATH_GL13:
case RENDERPATH_GLES1:
if (vertexbuffer)
{
R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->vertex3f - (unsigned char *)vertex));
R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->color4f - (unsigned char *)vertex));
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoord2f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->texcoord2f - (unsigned char *)vertex));
R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
}
else
{
R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , NULL, 0);
R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , NULL, 0);
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoord2f , NULL, 0);
R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
}
break;
case RENDERPATH_GL11:
if (vertexbuffer)
{
R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->vertex3f - (unsigned char *)vertex));
R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->color4f - (unsigned char *)vertex));
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoord2f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->texcoord2f - (unsigned char *)vertex));
}
else
{
R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , NULL, 0);
R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , NULL, 0);
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoord2f , NULL, 0);
}
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DDevice9_SetVertexDeclaration(vid_d3d9dev, r_vertexgeneric_d3d9decl);
if (vertexbuffer)
IDirect3DDevice9_SetStreamSource(vid_d3d9dev, 0, (IDirect3DVertexBuffer9*)vertexbuffer->devicebuffer, bufferoffset, sizeof(*vertex));
else
IDirect3DDevice9_SetStreamSource(vid_d3d9dev, 0, NULL, 0, 0);
gl_state.d3dvertexbuffer = (void *)vertexbuffer;
gl_state.d3dvertexdata = (void *)vertex;
gl_state.d3dvertexsize = sizeof(*vertex);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_SetVertexPointer(vertex->vertex3f, sizeof(*vertex));
DPSOFTRAST_SetColorPointer(vertex->color4f, sizeof(*vertex));
DPSOFTRAST_SetTexCoordPointer(0, 2, sizeof(*vertex), vertex->texcoord2f);
DPSOFTRAST_SetTexCoordPointer(1, 2, sizeof(*vertex), NULL);
DPSOFTRAST_SetTexCoordPointer(2, 2, sizeof(*vertex), NULL);
DPSOFTRAST_SetTexCoordPointer(3, 2, sizeof(*vertex), NULL);
DPSOFTRAST_SetTexCoordPointer(4, 2, sizeof(*vertex), NULL);
break;
}
}
r_vertexmesh_t *R_Mesh_PrepareVertices_Mesh_Lock(int numvertices)
{
size_t size;
size = sizeof(r_vertexmesh_t) * numvertices;
if (gl_state.preparevertices_tempdatamaxsize < size)
{
gl_state.preparevertices_tempdatamaxsize = size;
gl_state.preparevertices_tempdata = Mem_Realloc(r_main_mempool, gl_state.preparevertices_tempdata, gl_state.preparevertices_tempdatamaxsize);
}
gl_state.preparevertices_vertexmesh = (r_vertexmesh_t *)gl_state.preparevertices_tempdata;
gl_state.preparevertices_numvertices = numvertices;
return gl_state.preparevertices_vertexmesh;
}
qboolean R_Mesh_PrepareVertices_Mesh_Unlock(void)
{
R_Mesh_PrepareVertices_Mesh(gl_state.preparevertices_numvertices, gl_state.preparevertices_vertexmesh, NULL, 0);
gl_state.preparevertices_vertexmesh = NULL;
gl_state.preparevertices_numvertices = 0;
return true;
}
void R_Mesh_PrepareVertices_Mesh_Arrays(int numvertices, const float *vertex3f, const float *svector3f, const float *tvector3f, const float *normal3f, const float *color4f, const float *texcoordtexture2f, const float *texcoordlightmap2f)
{
int i;
r_vertexmesh_t *vertex;
switch(vid.renderpath)
{
case RENDERPATH_GL20:
case RENDERPATH_GLES2:
if (gl_state.usevbo_dynamicvertex)
{
r_meshbuffer_t *buffer_vertex3f = NULL;
r_meshbuffer_t *buffer_color4f = NULL;
r_meshbuffer_t *buffer_texcoordtexture2f = NULL;
r_meshbuffer_t *buffer_svector3f = NULL;
r_meshbuffer_t *buffer_tvector3f = NULL;
r_meshbuffer_t *buffer_normal3f = NULL;
r_meshbuffer_t *buffer_texcoordlightmap2f = NULL;
int bufferoffset_vertex3f = 0;
int bufferoffset_color4f = 0;
int bufferoffset_texcoordtexture2f = 0;
int bufferoffset_svector3f = 0;
int bufferoffset_tvector3f = 0;
int bufferoffset_normal3f = 0;
int bufferoffset_texcoordlightmap2f = 0;
buffer_color4f = R_BufferData_Store(numvertices * sizeof(float[4]), color4f , R_BUFFERDATA_VERTEX, &bufferoffset_color4f );
buffer_vertex3f = R_BufferData_Store(numvertices * sizeof(float[3]), vertex3f , R_BUFFERDATA_VERTEX, &bufferoffset_vertex3f );
buffer_svector3f = R_BufferData_Store(numvertices * sizeof(float[3]), svector3f , R_BUFFERDATA_VERTEX, &bufferoffset_svector3f );
buffer_tvector3f = R_BufferData_Store(numvertices * sizeof(float[3]), tvector3f , R_BUFFERDATA_VERTEX, &bufferoffset_tvector3f );
buffer_normal3f = R_BufferData_Store(numvertices * sizeof(float[3]), normal3f , R_BUFFERDATA_VERTEX, &bufferoffset_normal3f );
buffer_texcoordtexture2f = R_BufferData_Store(numvertices * sizeof(float[2]), texcoordtexture2f , R_BUFFERDATA_VERTEX, &bufferoffset_texcoordtexture2f );
buffer_texcoordlightmap2f = R_BufferData_Store(numvertices * sizeof(float[2]), texcoordlightmap2f, R_BUFFERDATA_VERTEX, &bufferoffset_texcoordlightmap2f);
R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(float[3]) , vertex3f , buffer_vertex3f , bufferoffset_vertex3f );
R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(float[4]) , color4f , buffer_color4f , bufferoffset_color4f );
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(float[2]) , texcoordtexture2f , buffer_texcoordtexture2f , bufferoffset_texcoordtexture2f );
R_Mesh_TexCoordPointer(1, 3, GL_FLOAT , sizeof(float[3]) , svector3f , buffer_svector3f , bufferoffset_svector3f );
R_Mesh_TexCoordPointer(2, 3, GL_FLOAT , sizeof(float[3]) , tvector3f , buffer_tvector3f , bufferoffset_tvector3f );
R_Mesh_TexCoordPointer(3, 3, GL_FLOAT , sizeof(float[3]) , normal3f , buffer_normal3f , bufferoffset_normal3f );
R_Mesh_TexCoordPointer(4, 2, GL_FLOAT , sizeof(float[2]) , texcoordlightmap2f, buffer_texcoordlightmap2f, bufferoffset_texcoordlightmap2f);
R_Mesh_TexCoordPointer(5, 2, GL_FLOAT , sizeof(float[2]) , NULL , NULL , 0 );
R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL , NULL , 0 );
R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL , NULL , 0 );
}
else if (!vid.useinterleavedarrays)
{
R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, NULL, 0);
R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), color4f, NULL, 0);
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), texcoordtexture2f, NULL, 0);
R_Mesh_TexCoordPointer(1, 3, GL_FLOAT, sizeof(float[3]), svector3f, NULL, 0);
R_Mesh_TexCoordPointer(2, 3, GL_FLOAT, sizeof(float[3]), tvector3f, NULL, 0);
R_Mesh_TexCoordPointer(3, 3, GL_FLOAT, sizeof(float[3]), normal3f, NULL, 0);
R_Mesh_TexCoordPointer(4, 2, GL_FLOAT, sizeof(float[2]), texcoordlightmap2f, NULL, 0);
R_Mesh_TexCoordPointer(5, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0);
R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(unsigned char[4]), NULL, NULL, 0);
return;
}
break;
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GLES1:
if (!vid.useinterleavedarrays)
{
R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), vertex3f, NULL, 0);
R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), color4f, NULL, 0);
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), texcoordtexture2f, NULL, 0);
if (vid.texunits >= 2)
R_Mesh_TexCoordPointer(1, 2, GL_FLOAT, sizeof(float[2]), texcoordlightmap2f, NULL, 0);
if (vid.texunits >= 3)
R_Mesh_TexCoordPointer(2, 2, GL_FLOAT, sizeof(float[2]), NULL, NULL, 0);
return;
}
break;
case RENDERPATH_D3D9:
case RENDERPATH_D3D10:
case RENDERPATH_D3D11:
break;
case RENDERPATH_SOFT:
DPSOFTRAST_SetVertexPointer(vertex3f, sizeof(float[3]));
DPSOFTRAST_SetColorPointer(color4f, sizeof(float[4]));
DPSOFTRAST_SetTexCoordPointer(0, 2, sizeof(float[2]), texcoordtexture2f);
DPSOFTRAST_SetTexCoordPointer(1, 3, sizeof(float[3]), svector3f);
DPSOFTRAST_SetTexCoordPointer(2, 3, sizeof(float[3]), tvector3f);
DPSOFTRAST_SetTexCoordPointer(3, 3, sizeof(float[3]), normal3f);
DPSOFTRAST_SetTexCoordPointer(4, 2, sizeof(float[2]), texcoordlightmap2f);
return;
}
vertex = R_Mesh_PrepareVertices_Mesh_Lock(numvertices);
for (i = 0;i < numvertices;i++)
VectorCopy(vertex3f + 3*i, vertex[i].vertex3f);
if (svector3f)
for (i = 0;i < numvertices;i++)
VectorCopy(svector3f + 3*i, vertex[i].svector3f);
if (tvector3f)
for (i = 0;i < numvertices;i++)
VectorCopy(tvector3f + 3*i, vertex[i].tvector3f);
if (normal3f)
for (i = 0;i < numvertices;i++)
VectorCopy(normal3f + 3*i, vertex[i].normal3f);
if (color4f)
{
for (i = 0;i < numvertices;i++)
Vector4Copy(color4f + 4*i, vertex[i].color4f);
}
else
{
for (i = 0;i < numvertices;i++)
Vector4Copy(gl_state.color4f, vertex[i].color4f);
}
if (texcoordtexture2f)
for (i = 0;i < numvertices;i++)
Vector2Copy(texcoordtexture2f + 2*i, vertex[i].texcoordtexture2f);
if (texcoordlightmap2f)
for (i = 0;i < numvertices;i++)
Vector2Copy(texcoordlightmap2f + 2*i, vertex[i].texcoordlightmap2f);
R_Mesh_PrepareVertices_Mesh_Unlock();
R_Mesh_PrepareVertices_Mesh(numvertices, vertex, NULL, 0);
}
void R_Mesh_PrepareVertices_Mesh(int numvertices, const r_vertexmesh_t *vertex, const r_meshbuffer_t *vertexbuffer, int bufferoffset)
{
// upload temporary vertexbuffer for this rendering
if (!gl_state.usevbo_staticvertex)
vertexbuffer = NULL;
if (!vertexbuffer && gl_state.usevbo_dynamicvertex)
vertexbuffer = R_BufferData_Store(numvertices * sizeof(*vertex), (void *)vertex, R_BUFFERDATA_VERTEX, &bufferoffset);
switch(vid.renderpath)
{
case RENDERPATH_GL20:
case RENDERPATH_GLES2:
if (vertexbuffer)
{
R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->vertex3f - (unsigned char *)vertex));
R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->color4f - (unsigned char *)vertex));
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordtexture2f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->texcoordtexture2f - (unsigned char *)vertex));
R_Mesh_TexCoordPointer(1, 3, GL_FLOAT , sizeof(*vertex), vertex->svector3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->svector3f - (unsigned char *)vertex));
R_Mesh_TexCoordPointer(2, 3, GL_FLOAT , sizeof(*vertex), vertex->tvector3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->tvector3f - (unsigned char *)vertex));
R_Mesh_TexCoordPointer(3, 3, GL_FLOAT , sizeof(*vertex), vertex->normal3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->normal3f - (unsigned char *)vertex));
R_Mesh_TexCoordPointer(4, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordlightmap2f, vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->texcoordlightmap2f - (unsigned char *)vertex));
R_Mesh_TexCoordPointer(5, 2, GL_FLOAT , sizeof(*vertex), NULL, NULL, 0);
R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE | 0x80000000, sizeof(*vertex), vertex->skeletalindex4ub , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->skeletalindex4ub - (unsigned char *)vertex));
R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(*vertex), vertex->skeletalweight4ub , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->skeletalweight4ub - (unsigned char *)vertex));
}
else
{
R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , NULL, 0);
R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , NULL, 0);
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordtexture2f , NULL, 0);
R_Mesh_TexCoordPointer(1, 3, GL_FLOAT , sizeof(*vertex), vertex->svector3f , NULL, 0);
R_Mesh_TexCoordPointer(2, 3, GL_FLOAT , sizeof(*vertex), vertex->tvector3f , NULL, 0);
R_Mesh_TexCoordPointer(3, 3, GL_FLOAT , sizeof(*vertex), vertex->normal3f , NULL, 0);
R_Mesh_TexCoordPointer(4, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordlightmap2f, NULL, 0);
R_Mesh_TexCoordPointer(5, 2, GL_FLOAT , sizeof(*vertex), NULL, NULL, 0);
R_Mesh_TexCoordPointer(6, 4, GL_UNSIGNED_BYTE | 0x80000000, sizeof(*vertex), vertex->skeletalindex4ub , NULL, 0);
R_Mesh_TexCoordPointer(7, 4, GL_UNSIGNED_BYTE, sizeof(*vertex), vertex->skeletalweight4ub , NULL, 0);
}
break;
case RENDERPATH_GL13:
case RENDERPATH_GLES1:
if (vertexbuffer)
{
R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->vertex3f - (unsigned char *)vertex));
R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->color4f - (unsigned char *)vertex));
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordtexture2f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->texcoordtexture2f - (unsigned char *)vertex));
R_Mesh_TexCoordPointer(1, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordlightmap2f, vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->texcoordlightmap2f - (unsigned char *)vertex));
}
else
{
R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , NULL, 0);
R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , NULL, 0);
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordtexture2f , NULL, 0);
R_Mesh_TexCoordPointer(1, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordlightmap2f, NULL, 0);
}
break;
case RENDERPATH_GL11:
if (vertexbuffer)
{
R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->vertex3f - (unsigned char *)vertex));
R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->color4f - (unsigned char *)vertex));
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordtexture2f , vertexbuffer, bufferoffset + (int)((unsigned char *)vertex->texcoordtexture2f - (unsigned char *)vertex));
}
else
{
R_Mesh_VertexPointer( 3, GL_FLOAT , sizeof(*vertex), vertex->vertex3f , NULL, 0);
R_Mesh_ColorPointer( 4, GL_FLOAT , sizeof(*vertex), vertex->color4f , NULL, 0);
R_Mesh_TexCoordPointer(0, 2, GL_FLOAT , sizeof(*vertex), vertex->texcoordtexture2f , NULL, 0);
}
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DDevice9_SetVertexDeclaration(vid_d3d9dev, r_vertexmesh_d3d9decl);
if (vertexbuffer)
IDirect3DDevice9_SetStreamSource(vid_d3d9dev, 0, (IDirect3DVertexBuffer9*)vertexbuffer->devicebuffer, bufferoffset, sizeof(*vertex));
else
IDirect3DDevice9_SetStreamSource(vid_d3d9dev, 0, NULL, 0, 0);
gl_state.d3dvertexbuffer = (void *)vertexbuffer;
gl_state.d3dvertexdata = (void *)vertex;
gl_state.d3dvertexsize = sizeof(*vertex);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_SetVertexPointer(vertex->vertex3f, sizeof(*vertex));
DPSOFTRAST_SetColorPointer(vertex->color4f, sizeof(*vertex));
DPSOFTRAST_SetTexCoordPointer(0, 2, sizeof(*vertex), vertex->texcoordtexture2f);
DPSOFTRAST_SetTexCoordPointer(1, 3, sizeof(*vertex), vertex->svector3f);
DPSOFTRAST_SetTexCoordPointer(2, 3, sizeof(*vertex), vertex->tvector3f);
DPSOFTRAST_SetTexCoordPointer(3, 3, sizeof(*vertex), vertex->normal3f);
DPSOFTRAST_SetTexCoordPointer(4, 2, sizeof(*vertex), vertex->texcoordlightmap2f);
break;
}
}
void GL_BlendEquationSubtract(qboolean negated)
{
if(negated)
{
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
qglBlendEquationEXT(GL_FUNC_REVERSE_SUBTRACT);
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_BLENDOP, D3DBLENDOP_SUBTRACT);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_BlendSubtract(true);
break;
}
}
else
{
switch(vid.renderpath)
{
case RENDERPATH_GL11:
case RENDERPATH_GL13:
case RENDERPATH_GL20:
case RENDERPATH_GLES1:
case RENDERPATH_GLES2:
qglBlendEquationEXT(GL_FUNC_ADD);
break;
case RENDERPATH_D3D9:
#ifdef SUPPORTD3D
IDirect3DDevice9_SetRenderState(vid_d3d9dev, D3DRS_BLENDOP, D3DBLENDOP_ADD);
#endif
break;
case RENDERPATH_D3D10:
Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_D3D11:
Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
break;
case RENDERPATH_SOFT:
DPSOFTRAST_BlendSubtract(false);
break;
}
}
}