jkxr/Projects/Android/jni/OpenJK/code/rd-vanilla/tr_image.cpp
Simon 0d3d244157 Fix sky over Yavin Swamp
The only significant part of this change is the removal of r_fastsky check, since Yavin Swamp doesn't have a skybox.
2022-11-23 22:17:58 +00:00

1738 lines
42 KiB
C++

/*
===========================================================================
Copyright (C) 1999 - 2005, Id Software, Inc.
Copyright (C) 2000 - 2013, Raven Software, Inc.
Copyright (C) 2001 - 2013, Activision, Inc.
Copyright (C) 2005 - 2015, ioquake3 contributors
Copyright (C) 2013 - 2015, OpenJK contributors
This file is part of the OpenJK source code.
OpenJK is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
===========================================================================
*/
// tr_image.c
#include "tr_local.h"
#include "../rd-common/tr_common.h"
#include <png.h>
#include <map>
using namespace std;
#if !defined(GL_RGB5)
#define GL_RGB5 0x8050 // same as GL_RGB5_EXT
#endif
#if !defined(GL_RGBA4)
#define GL_RGBA4 0x8056 // same as GL_RGBA4_EXT and GL_RGBA4_OES
#endif
static byte s_intensitytable[256];
static unsigned char s_gammatable[256];
int gl_filter_min = GL_LINEAR_MIPMAP_NEAREST;
int gl_filter_max = GL_LINEAR;
#define FILE_HASH_SIZE 1024 // actually, the shader code needs this (from another module, great).
//static image_t* hashTable[FILE_HASH_SIZE];
/*
** R_GammaCorrect
*/
void R_GammaCorrect( byte *buffer, int bufSize ) {
int i;
for ( i = 0; i < bufSize; i++ ) {
buffer[i] = s_gammatable[buffer[i]];
}
}
typedef struct textureMode_s {
const char *name;
int minimize, maximize;
} textureMode_t;
textureMode_t modes[] = {
{"GL_NEAREST", GL_NEAREST, GL_NEAREST},
{"GL_LINEAR", GL_LINEAR, GL_LINEAR},
{"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST},
{"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR},
{"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST},
{"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR}
};
static const size_t numTextureModes = ARRAY_LEN(modes);
/*
================
return a hash value for the filename
================
*/
long generateHashValue( const char *fname ) {
int i;
long hash;
char letter;
hash = 0;
i = 0;
while (fname[i] != '\0') {
letter = tolower(fname[i]);
if (letter =='.') break; // don't include extension
if (letter =='\\') letter = '/'; // damn path names
hash+=(long)(letter)*(i+119);
i++;
}
hash &= (FILE_HASH_SIZE-1);
return hash;
}
// makeup a nice clean, consistant name to query for and file under, for map<> usage...
//
char *GenerateImageMappingName( const char *name )
{
static char sName[MAX_QPATH];
int i=0;
char letter;
while (name[i] != '\0' && i<MAX_QPATH-1)
{
letter = tolower(name[i]);
if (letter =='.') break; // don't include extension
if (letter =='\\') letter = '/'; // damn path names
sName[i++] = letter;
}
sName[i]=0;
return &sName[0];
}
/*
===============
GL_TextureMode
===============
*/
void GL_TextureMode( const char *string ) {
size_t i;
image_t *glt;
for ( i = 0; i < numTextureModes ; i++ ) {
if ( !Q_stricmp( modes[i].name, string ) ) {
break;
}
}
if ( i == numTextureModes ) {
ri.Printf( PRINT_ALL, "bad filter name\n" );
for ( i = 0; i < numTextureModes ; i++ ) {
ri.Printf( PRINT_ALL, "%s\n", modes[i].name );
}
return;
}
gl_filter_min = modes[i].minimize;
gl_filter_max = modes[i].maximize;
// If the level they requested is less than possible, set the max possible...
if ( r_ext_texture_filter_anisotropic->value > glConfig.maxTextureFilterAnisotropy )
ri.Cvar_SetValue( "r_ext_texture_filter_anisotropic", glConfig.maxTextureFilterAnisotropy );
// change all the existing mipmap texture objects
R_Images_StartIteration();
while ( (glt = R_Images_GetNextIteration()) != NULL)
{
if ( glt->mipmap ) {
GL_Bind (glt);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
if(glConfig.maxTextureFilterAnisotropy>0) {
if(r_ext_texture_filter_anisotropic->integer>1) {
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, r_ext_texture_filter_anisotropic->value);
} else {
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.0f);
}
}
}
}
}
static float R_BytesPerTex (int format)
{
switch ( format ) {
case 1:
//"I "
return 1;
break;
case 2:
//"IA "
return 2;
break;
case 3:
//"RGB "
#ifdef HAVE_GLES
return 3;
#else
return glConfig.colorBits/8.0f;
#endif
break;
case 4:
//"RGBA "
#ifdef HAVE_GLES
return 4;
#else
return glConfig.colorBits/8.0f;
break;
case GL_RGBA4:
//"RGBA4"
return 2;
break;
case GL_RGB5:
//"RGB5 "
return 2;
#endif
break;
#ifndef HAVE_GLES
case GL_RGBA8:
//"RGBA8"
return 4;
break;
case GL_RGB8:
//"RGB8"
return 4;
break;
case GL_RGB4_S3TC:
//"S3TC "
return 0.33333f;
break;
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
//"DXT1 "
return 0.33333f;
break;
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
//"DXT5 "
return 1;
break;
#endif
default:
//"???? "
return 4;
}
}
/*
===============
R_SumOfUsedImages
===============
*/
float R_SumOfUsedImages( qboolean bUseFormat )
{
int total = 0;
image_t *pImage;
R_Images_StartIteration();
while ( (pImage = R_Images_GetNextIteration()) != NULL)
{
if ( pImage->frameUsed == tr.frameCount- 1 ) {//it has already been advanced for the next frame, so...
if (bUseFormat)
{
float bytePerTex = R_BytesPerTex (pImage->internalFormat);
total += bytePerTex * (pImage->width * pImage->height);
}
else
{
total += pImage->width * pImage->height;
}
}
}
return total;
}
/*
===============
R_ImageList_f
===============
*/
void R_ImageList_f( void ) {
int i=0;
image_t *image;
int texels=0;
float texBytes = 0.0f;
const char *yesno[] = {"no ", "yes"};
ri.Printf( PRINT_ALL, "\n -w-- -h-- -mm- -if-- wrap --name-------\n");
int iNumImages = R_Images_StartIteration();
while ( (image = R_Images_GetNextIteration()) != NULL)
{
texels += image->width*image->height;
texBytes += image->width*image->height * R_BytesPerTex (image->internalFormat);
ri.Printf( PRINT_ALL, "%4i: %4i %4i %s ",
i, image->width, image->height, yesno[image->mipmap] );
switch ( image->internalFormat ) {
case 1:
ri.Printf( PRINT_ALL, "I " );
break;
case 2:
ri.Printf( PRINT_ALL, "IA " );
break;
case 3:
ri.Printf( PRINT_ALL, "RGB " );
break;
case 4:
ri.Printf( PRINT_ALL, "RGBA " );
break;
#ifndef HAVE_GLES
case GL_RGBA8:
ri.Printf( PRINT_ALL, "RGBA8" );
break;
case GL_RGB8:
ri.Printf( PRINT_ALL, "RGB8" );
break;
case GL_RGB4_S3TC:
ri.Printf( PRINT_ALL, "S3TC " );
break;
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
ri.Printf( PRINT_ALL, "DXT1 " );
break;
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
ri.Printf( PRINT_ALL, "DXT5 " );
break;
case GL_RGBA4:
ri.Printf( PRINT_ALL, "RGBA4" );
break;
case GL_RGB5:
ri.Printf( PRINT_ALL, "RGB5 " );
break;
#endif
default:
ri.Printf( PRINT_ALL, "???? " );
}
switch ( image->wrapClampMode ) {
case GL_REPEAT:
ri.Printf( PRINT_ALL, "rept " );
break;
#ifndef HAVE_GLES
case GL_CLAMP:
ri.Printf( PRINT_ALL, "clmp " );
break;
#endif
case GL_CLAMP_TO_EDGE:
ri.Printf( PRINT_ALL, "clpE " );
break;
default:
ri.Printf( PRINT_ALL, "%4i ", image->wrapClampMode );
break;
}
ri.Printf( PRINT_ALL, "%s\n", image->imgName );
i++;
}
ri.Printf( PRINT_ALL, " ---------\n");
ri.Printf( PRINT_ALL, " -w-- -h-- -mm- -if- wrap --name-------\n");
ri.Printf( PRINT_ALL, " %i total texels (not including mipmaps)\n", texels );
ri.Printf( PRINT_ALL, " %.2fMB total texture mem (not including mipmaps)\n", texBytes/1048576.0f );
ri.Printf( PRINT_ALL, " %i total images\n\n", iNumImages );
}
//=======================================================================
/*
================
R_LightScaleTexture
Scale up the pixel values in a texture to increase the
lighting range
================
*/
void R_LightScaleTexture (unsigned *in, int inwidth, int inheight, qboolean only_gamma )
{
if ( only_gamma )
{
if ( !glConfig.deviceSupportsGamma )
{
int i, c;
byte *p;
p = (byte *)in;
c = inwidth*inheight;
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_gammatable[p[0]];
p[1] = s_gammatable[p[1]];
p[2] = s_gammatable[p[2]];
}
}
}
else
{
int i, c;
byte *p;
p = (byte *)in;
c = inwidth*inheight;
if ( glConfig.deviceSupportsGamma )
{
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_intensitytable[p[0]];
p[1] = s_intensitytable[p[1]];
p[2] = s_intensitytable[p[2]];
}
}
else
{
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_gammatable[s_intensitytable[p[0]]];
p[1] = s_gammatable[s_intensitytable[p[1]]];
p[2] = s_gammatable[s_intensitytable[p[2]]];
}
}
}
}
/*
================
R_MipMap2
Operates in place, quartering the size of the texture
Proper linear filter
================
*/
static void R_MipMap2( unsigned *in, int inWidth, int inHeight ) {
int i, j, k;
byte *outpix;
int inWidthMask, inHeightMask;
int total;
int outWidth, outHeight;
unsigned *temp;
outWidth = inWidth >> 1;
outHeight = inHeight >> 1;
temp = (unsigned int *)R_Malloc( outWidth * outHeight * 4, TAG_TEMP_WORKSPACE, qfalse );
inWidthMask = inWidth - 1;
inHeightMask = inHeight - 1;
for ( i = 0 ; i < outHeight ; i++ ) {
for ( j = 0 ; j < outWidth ; j++ ) {
outpix = (byte *) ( temp + i * outWidth + j );
for ( k = 0 ; k < 4 ; k++ ) {
total =
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k];
outpix[k] = total / 36;
}
}
}
memcpy( in, temp, outWidth * outHeight * 4 );
R_Free( temp );
}
/*
================
R_MipMap
Operates in place, quartering the size of the texture
================
*/
static void R_MipMap (byte *in, int width, int height) {
int i, j;
byte *out;
int row;
if ( !r_simpleMipMaps->integer ) {
R_MipMap2( (unsigned *)in, width, height );
return;
}
if ( width == 1 && height == 1 ) {
return;
}
row = width * 4;
out = in;
width >>= 1;
height >>= 1;
if ( width == 0 || height == 0 ) {
width += height; // get largest
for (i=0 ; i<width ; i++, out+=4, in+=8 ) {
out[0] = ( in[0] + in[4] )>>1;
out[1] = ( in[1] + in[5] )>>1;
out[2] = ( in[2] + in[6] )>>1;
out[3] = ( in[3] + in[7] )>>1;
}
return;
}
for (i=0 ; i<height ; i++, in+=row) {
for (j=0 ; j<width ; j++, out+=4, in+=8) {
out[0] = (in[0] + in[4] + in[row+0] + in[row+4])>>2;
out[1] = (in[1] + in[5] + in[row+1] + in[row+5])>>2;
out[2] = (in[2] + in[6] + in[row+2] + in[row+6])>>2;
out[3] = (in[3] + in[7] + in[row+3] + in[row+7])>>2;
}
}
}
/*
==================
R_BlendOverTexture
Apply a color blend over a set of pixels
==================
*/
static void R_BlendOverTexture( byte *data, int pixelCount, byte blend[4] ) {
int i;
int inverseAlpha;
int premult[3];
inverseAlpha = 255 - blend[3];
premult[0] = blend[0] * blend[3];
premult[1] = blend[1] * blend[3];
premult[2] = blend[2] * blend[3];
for ( i = 0 ; i < pixelCount ; i++, data+=4 ) {
data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9;
data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9;
data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9;
}
}
byte mipBlendColors[16][4] = {
{0,0,0,0},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
};
#ifdef HAVE_GLES
// helper function for GLES format conversions
byte * gles_convertRGB(byte * data, int width, int height)
{
byte * temp = (byte *) R_Malloc (width*height*3, TAG_TEMP_WORKSPACE, qfalse);
byte *src = data;
byte *dst = temp;
for (int i=0; i<width*height; i++) {
for (int j=0; j<3; j++)
*(dst++) = *(src++);
src++;
}
return temp;
}
byte * gles_convertRGBA4(byte * data, int width, int height)
{
byte * temp = (byte *) R_Malloc (width*height*2, TAG_TEMP_WORKSPACE, qfalse);
unsigned int * input = ( unsigned int *)(data);
unsigned short* output = (unsigned short*)(temp);
for (int i = 0; i < width*height; i++) {
unsigned int pixel = input[i];
// Unpack the source data as 8 bit values
unsigned int r = pixel & 0xff;
unsigned int g = (pixel >> 8) & 0xff;
unsigned int b = (pixel >> 16) & 0xff;
unsigned int a = (pixel >> 24) & 0xff;
// Convert to 4 bit vales
r >>= 4; g >>= 4; b >>= 4; a >>= 4;
output[i] = r << 12 | g << 8 | b << 4 | a;
}
return temp;
}
byte * gles_convertRGB5(byte * data, int width, int height)
{
byte * temp = (byte *) R_Malloc (width*height*2, TAG_TEMP_WORKSPACE, qfalse);
byte *src = data;
byte *dst = temp;
byte r,g,b;
unsigned int * input = ( unsigned int *)(data);
unsigned short* output = (unsigned short*)(temp);
for (int i = 0; i < width*height; i++) {
unsigned int pixel = input[i];
// Unpack the source data as 8 bit values
unsigned int r = pixel & 0xff;
unsigned int g = (pixel >> 8) & 0xff;
unsigned int b = (pixel >> 16) & 0xff;
// Convert to 4 bit vales
r >>= 3; g >>= 2; b >>= 3;
output[i] = r << 11 | g << 5 | b;
}
return temp;
}
byte * gles_convertLuminance(byte * data, int width, int height)
{
byte * temp = (byte *) R_Malloc (width*height, TAG_TEMP_WORKSPACE, qfalse);
byte *src = data;
byte *dst = temp;
byte r,g,b;
int i;
unsigned int * input = ( unsigned int *)(data);
byte* output = (byte*)(temp);
for (i = 0; i < width*height; i++) {
unsigned int pixel = input[i];
// Unpack the source data as 8 bit values
unsigned int r = pixel & 0xff;
output[i] = r;
}
return temp;
}
byte * gles_convertLuminanceAlpha(byte * data, int width, int height)
{
byte * temp = (byte *) R_Malloc (width*height*2, TAG_TEMP_WORKSPACE, qfalse);
byte *src = data;
byte *dst = temp;
byte r,g,b;
int i;
unsigned int * input = ( unsigned int *)(data);
unsigned short* output = (unsigned short*)(temp);
for (i = 0; i < width*height; i++) {
unsigned int pixel = input[i];
// Unpack the source data as 8 bit values
unsigned int r = pixel & 0xff;
unsigned int a = (pixel >> 24) & 0xff;
output[i] = r | a<<8;
}
return temp;
}
#endif
class CStringComparator
{
public:
bool operator()(const char *s1, const char *s2) const { return(strcmp(s1, s2) < 0); }
};
typedef map <const char *, image_t *, CStringComparator> AllocatedImages_t;
AllocatedImages_t AllocatedImages;
AllocatedImages_t::iterator itAllocatedImages;
int giTextureBindNum = 1024; // will be set to this anyway at runtime, but wtf?
// return = number of images in the list, for those interested
//
int R_Images_StartIteration(void)
{
itAllocatedImages = AllocatedImages.begin();
return AllocatedImages.size();
}
image_t *R_Images_GetNextIteration(void)
{
if (itAllocatedImages == AllocatedImages.end())
return NULL;
image_t *pImage = (*itAllocatedImages).second;
++itAllocatedImages;
return pImage;
}
// clean up anything to do with an image_t struct, but caller will have to clear the internal to an image_t struct ready for either struct free() or overwrite...
//
// (avoid using ri.xxxx stuff here in case running on dedicated)
//
static void R_Images_DeleteImageContents( image_t *pImage )
{
assert(pImage); // should never be called with NULL
if (pImage)
{
qglDeleteTextures( 1, &pImage->texnum );
R_Free(pImage);
}
}
/*
===============
Upload32
===============
*/
extern qboolean charSet;
static void Upload32( unsigned *data,
GLenum format,
qboolean mipmap,
qboolean picmip,
qboolean isLightmap,
qboolean allowTC,
int *pformat,
word *pUploadWidth, word *pUploadHeight, bool bRectangle = false )
{
GLuint uiTarget = GL_TEXTURE_2D;
#ifndef HAVE_GLES
if ( bRectangle )
{
uiTarget = GL_TEXTURE_RECTANGLE_EXT;
}
#else
//Humm..
#endif
if (format == GL_RGBA)
{
int samples;
int i, c;
byte *scan;
float rMax = 0, gMax = 0, bMax = 0;
int width = *pUploadWidth;
int height = *pUploadHeight;
//
// perform optional picmip operation
//
if ( picmip ) {
for(i = 0; i < r_picmip->integer; i++) {
if ((width>16) && (height>16)) {
R_MipMap( (byte *)data, width, height );
width >>= 1;
height >>= 1;
if (width < 1) {
width = 1;
}
if (height < 1) {
height = 1;
}
}
}
}
//
// clamp to the current upper OpenGL limit
// scale both axis down equally so we don't have to
// deal with a half mip resampling
//
while ( width > glConfig.maxTextureSize || height > glConfig.maxTextureSize ) {
R_MipMap( (byte *)data, width, height );
width >>= 1;
height >>= 1;
}
//
// scan the texture for each channel's max values
// and verify if the alpha channel is being used or not
//
c = width*height;
scan = ((byte *)data);
samples = 3;
for ( i = 0; i < c; i++ )
{
if ( scan[i*4+0] > rMax )
{
rMax = scan[i*4+0];
}
if ( scan[i*4+1] > gMax )
{
gMax = scan[i*4+1];
}
if ( scan[i*4+2] > bMax )
{
bMax = scan[i*4+2];
}
if ( scan[i*4 + 3] != 255 )
{
samples = 4;
break;
}
}
// select proper internal format
if ( samples == 3 )
{
if ( glConfig.textureCompression == TC_S3TC && allowTC )
{
#ifdef HAVE_GLES
assert(0);
#else
*pformat = GL_RGB4_S3TC;
#endif
}
else if ( glConfig.textureCompression == TC_S3TC_DXT && allowTC )
{ // Compress purely color - no alpha
if ( r_texturebits->integer == 16 ) {
#ifdef HAVE_GLES
assert(0);
#else
*pformat = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; //this format cuts to 16 bit
#endif
}
else {//if we aren't using 16 bit then, use 32 bit compression
#ifdef HAVE_GLES
assert(0);
#else
*pformat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
#endif
}
}
else if ( isLightmap && r_texturebitslm->integer > 0 )
{
int lmBits = r_texturebitslm->integer & 0x30; // 16 or 32
// Allow different bit depth when we are a lightmap
if ( lmBits == 16 )
*pformat = GL_RGB5;
else
#ifdef HAVE_GLES
*pformat = GL_RGB;
#else
*pformat = GL_RGB8;
#endif
}
else if ( r_texturebits->integer == 16 )
{
*pformat = GL_RGB5;
}
else if ( r_texturebits->integer == 32 )
{
#ifdef HAVE_GLES
*pformat = GL_RGB;
#else
*pformat = GL_RGB8;
#endif
}
else
{
#ifdef HAVE_GLES
*pformat = GL_RGB;
#else
*pformat = 3;
#endif
}
}
else if ( samples == 4 )
{
if ( glConfig.textureCompression == TC_S3TC_DXT && allowTC)
{ // Compress both alpha and color
#ifdef HAVE_GLES
assert(0);
#else
*pformat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
#endif
}
else if ( r_texturebits->integer == 16 )
{
*pformat = GL_RGBA4;
}
else if ( r_texturebits->integer == 32 )
{
#ifdef HAVE_GLES
*pformat = GL_RGBA;
#else
*pformat = GL_RGBA8;
#endif
}
else
{
#ifdef HAVE_GLES
*pformat = GL_RGBA;
#else
*pformat = 4;
#endif
}
}
*pUploadWidth = width;
*pUploadHeight = height;
// copy or resample data as appropriate for first MIP level
#ifdef HAVE_GLES
#ifdef PANDORA
// SGX Workaround#2 : if width or height<=16 => make it bigger
#endif
//*pformat = GL_RGBA;
R_LightScaleTexture (data, width, height, mipmap?qfalse:qtrue );
glTexParameteri( GL_TEXTURE_2D, GL_GENERATE_MIPMAP, (mipmap)?GL_TRUE:GL_FALSE );
// and now, convert if needed and upload
// GLES doesn't do convertion itself, so we have to handle that
byte *temp;
switch ( *pformat ) {
case GL_RGB5:
temp = gles_convertRGB5((byte*)data, width, height);
qglTexImage2D (GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, temp);
R_Free(temp);
break;
case GL_RGBA4:
temp = gles_convertRGBA4((byte*)data, width, height);
qglTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, temp);
R_Free(temp);
break;
case 3:
case GL_RGB:
temp = gles_convertRGB((byte*)data, width, height);
qglTexImage2D (GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, temp);
R_Free(temp);
break;
case 1:
temp = gles_convertLuminance((byte*)data, width, height);
qglTexImage2D (GL_TEXTURE_2D, 0, GL_LUMINANCE, width, height, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, temp);
R_Free(temp);
break;
case 2:
temp = gles_convertLuminanceAlpha((byte*)data, width, height);
qglTexImage2D (GL_TEXTURE_2D, 0, GL_LUMINANCE_ALPHA, width, height, 0, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, temp);
R_Free(temp);
break;
default:
*pformat = GL_RGBA;
qglTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
}
// qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
// qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
#else
if (!mipmap)
{
qglTexImage2D( uiTarget, 0, *pformat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
goto done;
}
R_LightScaleTexture (data, width, height, (qboolean)!mipmap );
qglTexImage2D( uiTarget, 0, *pformat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
if (mipmap)
{
int miplevel;
miplevel = 0;
while (width > 1 || height > 1)
{
R_MipMap( (byte *)data, width, height );
width >>= 1;
height >>= 1;
if (width < 1)
width = 1;
if (height < 1)
height = 1;
miplevel++;
if ( r_colorMipLevels->integer )
{
R_BlendOverTexture( (byte *)data, width * height, mipBlendColors[miplevel] );
}
qglTexImage2D( uiTarget, miplevel, *pformat, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data );
}
}
#endif
}
else
{
}
done:
if (mipmap)
{
qglTexParameterf(uiTarget, GL_TEXTURE_MIN_FILTER, gl_filter_min);
qglTexParameterf(uiTarget, GL_TEXTURE_MAG_FILTER, gl_filter_max);
if(r_ext_texture_filter_anisotropic->integer>1 && glConfig.maxTextureFilterAnisotropy>0)
{
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, r_ext_texture_filter_anisotropic->value );
}
}
else
{
qglTexParameterf(uiTarget, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameterf(uiTarget, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
GL_CheckErrors();
}
static void GL_ResetBinds(void)
{
memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) );
if ( qglActiveTextureARB ) {
GL_SelectTexture( 1 );
qglBindTexture( GL_TEXTURE_2D, 0 );
GL_SelectTexture( 0 );
qglBindTexture( GL_TEXTURE_2D, 0 );
} else {
qglBindTexture( GL_TEXTURE_2D, 0 );
}
}
// special function used in conjunction with "devmapbsp"...
//
// (avoid using ri.xxxx stuff here in case running on dedicated)
//
void R_Images_DeleteLightMaps(void)
{
for (AllocatedImages_t::iterator itImage = AllocatedImages.begin(); itImage != AllocatedImages.end(); /* empty */)
{
image_t *pImage = (*itImage).second;
if (pImage->imgName[0] == '*' && strstr(pImage->imgName,"lightmap")) // loose check, but should be ok
{
R_Images_DeleteImageContents(pImage);
AllocatedImages.erase(itImage++);
}
else
{
++itImage;
}
}
GL_ResetBinds();
}
// special function currently only called by Dissolve code...
//
void R_Images_DeleteImage(image_t *pImage)
{
// Even though we supply the image handle, we need to get the corresponding iterator entry...
//
AllocatedImages_t::iterator itImage = AllocatedImages.find(pImage->imgName);
if (itImage != AllocatedImages.end())
{
R_Images_DeleteImageContents(pImage);
AllocatedImages.erase(itImage);
}
else
{
assert(0);
}
}
// called only at app startup, vid_restart, app-exit
//
void R_Images_Clear(void)
{
image_t *pImage;
// int iNumImages =
R_Images_StartIteration();
while ( (pImage = R_Images_GetNextIteration()) != NULL)
{
R_Images_DeleteImageContents(pImage);
}
AllocatedImages.clear();
giTextureBindNum = 1024;
}
void RE_RegisterImages_Info_f( void )
{
image_t *pImage = NULL;
int iImage = 0;
int iTexels = 0;
int iNumImages = R_Images_StartIteration();
while ( (pImage = R_Images_GetNextIteration()) != NULL)
{
ri.Printf( PRINT_ALL, "%d: (%4dx%4dy) \"%s\"",iImage, pImage->width, pImage->height, pImage->imgName);
ri.Printf( PRINT_DEVELOPER, S_COLOR_RED ", levused %d",pImage->iLastLevelUsedOn);
ri.Printf( PRINT_ALL, "\n");
iTexels += pImage->width * pImage->height;
iImage++;
}
ri.Printf( PRINT_ALL, "%d Images. %d (%.2fMB) texels total, (not including mipmaps)\n",iNumImages, iTexels, (float)iTexels / 1024.0f / 1024.0f);
ri.Printf( PRINT_DEVELOPER, S_COLOR_RED "RE_RegisterMedia_GetLevel(): %d",RE_RegisterMedia_GetLevel());
}
// currently, this just goes through all the images and dumps any not referenced on this level...
//
qboolean RE_RegisterImages_LevelLoadEnd(void)
{
ri.Printf( PRINT_DEVELOPER, S_COLOR_RED "RE_RegisterImages_LevelLoadEnd():\n");
// int iNumImages = AllocatedImages.size(); // more for curiosity, really.
qboolean imageDeleted = qtrue;
for (AllocatedImages_t::iterator itImage = AllocatedImages.begin(); itImage != AllocatedImages.end(); /* blank */)
{
qboolean bEraseOccured = qfalse;
image_t *pImage = (*itImage).second;
// don't un-register system shaders (*fog, *dlight, *white, *default), but DO de-register lightmaps ("*<mapname>/lightmap%d")
if (pImage->imgName[0] != '*' || strchr(pImage->imgName,'/'))
{
// image used on this level?
//
if ( pImage->iLastLevelUsedOn != RE_RegisterMedia_GetLevel() )
{
// nope, so dump it...
//
ri.Printf( PRINT_DEVELOPER, S_COLOR_RED "Dumping image \"%s\"\n",pImage->imgName);
R_Images_DeleteImageContents(pImage);
AllocatedImages.erase(itImage++);
bEraseOccured = qtrue;
imageDeleted = qtrue;
}
}
if ( !bEraseOccured )
{
++itImage;
}
}
// this check can be deleted AFAIC, it seems to be just a quake thing...
//
// iNumImages = R_Images_StartIteration();
// if (iNumImages > MAX_DRAWIMAGES)
// {
// ri.Printf( PRINT_ALL, S_COLOR_YELLOW "Level uses %d images, old limit was MAX_DRAWIMAGES (%d)\n", iNumImages, MAX_DRAWIMAGES);
// }
ri.Printf( PRINT_DEVELOPER, S_COLOR_RED "RE_RegisterImages_LevelLoadEnd(): Ok\n");
GL_ResetBinds();
return imageDeleted;
}
// returns image_t struct if we already have this, else NULL. No disk-open performed
// (important for creating default images).
//
// This is called by both R_FindImageFile and anything that creates default images...
//
static image_t *R_FindImageFile_NoLoad(const char *name, qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode )
{
if (!name) {
return NULL;
}
char *pName = GenerateImageMappingName(name);
//
// see if the image is already loaded
//
AllocatedImages_t::iterator itAllocatedImage = AllocatedImages.find(pName);
if (itAllocatedImage != AllocatedImages.end())
{
image_t *pImage = (*itAllocatedImage).second;
// the white image can be used with any set of parms, but other mismatches are errors...
//
if ( strcmp( pName, "*white" ) ) {
if ( pImage->mipmap != !!mipmap ) {
ri.Printf( PRINT_ALL, S_COLOR_YELLOW "WARNING: reused image %s with mixed mipmap parm\n", pName );
}
if ( pImage->allowPicmip != !!allowPicmip ) {
ri.Printf( PRINT_ALL, S_COLOR_YELLOW "WARNING: reused image %s with mixed allowPicmip parm\n", pName );
}
if ( pImage->wrapClampMode != glWrapClampMode ) {
ri.Printf( PRINT_ALL, S_COLOR_YELLOW "WARNING: reused image %s with mixed glWrapClampMode parm\n", pName );
}
}
pImage->iLastLevelUsedOn = RE_RegisterMedia_GetLevel();
return pImage;
}
return NULL;
}
/*
================
R_CreateImage
This is the only way any image_t are created
================
*/
image_t *R_CreateImage( const char *name, const byte *pic, int width, int height,
GLenum format, qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode, bool bRectangle )
{
image_t *image;
qboolean isLightmap = qfalse;
if (strlen(name) >= MAX_QPATH ) {
Com_Error (ERR_DROP, "R_CreateImage: \"%s\" is too long\n", name);
}
if(glConfig.clampToEdgeAvailable && glWrapClampMode == GL_CLAMP) {
glWrapClampMode = GL_CLAMP_TO_EDGE;
}
if (name[0] == '*')
{
const char *psLightMapNameSearchPos = strrchr(name,'/');
if ( psLightMapNameSearchPos && !strncmp( psLightMapNameSearchPos+1, "lightmap", 8 ) ) {
isLightmap = qtrue;
}
}
if ( (width&(width-1)) || (height&(height-1)) )
{
Com_Error( ERR_FATAL, "R_CreateImage: %s dimensions (%i x %i) not power of 2!\n",name,width,height);
}
image = R_FindImageFile_NoLoad(name, mipmap, allowPicmip, allowTC, glWrapClampMode );
if (image) {
return image;
}
image = (image_t*) R_Malloc( sizeof( image_t ), TAG_IMAGE_T, qtrue );
// memset(image,0,sizeof(*image)); // qtrue above does this
image->texnum = 1024 + giTextureBindNum++; // ++ is of course staggeringly important...
// record which map it was used on...
//
image->iLastLevelUsedOn = RE_RegisterMedia_GetLevel();
image->mipmap = !!mipmap;
image->allowPicmip = !!allowPicmip;
Q_strncpyz(image->imgName, name, sizeof(image->imgName));
image->width = width;
image->height = height;
image->wrapClampMode = glWrapClampMode;
if ( qglActiveTextureARB ) {
GL_SelectTexture( 0 );
}
GLuint uiTarget = GL_TEXTURE_2D;
#ifndef HAVE_GLES
if ( bRectangle )
{
qglDisable( uiTarget );
uiTarget = GL_TEXTURE_RECTANGLE_EXT;
qglEnable( uiTarget );
glWrapClampMode = GL_CLAMP_TO_EDGE; // default mode supported by rectangle.
qglBindTexture( uiTarget, image->texnum );
}
else
#endif
{
GL_Bind(image);
}
Upload32( (unsigned *)pic, format,
(qboolean)image->mipmap,
allowPicmip,
isLightmap,
allowTC,
&image->internalFormat,
&image->width,
&image->height, bRectangle );
qglTexParameterf( uiTarget, GL_TEXTURE_WRAP_S, glWrapClampMode );
qglTexParameterf( uiTarget, GL_TEXTURE_WRAP_T, glWrapClampMode );
qglBindTexture( uiTarget, 0 ); //jfm: i don't know why this is here, but it breaks lightmaps when there's only 1
glState.currenttextures[glState.currenttmu] = 0; //mark it not bound
const char *psNewName = GenerateImageMappingName(name);
Q_strncpyz(image->imgName, psNewName, sizeof(image->imgName));
AllocatedImages[ image->imgName ] = image;
if ( bRectangle )
{
qglDisable( uiTarget );
qglEnable( GL_TEXTURE_2D );
}
return image;
}
//rwwRMG - added
void R_CreateAutomapImage( const char *name, const byte *pic, int width, int height, qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode )
{
R_CreateImage(name, pic, width, height, GL_RGBA, mipmap, allowPicmip, allowTC, glWrapClampMode);
}
/*
===============
R_FindImageFile
Finds or loads the given image.
Returns NULL if it fails, not a default image.
==============
*/
image_t *R_FindImageFile( const char *name, qboolean mipmap, qboolean allowPicmip, qboolean allowTC, int glWrapClampMode ) {
image_t *image;
int width, height;
byte *pic;
if (!name || ri.Cvar_VariableIntegerValue( "dedicated" ) ) // stop ghoul2 horribleness as regards image loading from server
{
return NULL;
}
// need to do this here as well as in R_CreateImage, or R_FindImageFile_NoLoad() may complain about
// different clamp parms used...
//
if(glConfig.clampToEdgeAvailable && glWrapClampMode == GL_CLAMP) {
glWrapClampMode = GL_CLAMP_TO_EDGE;
}
image = R_FindImageFile_NoLoad(name, mipmap, allowPicmip, allowTC, glWrapClampMode );
if (image) {
return image;
}
//
// load the pic from disk
//
R_LoadImage( name, &pic, &width, &height );
if ( pic == NULL ) { // if we dont get a successful load
return NULL; // bail
}
// refuse to find any files not power of 2 dims...
//
if ( (width&(width-1)) || (height&(height-1)) )
{
ri.Printf( PRINT_ALL, "Refusing to load non-power-2-dims(%d,%d) pic \"%s\"...\n", width,height,name );
return NULL;
}
image = R_CreateImage( ( char * ) name, pic, width, height, GL_RGBA, mipmap, allowPicmip, allowTC, glWrapClampMode );
R_Free( pic );
return image;
}
/*
================
R_CreateDlightImage
================
*/
#define DLIGHT_SIZE 16
static void R_CreateDlightImage( void )
{
int width, height;
byte *pic;
R_LoadImage("gfx/2d/dlight", &pic, &width, &height);
if (pic)
{
tr.dlightImage = R_CreateImage("*dlight", pic, width, height, GL_RGBA, qfalse, qfalse, qfalse, GL_CLAMP );
R_Free(pic);
}
else
{ // if we dont get a successful load
int x,y;
byte data[DLIGHT_SIZE][DLIGHT_SIZE][4];
int b;
// make a centered inverse-square falloff blob for dynamic lighting
for (x=0 ; x<DLIGHT_SIZE ; x++) {
for (y=0 ; y<DLIGHT_SIZE ; y++) {
float d;
d = ( DLIGHT_SIZE/2 - 0.5f - x ) * ( DLIGHT_SIZE/2 - 0.5f - x ) +
( DLIGHT_SIZE/2 - 0.5f - y ) * ( DLIGHT_SIZE/2 - 0.5f - y );
b = 4000 / d;
if (b > 255) {
b = 255;
} else if ( b < 75 ) {
b = 0;
}
data[y][x][0] =
data[y][x][1] =
data[y][x][2] = b;
data[y][x][3] = 255;
}
}
tr.dlightImage = R_CreateImage("*dlight", (byte *)data, DLIGHT_SIZE, DLIGHT_SIZE, GL_RGBA, qfalse, qfalse, qfalse, GL_CLAMP );
}
}
/*
=================
R_InitFogTable
=================
*/
void R_InitFogTable( void ) {
int i;
float d;
float exp;
exp = 0.5;
for ( i = 0 ; i < FOG_TABLE_SIZE ; i++ ) {
d = pow ( (float)i/(FOG_TABLE_SIZE-1), exp );
tr.fogTable[i] = d;
}
}
/*
================
R_FogFactor
Returns a 0.0 to 1.0 fog density value
This is called for each texel of the fog texture on startup
and for each vertex of transparent shaders in fog dynamically
================
*/
float R_FogFactor( float s, float t ) {
float d;
s -= 1.0/512;
if ( s < 0 ) {
return 0;
}
if ( t < 1.0/32 ) {
return 0;
}
if ( t < 31.0/32 ) {
s *= (t - 1.0f/32.0f) / (30.0f/32.0f);
}
// we need to leave a lot of clamp range
s *= 8;
if ( s > 1.0 ) {
s = 1.0;
}
d = tr.fogTable[ (int)(s * (FOG_TABLE_SIZE-1)) ];
return d;
}
/*
================
R_CreateFogImage
================
*/
#define FOG_S 256
#define FOG_T 32
static void R_CreateFogImage( void ) {
int x,y;
byte *data;
float d;
float borderColor[4];
data = (unsigned char *)R_Malloc( FOG_S * FOG_T * 4, TAG_TEMP_WORKSPACE, qfalse );
// S is distance, T is depth
for (x=0 ; x<FOG_S ; x++) {
for (y=0 ; y<FOG_T ; y++) {
d = R_FogFactor( ( x + 0.5f ) / FOG_S, ( y + 0.5f ) / FOG_T );
data[(y*FOG_S+x)*4+0] =
data[(y*FOG_S+x)*4+1] =
data[(y*FOG_S+x)*4+2] = 255;
data[(y*FOG_S+x)*4+3] = 255*d;
}
}
// standard openGL clamping doesn't really do what we want -- it includes
// the border color at the edges. OpenGL 1.2 has clamp-to-edge, which does
// what we want.
tr.fogImage = R_CreateImage("*fog", (byte *)data, FOG_S, FOG_T, GL_RGBA, qfalse, qfalse, qfalse, GL_CLAMP );
R_Free( data );
borderColor[0] = 1.0;
borderColor[1] = 1.0;
borderColor[2] = 1.0;
borderColor[3] = 1;
#ifndef HAVE_GLES
qglTexParameterfv( GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor );
#endif
}
/*
==================
R_CreateDefaultImage
==================
*/
#define DEFAULT_SIZE 16
static void R_CreateDefaultImage( void ) {
int x;
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
// the default image will be a box, to allow you to see the mapping coordinates
memset( data, 32, sizeof( data ) );
for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) {
data[0][x][0] =
data[0][x][1] =
data[0][x][2] =
data[0][x][3] = 255;
data[x][0][0] =
data[x][0][1] =
data[x][0][2] =
data[x][0][3] = 255;
data[DEFAULT_SIZE-1][x][0] =
data[DEFAULT_SIZE-1][x][1] =
data[DEFAULT_SIZE-1][x][2] =
data[DEFAULT_SIZE-1][x][3] = 255;
data[x][DEFAULT_SIZE-1][0] =
data[x][DEFAULT_SIZE-1][1] =
data[x][DEFAULT_SIZE-1][2] =
data[x][DEFAULT_SIZE-1][3] = 255;
}
tr.defaultImage = R_CreateImage("*default", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, GL_RGBA, qtrue, qfalse, qfalse, GL_REPEAT );
}
/*
==================
R_CreateBuiltinImages
==================
*/
void R_CreateBuiltinImages( void ) {
int x,y;
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
R_CreateDefaultImage();
// we use a solid white image instead of disabling texturing
memset( data, 255, sizeof( data ) );
tr.whiteImage = R_CreateImage("*white", (byte *)data, 8, 8, GL_RGBA, qfalse, qfalse, qfalse, GL_REPEAT);
tr.screenImage = R_CreateImage("*screen", (byte *)data, 8, 8, GL_RGBA, qfalse, qfalse, qfalse, GL_REPEAT );
#ifndef HAVE_GLES
// Create the scene glow image. - AReis
tr.screenGlow = 1024 + giTextureBindNum++;
qglDisable( GL_TEXTURE_2D );
qglEnable( GL_TEXTURE_RECTANGLE_EXT );
qglBindTexture( GL_TEXTURE_RECTANGLE_EXT, tr.screenGlow );
qglTexImage2D( GL_TEXTURE_RECTANGLE_EXT, 0, GL_RGBA16, glConfig.vidWidth, glConfig.vidHeight, 0, GL_RGB, GL_FLOAT, 0 );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP );
// Create the scene image. - AReis
tr.sceneImage = 1024 + giTextureBindNum++;
qglBindTexture( GL_TEXTURE_RECTANGLE_EXT, tr.sceneImage );
qglTexImage2D( GL_TEXTURE_RECTANGLE_EXT, 0, GL_RGBA16, glConfig.vidWidth, glConfig.vidHeight, 0, GL_RGB, GL_FLOAT, 0 );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP );
// Create the minimized scene blur image.
if ( r_DynamicGlowWidth->integer > glConfig.vidWidth )
{
r_DynamicGlowWidth->integer = glConfig.vidWidth;
}
if ( r_DynamicGlowHeight->integer > glConfig.vidHeight )
{
r_DynamicGlowHeight->integer = glConfig.vidHeight;
}
tr.blurImage = 1024 + giTextureBindNum++;
qglBindTexture( GL_TEXTURE_RECTANGLE_EXT, tr.blurImage );
qglTexImage2D( GL_TEXTURE_RECTANGLE_EXT, 0, GL_RGBA16, r_DynamicGlowWidth->integer, r_DynamicGlowHeight->integer, 0, GL_RGB, GL_FLOAT, 0 );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_S, GL_CLAMP );
qglTexParameteri( GL_TEXTURE_RECTANGLE_EXT, GL_TEXTURE_WRAP_T, GL_CLAMP );
qglDisable( GL_TEXTURE_RECTANGLE_EXT );
qglEnable( GL_TEXTURE_2D );
// with overbright bits active, we need an image which is some fraction of full color,
// for default lightmaps, etc
for (x=0 ; x<DEFAULT_SIZE ; x++) {
for (y=0 ; y<DEFAULT_SIZE ; y++) {
data[y][x][0] =
data[y][x][1] =
data[y][x][2] = tr.identityLightByte;
data[y][x][3] = 255;
}
}
#endif // HAVE_GLES
tr.identityLightImage = R_CreateImage("*identityLight", (byte *)data, 8, 8, GL_RGBA, qfalse, qfalse, qfalse, GL_REPEAT);
for(x=0;x<NUM_SCRATCH_IMAGES;x++) {
// scratchimage is usually used for cinematic drawing
tr.scratchImage[x] = R_CreateImage(va("*scratch%d",x), (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, GL_RGBA, qfalse, qtrue, qfalse, GL_CLAMP);
}
R_CreateDlightImage();
R_CreateFogImage();
}
/*
===============
R_SetColorMappings
===============
*/
void R_SetColorMappings( void ) {
int i, j;
float g;
int inf;
int shift;
// setup the overbright lighting
tr.overbrightBits = r_overBrightBits->integer;
if ( !glConfig.deviceSupportsGamma ) {
tr.overbrightBits = 0; // need hardware gamma for overbright
}
// never overbright in windowed mode
if ( !glConfig.isFullscreen )
{
tr.overbrightBits = 0;
}
if ( tr.overbrightBits > 1 ) {
tr.overbrightBits = 1;
}
if ( tr.overbrightBits < 0 ) {
tr.overbrightBits = 0;
}
tr.identityLight = 1.0f / ( 1 << tr.overbrightBits );
tr.identityLightByte = 255 * tr.identityLight;
if ( r_intensity->value < 1.0f ) {
ri.Cvar_Set( "r_intensity", "1" );
}
if ( r_gamma->value < 0.5f ) {
ri.Cvar_Set( "r_gamma", "0.5" );
} else if ( r_gamma->value > 3.0f ) {
ri.Cvar_Set( "r_gamma", "3.0" );
}
g = r_gamma->value;
shift = tr.overbrightBits;
for ( i = 0; i < 256; i++ ) {
if ( g == 1 ) {
inf = i;
} else {
inf = 255 * pow ( i/255.0f, 1.0f / g ) + 0.5f;
}
inf <<= shift;
if (inf < 0) {
inf = 0;
}
if (inf > 255) {
inf = 255;
}
s_gammatable[i] = inf;
}
for (i=0 ; i<256 ; i++) {
j = i * r_intensity->value;
if (j > 255) {
j = 255;
}
s_intensitytable[i] = j;
}
if ( glConfig.deviceSupportsGamma )
{
ri.WIN_SetGamma( &glConfig, s_gammatable, s_gammatable, s_gammatable );
}
}
/*
===============
R_InitImages
===============
*/
void R_InitImages( void ) {
//memset(hashTable, 0, sizeof(hashTable)); // DO NOT DO THIS NOW (because of image cacheing) -ste.
// build brightness translation tables
R_SetColorMappings();
// create default texture and white texture
R_CreateBuiltinImages();
}
/*
===============
R_DeleteTextures
===============
*/
// (only gets called during vid_restart now (and app exit), not during map load)
//
void R_DeleteTextures( void ) {
R_Images_Clear();
GL_ResetBinds();
}