jkxr/Projects/Android/jni/OpenJK/codemp/rd-vanilla/tr_surface.cpp

1792 lines
51 KiB
C++

/*
===========================================================================
Copyright (C) 1999 - 2005, Id Software, Inc.
Copyright (C) 2000 - 2013, Raven Software, Inc.
Copyright (C) 2001 - 2013, Activision, Inc.
Copyright (C) 2013 - 2015, OpenJK contributors
This file is part of the OpenJK source code.
OpenJK is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
===========================================================================
*/
// tr_surf.c
#include "tr_local.h"
/*
THIS ENTIRE FILE IS BACK END
backEnd.currentEntity will be valid.
Tess_Begin has already been called for the surface's shader.
The modelview matrix will be set.
It is safe to actually issue drawing commands here if you don't want to
use the shader system.
*/
//============================================================================
/*
==============
RB_CheckOverflow
==============
*/
void RB_CheckOverflow( int verts, int indexes ) {
if (tess.numVertexes + verts < SHADER_MAX_VERTEXES
&& tess.numIndexes + indexes < SHADER_MAX_INDEXES) {
return;
}
RB_EndSurface();
if ( verts >= SHADER_MAX_VERTEXES ) {
Com_Error(ERR_DROP, "RB_CheckOverflow: verts > MAX (%d > %d)", verts, SHADER_MAX_VERTEXES );
}
if ( indexes >= SHADER_MAX_INDEXES ) {
Com_Error(ERR_DROP, "RB_CheckOverflow: indices > MAX (%d > %d)", indexes, SHADER_MAX_INDEXES );
}
RB_BeginSurface(tess.shader, tess.fogNum );
}
/*
==============
RB_AddQuadStampExt
==============
*/
void RB_AddQuadStampExt( vec3_t origin, vec3_t left, vec3_t up, byte *color, float s1, float t1, float s2, float t2 ) {
vec3_t normal;
int ndx;
RB_CHECKOVERFLOW( 4, 6 );
ndx = tess.numVertexes;
// triangle indexes for a simple quad
tess.indexes[ tess.numIndexes ] = ndx;
tess.indexes[ tess.numIndexes + 1 ] = ndx + 1;
tess.indexes[ tess.numIndexes + 2 ] = ndx + 3;
tess.indexes[ tess.numIndexes + 3 ] = ndx + 3;
tess.indexes[ tess.numIndexes + 4 ] = ndx + 1;
tess.indexes[ tess.numIndexes + 5 ] = ndx + 2;
tess.xyz[ndx][0] = origin[0] + left[0] + up[0];
tess.xyz[ndx][1] = origin[1] + left[1] + up[1];
tess.xyz[ndx][2] = origin[2] + left[2] + up[2];
tess.xyz[ndx+1][0] = origin[0] - left[0] + up[0];
tess.xyz[ndx+1][1] = origin[1] - left[1] + up[1];
tess.xyz[ndx+1][2] = origin[2] - left[2] + up[2];
tess.xyz[ndx+2][0] = origin[0] - left[0] - up[0];
tess.xyz[ndx+2][1] = origin[1] - left[1] - up[1];
tess.xyz[ndx+2][2] = origin[2] - left[2] - up[2];
tess.xyz[ndx+3][0] = origin[0] + left[0] - up[0];
tess.xyz[ndx+3][1] = origin[1] + left[1] - up[1];
tess.xyz[ndx+3][2] = origin[2] + left[2] - up[2];
// constant normal all the way around
VectorSubtract( vec3_origin, backEnd.viewParms.ori.axis[0], normal );
tess.normal[ndx][0] = tess.normal[ndx+1][0] = tess.normal[ndx+2][0] = tess.normal[ndx+3][0] = normal[0];
tess.normal[ndx][1] = tess.normal[ndx+1][1] = tess.normal[ndx+2][1] = tess.normal[ndx+3][1] = normal[1];
tess.normal[ndx][2] = tess.normal[ndx+1][2] = tess.normal[ndx+2][2] = tess.normal[ndx+3][2] = normal[2];
// standard square texture coordinates
tess.texCoords[ndx][0][0] = tess.texCoords[ndx][1][0] = s1;
tess.texCoords[ndx][0][1] = tess.texCoords[ndx][1][1] = t1;
tess.texCoords[ndx+1][0][0] = tess.texCoords[ndx+1][1][0] = s2;
tess.texCoords[ndx+1][0][1] = tess.texCoords[ndx+1][1][1] = t1;
tess.texCoords[ndx+2][0][0] = tess.texCoords[ndx+2][1][0] = s2;
tess.texCoords[ndx+2][0][1] = tess.texCoords[ndx+2][1][1] = t2;
tess.texCoords[ndx+3][0][0] = tess.texCoords[ndx+3][1][0] = s1;
tess.texCoords[ndx+3][0][1] = tess.texCoords[ndx+3][1][1] = t2;
// constant color all the way around
// should this be identity and let the shader specify from entity?
byteAlias_t *baSource = (byteAlias_t *)color, *baDest;
baDest = (byteAlias_t *)&tess.vertexColors[ndx + 0];
baDest->ui = baSource->ui;
baDest = (byteAlias_t *)&tess.vertexColors[ndx + 1];
baDest->ui = baSource->ui;
baDest = (byteAlias_t *)&tess.vertexColors[ndx + 2];
baDest->ui = baSource->ui;
baDest = (byteAlias_t *)&tess.vertexColors[ndx + 3];
baDest->ui = baSource->ui;
tess.numVertexes += 4;
tess.numIndexes += 6;
}
/*
==============
RB_AddQuadStamp
==============
*/
void RB_AddQuadStamp( vec3_t origin, vec3_t left, vec3_t up, byte *color ) {
RB_AddQuadStampExt( origin, left, up, color, 0, 0, 1, 1 );
}
/*
==============
RB_SurfaceSprite
==============
*/
static void RB_SurfaceSprite( void ) {
vec3_t left, up;
float radius;
// calculate the xyz locations for the four corners
radius = backEnd.currentEntity->e.radius;
if ( backEnd.currentEntity->e.rotation == 0 ) {
VectorScale( backEnd.viewParms.ori.axis[1], radius, left );
VectorScale( backEnd.viewParms.ori.axis[2], radius, up );
} else {
float s, c;
float ang;
ang = M_PI * backEnd.currentEntity->e.rotation / 180;
s = sin( ang );
c = cos( ang );
VectorScale( backEnd.viewParms.ori.axis[1], c * radius, left );
VectorMA( left, -s * radius, backEnd.viewParms.ori.axis[2], left );
VectorScale( backEnd.viewParms.ori.axis[2], c * radius, up );
VectorMA( up, s * radius, backEnd.viewParms.ori.axis[1], up );
}
if ( backEnd.viewParms.isMirror ) {
VectorSubtract( vec3_origin, left, left );
}
RB_AddQuadStamp( backEnd.currentEntity->e.origin, left, up, backEnd.currentEntity->e.shaderRGBA );
}
/*
=======================
RB_SurfaceOrientedQuad
=======================
*/
static void RB_SurfaceOrientedQuad( void )
{
vec3_t left, up;
float radius;
// calculate the xyz locations for the four corners
radius = backEnd.currentEntity->e.radius;
// MakeNormalVectors( backEnd.currentEntity->e.axis[0], left, up );
VectorCopy( backEnd.currentEntity->e.axis[1], left );
VectorCopy( backEnd.currentEntity->e.axis[2], up );
if ( backEnd.currentEntity->e.rotation == 0 )
{
VectorScale( left, radius, left );
VectorScale( up, radius, up );
}
else
{
vec3_t tempLeft, tempUp;
float s, c;
float ang;
ang = M_PI * backEnd.currentEntity->e.rotation / 180;
s = sin( ang );
c = cos( ang );
// Use a temp so we don't trash the values we'll need later
VectorScale( left, c * radius, tempLeft );
VectorMA( tempLeft, -s * radius, up, tempLeft );
VectorScale( up, c * radius, tempUp );
VectorMA( tempUp, s * radius, left, up ); // no need to use the temp anymore, so copy into the dest vector ( up )
// This was copied for safekeeping, we're done, so we can move it back to left
VectorCopy( tempLeft, left );
}
if ( backEnd.viewParms.isMirror )
{
VectorSubtract( vec3_origin, left, left );
}
RB_AddQuadStamp( backEnd.currentEntity->e.origin, left, up, backEnd.currentEntity->e.shaderRGBA );
}
/*
=============
RB_SurfacePolychain
=============
*/
void RB_SurfacePolychain( srfPoly_t *p ) {
int i;
int numv;
RB_CHECKOVERFLOW( p->numVerts, 3*(p->numVerts - 2) );
// fan triangles into the tess array
numv = tess.numVertexes;
for ( i = 0; i < p->numVerts; i++ ) {
VectorCopy( p->verts[i].xyz, tess.xyz[numv] );
tess.texCoords[numv][0][0] = p->verts[i].st[0];
tess.texCoords[numv][0][1] = p->verts[i].st[1];
byteAlias_t *baDest = (byteAlias_t *)&tess.vertexColors[numv++],
*baSource = (byteAlias_t *)&p->verts[ i ].modulate;
baDest->i = baSource->i;
}
// generate fan indexes into the tess array
for ( i = 0; i < p->numVerts-2; i++ ) {
tess.indexes[tess.numIndexes + 0] = tess.numVertexes;
tess.indexes[tess.numIndexes + 1] = tess.numVertexes + i + 1;
tess.indexes[tess.numIndexes + 2] = tess.numVertexes + i + 2;
tess.numIndexes += 3;
}
tess.numVertexes = numv;
}
inline static uint32_t ComputeFinalVertexColor( const byte *colors ) {
int k;
byteAlias_t result;
uint32_t r, g, b;
for ( k=0; k<4; k++ )
result.b[k] = colors[k];
if (tess.shader->lightmapIndex[0] != LIGHTMAP_BY_VERTEX )
return result.ui;
if ( r_fullbright->integer ) {
result.b[0] = 255;
result.b[1] = 255;
result.b[2] = 255;
return result.ui;
}
// an optimization could be added here to compute the style[0] (which is always the world normal light)
r = g = b = 0;
for( k=0; k<MAXLIGHTMAPS; k++ ) {
if ( tess.shader->styles[k] < LS_UNUSED ) {
byte *styleColor = styleColors[tess.shader->styles[k]];
r += (uint32_t)(*colors++) * (uint32_t)(*styleColor++);
g += (uint32_t)(*colors++) * (uint32_t)(*styleColor++);
b += (uint32_t)(*colors++) * (uint32_t)(*styleColor);
colors++;
}
else
break;
}
result.b[0] = Com_Clamp( 0, 255, r >> 8 );
result.b[1] = Com_Clamp( 0, 255, g >> 8 );
result.b[2] = Com_Clamp( 0, 255, b >> 8 );
return result.ui;
}
/*
=============
RB_SurfaceTriangles
=============
*/
void RB_SurfaceTriangles( srfTriangles_t *srf ) {
int i, k;
drawVert_t *dv;
float *xyz, *normal, *texCoords;
byte *color;
int dlightBits;
dlightBits = srf->dlightBits;
tess.dlightBits |= dlightBits;
RB_CHECKOVERFLOW( srf->numVerts, srf->numIndexes );
for ( i = 0 ; i < srf->numIndexes ; i += 3 ) {
tess.indexes[ tess.numIndexes + i + 0 ] = tess.numVertexes + srf->indexes[ i + 0 ];
tess.indexes[ tess.numIndexes + i + 1 ] = tess.numVertexes + srf->indexes[ i + 1 ];
tess.indexes[ tess.numIndexes + i + 2 ] = tess.numVertexes + srf->indexes[ i + 2 ];
}
tess.numIndexes += srf->numIndexes;
dv = srf->verts;
xyz = tess.xyz[ tess.numVertexes ];
normal = tess.normal[ tess.numVertexes ];
texCoords = tess.texCoords[ tess.numVertexes ][0];
color = tess.vertexColors[ tess.numVertexes ];
for ( i = 0 ; i < srf->numVerts ; i++, dv++)
{
xyz[0] = dv->xyz[0];
xyz[1] = dv->xyz[1];
xyz[2] = dv->xyz[2];
xyz += 4;
normal[0] = dv->normal[0];
normal[1] = dv->normal[1];
normal[2] = dv->normal[2];
normal += 4;
texCoords[0] = dv->st[0];
texCoords[1] = dv->st[1];
for(k=0;k<MAXLIGHTMAPS;k++)
{
if (tess.shader->lightmapIndex[k] >= 0)
{
texCoords[2+(k*2)] = dv->lightmap[k][0];
texCoords[2+(k*2)+1] = dv->lightmap[k][1];
}
else
{ // can't have an empty slot in the middle, so we are done
break;
}
}
texCoords += NUM_TEX_COORDS*2;
*(unsigned *)color = ComputeFinalVertexColor((byte *)dv->color);
color += 4;
}
for ( i = 0 ; i < srf->numVerts ; i++ ) {
tess.vertexDlightBits[ tess.numVertexes + i] = dlightBits;
}
tess.numVertexes += srf->numVerts;
}
/*
==============
RB_SurfaceBeam
==============
*/
static void RB_SurfaceBeam( void )
{
#define NUM_BEAM_SEGS 6
refEntity_t *e;
int i;
vec3_t perpvec;
vec3_t direction, normalized_direction;
vec3_t start_points[NUM_BEAM_SEGS], end_points[NUM_BEAM_SEGS];
vec3_t oldorigin, origin;
e = &backEnd.currentEntity->e;
oldorigin[0] = e->oldorigin[0];
oldorigin[1] = e->oldorigin[1];
oldorigin[2] = e->oldorigin[2];
origin[0] = e->origin[0];
origin[1] = e->origin[1];
origin[2] = e->origin[2];
normalized_direction[0] = direction[0] = oldorigin[0] - origin[0];
normalized_direction[1] = direction[1] = oldorigin[1] - origin[1];
normalized_direction[2] = direction[2] = oldorigin[2] - origin[2];
if ( VectorNormalize( normalized_direction ) == 0 )
return;
PerpendicularVector( perpvec, normalized_direction );
VectorScale( perpvec, 4, perpvec );
for ( i = 0; i < NUM_BEAM_SEGS ; i++ )
{
RotatePointAroundVector( start_points[i], normalized_direction, perpvec, (360.0/NUM_BEAM_SEGS)*i );
// VectorAdd( start_points[i], origin, start_points[i] );
VectorAdd( start_points[i], direction, end_points[i] );
}
GL_Bind( tr.whiteImage );
GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE );
qglColor3f( 1, 0, 0 );
qglBegin( GL_TRIANGLE_STRIP );
for ( i = 0; i <= NUM_BEAM_SEGS; i++ ) {
qglVertex3fv( start_points[ i % NUM_BEAM_SEGS] );
qglVertex3fv( end_points[ i % NUM_BEAM_SEGS] );
}
qglEnd();
}
//------------------
// DoSprite
//------------------
static void DoSprite( vec3_t origin, float radius, float rotation )
{
float s, c;
float ang;
vec3_t left, up;
ang = M_PI * rotation / 180.0f;
s = sin( ang );
c = cos( ang );
VectorScale( backEnd.viewParms.ori.axis[1], c * radius, left );
VectorMA( left, -s * radius, backEnd.viewParms.ori.axis[2], left );
VectorScale( backEnd.viewParms.ori.axis[2], c * radius, up );
VectorMA( up, s * radius, backEnd.viewParms.ori.axis[1], up );
if ( backEnd.viewParms.isMirror )
{
VectorSubtract( vec3_origin, left, left );
}
RB_AddQuadStamp( origin, left, up, backEnd.currentEntity->e.shaderRGBA );
}
//------------------
// RB_SurfaceSaber
//------------------
static void RB_SurfaceSaberGlow()
{
vec3_t end;
refEntity_t *e;
e = &backEnd.currentEntity->e;
// Render the glow part of the blade
for ( float i = e->saberLength; i > 0; i -= e->radius * 0.65f )
{
VectorMA( e->origin, i, e->axis[0], end );
DoSprite( end, e->radius, 0.0f );//Q_flrand(0.0f, 1.0f) * 360.0f );
e->radius += 0.017f;
}
// Big hilt sprite
// Please don't kill me Pat...I liked the hilt glow blob, but wanted a subtle pulse.:) Feel free to ditch it if you don't like it. --Jeff
// Please don't kill me Jeff... The pulse is good, but now I want the halo bigger if the saber is shorter... --Pat
DoSprite( e->origin, 5.5f + Q_flrand(0.0f, 1.0f) * 0.25f, 0.0f );//Q_flrand(0.0f, 1.0f) * 360.0f );
}
/*
==============
RB_SurfaceLine
==============
*/
//
// Values for a proper line render primitive...
// Width
// STScale (how many times to loop a texture)
// alpha
// RGB
//
// Values for proper line object...
// lifetime
// dscale
// startalpha, endalpha
// startRGB, endRGB
//
static void DoLine( const vec3_t start, const vec3_t end, const vec3_t up, float spanWidth )
{
float spanWidth2;
int vbase;
RB_CHECKOVERFLOW( 4, 6 );
vbase = tess.numVertexes;
spanWidth2 = -spanWidth;
VectorMA( start, spanWidth, up, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = 0;
tess.texCoords[tess.numVertexes][0][1] = 0;
tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];// * 0.25;//wtf??not sure why the code would be doing this
tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];// * 0.25;
tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];// * 0.25;
tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];// * 0.25;
tess.numVertexes++;
VectorMA( start, spanWidth2, up, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = 1;//backEnd.currentEntity->e.shaderTexCoord[0];
tess.texCoords[tess.numVertexes][0][1] = 0;
tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];
tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];
tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];
tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];
tess.numVertexes++;
VectorMA( end, spanWidth, up, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = 0;
tess.texCoords[tess.numVertexes][0][1] = 1;//backEnd.currentEntity->e.shaderTexCoord[1];
tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];
tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];
tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];
tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];
tess.numVertexes++;
VectorMA( end, spanWidth2, up, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = 1;//backEnd.currentEntity->e.shaderTexCoord[0];
tess.texCoords[tess.numVertexes][0][1] = 1;//backEnd.currentEntity->e.shaderTexCoord[1];
tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];
tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];
tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];
tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];
tess.numVertexes++;
tess.indexes[tess.numIndexes++] = vbase;
tess.indexes[tess.numIndexes++] = vbase + 1;
tess.indexes[tess.numIndexes++] = vbase + 2;
tess.indexes[tess.numIndexes++] = vbase + 2;
tess.indexes[tess.numIndexes++] = vbase + 1;
tess.indexes[tess.numIndexes++] = vbase + 3;
}
static void DoLine2( const vec3_t start, const vec3_t end, const vec3_t up, float spanWidth, float spanWidth2 )
{
int vbase;
RB_CHECKOVERFLOW( 4, 6 );
vbase = tess.numVertexes;
VectorMA( start, spanWidth, up, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = 0;
tess.texCoords[tess.numVertexes][0][1] = 0;
tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];// * 0.25;//wtf??not sure why the code would be doing this
tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];// * 0.25;
tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];// * 0.25;
tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];// * 0.25;
tess.numVertexes++;
VectorMA( start, -spanWidth, up, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = 1;//backEnd.currentEntity->e.shaderTexCoord[0];
tess.texCoords[tess.numVertexes][0][1] = 0;
tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];
tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];
tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];
tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];
tess.numVertexes++;
VectorMA( end, spanWidth2, up, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = 0;
tess.texCoords[tess.numVertexes][0][1] = 1;//backEnd.currentEntity->e.shaderTexCoord[1];
tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];
tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];
tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];
tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];
tess.numVertexes++;
VectorMA( end, -spanWidth2, up, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = 1;//backEnd.currentEntity->e.shaderTexCoord[0];
tess.texCoords[tess.numVertexes][0][1] = 1;//backEnd.currentEntity->e.shaderTexCoord[1];
tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];
tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];
tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];
tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];
tess.numVertexes++;
tess.indexes[tess.numIndexes++] = vbase;
tess.indexes[tess.numIndexes++] = vbase + 1;
tess.indexes[tess.numIndexes++] = vbase + 2;
tess.indexes[tess.numIndexes++] = vbase + 2;
tess.indexes[tess.numIndexes++] = vbase + 1;
tess.indexes[tess.numIndexes++] = vbase + 3;
}
static void DoLine_Oriented( const vec3_t start, const vec3_t end, const vec3_t up, float spanWidth )
{
float spanWidth2;
int vbase;
vbase = tess.numVertexes;
spanWidth2 = -spanWidth;
// FIXME: use quad stamp?
VectorMA( start, spanWidth, up, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = 0;
tess.texCoords[tess.numVertexes][0][1] = 0;
tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];// * 0.25;
tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];// * 0.25;
tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];// * 0.25;
tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];// * 0.25;
tess.numVertexes++;
VectorMA( start, spanWidth2, up, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = 1;
tess.texCoords[tess.numVertexes][0][1] = 0;
tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];
tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];
tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];
tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];// * 0.25;
tess.numVertexes++;
VectorMA( end, spanWidth, up, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = 0;
tess.texCoords[tess.numVertexes][0][1] = backEnd.currentEntity->e.data.line.stscale;
tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];
tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];
tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];
tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];// * 0.25;
tess.numVertexes++;
VectorMA( end, spanWidth2, up, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = 1;
tess.texCoords[tess.numVertexes][0][1] = backEnd.currentEntity->e.data.line.stscale;
tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];
tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];
tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];
tess.vertexColors[tess.numVertexes][3] = backEnd.currentEntity->e.shaderRGBA[3];// * 0.25;
tess.numVertexes++;
tess.indexes[tess.numIndexes++] = vbase;
tess.indexes[tess.numIndexes++] = vbase + 1;
tess.indexes[tess.numIndexes++] = vbase + 2;
tess.indexes[tess.numIndexes++] = vbase + 2;
tess.indexes[tess.numIndexes++] = vbase + 1;
tess.indexes[tess.numIndexes++] = vbase + 3;
}
//-----------------
// RB_SurfaceLine
//-----------------
static void RB_SurfaceLine( void )
{
refEntity_t *e;
vec3_t right;
vec3_t start, end;
vec3_t v1, v2;
e = &backEnd.currentEntity->e;
VectorCopy( e->oldorigin, end );
VectorCopy( e->origin, start );
// compute side vector
VectorSubtract( start, backEnd.viewParms.ori.origin, v1 );
VectorSubtract( end, backEnd.viewParms.ori.origin, v2 );
CrossProduct( v1, v2, right );
VectorNormalize( right );
DoLine( start, end, right, e->radius);
}
static void RB_SurfaceOrientedLine( void )
{
refEntity_t *e;
vec3_t right;
vec3_t start, end;
e = &backEnd.currentEntity->e;
VectorCopy( e->oldorigin, end );
VectorCopy( e->origin, start );
// compute side vector
VectorNormalize( e->axis[1] );
VectorCopy(e->axis[1], right);
DoLine_Oriented( start, end, right, e->data.line.width*0.5 );
}
/*
==============
RB_SurfaceCylinder
==============
*/
#define NUM_CYLINDER_SEGMENTS 32
// FIXME: use quad stamp?
static void DoCylinderPart(polyVert_t *verts)
{
int vbase;
int i;
RB_CHECKOVERFLOW( 4, 6 );
vbase = tess.numVertexes;
for (i=0; i<4; i++)
{
VectorCopy( verts->xyz, tess.xyz[tess.numVertexes] );
tess.texCoords[tess.numVertexes][0][0] = verts->st[0];
tess.texCoords[tess.numVertexes][0][1] = verts->st[1];
tess.vertexColors[tess.numVertexes][0] = verts->modulate[0];
tess.vertexColors[tess.numVertexes][1] = verts->modulate[1];
tess.vertexColors[tess.numVertexes][2] = verts->modulate[2];
tess.vertexColors[tess.numVertexes][3] = verts->modulate[3];
tess.numVertexes++;
verts++;
}
tess.indexes[tess.numIndexes++] = vbase;
tess.indexes[tess.numIndexes++] = vbase + 1;
tess.indexes[tess.numIndexes++] = vbase + 2;
tess.indexes[tess.numIndexes++] = vbase + 2;
tess.indexes[tess.numIndexes++] = vbase + 3;
tess.indexes[tess.numIndexes++] = vbase;
}
// e->origin holds the bottom point
// e->oldorigin holds the top point
// e->radius holds the radius
static void RB_SurfaceCylinder( void )
{
static polyVert_t lower_points[NUM_CYLINDER_SEGMENTS], upper_points[NUM_CYLINDER_SEGMENTS], verts[4];
vec3_t vr, vu, midpoint, v1;
float detail, length;
int i;
int segments;
refEntity_t *e;
int nextSegment;
e = &backEnd.currentEntity->e;
//Work out the detail level of this cylinder
VectorAdd( e->origin, e->oldorigin, midpoint );
VectorScale(midpoint, 0.5f, midpoint); // Average start and end
VectorSubtract( midpoint, backEnd.viewParms.ori.origin, midpoint );
length = VectorNormalize( midpoint );
// this doesn't need to be perfect....just a rough compensation for zoom level is enough
length *= (backEnd.viewParms.fovX / 90.0f);
detail = 1 - ((float) length / 1024 );
segments = NUM_CYLINDER_SEGMENTS * detail;
// 3 is the absolute minimum, but the pop between 3-8 is too noticeable
if ( segments < 8 )
{
segments = 8;
}
if ( segments > NUM_CYLINDER_SEGMENTS )
{
segments = NUM_CYLINDER_SEGMENTS;
}
//Get the direction vector
MakeNormalVectors( e->axis[0], vr, vu );
VectorScale( vu, e->radius, v1 ); // size1
VectorScale( vu, e->rotation, vu ); // size2
// Calculate the step around the cylinder
detail = 360.0f / (float)segments;
for ( i = 0; i < segments; i++ )
{
//Upper ring
RotatePointAroundVector( upper_points[i].xyz, e->axis[0], vu, detail * i );
VectorAdd( upper_points[i].xyz, e->origin, upper_points[i].xyz );
//Lower ring
RotatePointAroundVector( lower_points[i].xyz, e->axis[0], v1, detail * i );
VectorAdd( lower_points[i].xyz, e->oldorigin, lower_points[i].xyz );
}
// Calculate the texture coords so the texture can wrap around the whole cylinder
detail = 1.0f / (float)segments;
for ( i = 0; i < segments; i++ )
{
if ( i + 1 < segments )
nextSegment = i + 1;
else
nextSegment = 0;
VectorCopy( upper_points[i].xyz, verts[0].xyz );
verts[0].st[1] = 1.0f;
verts[0].st[0] = detail * i;
verts[0].modulate[0] = (byte)(e->shaderRGBA[0]);
verts[0].modulate[1] = (byte)(e->shaderRGBA[1]);
verts[0].modulate[2] = (byte)(e->shaderRGBA[2]);
verts[0].modulate[3] = (byte)(e->shaderRGBA[3]);
VectorCopy( lower_points[i].xyz, verts[1].xyz );
verts[1].st[1] = 0.0f;
verts[1].st[0] = detail * i;
verts[1].modulate[0] = (byte)(e->shaderRGBA[0]);
verts[1].modulate[1] = (byte)(e->shaderRGBA[1]);
verts[1].modulate[2] = (byte)(e->shaderRGBA[2]);
verts[1].modulate[3] = (byte)(e->shaderRGBA[3]);
VectorCopy( lower_points[nextSegment].xyz, verts[2].xyz );
verts[2].st[1] = 0.0f;
verts[2].st[0] = detail * ( i + 1 );
verts[2].modulate[0] = (byte)(e->shaderRGBA[0]);
verts[2].modulate[1] = (byte)(e->shaderRGBA[1]);
verts[2].modulate[2] = (byte)(e->shaderRGBA[2]);
verts[2].modulate[3] = (byte)(e->shaderRGBA[3]);
VectorCopy( upper_points[nextSegment].xyz, verts[3].xyz );
verts[3].st[1] = 1.0f;
verts[3].st[0] = detail * ( i + 1 );
verts[3].modulate[0] = (byte)(e->shaderRGBA[0]);
verts[3].modulate[1] = (byte)(e->shaderRGBA[1]);
verts[3].modulate[2] = (byte)(e->shaderRGBA[2]);
verts[3].modulate[3] = (byte)(e->shaderRGBA[3]);
DoCylinderPart(verts);
}
}
static vec3_t sh1, sh2;
static float f_count;
#define LIGHTNING_RECURSION_LEVEL 1 // was 2
// these functions are pretty crappy in terms of returning a nice range of rnd numbers, but it's probably good enough?
/*static int Q_rand( int *seed ) {
*seed = (69069 * *seed + 1);
return *seed;
}
static float Q_random( int *seed ) {
return ( Q_rand( seed ) & 0xffff ) / (float)0x10000;
}
static float Q_crandom( int *seed ) {
return 2.0F * ( Q_random( seed ) - 0.5f );
}
*/
// Up front, we create a random "shape", then apply that to each line segment...and then again to each of those segments...kind of like a fractal
//----------------------------------------------------------------------------
static void CreateShape()
//----------------------------------------------------------------------------
{
VectorSet( sh1, 0.66f + Q_flrand(-1.0f, 1.0f) * 0.1f, // fwd
0.07f + Q_flrand(-1.0f, 1.0f) * 0.025f,
0.07f + Q_flrand(-1.0f, 1.0f) * 0.025f );
// it seems to look best to have a point on one side of the ideal line, then the other point on the other side.
VectorSet( sh2, 0.33f + Q_flrand(-1.0f, 1.0f) * 0.1f, // fwd
-sh1[1] + Q_flrand(-1.0f, 1.0f) * 0.02f, // forcing point to be on the opposite side of the line -- right
-sh1[2] + Q_flrand(-1.0f, 1.0f) * 0.02f );// up
}
//----------------------------------------------------------------------------
static void ApplyShape( vec3_t start, vec3_t end, vec3_t right, float sradius, float eradius, int count )
//----------------------------------------------------------------------------
{
vec3_t point1, point2, fwd;
vec3_t rt, up;
float perc, dis;
if ( count < 1 )
{
// done recursing
DoLine2( start, end, right, sradius, eradius );
return;
}
CreateShape();
VectorSubtract( end, start, fwd );
dis = VectorNormalize( fwd ) * 0.7f;
MakeNormalVectors( fwd, rt, up );
perc = sh1[0];
VectorScale( start, perc, point1 );
VectorMA( point1, 1.0f - perc, end, point1 );
VectorMA( point1, dis * sh1[1], rt, point1 );
VectorMA( point1, dis * sh1[2], up, point1 );
// do a quick and dirty interpolation of the radius at that point
float rads1, rads2;
rads1 = sradius * 0.666f + eradius * 0.333f;
rads2 = sradius * 0.333f + eradius * 0.666f;
// recursion
ApplyShape( start, point1, right, sradius, rads1, count - 1 );
perc = sh2[0];
VectorScale( start, perc, point2 );
VectorMA( point2, 1.0f - perc, end, point2 );
VectorMA( point2, dis * sh2[1], rt, point2 );
VectorMA( point2, dis * sh2[2], up, point2 );
// recursion
ApplyShape( point2, point1, right, rads1, rads2, count - 1 );
ApplyShape( point2, end, right, rads2, eradius, count - 1 );
}
//----------------------------------------------------------------------------
static void DoBoltSeg( vec3_t start, vec3_t end, vec3_t right, float radius )
//----------------------------------------------------------------------------
{
refEntity_t *e;
vec3_t fwd, old;
vec3_t cur, off={10,10,10};
vec3_t rt, up;
vec3_t temp;
int i;
float dis, oldPerc = 0.0f, perc, oldRadius, newRadius;
e = &backEnd.currentEntity->e;
VectorSubtract( end, start, fwd );
dis = VectorNormalize( fwd );
MakeNormalVectors( fwd, rt, up );
VectorCopy( start, old );
oldRadius = newRadius = radius;
for ( i = 20; i <= dis; i+= 20 )
{
// because of our large step size, we may not actually draw to the end. In this case, fudge our percent so that we are basically complete
if ( i + 20 > dis )
{
perc = 1.0f;
}
else
{
// percentage of the amount of line completed
perc = (float)i / dis;
}
// create our level of deviation for this point
VectorScale( fwd, Q_crandom(&e->frame) * 3.0f, temp ); // move less in fwd direction, chaos also does not affect this
VectorMA( temp, Q_crandom(&e->frame) * 7.0f * e->axis[0][0], rt, temp ); // move more in direction perpendicular to line, angles is really the chaos
VectorMA( temp, Q_crandom(&e->frame) * 7.0f * e->axis[0][0], up, temp ); // move more in direction perpendicular to line
// track our total level of offset from the ideal line
VectorAdd( off, temp, off );
// Move from start to end, always adding our current level of offset from the ideal line
// Even though we are adding a random offset.....by nature, we always move from exactly start....to end
VectorAdd( start, off, cur );
VectorScale( cur, 1.0f - perc, cur );
VectorMA( cur, perc, end, cur );
if ( e->renderfx & RF_TAPERED )
{
// This does pretty close to perfect tapering since apply shape interpolates the old and new as it goes along.
// by using one minus the square, the radius stays fairly constant, then drops off quickly at the very point of the bolt
oldRadius = radius * (1.0f-oldPerc*oldPerc);
newRadius = radius * (1.0f-perc*perc);
}
// Apply the random shape to our line seg to give it some micro-detail-jaggy-coolness.
ApplyShape( cur, old, right, newRadius, oldRadius, LIGHTNING_RECURSION_LEVEL );
// randomly split off to create little tendrils, but don't do it too close to the end and especially if we are not even of the forked variety
if ( ( e->renderfx & RF_FORKED ) && f_count > 0 && Q_random(&e->frame) > 0.94f && radius * (1.0f - perc) > 0.2f )
{
vec3_t newDest;
f_count--;
// Pick a point somewhere between the current point and the final endpoint
VectorAdd( cur, e->oldorigin, newDest );
VectorScale( newDest, 0.5f, newDest );
// And then add some crazy offset
for ( int t = 0; t < 3; t++ )
{
newDest[t] += Q_crandom(&e->frame) * 80;
}
// we could branch off using OLD and NEWDEST, but that would allow multiple forks...whereas, we just want simpler brancing
DoBoltSeg( cur, newDest, right, newRadius );
}
// Current point along the line becomes our new old attach point
VectorCopy( cur, old );
oldPerc = perc;
}
}
//------------------------------------------
static void RB_SurfaceElectricity()
//------------------------------------------
{
refEntity_t *e;
vec3_t right, fwd;
vec3_t start, end;
vec3_t v1, v2;
float radius, perc = 1.0f, dis;
e = &backEnd.currentEntity->e;
radius = e->radius;
VectorCopy( e->origin, start );
VectorSubtract( e->oldorigin, start, fwd );
dis = VectorNormalize( fwd );
// see if we should grow from start to end
if ( e->renderfx & RF_GROW )
{
perc = 1.0f - ( e->axis[0][2]/*endTime*/ - tr.refdef.time ) / e->axis[0][1]/*duration*/;
if ( perc > 1.0f )
{
perc = 1.0f;
}
else if ( perc < 0.0f )
{
perc = 0.0f;
}
}
VectorMA( start, perc * dis, fwd, e->oldorigin );
VectorCopy( e->oldorigin, end );
// compute side vector
VectorSubtract( start, backEnd.viewParms.ori.origin, v1 );
VectorSubtract( end, backEnd.viewParms.ori.origin, v2 );
CrossProduct( v1, v2, right );
VectorNormalize( right );
DoBoltSeg( start, end, right, radius );
}
//================================================================================
/*
** VectorArrayNormalize
*
* The inputs to this routing seem to always be close to length = 1.0 (about 0.6 to 2.0)
* This means that we don't have to worry about zero length or enormously long vectors.
*/
static void VectorArrayNormalize(vec4_t *normals, unsigned int count)
{
// assert(count);
#if idppc
{
register float half = 0.5;
register float one = 1.0;
float *components = (float *)normals;
// Vanilla PPC code, but since PPC has a reciprocal square root estimate instruction,
// runs *much* faster than calling sqrt(). We'll use a single Newton-Raphson
// refinement step to get a little more precision. This seems to yeild results
// that are correct to 3 decimal places and usually correct to at least 4 (sometimes 5).
// (That is, for the given input range of about 0.6 to 2.0).
do {
float x, y, z;
float B, y0, y1;
x = components[0];
y = components[1];
z = components[2];
components += 4;
B = x*x + y*y + z*z;
#ifdef __GNUC__
asm("frsqrte %0,%1" : "=f" (y0) : "f" (B));
#else
y0 = __frsqrte(B);
#endif
y1 = y0 + half*y0*(one - B*y0*y0);
x = x * y1;
y = y * y1;
components[-4] = x;
z = z * y1;
components[-3] = y;
components[-2] = z;
} while(count--);
}
#else // No assembly version for this architecture, or C_ONLY defined
// given the input, it's safe to call VectorNormalizeFast
while (count--) {
VectorNormalizeFast(normals[0]);
normals++;
}
#endif
}
/*
** LerpMeshVertexes
*/
static void LerpMeshVertexes (md3Surface_t *surf, float backlerp)
{
short *oldXyz, *newXyz, *oldNormals, *newNormals;
float *outXyz, *outNormal;
float oldXyzScale, newXyzScale;
float oldNormalScale, newNormalScale;
int vertNum;
unsigned lat, lng;
int numVerts;
outXyz = tess.xyz[tess.numVertexes];
outNormal = tess.normal[tess.numVertexes];
newXyz = (short *)((byte *)surf + surf->ofsXyzNormals)
+ (backEnd.currentEntity->e.frame * surf->numVerts * 4);
newNormals = newXyz + 3;
newXyzScale = MD3_XYZ_SCALE * (1.0 - backlerp);
newNormalScale = 1.0 - backlerp;
numVerts = surf->numVerts;
if ( backlerp == 0 ) {
//
// just copy the vertexes
//
for (vertNum=0 ; vertNum < numVerts ; vertNum++,
newXyz += 4, newNormals += 4,
outXyz += 4, outNormal += 4)
{
outXyz[0] = newXyz[0] * newXyzScale;
outXyz[1] = newXyz[1] * newXyzScale;
outXyz[2] = newXyz[2] * newXyzScale;
lat = ( newNormals[0] >> 8 ) & 0xff;
lng = ( newNormals[0] & 0xff );
lat *= (FUNCTABLE_SIZE/256);
lng *= (FUNCTABLE_SIZE/256);
// decode X as cos( lat ) * sin( long )
// decode Y as sin( lat ) * sin( long )
// decode Z as cos( long )
outNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
outNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
outNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
}
} else {
//
// interpolate and copy the vertex and normal
//
oldXyz = (short *)((byte *)surf + surf->ofsXyzNormals)
+ (backEnd.currentEntity->e.oldframe * surf->numVerts * 4);
oldNormals = oldXyz + 3;
oldXyzScale = MD3_XYZ_SCALE * backlerp;
oldNormalScale = backlerp;
for (vertNum=0 ; vertNum < numVerts ; vertNum++,
oldXyz += 4, newXyz += 4, oldNormals += 4, newNormals += 4,
outXyz += 4, outNormal += 4)
{
vec3_t uncompressedOldNormal, uncompressedNewNormal;
// interpolate the xyz
outXyz[0] = oldXyz[0] * oldXyzScale + newXyz[0] * newXyzScale;
outXyz[1] = oldXyz[1] * oldXyzScale + newXyz[1] * newXyzScale;
outXyz[2] = oldXyz[2] * oldXyzScale + newXyz[2] * newXyzScale;
// FIXME: interpolate lat/long instead?
lat = ( newNormals[0] >> 8 ) & 0xff;
lng = ( newNormals[0] & 0xff );
lat *= 4;
lng *= 4;
uncompressedNewNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
uncompressedNewNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
uncompressedNewNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
lat = ( oldNormals[0] >> 8 ) & 0xff;
lng = ( oldNormals[0] & 0xff );
lat *= 4;
lng *= 4;
uncompressedOldNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
uncompressedOldNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
uncompressedOldNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
outNormal[0] = uncompressedOldNormal[0] * oldNormalScale + uncompressedNewNormal[0] * newNormalScale;
outNormal[1] = uncompressedOldNormal[1] * oldNormalScale + uncompressedNewNormal[1] * newNormalScale;
outNormal[2] = uncompressedOldNormal[2] * oldNormalScale + uncompressedNewNormal[2] * newNormalScale;
// VectorNormalize (outNormal);
}
VectorArrayNormalize((vec4_t *)tess.normal[tess.numVertexes], numVerts);
}
}
/*
=============
RB_SurfaceMesh
=============
*/
void RB_SurfaceMesh(md3Surface_t *surface) {
int j;
float backlerp;
int *triangles;
float *texCoords;
int indexes;
int Bob, Doug;
int numVerts;
if ( backEnd.currentEntity->e.oldframe == backEnd.currentEntity->e.frame ) {
backlerp = 0;
} else {
backlerp = backEnd.currentEntity->e.backlerp;
}
RB_CHECKOVERFLOW( surface->numVerts, surface->numTriangles*3 );
LerpMeshVertexes (surface, backlerp);
triangles = (int *) ((byte *)surface + surface->ofsTriangles);
indexes = surface->numTriangles * 3;
Bob = tess.numIndexes;
Doug = tess.numVertexes;
for (j = 0 ; j < indexes ; j++) {
tess.indexes[Bob + j] = Doug + triangles[j];
}
tess.numIndexes += indexes;
texCoords = (float *) ((byte *)surface + surface->ofsSt);
numVerts = surface->numVerts;
for ( j = 0; j < numVerts; j++ ) {
tess.texCoords[Doug + j][0][0] = texCoords[j*2+0];
tess.texCoords[Doug + j][0][1] = texCoords[j*2+1];
// FIXME: fill in lightmapST for completeness?
}
tess.numVertexes += surface->numVerts;
}
/*
==============
RB_SurfaceFace
==============
*/
void RB_SurfaceFace( srfSurfaceFace_t *surf ) {
int i, j, k;
unsigned int *indices;
glIndex_t *tessIndexes;
float *v;
float *normal;
int ndx;
int Bob;
int numPoints;
int dlightBits;
byteAlias_t ba;
RB_CHECKOVERFLOW( surf->numPoints, surf->numIndices );
dlightBits = surf->dlightBits;
tess.dlightBits |= dlightBits;
indices = ( unsigned * ) ( ( ( char * ) surf ) + surf->ofsIndices );
Bob = tess.numVertexes;
tessIndexes = tess.indexes + tess.numIndexes;
for ( i = surf->numIndices-1 ; i >= 0 ; i-- ) {
tessIndexes[i] = indices[i] + Bob;
}
tess.numIndexes += surf->numIndices;
v = surf->points[0];
ndx = tess.numVertexes;
numPoints = surf->numPoints;
//if ( tess.shader->needsNormal )
{
normal = surf->plane.normal;
for ( i = 0, ndx = tess.numVertexes; i < numPoints; i++, ndx++ ) {
VectorCopy( normal, tess.normal[ndx] );
}
}
for ( i = 0, v = surf->points[0], ndx = tess.numVertexes; i < numPoints; i++, v += VERTEXSIZE, ndx++ )
{
VectorCopy( v, tess.xyz[ndx]);
tess.texCoords[ndx][0][0] = v[3];
tess.texCoords[ndx][0][1] = v[4];
for(k=0;k<MAXLIGHTMAPS;k++)
{
if (tess.shader->lightmapIndex[k] >= 0)
{
tess.texCoords[ndx][k+1][0] = v[VERTEX_LM+(k*2)];
tess.texCoords[ndx][k+1][1] = v[VERTEX_LM+(k*2)+1];
}
else
{
break;
}
}
ba.ui = ComputeFinalVertexColor( (byte *)&v[VERTEX_COLOR] );
for ( j=0; j<4; j++ )
tess.vertexColors[ndx][j] = ba.b[j];
tess.vertexDlightBits[ndx] = dlightBits;
}
tess.numVertexes += surf->numPoints;
}
static float LodErrorForVolume( vec3_t local, float radius ) {
vec3_t world;
float d;
// never let it go negative
if ( r_lodCurveError->value < 0 ) {
return 0;
}
world[0] = local[0] * backEnd.ori.axis[0][0] + local[1] * backEnd.ori.axis[1][0] +
local[2] * backEnd.ori.axis[2][0] + backEnd.ori.origin[0];
world[1] = local[0] * backEnd.ori.axis[0][1] + local[1] * backEnd.ori.axis[1][1] +
local[2] * backEnd.ori.axis[2][1] + backEnd.ori.origin[1];
world[2] = local[0] * backEnd.ori.axis[0][2] + local[1] * backEnd.ori.axis[1][2] +
local[2] * backEnd.ori.axis[2][2] + backEnd.ori.origin[2];
VectorSubtract( world, backEnd.viewParms.ori.origin, world );
d = DotProduct( world, backEnd.viewParms.ori.axis[0] );
if ( d < 0 ) {
d = -d;
}
d -= radius;
if ( d < 1 ) {
d = 1;
}
return r_lodCurveError->value / d;
}
/*
=============
RB_SurfaceGrid
Just copy the grid of points and triangulate
=============
*/
void RB_SurfaceGrid( srfGridMesh_t *cv ) {
int i, j, k;
float *xyz;
float *texCoords;
float *normal;
unsigned char *color;
drawVert_t *dv;
int rows, irows, vrows;
int used;
int widthTable[MAX_GRID_SIZE];
int heightTable[MAX_GRID_SIZE];
float lodError;
int lodWidth, lodHeight;
int numVertexes;
int dlightBits;
int *vDlightBits;
dlightBits = cv->dlightBits;
tess.dlightBits |= dlightBits;
// determine the allowable discrepance
lodError = LodErrorForVolume( cv->lodOrigin, cv->lodRadius );
// determine which rows and columns of the subdivision
// we are actually going to use
widthTable[0] = 0;
lodWidth = 1;
for ( i = 1 ; i < cv->width-1 ; i++ ) {
if ( cv->widthLodError[i] <= lodError ) {
widthTable[lodWidth] = i;
lodWidth++;
}
}
widthTable[lodWidth] = cv->width-1;
lodWidth++;
heightTable[0] = 0;
lodHeight = 1;
for ( i = 1 ; i < cv->height-1 ; i++ ) {
if ( cv->heightLodError[i] <= lodError ) {
heightTable[lodHeight] = i;
lodHeight++;
}
}
heightTable[lodHeight] = cv->height-1;
lodHeight++;
// very large grids may have more points or indexes than can be fit
// in the tess structure, so we may have to issue it in multiple passes
used = 0;
rows = 0;
while ( used < lodHeight - 1 ) {
// see how many rows of both verts and indexes we can add without overflowing
do {
vrows = ( SHADER_MAX_VERTEXES - tess.numVertexes ) / lodWidth;
irows = ( SHADER_MAX_INDEXES - tess.numIndexes ) / ( lodWidth * 6 );
// if we don't have enough space for at least one strip, flush the buffer
if ( vrows < 2 || irows < 1 ) {
RB_EndSurface();
RB_BeginSurface(tess.shader, tess.fogNum );
} else {
break;
}
} while ( 1 );
rows = irows;
if ( vrows < irows + 1 ) {
rows = vrows - 1;
}
if ( used + rows > lodHeight ) {
rows = lodHeight - used;
}
numVertexes = tess.numVertexes;
xyz = tess.xyz[numVertexes];
normal = tess.normal[numVertexes];
texCoords = tess.texCoords[numVertexes][0];
color = ( unsigned char * ) &tess.vertexColors[numVertexes];
vDlightBits = &tess.vertexDlightBits[numVertexes];
for ( i = 0 ; i < rows ; i++ ) {
for ( j = 0 ; j < lodWidth ; j++ ) {
dv = cv->verts + heightTable[ used + i ] * cv->width
+ widthTable[ j ];
xyz[0] = dv->xyz[0];
xyz[1] = dv->xyz[1];
xyz[2] = dv->xyz[2];
xyz += 4;
texCoords[0] = dv->st[0];
texCoords[1] = dv->st[1];
for(k=0;k<MAXLIGHTMAPS;k++)
{
texCoords[2+(k*2)]= dv->lightmap[k][0];
texCoords[2+(k*2)+1]= dv->lightmap[k][1];
}
texCoords += NUM_TEX_COORDS*2;
//if ( needsNormal )
{
normal[0] = dv->normal[0];
normal[1] = dv->normal[1];
normal[2] = dv->normal[2];
}
normal += 4;
*(unsigned *)color = ComputeFinalVertexColor((byte *)dv->color);
color += 4;
*vDlightBits++ = dlightBits;
}
}
// add the indexes
{
int numIndexes;
int w, h;
h = rows - 1;
w = lodWidth - 1;
numIndexes = tess.numIndexes;
for (i = 0 ; i < h ; i++) {
for (j = 0 ; j < w ; j++) {
int v1, v2, v3, v4;
// vertex order to be reckognized as tristrips
v1 = numVertexes + i*lodWidth + j + 1;
v2 = v1 - 1;
v3 = v2 + lodWidth;
v4 = v3 + 1;
tess.indexes[numIndexes] = v2;
tess.indexes[numIndexes+1] = v3;
tess.indexes[numIndexes+2] = v1;
tess.indexes[numIndexes+3] = v1;
tess.indexes[numIndexes+4] = v3;
tess.indexes[numIndexes+5] = v4;
numIndexes += 6;
}
}
tess.numIndexes = numIndexes;
}
tess.numVertexes += rows * lodWidth;
used += rows - 1;
}
}
/*
===========================================================================
NULL MODEL
===========================================================================
*/
/*
===================
RB_SurfaceAxis
Draws x/y/z lines from the origin for orientation debugging
===================
*/
static void RB_SurfaceAxis( void ) {
GL_Bind( tr.whiteImage );
GL_State( GLS_DEFAULT );
qglLineWidth( 3 );
qglBegin( GL_LINES );
qglColor3f( 1,0,0 );
qglVertex3f( 0,0,0 );
qglVertex3f( 16,0,0 );
qglColor3f( 0,1,0 );
qglVertex3f( 0,0,0 );
qglVertex3f( 0,16,0 );
qglColor3f( 0,0,1 );
qglVertex3f( 0,0,0 );
qglVertex3f( 0,0,16 );
qglEnd();
qglLineWidth( 1 );
}
//===========================================================================
/*
====================
RB_SurfaceEntity
Entities that have a single procedurally generated surface
====================
*/
void RB_SurfaceEntity( surfaceType_t *surfType ) {
switch( backEnd.currentEntity->e.reType ) {
case RT_SPRITE:
RB_SurfaceSprite();
break;
case RT_ORIENTED_QUAD:
RB_SurfaceOrientedQuad();
break;
case RT_BEAM:
RB_SurfaceBeam();
break;
case RT_ELECTRICITY:
RB_SurfaceElectricity();
break;
case RT_LINE:
RB_SurfaceLine();
break;
case RT_ORIENTEDLINE:
RB_SurfaceOrientedLine();
break;
case RT_SABER_GLOW:
RB_SurfaceSaberGlow();
break;
case RT_CYLINDER:
RB_SurfaceCylinder();
break;
case RT_ENT_CHAIN:
{
int i, count, start;
static trRefEntity_t tempEnt = *backEnd.currentEntity;
//rww - if not static then currentEntity is garbage because
//this is a local. This was not static in sof2.. but I guess
//they never check ce.renderfx so it didn't show up.
start = backEnd.currentEntity->e.uRefEnt.uMini.miniStart;
count = backEnd.currentEntity->e.uRefEnt.uMini.miniCount;
assert(count > 0);
backEnd.currentEntity = &tempEnt;
assert(backEnd.currentEntity->e.renderfx >= 0);
for(i=0;i<count;i++)
{
memcpy(&backEnd.currentEntity->e, &backEnd.refdef.miniEntities[start+i], sizeof(backEnd.refdef.miniEntities[start+i]));
assert(backEnd.currentEntity->e.renderfx >= 0);
RB_SurfaceEntity(surfType);
}
}
break;
default:
RB_SurfaceAxis();
break;
}
return;
}
void RB_SurfaceBad( surfaceType_t *surfType ) {
ri.Printf( PRINT_ALL, "Bad surface tesselated.\n" );
}
/*
==================
RB_TestZFlare
This is called at surface tesselation time
==================
*/
static bool RB_TestZFlare( vec3_t point) {
int i;
vec4_t eye, clip, normalized, window;
// if the point is off the screen, don't bother adding it
// calculate screen coordinates and depth
R_TransformModelToClip( point, backEnd.ori.modelMatrix,
backEnd.viewParms.projectionMatrix, eye, clip );
// check to see if the point is completely off screen
for ( i = 0 ; i < 3 ; i++ ) {
if ( clip[i] >= clip[3] || clip[i] <= -clip[3] ) {
return qfalse;
}
}
R_TransformClipToWindow( clip, &backEnd.viewParms, normalized, window );
if ( window[0] < 0 || window[0] >= backEnd.viewParms.viewportWidth
|| window[1] < 0 || window[1] >= backEnd.viewParms.viewportHeight ) {
return qfalse; // shouldn't happen, since we check the clip[] above, except for FP rounding
}
//do test
float depth = 0.0f;
bool visible;
float screenZ;
// read back the z buffer contents
if ( r_flares->integer !=1 ) { //skipping the the z-test
return true;
}
// doing a readpixels is as good as doing a glFinish(), so
// don't bother with another sync
glState.finishCalled = qfalse;
qglReadPixels( backEnd.viewParms.viewportX + window[0],backEnd.viewParms.viewportY + window[1], 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, &depth );
screenZ = backEnd.viewParms.projectionMatrix[14] /
( ( 2*depth - 1 ) * backEnd.viewParms.projectionMatrix[11] - backEnd.viewParms.projectionMatrix[10] );
visible = ( -eye[2] - -screenZ ) < 24;
return visible;
}
void RB_SurfaceFlare( srfFlare_t *surf ) {
vec3_t left, up;
float radius;
byte color[4];
vec3_t dir;
vec3_t origin;
float d, dist;
if ( !r_flares->integer ) {
return;
}
if (!RB_TestZFlare( surf->origin ) ) {
return;
}
// calculate the xyz locations for the four corners
VectorMA( surf->origin, 3, surf->normal, origin );
float* snormal = surf->normal;
VectorSubtract( origin, backEnd.viewParms.ori.origin, dir );
dist = VectorNormalize( dir );
d = -DotProduct( dir, snormal );
if ( d < 0 ) {
d = -d;
}
// fade the intensity of the flare down as the
// light surface turns away from the viewer
color[0] = d * 255;
color[1] = d * 255;
color[2] = d * 255;
color[3] = 255; //only gets used if the shader has cgen exact_vertex!
radius = tess.shader->portalRange ? tess.shader->portalRange: 30;
if (dist < 512.0f)
{
radius = radius * dist / 512.0f;
}
if (radius<5.0f)
{
radius = 5.0f;
}
VectorScale( backEnd.viewParms.ori.axis[1], radius, left );
VectorScale( backEnd.viewParms.ori.axis[2], radius, up );
if ( backEnd.viewParms.isMirror ) {
VectorSubtract( vec3_origin, left, left );
}
RB_AddQuadStamp( origin, left, up, color );
}
void RB_SurfaceDisplayList( srfDisplayList_t *surf ) {
// all appropriate state must be set in RB_BeginSurface
// this isn't implemented yet...
qglCallList( surf->listNum );
}
void RB_SurfaceSkip( void *surf ) {
}
void (*rb_surfaceTable[SF_NUM_SURFACE_TYPES])( void *) = {
(void(*)(void*))RB_SurfaceBad, // SF_BAD,
(void(*)(void*))RB_SurfaceSkip, // SF_SKIP,
(void(*)(void*))RB_SurfaceFace, // SF_FACE,
(void(*)(void*))RB_SurfaceGrid, // SF_GRID,
(void(*)(void*))RB_SurfaceTriangles, // SF_TRIANGLES,
(void(*)(void*))RB_SurfacePolychain, // SF_POLY,
(void(*)(void*))RB_SurfaceMesh, // SF_MD3,
/*
Ghoul2 Insert Start
*/
(void(*)(void*))RB_SurfaceGhoul, // SF_MDX,
/*
Ghoul2 Insert End
*/
(void(*)(void*))RB_SurfaceFlare, // SF_FLARE,
(void(*)(void*))RB_SurfaceEntity, // SF_ENTITY
(void(*)(void*))RB_SurfaceDisplayList // SF_DISPLAY_LIST
};