jkxr/Projects/Android/jni/OpenJK/codemp/client/FxTemplate.cpp

2205 lines
51 KiB
C++

/*
===========================================================================
Copyright (C) 2000 - 2013, Raven Software, Inc.
Copyright (C) 2001 - 2013, Activision, Inc.
Copyright (C) 2013 - 2015, OpenJK contributors
This file is part of the OpenJK source code.
OpenJK is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
===========================================================================
*/
#include "client.h"
#include "FxScheduler.h"
//------------------------------------------------------
// CPrimitiveTemplate
// Set up our minimal default values
//
// Input:
// none
//
// Return:
// none
//------------------------------------------------------
CPrimitiveTemplate::CPrimitiveTemplate()
{
// We never start out as a copy or with a name
mCopy = false;
mName[0] = 0;
mCullRange = 0; // no distance culling
mFlags = mSpawnFlags = 0;
mElasticity.SetRange(0.1f, 0.1f);
mSoundVolume = -1;
mSoundRadius = -1;
mMatImpactFX = MATIMPACTFX_NONE;
mLife.SetRange( 50.0f, 50.0f );
mSpawnCount.SetRange( 1.0f, 1.0f );
mRadius.SetRange( 10.0f, 10.0f );
mHeight.SetRange( 10.0f, 10.0f );
mWindModifier.SetRange( 1.0f, 1.0f );
VectorSet( mMin, 0.0f, 0.0f, 0.0f );
VectorSet( mMax, 0.0f, 0.0f, 0.0f );
mRedStart.SetRange( 1.0f, 1.0f );
mGreenStart.SetRange( 1.0f, 1.0f );
mBlueStart.SetRange( 1.0f, 1.0f );
mRedEnd.SetRange( 1.0f, 1.0f );
mGreenEnd.SetRange( 1.0f, 1.0f );
mBlueEnd.SetRange( 1.0f, 1.0f );
mAlphaStart.SetRange( 1.0f, 1.0f );
mAlphaEnd.SetRange( 1.0f, 1.0f );
mSizeStart.SetRange( 1.0f, 1.0f );
mSizeEnd.SetRange( 1.0f, 1.0f );
mSize2Start.SetRange( 1.0f, 1.0f );
mSize2End.SetRange( 1.0f, 1.0f );
mLengthStart.SetRange( 1.0f, 1.0f );
mLengthEnd.SetRange( 1.0f, 1.0f );
mTexCoordS.SetRange( 1.0f, 1.0f );
mTexCoordT.SetRange( 1.0f, 1.0f );
mVariance.SetRange( 1.0f, 1.0f );
mDensity.SetRange( 10.0f, 10.0f );// default this high so it doesn't do bad things
}
//-----------------------------------------------------------
CPrimitiveTemplate &CPrimitiveTemplate::operator=(const CPrimitiveTemplate &that)
{
// I'm assuming that doing a memcpy wouldn't work here
// If you are looking at this and know a better way to do this, please tell me.
strcpy( mName, that.mName );
mType = that.mType;
mSpawnDelay = that.mSpawnDelay;
mSpawnCount = that.mSpawnCount;
mLife = that.mLife;
mCullRange = that.mCullRange;
mMediaHandles = that.mMediaHandles;
mImpactFxHandles = that.mImpactFxHandles;
mDeathFxHandles = that.mDeathFxHandles;
mEmitterFxHandles = that.mEmitterFxHandles;
mPlayFxHandles = that.mPlayFxHandles;
mFlags = that.mFlags;
mSpawnFlags = that.mSpawnFlags;
VectorCopy( that.mMin, mMin );
VectorCopy( that.mMax, mMax );
mOrigin1X = that.mOrigin1X;
mOrigin1Y = that.mOrigin1Y;
mOrigin1Z = that.mOrigin1Z;
mOrigin2X = that.mOrigin2X;
mOrigin2Y = that.mOrigin2Y;
mOrigin2Z = that.mOrigin2Z;
mRadius = that.mRadius;
mHeight = that.mHeight;
mWindModifier = that.mWindModifier;
mRotation = that.mRotation;
mRotationDelta = that.mRotationDelta;
mAngle1 = that.mAngle1;
mAngle2 = that.mAngle2;
mAngle3 = that.mAngle3;
mAngle1Delta = that.mAngle1Delta;
mAngle2Delta = that.mAngle2Delta;
mAngle3Delta = that.mAngle3Delta;
mVelX = that.mVelX;
mVelY = that.mVelY;
mVelZ = that.mVelZ;
mAccelX = that.mAccelX;
mAccelY = that.mAccelY;
mAccelZ = that.mAccelZ;
mGravity = that.mGravity;
mDensity = that.mDensity;
mVariance = that.mVariance;
mRedStart = that.mRedStart;
mGreenStart = that.mGreenStart;
mBlueStart = that.mBlueStart;
mRedEnd = that.mRedEnd;
mGreenEnd = that.mGreenEnd;
mBlueEnd = that.mBlueEnd;
mRGBParm = that.mRGBParm;
mAlphaStart = that.mAlphaStart;
mAlphaEnd = that.mAlphaEnd;
mAlphaParm = that.mAlphaParm;
mSizeStart = that.mSizeStart;
mSizeEnd = that.mSizeEnd;
mSizeParm = that.mSizeParm;
mSize2Start = that.mSize2Start;
mSize2End = that.mSize2End;
mSize2Parm = that.mSize2Parm;
mLengthStart = that.mLengthStart;
mLengthEnd = that.mLengthEnd;
mLengthParm = that.mLengthParm;
mTexCoordS = that.mTexCoordS;
mTexCoordT = that.mTexCoordT;
mElasticity = that.mElasticity;
mSoundRadius = that.mSoundRadius;
mSoundVolume = that.mSoundVolume;
return *this;
}
//------------------------------------------------------
// ParseFloat
// Removes up to two values from a passed in string and
// sets these values into the passed in min and max
// fields. if no max is present, min is copied into it.
//
// input:
// string that contains up to two float values
// min & max are used to return the parse values
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseFloat( const char *val, float *min, float *max )
{
// We don't allow passing in a null for either of the fields
if ( min == 0 || max == 0 )
{ // failue
return false;
}
// attempt to read out the values
int v = sscanf( val, "%f %f", min, max );
if ( v == 0 )
{ // nothing was there, failure
return false;
}
else if ( v == 1 )
{ // only one field entered, this is ok, but we should copy min into max
*max = *min;
}
return true;
}
//------------------------------------------------------
// ParseVector
// Removes up to six values from a passed in string and
// sets these values into the passed in min and max vector
// fields. if no max is present, min is copied into it.
//
// input:
// string that contains up to six float values
// min & max are used to return the parse values
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseVector( const char *val, vec3_t min, vec3_t max )
{
// we don't allow passing in a null
if ( min == 0 || max == 0 )
{
return false;
}
// attempt to read out our values
int v = sscanf( val, "%f %f %f %f %f %f", &min[0], &min[1], &min[2], &max[0], &max[1], &max[2] );
// Check for completeness
if ( v < 3 || v == 4 || v == 5 )
{ // not a complete value
return false;
}
else if ( v == 3 )
{ // only a min was entered, so copy the result into max
VectorCopy( min, max );
}
return true;
}
//------------------------------------------------------
// ParseGroupFlags
// Group flags are generic in nature, so we can easily
// use a generic function to parse them in, then the
// caller can shift them into the appropriate range.
//
// input:
// string that contains the flag strings
// *flags returns the set bit flags
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseGroupFlags( const char *val, int *flags )
{
// Must pass in a non-null pointer
if ( flags == 0 )
{
return false;
}
char flag[][32] = {"\0","\0","\0","0"};
bool ok = true;
// For a sub group, really you probably only have one or two flags set
int v = sscanf( val, "%s %s %s %s", flag[0], flag[1], flag[2], flag[3] );
// Clear out the flags field, then convert the flag string to an actual value ( use generic flags )
*flags = 0;
for ( int i = 0; i < 4; i++ )
{
if ( i + 1 > v )
{
return true;
}
if ( !Q_stricmp( flag[i], "linear" ) )
*flags |= FX_LINEAR;
else if ( !Q_stricmp( flag[i], "nonlinear" ) )
*flags |= FX_NONLINEAR;
else if ( !Q_stricmp( flag[i], "wave" ) )
*flags |= FX_WAVE;
else if ( !Q_stricmp( flag[i], "random" ) )
*flags |= FX_RAND;
else if ( !Q_stricmp( flag[i], "clamp" ) )
*flags |= FX_CLAMP;
else
{ // we have badness going on, but continue on in case there are any valid fields in here
ok = false;
}
}
return ok;
}
//------------------------------------------------------
// ParseMin
// Reads in a min bounding box field in vector format
//
// input:
// string that contains three float values
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseMin( const char *val )
{
vec3_t min;
if ( ParseVector( val, min, min ) == true )
{
VectorCopy( min, mMin );
// We assume that if a min is being set that we are using physics and a bounding box
mFlags |= (FX_USE_BBOX | FX_APPLY_PHYSICS);
return true;
}
return false;
}
//------------------------------------------------------
// ParseMax
// Reads in a max bounding box field in vector format
//
// input:
// string that contains three float values
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseMax( const char *val )
{
vec3_t max;
if ( ParseVector( val, max, max ) == true )
{
VectorCopy( max, mMax );
// We assume that if a max is being set that we are using physics and a bounding box
mFlags |= (FX_USE_BBOX | FX_APPLY_PHYSICS);
return true;
}
return false;
}
//------------------------------------------------------
// ParseLife
// Reads in a ranged life value
//
// input:
// string that contains a float range ( two vals )
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseLife( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mLife.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseDelay
// Reads in a ranged delay value
//
// input:
// string that contains a float range ( two vals )
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseDelay( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mSpawnDelay.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseCount
// Reads in a ranged count value
//
// input:
// string that contains a float range ( two vals )
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseCount( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mSpawnCount.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseElasticity
// Reads in a ranged elasticity value
//
// input:
// string that contains a float range ( two vals )
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseElasticity( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mElasticity.SetRange( min, max );
// We assume that if elasticity is set that we are using physics, but don't assume we are
// using a bounding box unless a min/max are explicitly set
mFlags |= FX_APPLY_PHYSICS;
return true;
}
return false;
}
//------------------------------------------------------
// ParseOrigin1
// Reads in an origin field in vector format
//
// input:
// string that contains three float values
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseOrigin1( const char *val )
{
vec3_t min, max;
if ( ParseVector( val, min, max ) == true )
{
mOrigin1X.SetRange( min[0], max[0] );
mOrigin1Y.SetRange( min[1], max[1] );
mOrigin1Z.SetRange( min[2], max[2] );
return true;
}
return false;
}
//------------------------------------------------------
// ParseOrigin2
// Reads in an origin field in vector format
//
// input:
// string that contains three float values
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseOrigin2( const char *val )
{
vec3_t min, max;
if ( ParseVector( val, min, max ) == true )
{
mOrigin2X.SetRange( min[0], max[0] );
mOrigin2Y.SetRange( min[1], max[1] );
mOrigin2Z.SetRange( min[2], max[2] );
return true;
}
return false;
}
//------------------------------------------------------
// ParseRadius
// Reads in a ranged radius value
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseRadius( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mRadius.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseHeight
// Reads in a ranged height value
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseHeight( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mHeight.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseWindModifier
// Reads in a ranged wind modifier value
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseWindModifier( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mWindModifier.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseRotation
// Reads in a ranged rotation value
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseRotation( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == qtrue )
{
mRotation.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseRotationDelta
// Reads in a ranged rotationDelta value
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseRotationDelta( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == qtrue )
{
mRotationDelta.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseAngle
// Reads in a ranged angle field in vector format
//
// input:
// string that contains one or two vectors
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseAngle( const char *val )
{
vec3_t min, max;
if ( ParseVector( val, min, max ) == true )
{
mAngle1.SetRange( min[0], max[0] );
mAngle2.SetRange( min[1], max[1] );
mAngle3.SetRange( min[2], max[2] );
return true;
}
return false;
}
//------------------------------------------------------
// ParseAngleDelta
// Reads in a ranged angleDelta field in vector format
//
// input:
// string that contains one or two vectors
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseAngleDelta( const char *val )
{
vec3_t min, max;
if ( ParseVector( val, min, max ) == true )
{
mAngle1Delta.SetRange( min[0], max[0] );
mAngle2Delta.SetRange( min[1], max[1] );
mAngle3Delta.SetRange( min[2], max[2] );
return true;
}
return false;
}
//------------------------------------------------------
// ParseVelocity
// Reads in a ranged velocity field in vector format
//
// input:
// string that contains one or two vectors
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseVelocity( const char *val )
{
vec3_t min, max;
if ( ParseVector( val, min, max ) == true )
{
mVelX.SetRange( min[0], max[0] );
mVelY.SetRange( min[1], max[1] );
mVelZ.SetRange( min[2], max[2] );
return true;
}
return false;
}
//------------------------------------------------------
// ParseFlags
// These are flags that are not specific to a group,
// rather, they are specific to the whole primitive.
//
// input:
// string that contains the flag strings
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseFlags( const char *val )
{
char flag[][32] = {"\0","\0","\0","\0","\0","\0","\0"};
bool ok = true;
// For a primitive, really you probably only have two or less flags set
int v = sscanf( val, "%s %s %s %s %s %s %s", flag[0], flag[1], flag[2], flag[3], flag[4], flag[5], flag[6] );
for ( int i = 0; i < 7; i++ )
{
if ( i + 1 > v )
{
return true;
}
if ( !Q_stricmp( flag[i], "useModel" ))
mFlags |= FX_ATTACHED_MODEL;
else if ( !Q_stricmp( flag[i], "useBBox" ))
mFlags |= FX_USE_BBOX;
else if ( !Q_stricmp( flag[i], "usePhysics" ))
mFlags |= FX_APPLY_PHYSICS;
else if ( !Q_stricmp( flag[i], "expensivePhysics" ))
mFlags |= FX_EXPENSIVE_PHYSICS;
//rww - begin g2 stuff
else if ( !Q_stricmp( flag[i], "ghoul2Collision" ))
mFlags |= (FX_GHOUL2_TRACE|FX_APPLY_PHYSICS|FX_EXPENSIVE_PHYSICS);
else if ( !Q_stricmp( flag[i], "ghoul2Decals" ))
mFlags |= FX_GHOUL2_DECALS;
//rww - end
else if ( !Q_stricmp( flag[i], "impactKills" ))
mFlags |= FX_KILL_ON_IMPACT;
else if ( !Q_stricmp( flag[i], "impactFx" ))
mFlags |= FX_IMPACT_RUNS_FX;
else if ( !Q_stricmp( flag[i], "deathFx" ))
mFlags |= FX_DEATH_RUNS_FX;
else if ( !Q_stricmp( flag[i], "useAlpha" ))
mFlags |= FX_USE_ALPHA;
else if ( !Q_stricmp( flag[i], "emitFx" ))
mFlags |= FX_EMIT_FX;
else if ( !Q_stricmp( flag[i], "depthHack" ))
mFlags |= FX_DEPTH_HACK;
else if ( !Q_stricmp( flag[i], "relative" ))
mFlags |= FX_RELATIVE;
else if ( !Q_stricmp( flag[i], "setShaderTime" ))
mFlags |= FX_SET_SHADER_TIME;
else if ( !Q_stricmp( flag[i], "paperPhysics" ))
mFlags |= FX_PAPER_PHYSICS; //warning! shared flag. You use this with a cylinder and you can expect evilness to ensue
else if ( !Q_stricmp( flag[i], "localizedFlash" ))
mFlags |= FX_LOCALIZED_FLASH; //warning! shared flag. You use this with a cylinder and you can expect evilness to ensue
else if ( !Q_stricmp( flag[i], "playerView" ))
mFlags |= FX_PLAYER_VIEW; //warning! shared flag. You use this with a cylinder and you can expect evilness to ensue
else
{ // we have badness going on, but continue on in case there are any valid fields in here
ok = false;
}
}
return ok;
}
//------------------------------------------------------
// ParseSpawnFlags
// These kinds of flags control how things spawn. They
// never get passed on to a primitive.
//
// input:
// string that contains the flag strings
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseSpawnFlags( const char *val )
{
char flag[][32] = {"\0","\0","\0","\0","\0","\0","\0"};
bool ok = true;
// For a primitive, really you probably only have two or less flags set
int v = sscanf( val, "%s %s %s %s %s %s %s", flag[0], flag[1], flag[2], flag[3], flag[4], flag[5], flag[6] );
for ( int i = 0; i < 7; i++ )
{
if ( i + 1 > v )
{
return true;
}
if ( !Q_stricmp( flag[i], "org2fromTrace" ) )
mSpawnFlags |= FX_ORG2_FROM_TRACE;
else if ( !Q_stricmp( flag[i], "traceImpactFx" ) )
mSpawnFlags |= FX_TRACE_IMPACT_FX;
else if ( !Q_stricmp( flag[i], "org2isOffset" ) )
mSpawnFlags |= FX_ORG2_IS_OFFSET;
else if ( !Q_stricmp( flag[i], "cheapOrgCalc" ) )
mSpawnFlags |= FX_CHEAP_ORG_CALC;
else if ( !Q_stricmp( flag[i], "cheapOrg2Calc" ) )
mSpawnFlags |= FX_CHEAP_ORG2_CALC;
else if ( !Q_stricmp( flag[i], "absoluteVel" ) )
mSpawnFlags |= FX_VEL_IS_ABSOLUTE;
else if ( !Q_stricmp( flag[i], "absoluteAccel" ) )
mSpawnFlags |= FX_ACCEL_IS_ABSOLUTE;
else if ( !Q_stricmp( flag[i], "orgOnSphere" ) ) // sphere/ellipsoid
mSpawnFlags |= FX_ORG_ON_SPHERE;
else if ( !Q_stricmp( flag[i], "orgOnCylinder" ) ) // cylinder/disk
mSpawnFlags |= FX_ORG_ON_CYLINDER;
else if ( !Q_stricmp( flag[i], "axisFromSphere" ) )
mSpawnFlags |= FX_AXIS_FROM_SPHERE;
else if ( !Q_stricmp( flag[i], "randrotaroundfwd" ) )
mSpawnFlags |= FX_RAND_ROT_AROUND_FWD;
else if ( !Q_stricmp( flag[i], "evenDistribution" ) )
mSpawnFlags |= FX_EVEN_DISTRIBUTION;
else if ( !Q_stricmp( flag[i], "rgbComponentInterpolation" ) )
mSpawnFlags |= FX_RGB_COMPONENT_INTERP;
else if ( !Q_stricmp( flag[i], "affectedByWind" ) )
mSpawnFlags |= FX_AFFECTED_BY_WIND;
else
{ // we have badness going on, but continue on in case there are any valid fields in here
ok = false;
}
}
return ok;
}
bool CPrimitiveTemplate::ParseMaterialImpact(const char *val)
{
if (!Q_stricmp(val, "shellsound"))
{
mMatImpactFX = MATIMPACTFX_SHELLSOUND;
}
else
{
mMatImpactFX = MATIMPACTFX_NONE;
theFxHelper.Print( "CPrimitiveTemplate::ParseMaterialImpact -- unknown materialImpact type!\n" );
return false;
}
return true;
}
//------------------------------------------------------
// ParseAcceleration
// Reads in a ranged acceleration field in vector format
//
// input:
// string that contains one or two vectors
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseAcceleration( const char *val )
{
vec3_t min, max;
if ( ParseVector( val, min, max ) == true )
{
mAccelX.SetRange( min[0], max[0] );
mAccelY.SetRange( min[1], max[1] );
mAccelZ.SetRange( min[2], max[2] );
return true;
}
return false;
}
//------------------------------------------------------
// ParseGravity
// Reads in a ranged gravity value
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseGravity( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mGravity.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseDensity
// Reads in a ranged density value. Density is only
// for emitters that are calling effects...it basically
// specifies how often the emitter should emit fx.
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseDensity( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mDensity.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseVariance
// Reads in a ranged variance value. Variance is only
// valid for emitters that are calling effects...
// it basically determines the amount of slop in the
// density calculations
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseVariance( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mVariance.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseRGBStart
// Reads in a ranged rgbStart field in vector format
//
// input:
// string that contains one or two vectors
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseRGBStart( const char *val )
{
vec3_t min, max;
if ( ParseVector( val, min, max ) == true )
{
mRedStart.SetRange( min[0], max[0] );
mGreenStart.SetRange( min[1], max[1] );
mBlueStart.SetRange( min[2], max[2] );
return true;
}
return false;
}
//------------------------------------------------------
// ParseRGBEnd
// Reads in a ranged rgbEnd field in vector format
//
// input:
// string that contains one or two vectors
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseRGBEnd( const char *val )
{
vec3_t min, max;
if ( ParseVector( val, min, max ) == true )
{
mRedEnd.SetRange( min[0], max[0] );
mGreenEnd.SetRange( min[1], max[1] );
mBlueEnd.SetRange( min[2], max[2] );
return true;
}
return false;
}
//------------------------------------------------------
// ParseRGBParm
// Reads in a ranged rgbParm field in float format
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseRGBParm( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mRGBParm.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseRGBFlags
// Reads in a set of rgbFlags in string format
//
// input:
// string that contains the flag strings
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseRGBFlags( const char *val )
{
int flags;
if ( ParseGroupFlags( val, &flags ) == true )
{
// Convert our generic flag values into type specific ones
mFlags |= ( flags << FX_RGB_SHIFT );
return true;
}
return false;
}
//------------------------------------------------------
// ParseAlphaStart
// Reads in a ranged alphaStart field in float format
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseAlphaStart( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mAlphaStart.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseAlphaEnd
// Reads in a ranged alphaEnd field in float format
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseAlphaEnd( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mAlphaEnd.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseAlphaParm
// Reads in a ranged alphaParm field in float format
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseAlphaParm( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mAlphaParm.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseAlphaFlags
// Reads in a set of alphaFlags in string format
//
// input:
// string that contains the flag strings
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseAlphaFlags( const char *val )
{
int flags;
if ( ParseGroupFlags( val, &flags ) == true )
{
// Convert our generic flag values into type specific ones
mFlags |= ( flags << FX_ALPHA_SHIFT );
return true;
}
return false;
}
//------------------------------------------------------
// ParseSizeStart
// Reads in a ranged sizeStart field in float format
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseSizeStart( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mSizeStart.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseSizeEnd
// Reads in a ranged sizeEnd field in float format
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseSizeEnd( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mSizeEnd.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseSizeParm
// Reads in a ranged sizeParm field in float format
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseSizeParm( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mSizeParm.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseSizeFlags
// Reads in a set of sizeFlags in string format
//
// input:
// string that contains the flag strings
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseSizeFlags( const char *val )
{
int flags;
if ( ParseGroupFlags( val, &flags ) == true )
{
// Convert our generic flag values into type specific ones
mFlags |= ( flags << FX_SIZE_SHIFT );
return true;
}
return false;
}
//------------------------------------------------------
// ParseSize2Start
// Reads in a ranged Size2Start field in float format
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseSize2Start( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mSize2Start.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseSize2End
// Reads in a ranged Size2End field in float format
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseSize2End( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mSize2End.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseSize2Parm
// Reads in a ranged Size2Parm field in float format
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseSize2Parm( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mSize2Parm.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseSize2Flags
// Reads in a set of Size2Flags in string format
//
// input:
// string that contains the flag strings
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseSize2Flags( const char *val )
{
int flags;
if ( ParseGroupFlags( val, &flags ) == true )
{
// Convert our generic flag values into type specific ones
mFlags |= ( flags << FX_SIZE2_SHIFT );
return true;
}
return false;
}
//------------------------------------------------------
// ParseLengthStart
// Reads in a ranged lengthStart field in float format
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseLengthStart( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mLengthStart.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseLengthEnd
// Reads in a ranged lengthEnd field in float format
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseLengthEnd( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mLengthEnd.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseLengthParm
// Reads in a ranged lengthParm field in float format
//
// input:
// string that contains one or two floats
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseLengthParm( const char *val )
{
float min, max;
if ( ParseFloat( val, &min, &max ) == true )
{
mLengthParm.SetRange( min, max );
return true;
}
return false;
}
//------------------------------------------------------
// ParseLengthFlags
// Reads in a set of lengthFlags in string format
//
// input:
// string that contains the flag strings
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseLengthFlags( const char *val )
{
int flags;
if ( ParseGroupFlags( val, &flags ) == true )
{
// Convert our generic flag values into type specific ones
mFlags |= ( flags << FX_LENGTH_SHIFT );
return true;
}
return false;
}
//------------------------------------------------------
// ParseShaders
// Reads in a group of shaders and registers them
//
// input:
// Parse group that contains the list of shaders to parse
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseShaders( CGPValue *grp )
{
const char *val;
int handle;
if ( grp->IsList() )
{
// If we are a list we have to do separate processing
CGPObject *list = grp->GetList();
while ( list )
{
// name is actually the value contained in the list
val = list->GetName();
handle = theFxHelper.RegisterShader( val );
mMediaHandles.AddHandle( handle );
list = (CGPValue *)list->GetNext();
}
}
else
{
// Let's get a value
val = grp->GetTopValue();
if ( val )
{
handle = theFxHelper.RegisterShader( val );
mMediaHandles.AddHandle( handle );
}
else
{
// empty "list"
theFxHelper.Print( "CPrimitiveTemplate::ParseShaders called with an empty list!\n" );
return false;
}
}
return true;
}
//------------------------------------------------------
// ParseSounds
// Reads in a group of sounds and registers them
//
// input:
// Parse group that contains the list of sounds to parse
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseSounds( CGPValue *grp )
{
const char *val;
int handle;
if ( grp->IsList() )
{
// If we are a list we have to do separate processing
CGPObject *list = grp->GetList();
while ( list )
{
// name is actually the value contained in the list
val = list->GetName();
handle = theFxHelper.RegisterSound( val );
mMediaHandles.AddHandle( handle );
list = (CGPValue *)list->GetNext();
}
}
else
{
// Let's get a value
val = grp->GetTopValue();
if ( val )
{
handle = theFxHelper.RegisterSound( val );
mMediaHandles.AddHandle( handle );
}
else
{
// empty "list"
theFxHelper.Print( "CPrimitiveTemplate::ParseSounds called with an empty list!\n" );
return false;
}
}
return true;
}
//------------------------------------------------------
// ParseModels
// Reads in a group of models and registers them
//
// input:
// Parse group that contains the list of models to parse
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseModels( CGPValue *grp )
{
const char *val;
int handle;
if ( grp->IsList() )
{
// If we are a list we have to do separate processing
CGPObject *list = grp->GetList();
while ( list )
{
// name is actually the value contained in the list
val = list->GetName();
handle = theFxHelper.RegisterModel( val );
mMediaHandles.AddHandle( handle );
list = (CGPValue *)list->GetNext();
}
}
else
{
// Let's get a value
val = grp->GetTopValue();
if ( val )
{
handle = theFxHelper.RegisterModel( val );
mMediaHandles.AddHandle( handle );
}
else
{
// empty "list"
theFxHelper.Print( "CPrimitiveTemplate::ParseModels called with an empty list!\n" );
return false;
}
}
mFlags |= FX_ATTACHED_MODEL;
return true;
}
//------------------------------------------------------
// ParseImpactFxStrings
// Reads in a group of fx file names and registers them
//
// input:
// Parse group that contains the list of fx to parse
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseImpactFxStrings( CGPValue *grp )
{
const char *val;
int handle;
if ( grp->IsList() )
{
// If we are a list we have to do separate processing
CGPObject *list = grp->GetList();
while ( list )
{
// name is actually the value contained in the list
val = list->GetName();
handle = theFxScheduler.RegisterEffect( val );
if ( handle )
{
mImpactFxHandles.AddHandle( handle );
}
else
{
theFxHelper.Print( "FxTemplate: Impact effect file not found.\n" );
return false;
}
list = (CGPValue *)list->GetNext();
}
}
else
{
// Let's get a value
val = grp->GetTopValue();
if ( val )
{
handle = theFxScheduler.RegisterEffect( val );
if ( handle )
{
mImpactFxHandles.AddHandle( handle );
}
else
{
theFxHelper.Print( "FxTemplate: Impact effect file not found.\n" );
return false;
}
}
else
{
// empty "list"
theFxHelper.Print( "CPrimitiveTemplate::ParseImpactFxStrings called with an empty list!\n" );
return false;
}
}
mFlags |= FX_IMPACT_RUNS_FX | FX_APPLY_PHYSICS;
return true;
}
//------------------------------------------------------
// ParseDeathFxStrings
// Reads in a group of fx file names and registers them
//
// input:
// Parse group that contains the list of fx to parse
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseDeathFxStrings( CGPValue *grp )
{
const char *val;
int handle;
if ( grp->IsList() )
{
// If we are a list we have to do separate processing
CGPObject *list = grp->GetList();
while ( list )
{
// name is actually the value contained in the list
val = list->GetName();
handle = theFxScheduler.RegisterEffect( val );
if ( handle )
{
mDeathFxHandles.AddHandle( handle );
}
else
{
theFxHelper.Print( "FxTemplate: Death effect file not found.\n" );
return false;
}
list = (CGPValue *)list->GetNext();
}
}
else
{
// Let's get a value
val = grp->GetTopValue();
if ( val )
{
handle = theFxScheduler.RegisterEffect( val );
if ( handle )
{
mDeathFxHandles.AddHandle( handle );
}
else
{
theFxHelper.Print( "FxTemplate: Death effect file not found.\n" );
return false;
}
}
else
{
// empty "list"
theFxHelper.Print( "CPrimitiveTemplate::ParseDeathFxStrings called with an empty list!\n" );
return false;
}
}
mFlags |= FX_DEATH_RUNS_FX;
return true;
}
//------------------------------------------------------
// ParseEmitterFxStrings
// Reads in a group of fx file names and registers them
//
// input:
// Parse group that contains the list of fx to parse
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseEmitterFxStrings( CGPValue *grp )
{
const char *val;
int handle;
if ( grp->IsList() )
{
// If we are a list we have to do separate processing
CGPObject *list = grp->GetList();
while ( list )
{
// name is actually the value contained in the list
val = list->GetName();
handle = theFxScheduler.RegisterEffect( val );
if ( handle )
{
mEmitterFxHandles.AddHandle( handle );
}
else
{
theFxHelper.Print( "FxTemplate: Emitter effect file not found.\n" );
return false;
}
list = (CGPValue *)list->GetNext();
}
}
else
{
// Let's get a value
val = grp->GetTopValue();
if ( val )
{
handle = theFxScheduler.RegisterEffect( val );
if ( handle )
{
mEmitterFxHandles.AddHandle( handle );
}
else
{
theFxHelper.Print( "FxTemplate: Emitter effect file not found.\n" );
return false;
}
}
else
{
// empty "list"
theFxHelper.Print( "CPrimitiveTemplate::ParseEmitterFxStrings called with an empty list!\n" );
return false;
}
}
mFlags |= FX_EMIT_FX;
return true;
}
//------------------------------------------------------
// ParsePlayFxStrings
// Reads in a group of fx file names and registers them
//
// input:
// Parse group that contains the list of fx to parse
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParsePlayFxStrings( CGPValue *grp )
{
const char *val;
int handle;
if ( grp->IsList() )
{
// If we are a list we have to do separate processing
CGPObject *list = grp->GetList();
while ( list )
{
// name is actually the value contained in the list
val = list->GetName();
handle = theFxScheduler.RegisterEffect( val );
if ( handle )
{
mPlayFxHandles.AddHandle( handle );
}
else
{
theFxHelper.Print( "FxTemplate: Effect file not found.\n" );
return false;
}
list = (CGPValue *)list->GetNext();
}
}
else
{
// Let's get a value
val = grp->GetTopValue();
if ( val )
{
handle = theFxScheduler.RegisterEffect( val );
if ( handle )
{
mPlayFxHandles.AddHandle( handle );
}
else
{
theFxHelper.Print( "FxTemplate: Effect file not found.\n" );
return false;
}
}
else
{
// empty "list"
theFxHelper.Print( "CPrimitiveTemplate::ParsePlayFxStrings called with an empty list!\n" );
return false;
}
}
return true;
}
//------------------------------------------------------
// ParseRGB
// Takes an RGB group and chomps out any pairs contained
// in it.
//
// input:
// the parse group to process
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseRGB( CGPGroup *grp )
{
CGPValue *pairs;
const char *key;
const char *val;
// Inside of the group, we should have a series of pairs
pairs = grp->GetPairs();
while( pairs )
{
// Let's get the key field
key = pairs->GetName();
val = pairs->GetTopValue();
// Huge Q_stricmp lists suxor
if ( !Q_stricmp( key, "start" ) )
ParseRGBStart( val );
else if ( !Q_stricmp( key, "end" ) )
ParseRGBEnd( val );
else if ( !Q_stricmp( key, "parm" ) || !Q_stricmp( key, "parms" ) )
ParseRGBParm( val );
else if ( !Q_stricmp( key, "flags" ) || !Q_stricmp( key, "flag" ) )
ParseRGBFlags( val );
else
theFxHelper.Print( "Unknown key parsing an RGB group: %s\n", key );
pairs = (CGPValue *)pairs->GetNext();
}
return true;
}
//------------------------------------------------------
// ParseAlpha
// Takes an alpha group and chomps out any pairs contained
// in it.
//
// input:
// the parse group to process
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseAlpha( CGPGroup *grp )
{
CGPValue *pairs;
const char *key;
const char *val;
// Inside of the group, we should have a series of pairs
pairs = grp->GetPairs();
while( pairs )
{
// Let's get the key field
key = pairs->GetName();
val = pairs->GetTopValue();
// Huge Q_stricmp lists suxor
if ( !Q_stricmp( key, "start" ) )
ParseAlphaStart( val );
else if ( !Q_stricmp( key, "end" ) )
ParseAlphaEnd( val );
else if ( !Q_stricmp( key, "parm" ) || !Q_stricmp( key, "parms" ) )
ParseAlphaParm( val );
else if ( !Q_stricmp( key, "flags" ) || !Q_stricmp( key, "flag" ) )
ParseAlphaFlags( val );
else
theFxHelper.Print( "Unknown key parsing an Alpha group: %s\n", key );
pairs = (CGPValue *)pairs->GetNext();
}
return true;
}
//------------------------------------------------------
// ParseSize
// Takes a size group and chomps out any pairs contained
// in it.
//
// input:
// the parse group to process
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseSize( CGPGroup *grp )
{
CGPValue *pairs;
const char *key;
const char *val;
// Inside of the group, we should have a series of pairs
pairs = grp->GetPairs();
while( pairs )
{
// Let's get the key field
key = pairs->GetName();
val = pairs->GetTopValue();
// Huge Q_stricmp lists suxor
if ( !Q_stricmp( key, "start" ) )
ParseSizeStart( val );
else if ( !Q_stricmp( key, "end" ) )
ParseSizeEnd( val );
else if ( !Q_stricmp( key, "parm" ) || !Q_stricmp( key, "parms" ) )
ParseSizeParm( val );
else if ( !Q_stricmp( key, "flags" ) || !Q_stricmp( key, "flag" ) )
ParseSizeFlags( val );
else
theFxHelper.Print( "Unknown key parsing a Size group: %s\n", key );
pairs = (CGPValue *)pairs->GetNext();
}
return true;
}
//------------------------------------------------------
// ParseSize2
// Takes a Size2 group and chomps out any pairs contained
// in it.
//
// input:
// the parse group to process
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseSize2( CGPGroup *grp )
{
CGPValue *pairs;
const char *key;
const char *val;
// Inside of the group, we should have a series of pairs
pairs = grp->GetPairs();
while( pairs )
{
// Let's get the key field
key = pairs->GetName();
val = pairs->GetTopValue();
// Huge Q_stricmp lists suxor
if ( !Q_stricmp( key, "start" ) )
ParseSize2Start( val );
else if ( !Q_stricmp( key, "end" ) )
ParseSize2End( val );
else if ( !Q_stricmp( key, "parm" ) || !Q_stricmp( key, "parms" ) )
ParseSize2Parm( val );
else if ( !Q_stricmp( key, "flags" ) || !Q_stricmp( key, "flag" ) )
ParseSize2Flags( val );
else
theFxHelper.Print( "Unknown key parsing a Size2 group: %s\n", key );
pairs = (CGPValue *)pairs->GetNext();
}
return true;
}
//------------------------------------------------------
// ParseLength
// Takes a length group and chomps out any pairs contained
// in it.
//
// input:
// the parse group to process
//
// return:
// success of parse operation.
//------------------------------------------------------
bool CPrimitiveTemplate::ParseLength( CGPGroup *grp )
{
CGPValue *pairs;
const char *key;
const char *val;
// Inside of the group, we should have a series of pairs
pairs = grp->GetPairs();
while( pairs )
{
// Let's get the key field
key = pairs->GetName();
val = pairs->GetTopValue();
// Huge Q_stricmp lists suxor
if ( !Q_stricmp( key, "start" ))
ParseLengthStart( val );
else if ( !Q_stricmp( key, "end" ))
ParseLengthEnd( val );
else if ( !Q_stricmp( key, "parm" ) || !Q_stricmp( key, "parms" ))
ParseLengthParm( val );
else if ( !Q_stricmp( key, "flags" ) || !Q_stricmp( key, "flag" ))
ParseLengthFlags( val );
else
theFxHelper.Print( "Unknown key parsing a Length group: %s\n", key );
pairs = (CGPValue *)pairs->GetNext();
}
return true;
}
// Parse a primitive, apply defaults first, grab any base level
// key pairs, then process any sub groups we may contain.
//------------------------------------------------------
bool CPrimitiveTemplate::ParsePrimitive( CGPGroup *grp )
{
CGPGroup *subGrp;
CGPValue *pairs;
const char *key;
const char *val;
// Lets work with the pairs first
pairs = grp->GetPairs();
while( pairs )
{
// the fields
key = pairs->GetName();
val = pairs->GetTopValue();
// Huge Q_stricmp lists suxor
if ( !Q_stricmp( key, "count" ) )
ParseCount( val );
else if ( !Q_stricmp( key, "shaders" ) || !Q_stricmp( key, "shader" ) )
ParseShaders( pairs );
else if ( !Q_stricmp( key, "models" ) || !Q_stricmp( key, "model" ) )
ParseModels( pairs );
else if ( !Q_stricmp( key, "sounds" ) || !Q_stricmp( key, "sound" ) )
ParseSounds( pairs );
else if ( !Q_stricmp( key, "impactfx" ) )
ParseImpactFxStrings( pairs );
else if ( !Q_stricmp( key, "deathfx" ) )
ParseDeathFxStrings( pairs );
else if ( !Q_stricmp( key, "emitfx" ) )
ParseEmitterFxStrings( pairs );
else if ( !Q_stricmp( key, "playfx" ) )
ParsePlayFxStrings( pairs );
else if ( !Q_stricmp( key, "life" ) )
ParseLife( val );
else if ( !Q_stricmp( key, "delay" ) )
ParseDelay( val );
else if ( !Q_stricmp( key, "cullrange" ) ) {
// mCullRange = atoi( val );
// mCullRange *= mCullRange; // square it now so we don't have to square every time we compare
}
else if ( !Q_stricmp( key, "bounce" ) || !Q_stricmp( key, "intensity" ) ) // me==bad for reusing this...but it shouldn't hurt anything)
ParseElasticity( val );
else if ( !Q_stricmp( key, "min" ) )
ParseMin( val );
else if ( !Q_stricmp( key, "max" ) )
ParseMax( val );
else if ( !Q_stricmp( key, "angle" ) || !Q_stricmp( key, "angles" ) )
ParseAngle( val );
else if ( !Q_stricmp( key, "angleDelta" ) )
ParseAngleDelta( val );
else if ( !Q_stricmp( key, "velocity" ) || !Q_stricmp( key, "vel" ) )
ParseVelocity( val );
else if ( !Q_stricmp( key, "acceleration" ) || !Q_stricmp( key, "accel" ) )
ParseAcceleration( val );
else if ( !Q_stricmp( key, "gravity" ) )
ParseGravity( val );
else if ( !Q_stricmp( key, "density" ) )
ParseDensity( val );
else if ( !Q_stricmp( key, "variance" ) )
ParseVariance( val );
else if ( !Q_stricmp( key, "origin" ) )
ParseOrigin1( val );
else if ( !Q_stricmp( key, "origin2" ) )
ParseOrigin2( val );
else if ( !Q_stricmp( key, "radius" ) ) // part of ellipse/cylinder calcs.
ParseRadius( val );
else if ( !Q_stricmp( key, "height" ) ) // part of ellipse/cylinder calcs.
ParseHeight( val );
else if ( !Q_stricmp( key, "wind" ) )
ParseWindModifier( val );
else if ( !Q_stricmp( key, "rotation" ) )
ParseRotation( val );
else if ( !Q_stricmp( key, "rotationDelta" ) )
ParseRotationDelta( val );
// these need to get passed on to the primitive
else if ( !Q_stricmp( key, "flags" ) || !Q_stricmp( key, "flag" ) )
ParseFlags( val );
// these are used to spawn things in cool ways, but don't ever get passed on to prims.
else if ( !Q_stricmp( key, "spawnFlags" ) || !Q_stricmp( key, "spawnFlag" ) )
ParseSpawnFlags( val );
else if ( !Q_stricmp( key, "name" ) ) {
if ( val ) // just stash the descriptive name of the primitive
strcpy( mName, val );
}
else if ( !Q_stricmp( key, "materialImpact" ) )
ParseMaterialImpact( val );
else
theFxHelper.Print( "Unknown key parsing an effect primitive: %s\n", key );
pairs = (CGPValue *)pairs->GetNext();
}
subGrp = grp->GetSubGroups();
// Lets chomp on the groups now
while ( subGrp )
{
key = subGrp->GetName();
if ( !Q_stricmp( key, "rgb" ) )
ParseRGB( subGrp );
else if ( !Q_stricmp( key, "alpha" ) )
ParseAlpha( subGrp );
else if ( !Q_stricmp( key, "size" ) || !Q_stricmp( key, "width" ) )
ParseSize( subGrp );
else if ( !Q_stricmp( key, "size2" ) || !Q_stricmp( key, "width2" ) )
ParseSize2( subGrp );
else if ( !Q_stricmp( key, "length" ) || !Q_stricmp( key, "height" ) )
ParseLength( subGrp );
else
theFxHelper.Print( "Unknown group key parsing a particle: %s\n", key );
subGrp = (CGPGroup *)subGrp->GetNext();
}
return true;
}