mirror of
https://github.com/DrBeef/JKXR.git
synced 2025-01-20 23:40:58 +00:00
855 lines
26 KiB
C
855 lines
26 KiB
C
|
/*
|
||
|
===========================================================================
|
||
|
Copyright (C) 2000 - 2013, Raven Software, Inc.
|
||
|
Copyright (C) 2001 - 2013, Activision, Inc.
|
||
|
Copyright (C) 2013 - 2015, OpenJK contributors
|
||
|
|
||
|
This file is part of the OpenJK source code.
|
||
|
|
||
|
OpenJK is free software; you can redistribute it and/or modify it
|
||
|
under the terms of the GNU General Public License version 2 as
|
||
|
published by the Free Software Foundation.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||
|
===========================================================================
|
||
|
*/
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////////
|
||
|
// RAVEN STANDARD TEMPLATE LIBRARY
|
||
|
// (c) 2002 Activision
|
||
|
//
|
||
|
//
|
||
|
// Graph Triangulate
|
||
|
// -----------------
|
||
|
// Triangulation is the process of generating graph edges between "nearby" points.
|
||
|
//
|
||
|
// This class is designed to work with the ragl_graph template class, and requires that
|
||
|
// the same template parameters for that class be used here. The memory requirements
|
||
|
// of this class are not inconsequential, so it is best to allocate this class during
|
||
|
// a preprocess step and then throw it away.
|
||
|
//
|
||
|
// NOTE: This is a 2D triangulation! All Z Coordinates are ignored!
|
||
|
//
|
||
|
//
|
||
|
//
|
||
|
//
|
||
|
// How Do I Triangulate A Raw Set Of Points?
|
||
|
// -----------------------------------------
|
||
|
// First of all, in order to construct a triangulation, you need to have your graph and
|
||
|
// pass it in to the constructor:
|
||
|
//
|
||
|
// typedef ragl::graph_triangulate<TNODE, MAXNODES, TEDGE, MAXEDGES> TTriangulation
|
||
|
// TTriangulation MyTriangulation(mMyGraph);
|
||
|
//
|
||
|
// Next, you are free to call any of the public functions in any order, but the best use
|
||
|
// is to call them in this order:
|
||
|
//
|
||
|
// MyTriangulation.insertion_hull();
|
||
|
// MyTriangulation.delaunay_edge_flip();
|
||
|
// MyTriangulation.alpha_shape(MyGraphUser, <MIN>, <MAX>);
|
||
|
//
|
||
|
// For documentation on the above functions, look at their def below. Also, the doc on
|
||
|
// the Graph User class is in graph_vs.h
|
||
|
//
|
||
|
//
|
||
|
// Finally, when you are ready, call the finish() function. That will populate your
|
||
|
// graph (which has not been altered in any way up until now). After calling finish()
|
||
|
// you can dump the triangulation class, as it has done it's job and all the data is
|
||
|
// now stored in the class.
|
||
|
//
|
||
|
// MyTriangulation.finish();
|
||
|
//
|
||
|
//
|
||
|
//
|
||
|
//
|
||
|
// How Does It Work? (Overview)
|
||
|
// -----------------------------
|
||
|
// The details of how each step works are outlined below, however, here is the general
|
||
|
// idea:
|
||
|
//
|
||
|
// - Call insertion hull to generate a "rough and dirty" triangulation of the point set.
|
||
|
// The algorithm is relativly fast, and as a handy bi-product, generates the convex
|
||
|
// hull of the points. The resulting mesh is ugly though. You probably won't want
|
||
|
// to use it in the rough state. The basic idea of this algorithm is to iterativly
|
||
|
// add points which have been presorted along the x-axis into the triangulation. It
|
||
|
// is easy to do so, because you always know it will be on the right side of any edge
|
||
|
// it needs to connect with.
|
||
|
//
|
||
|
// - Now that you have a functional triangulation with edges and faces, there is fairly
|
||
|
// simple and fast algorithm to "clean it up" called EdgeFlipping. The idea is simple.
|
||
|
// Just scan through the edges, if you find one that is "bad", flip it! Continue until
|
||
|
// you find no "bad" edges. NOTE: This algorithm can lock up if any four points are
|
||
|
// colinear!
|
||
|
//
|
||
|
// - Finally, Alpha Shape is just a simple prune scan of the edges for anything that is
|
||
|
// too big or too small. This step is totally optional.
|
||
|
//
|
||
|
//
|
||
|
////////////////////////////////////////////////////////////////////////////////////////
|
||
|
#if !defined(RATL_GRAPH_TRIANGULATE_INC)
|
||
|
#define RATL_GRAPH_TRIANGULATE_INC
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Includes
|
||
|
////////////////////////////////////////////////////////////////////////////////////////
|
||
|
#if defined(RA_DEBUG_LINKING)
|
||
|
#pragma message("...including graph_triangulate.h")
|
||
|
#endif
|
||
|
#if !defined(RAGL_COMMON_INC)
|
||
|
#include "ragl_common.h"
|
||
|
#endif
|
||
|
#if !defined(RAGL_GRAPH_VS_INC)
|
||
|
#include "graph_vs.h"
|
||
|
#endif
|
||
|
#if !defined(RATL_LIST_VS_INC)
|
||
|
#include "..\Ratl\list_vs.h"
|
||
|
#endif
|
||
|
namespace ragl
|
||
|
{
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////////
|
||
|
// The Graph Class
|
||
|
////////////////////////////////////////////////////////////////////////////////////////
|
||
|
template <class TNODE, int MAXNODES, class TEDGE, int MAXEDGES, int MAXNODENEIGHBORS>
|
||
|
class graph_triangulate : public ratl::ratl_base
|
||
|
{
|
||
|
public:
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Capacity Enum
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
enum
|
||
|
{
|
||
|
CAPACITY = MAXNODES,
|
||
|
MAXFACES = MAXEDGES*2,
|
||
|
NULLEDGE = -1
|
||
|
};
|
||
|
|
||
|
typedef graph_vs<TNODE, MAXNODES, TEDGE, MAXEDGES, MAXNODENEIGHBORS> TGraph;
|
||
|
|
||
|
|
||
|
public:
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Constructor
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
graph_triangulate(TGraph& Graph) : mGraph(Graph), mHull(), mHullIter(mHull.begin())
|
||
|
{
|
||
|
mLinks.init(0);
|
||
|
}
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Clear Out All Temp Data So We Can Triangulate Again
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
void clear()
|
||
|
{
|
||
|
mLinks.init(0);
|
||
|
mEdges.clear();
|
||
|
mFaces.clear();
|
||
|
|
||
|
mHull.clear();
|
||
|
mHullIter = mHull.begin();
|
||
|
|
||
|
mSortNodes.clear();
|
||
|
}
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Insertion Hull
|
||
|
//
|
||
|
// This is a "quick and dirty" triangulation technique. It does not give you a very
|
||
|
// nice looking or terribly useful mesh, but it is a good place to start. Once
|
||
|
// you have an insertion hull triangulation, you can call delauny_edge_flip() to
|
||
|
// clean it up some.
|
||
|
//
|
||
|
// This algorithm's complexity isbounded in the worst case where all the points in
|
||
|
// the mesh are on the "hull", in which case it is O(n^2). However the number of
|
||
|
// points on the hull for most common point clouds is more likely to be log n.
|
||
|
//
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
void insertion_hull()
|
||
|
{
|
||
|
assert(mGraph.size_nodes()>3); // We Need More Than 3 Points To Triangulate
|
||
|
|
||
|
// STEP ONE: Sort all points along the x axis in increasing order
|
||
|
//----------------------------------------------------------------
|
||
|
// COMPLEXITY: O(n log n) Heapsort
|
||
|
|
||
|
sort_points();
|
||
|
|
||
|
|
||
|
|
||
|
// STEP TWO: Manually constructe the first face of the triangulation out of the 3 rightmost points
|
||
|
//--------------------------------------------------------------------------------------------------
|
||
|
// COMPLEXITY: O(1)
|
||
|
|
||
|
add_face(mSortNodes[0].mNodeHandle, mSortNodes[1].mNodeHandle, mSortNodes[2].mNodeHandle);
|
||
|
|
||
|
|
||
|
|
||
|
// STEP THREE: Add each remaining point to the hull, constructing new faces as we go
|
||
|
//-----------------------------------------------------------------------------------
|
||
|
// COMPLEXITY: O(n*c) (n = num nodes, c = num nodes on hull)
|
||
|
|
||
|
for (int i=3; i<mSortNodes.size(); i++)
|
||
|
{
|
||
|
insert_point(mSortNodes[i].mNodeHandle);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Delaunay Edge Flipping
|
||
|
//
|
||
|
// This algorithm iterativly rotates edges which do not fit the "delaunay" criterion
|
||
|
// of all points on two adjacent faces containment within the circumscribed circles
|
||
|
// of the two faces. It solves the all pairs nearest neighbors problem.
|
||
|
//
|
||
|
// The routine is sadly bounded by n^2 complexity, but in practice perfromes very
|
||
|
// well - much better than n^2 (closer to n log n).
|
||
|
//
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
void delaunay_edge_flip()
|
||
|
{
|
||
|
int CurFlipped;
|
||
|
int TotalFlipped = 0;
|
||
|
|
||
|
do
|
||
|
{
|
||
|
CurFlipped = flip();
|
||
|
TotalFlipped += CurFlipped;
|
||
|
}
|
||
|
while (CurFlipped!=0 && TotalFlipped<10000 /*Sanity Condition*/);
|
||
|
}
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// This function attempts to prune out edges which connect across "floors" and
|
||
|
//
|
||
|
//
|
||
|
//
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
void floor_shape(typename TGraph::user& user, float maxzdelta)
|
||
|
{
|
||
|
ratl::vector_vs<int, MAXEDGES> CullEdges;
|
||
|
int nEdge;
|
||
|
TEdges::iterator stop=mEdges.end();
|
||
|
for (TEdges::iterator it=mEdges.begin(); it!=mEdges.end(); it++)
|
||
|
{
|
||
|
if (!(*it).mOnHull)
|
||
|
{
|
||
|
edge& EdgeAt = *it;
|
||
|
face& FaceR = mFaces[EdgeAt.mRight];
|
||
|
face& FaceL = mFaces[EdgeAt.mLeft];
|
||
|
|
||
|
// int Edge = mEdges.index_to_handle(it.index());
|
||
|
int R = FaceR.opposing_node(EdgeAt.mA, EdgeAt.mB);
|
||
|
int L = FaceL.opposing_node(EdgeAt.mA, EdgeAt.mB);
|
||
|
int RInd = mGraph.node_index(R);
|
||
|
int LInd = mGraph.node_index(L);
|
||
|
|
||
|
TNODE& PtA = mGraph.get_node(EdgeAt.mA);
|
||
|
TNODE& PtB = mGraph.get_node(EdgeAt.mB);
|
||
|
TNODE& PtR = mGraph.get_node(R);
|
||
|
TNODE& PtL = mGraph.get_node(L);
|
||
|
|
||
|
|
||
|
if (
|
||
|
(user.on_same_floor(PtR, PtL)) &&
|
||
|
(mLinks.get(RInd, LInd)==0) &&
|
||
|
(mLinks.get(LInd, RInd)==0) &&
|
||
|
(!user.on_same_floor(PtL, PtA) || !user.on_same_floor(PtL, PtB))
|
||
|
)
|
||
|
{
|
||
|
nEdge= mEdges.alloc();
|
||
|
|
||
|
mEdges[nEdge].mA = R;
|
||
|
mEdges[nEdge].mB = L;
|
||
|
mEdges[nEdge].mHullLoc = mHullIter;
|
||
|
mEdges[nEdge].mOnHull = true;
|
||
|
mEdges[nEdge].mFlips = 0;
|
||
|
mEdges[nEdge].mLeft = 0;
|
||
|
mEdges[nEdge].mRight = 0;
|
||
|
|
||
|
|
||
|
mLinks.get(RInd, LInd) = nEdge;
|
||
|
mLinks.get(LInd, RInd) = nEdge;
|
||
|
}
|
||
|
|
||
|
if (!user.on_same_floor(PtA, PtB))
|
||
|
{
|
||
|
mLinks.get(mGraph.node_index(EdgeAt.mA), mGraph.node_index(EdgeAt.mB)) = 0;
|
||
|
mLinks.get(mGraph.node_index(EdgeAt.mB), mGraph.node_index(EdgeAt.mA)) = 0;
|
||
|
|
||
|
CullEdges.push_back(it.index());
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (int i=0; i<CullEdges.size(); i++)
|
||
|
{
|
||
|
mEdges.free_index(CullEdges[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// This function is a simple routine to prune out any edges which are larger or
|
||
|
// smaller than the desired range (min, max).
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
void alpha_shape(typename TGraph::user& user, float max, float min=0)
|
||
|
{
|
||
|
ratl::vector_vs<int, MAXEDGES> CullEdges;
|
||
|
float cost;
|
||
|
for (TEdges::iterator it=mEdges.begin(); it!=mEdges.end(); it++)
|
||
|
{
|
||
|
cost = user.cost(mGraph.get_node((*it).mA), mGraph.get_node((*it).mB));
|
||
|
if (cost<min || cost>max)
|
||
|
{
|
||
|
mLinks.get(mGraph.node_index((*it).mA), mGraph.node_index((*it).mB)) = 0;
|
||
|
mLinks.get(mGraph.node_index((*it).mB), mGraph.node_index((*it).mA)) = 0;
|
||
|
|
||
|
CullEdges.push_back(it.index());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (int i=0; i<CullEdges.size(); i++)
|
||
|
{
|
||
|
mEdges.free_index(CullEdges[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Call this function when you are done with the triangulation and want to copy all
|
||
|
// the temp data into your graph.
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
void finish(typename TGraph::user& user)
|
||
|
{
|
||
|
mGraph.clear_edges();
|
||
|
TEDGE DefaultEdge;
|
||
|
for (TEdges::iterator it=mEdges.begin(); it!=mEdges.end(); it++)
|
||
|
{
|
||
|
user.setup_edge(DefaultEdge, (*it).mA, (*it).mB, (*it).mOnHull, mGraph.get_node((*it).mA), mGraph.get_node((*it).mB));
|
||
|
mGraph.connect_node(DefaultEdge, (*it).mA, (*it).mB);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
private:
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
typedef typename ratl::list_vs<int, MAXNODES> THull;
|
||
|
typedef typename ratl::list_vs<int, MAXNODES>::iterator THullIter;
|
||
|
typedef typename ratl::grid2_vs<int, MAXNODES, MAXNODES> TLinks;
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// The Local Edge Class
|
||
|
//
|
||
|
// RIGHT
|
||
|
// B<-<-<-<-<-<-A
|
||
|
// LEFT
|
||
|
//
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
class edge
|
||
|
{
|
||
|
public:
|
||
|
int mA;
|
||
|
int mB;
|
||
|
|
||
|
int mLeft;
|
||
|
int mRight;
|
||
|
int mFlips;
|
||
|
|
||
|
THullIter mHullLoc;
|
||
|
bool mOnHull;
|
||
|
|
||
|
void flip_face(int OldFace, int NewFace)
|
||
|
{
|
||
|
assert(mRight!=mLeft);
|
||
|
assert(mLeft!=NewFace && mRight!=NewFace);
|
||
|
if (mLeft==OldFace)
|
||
|
{
|
||
|
mLeft=NewFace;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
assert(mRight==OldFace);
|
||
|
mRight = NewFace;
|
||
|
}
|
||
|
assert(mRight!=mLeft);
|
||
|
}
|
||
|
void verify(int PtA, int PtB, int Edge)
|
||
|
{
|
||
|
assert(PtA==mA || PtA==mB);
|
||
|
assert(PtB==mA || PtB==mB);
|
||
|
assert(mRight==Edge || mLeft==Edge);
|
||
|
assert(mRight!=mLeft);
|
||
|
assert(mA!=mB);
|
||
|
}
|
||
|
void verify(int PtA, int PtB, int PtC, int Edge)
|
||
|
{
|
||
|
assert((PtC==mA && (PtA==mB || PtB==mB)) || (PtC==mB && (PtA==mA || PtB==mA)));
|
||
|
|
||
|
assert(mRight==Edge || mLeft==Edge);
|
||
|
assert(mRight!=mLeft);
|
||
|
assert(mA!=mB);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// The Local Face Class
|
||
|
//
|
||
|
// _ C
|
||
|
// /| \
|
||
|
// LEFT/ \RIGHT
|
||
|
// / \
|
||
|
// B-<-<-<-<-A
|
||
|
// BOTTOM
|
||
|
//
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
class face
|
||
|
{
|
||
|
public:
|
||
|
int mA;
|
||
|
int mB;
|
||
|
int mC;
|
||
|
|
||
|
int mLeft;
|
||
|
int mRight;
|
||
|
int mBottom;
|
||
|
|
||
|
int mFlips;
|
||
|
|
||
|
int& opposing_node(int A, int B)
|
||
|
{
|
||
|
if (mA!=A && mA!=B)
|
||
|
{
|
||
|
return mA;
|
||
|
}
|
||
|
if (mB!=A && mB!=B)
|
||
|
{
|
||
|
return mB;
|
||
|
}
|
||
|
assert(mC!=A && mC!=B);
|
||
|
return mC;
|
||
|
}
|
||
|
|
||
|
int& relative_left(int edge)
|
||
|
{
|
||
|
if (edge==mLeft)
|
||
|
{
|
||
|
return mRight;
|
||
|
}
|
||
|
if (edge==mRight)
|
||
|
{
|
||
|
return mBottom;
|
||
|
}
|
||
|
assert(edge==mBottom); // If you hit this assert, then the edge is not in this face
|
||
|
return mLeft;
|
||
|
}
|
||
|
int& relative_right(int edge)
|
||
|
{
|
||
|
if (edge==mLeft)
|
||
|
{
|
||
|
return mBottom;
|
||
|
}
|
||
|
if (edge==mRight)
|
||
|
{
|
||
|
return mLeft;
|
||
|
}
|
||
|
assert(edge==mBottom); // If you hit this assert, then the edge is not in this face
|
||
|
return mRight;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// The Sort Node Class
|
||
|
//
|
||
|
// Used To Sort Nodes In Increasing X Order
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
class sort_node
|
||
|
{
|
||
|
public:
|
||
|
bool operator<(const sort_node& r) const
|
||
|
{
|
||
|
return ((*r.mNodePointer)[0] < (*mNodePointer)[0]);
|
||
|
}
|
||
|
|
||
|
int mNodeHandle;
|
||
|
TNODE* mNodePointer;
|
||
|
};
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
typedef typename ratl::handle_pool_vs<edge, MAXEDGES> TEdges;
|
||
|
typedef typename ratl::handle_pool_vs<edge, MAXEDGES>::iterator TEdgesIter;
|
||
|
typedef typename ratl::handle_pool_vs<face, MAXFACES> TFaces;
|
||
|
typedef typename ratl::vector_vs<sort_node, MAXNODES> TSortNodes;
|
||
|
|
||
|
|
||
|
TGraph& mGraph; // A Reference To The Graph Points To Triangulate
|
||
|
|
||
|
TLinks mLinks;
|
||
|
TEdges mEdges;
|
||
|
TFaces mFaces;
|
||
|
|
||
|
THull mHull; // The Convex Hull
|
||
|
THullIter mHullIter;
|
||
|
|
||
|
TSortNodes mSortNodes; // Need To Presort Nodes On (x-Axis) For Insertion Hull
|
||
|
sort_node mSortNode;
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
private:
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Copy All The Graph Nodes To Our Sort Node Class And Run Heap Sort
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
void sort_points()
|
||
|
{
|
||
|
mSortNodes.clear();
|
||
|
for (TGraph::TNodes::iterator i=mGraph.nodes_begin(); i!=mGraph.nodes_end(); i++)
|
||
|
{
|
||
|
mSortNode.mNodeHandle = mGraph.node_handle(i);
|
||
|
mSortNode.mNodePointer = &(*i);
|
||
|
mSortNodes.push_back(mSortNode);
|
||
|
}
|
||
|
mSortNodes.sort();
|
||
|
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Create A New Edge A->B, And Fix Up The Face
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
int add_edge(int A, int B, int Face=0, bool OnHull=true)
|
||
|
{
|
||
|
assert(A!=B );
|
||
|
|
||
|
int nEdge = mLinks.get(mGraph.node_index(A), mGraph.node_index(B));
|
||
|
|
||
|
// Apparently This Edge Does Not Exist, So Make A New One
|
||
|
//--------------------------------------------------------
|
||
|
if (nEdge==0)
|
||
|
{
|
||
|
nEdge= mEdges.alloc();
|
||
|
|
||
|
mHull.insert_after(mHullIter, nEdge);
|
||
|
assert(mHullIter!=mHull.end());
|
||
|
|
||
|
mEdges[nEdge].mA = A;
|
||
|
mEdges[nEdge].mB = B;
|
||
|
mEdges[nEdge].mHullLoc = mHullIter;
|
||
|
mEdges[nEdge].mOnHull = true;
|
||
|
mEdges[nEdge].mFlips = 0;
|
||
|
mEdges[nEdge].mLeft = 0;
|
||
|
mEdges[nEdge].mRight = 0;
|
||
|
|
||
|
|
||
|
mLinks.get(mGraph.node_index(A), mGraph.node_index(B)) = nEdge;
|
||
|
mLinks.get(mGraph.node_index(B), mGraph.node_index(A)) = nEdge;
|
||
|
}
|
||
|
|
||
|
// If This Edge DOES Already Exist, Then We Need To Remove It From The Hull
|
||
|
//--------------------------------------------------------------------------
|
||
|
else if (mEdges[nEdge].mOnHull)
|
||
|
{
|
||
|
assert(mEdges[nEdge].mHullLoc!=mHull.end());
|
||
|
|
||
|
if (mHullIter==mEdges[nEdge].mHullLoc)
|
||
|
{
|
||
|
mHull.erase(mHullIter); // Make Sure To Fix Up The Hull Iter If That Is What We Are Removing
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mHull.erase(mEdges[nEdge].mHullLoc);
|
||
|
}
|
||
|
mEdges[nEdge].mOnHull = false;
|
||
|
}
|
||
|
|
||
|
|
||
|
// If The Edge Was Made With The Same Orientation Currently Asked For (A->B), Then Mark Face As Right
|
||
|
//----------------------------------------------------------------------------------------------------
|
||
|
if (mEdges[nEdge].mA==A)
|
||
|
{
|
||
|
mEdges[nEdge].mRight = Face;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mEdges[nEdge].mLeft = Face;
|
||
|
}
|
||
|
return nEdge;
|
||
|
}
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Create A New Face A->B->C, And Fix Up The Edges & Neighboring Faces
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
int add_face(int A, int B, int C)
|
||
|
{
|
||
|
int Temp = 0;
|
||
|
int nFace = mFaces.alloc();
|
||
|
|
||
|
// First, Make Sure Node A.x Is Greater Than B and C. If Not, Swap With B or C
|
||
|
//------------------------------------------------------------------------------
|
||
|
if (mGraph.get_node(B)[0]>mGraph.get_node(A)[0])
|
||
|
{
|
||
|
Temp = A;
|
||
|
A = B;
|
||
|
B = Temp;
|
||
|
}
|
||
|
if (mGraph.get_node(C)[0]>mGraph.get_node(A)[0])
|
||
|
{
|
||
|
Temp = A;
|
||
|
A = C;
|
||
|
C = Temp;
|
||
|
}
|
||
|
|
||
|
// Similarly, Make Sure Node B.y Is Greater Than Node C.y
|
||
|
//--------------------------------------------------------
|
||
|
if (mGraph.get_node(C).LRTest(mGraph.get_node(A), mGraph.get_node(B))==Side_Left)
|
||
|
{
|
||
|
Temp = C;
|
||
|
C = B;
|
||
|
B = Temp;
|
||
|
}
|
||
|
|
||
|
// DEBUG ASSERTS
|
||
|
//====================================================================================
|
||
|
// IF YOU HIT THESE ASSERTS, CHANCES ARE THAT YOU ARE TRYING TO TRIANGULATE OVER A SET
|
||
|
// WITH MORE THAN 2 COLINEAR POINTS ON THE SAME FACE. INSERT HULL WILL FAIL IN THIS
|
||
|
// FACE. INSERT HULL WILL FAIL IN THIS SITUATION
|
||
|
|
||
|
assert(mGraph.get_node(C).LRTest(mGraph.get_node(A), mGraph.get_node(B))==Side_Right);
|
||
|
assert(mGraph.get_node(A).LRTest(mGraph.get_node(B), mGraph.get_node(C))==Side_Right);
|
||
|
assert(mGraph.get_node(B).LRTest(mGraph.get_node(C), mGraph.get_node(A))==Side_Right);
|
||
|
//====================================================================================
|
||
|
|
||
|
mFaces[nFace].mA = A;
|
||
|
mFaces[nFace].mB = B;
|
||
|
mFaces[nFace].mC = C;
|
||
|
|
||
|
mFaces[nFace].mRight = add_edge(C, A, nFace);
|
||
|
mFaces[nFace].mBottom = add_edge(A, B, nFace);
|
||
|
mFaces[nFace].mLeft = add_edge(B, C, nFace);
|
||
|
|
||
|
mFaces[nFace].mFlips = 0;
|
||
|
|
||
|
return nFace;
|
||
|
}
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Insertion Hull Triangulation
|
||
|
//
|
||
|
// This algorithm works by scanning the outer convex hull of the set of points that
|
||
|
// have already been triangulated. When encountering a hull edge which evaluates
|
||
|
// LEFT in a left right test (remember, the triangles always have clockwise orientation)
|
||
|
// it adds a face to the triangulation including the edge as one side of the triangle
|
||
|
// and two new edges to the node handle. It's very important to traverse the convex
|
||
|
// hull in counter clockwise order (backwards).
|
||
|
//
|
||
|
// In the example below, we assume the convex hull starts at the edge (CA). (nodeHandle) is
|
||
|
// RIGHT of (C->A), so it skips that edge and moves on to (D->C). (nodeHandle) is in fact
|
||
|
// LEFT of (D->C), so we would add a new face that would go (D->nodeHandle->C), and we remove
|
||
|
// (D->C) from the hull.
|
||
|
//
|
||
|
//
|
||
|
//
|
||
|
// (C)-------------(A)
|
||
|
// / \ __/ \
|
||
|
// (nodeHandle) / \ __/ \
|
||
|
// / \ / \
|
||
|
// (D)----____(B)_ \
|
||
|
// \ | \ __
|
||
|
// \ | \__
|
||
|
// \ | \
|
||
|
//
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
void insert_point(int nodeHandle)
|
||
|
{
|
||
|
// Iterate Over The Existing Convex Hull
|
||
|
//---------------------------------------
|
||
|
for (mHullIter = mHull.begin(); mHullIter!=mHull.end(); mHullIter++)
|
||
|
{
|
||
|
edge& curEdge = mEdges[*mHullIter];
|
||
|
|
||
|
// Can This Edge "See" The node Handle We Have Passed In?
|
||
|
//---------------------------------------------------------
|
||
|
if ( mGraph.get_node(nodeHandle).LRTest(mGraph.get_node(curEdge.mA), mGraph.get_node(curEdge.mB))==Side_Left )
|
||
|
{
|
||
|
// Then Add The Face And Remove This Edge From The Hull
|
||
|
//------------------------------------------------------
|
||
|
add_face(curEdge.mA, curEdge.mB, nodeHandle);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Edge Flip Function
|
||
|
//
|
||
|
// This function scans the edge list for any edge that is "bad" (defined as not
|
||
|
// fitting within the circumscribed circle of either adjoining face). When it
|
||
|
// encounters one, it "flips" the edge in question and fixes up the adjoining faces
|
||
|
// which were altered.
|
||
|
//
|
||
|
//
|
||
|
// The Flip Edge (PtA->PtB):
|
||
|
//
|
||
|
//
|
||
|
//
|
||
|
// BEFORE AFTER
|
||
|
//
|
||
|
// (PtR) (PtA)
|
||
|
// / \ / | \
|
||
|
// / \ / | \
|
||
|
// / (FaceR) \ / V \
|
||
|
// / \ / | \
|
||
|
// (PtB)-<---------<-(PtA) (PtR) | (PtL)
|
||
|
// \ / \ | /
|
||
|
// \ (FaceL) / \ V /
|
||
|
// \ / \ | /
|
||
|
// \ / \ | /
|
||
|
// (PtL) (PtB)
|
||
|
//
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
int flip()
|
||
|
{
|
||
|
int Flipped = 0;
|
||
|
|
||
|
int EdgeHandle;
|
||
|
int PtR, PtL, PtA, PtB;
|
||
|
int EdgeRL, EdgeRR, EdgeLL, EdgeLR;
|
||
|
|
||
|
|
||
|
// Iterate Through All The Edges Looking For Potential NON-Delauney Edges
|
||
|
//------------------------------------------------------------------------
|
||
|
for (TEdgesIter CurEdge=mEdges.begin(); CurEdge!=mEdges.end(); CurEdge++)
|
||
|
{
|
||
|
// If It Is On The Hull, We Don't Even Need To Look At It
|
||
|
//--------------------------------------------------------
|
||
|
if (!(*CurEdge).mOnHull)
|
||
|
{
|
||
|
edge& EdgeAt = *CurEdge;
|
||
|
face& FaceR = mFaces[EdgeAt.mRight];
|
||
|
face& FaceL = mFaces[EdgeAt.mLeft];
|
||
|
|
||
|
EdgeHandle = mEdges.index_to_handle(CurEdge.index());
|
||
|
PtA = EdgeAt.mA;
|
||
|
PtB = EdgeAt.mB;
|
||
|
PtR = FaceR.opposing_node(PtA, PtB);
|
||
|
PtL = FaceL.opposing_node(PtA, PtB);
|
||
|
|
||
|
assert(EdgeAt.mRight!=EdgeAt.mLeft);
|
||
|
assert(PtA!=PtB);
|
||
|
assert(PtR!=PtL);
|
||
|
assert(PtA!=PtR && PtA!=PtL);
|
||
|
assert(PtB!=PtR && PtB!=PtL);
|
||
|
|
||
|
// Is This Edge Invalid For Delaunay?
|
||
|
//-------------------------------------
|
||
|
if (!mGraph.get_node(PtB).InCircle(mGraph.get_node(PtR), mGraph.get_node(PtL), mGraph.get_node(PtA)) &&
|
||
|
!mGraph.get_node(PtA).InCircle(mGraph.get_node(PtR), mGraph.get_node(PtB), mGraph.get_node(PtL))
|
||
|
)
|
||
|
{
|
||
|
// Change The Link: Remove The Old, Add The New
|
||
|
//----------------------------------------------
|
||
|
mLinks.get(mGraph.node_index(PtA), mGraph.node_index(PtB)) = 0;
|
||
|
mLinks.get(mGraph.node_index(PtB), mGraph.node_index(PtA)) = 0;
|
||
|
|
||
|
mLinks.get(mGraph.node_index(PtR), mGraph.node_index(PtL)) = EdgeHandle;
|
||
|
mLinks.get(mGraph.node_index(PtL), mGraph.node_index(PtR)) = EdgeHandle;
|
||
|
|
||
|
|
||
|
Flipped++;
|
||
|
EdgeAt.mFlips++;
|
||
|
FaceL.mFlips++;
|
||
|
FaceR.mFlips++;
|
||
|
|
||
|
// Flip The Edge We Found
|
||
|
//------------------------
|
||
|
EdgeAt.mA = PtR;
|
||
|
EdgeAt.mB = PtL;
|
||
|
|
||
|
// Calculate Relatave Edges And Points Assuming (EdgeAt) Were mBottom For The Two Faces
|
||
|
//--------------------------------------------------------------------------------------
|
||
|
EdgeRL = FaceR.relative_left(EdgeHandle);
|
||
|
EdgeRR = FaceR.relative_right(EdgeHandle);
|
||
|
|
||
|
EdgeLL = FaceL.relative_left(EdgeHandle);
|
||
|
EdgeLR = FaceL.relative_right(EdgeHandle);
|
||
|
|
||
|
|
||
|
// Fix Edges Which Had Been Rotated To New Faces
|
||
|
//-----------------------------------------------
|
||
|
mEdges[EdgeLR].flip_face(EdgeAt.mLeft, EdgeAt.mRight);
|
||
|
mEdges[EdgeRR].flip_face(EdgeAt.mRight, EdgeAt.mLeft);
|
||
|
|
||
|
// Rotate The Edges Clockwise
|
||
|
//----------------------------
|
||
|
FaceR.mLeft = EdgeLR;
|
||
|
FaceR.mRight = EdgeRL;
|
||
|
FaceR.mBottom = EdgeHandle;
|
||
|
|
||
|
FaceL.mLeft = EdgeRR;
|
||
|
FaceL.mRight = EdgeLL;
|
||
|
FaceL.mBottom = EdgeHandle;
|
||
|
|
||
|
FaceR.mA = PtR;
|
||
|
FaceR.mB = PtL;
|
||
|
FaceR.mC = PtB;
|
||
|
|
||
|
FaceL.mA = PtR;
|
||
|
FaceL.mB = PtL;
|
||
|
FaceL.mC = PtA;
|
||
|
|
||
|
|
||
|
// DEBUG VERIFICATION
|
||
|
//========================================================================
|
||
|
#ifdef _DEBUG
|
||
|
mEdges[FaceR.mLeft ].verify(FaceR.mA, FaceR.mB, FaceR.mC, EdgeAt.mRight);
|
||
|
mEdges[FaceR.mRight ].verify(FaceR.mA, FaceR.mB, FaceR.mC, EdgeAt.mRight);
|
||
|
mEdges[FaceR.mBottom].verify(FaceR.mA, FaceR.mB, EdgeAt.mRight);
|
||
|
|
||
|
mEdges[FaceL.mLeft ].verify(FaceL.mA, FaceL.mB, FaceL.mC, EdgeAt.mLeft);
|
||
|
mEdges[FaceL.mRight ].verify(FaceL.mA, FaceL.mB, FaceL.mC, EdgeAt.mLeft);
|
||
|
mEdges[FaceL.mBottom].verify(FaceL.mA, FaceL.mB, EdgeAt.mLeft);
|
||
|
#endif
|
||
|
|
||
|
assert(EdgeAt.mRight!=EdgeAt.mLeft);
|
||
|
assert(PtA!=PtB);
|
||
|
assert(PtR!=PtL);
|
||
|
//========================================================================
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return Flipped;
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
}
|
||
|
#endif
|