mirror of
https://github.com/DrBeef/JKXR.git
synced 2025-01-22 00:11:51 +00:00
188 lines
6.9 KiB
C
188 lines
6.9 KiB
C
|
/*
|
||
|
===========================================================================
|
||
|
Copyright (C) 2000 - 2013, Raven Software, Inc.
|
||
|
Copyright (C) 2001 - 2013, Activision, Inc.
|
||
|
Copyright (C) 2013 - 2015, OpenJK contributors
|
||
|
|
||
|
This file is part of the OpenJK source code.
|
||
|
|
||
|
OpenJK is free software; you can redistribute it and/or modify it
|
||
|
under the terms of the GNU General Public License version 2 as
|
||
|
published by the Free Software Foundation.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||
|
===========================================================================
|
||
|
*/
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////////
|
||
|
// RAVEN STANDARD TEMPLATE LIBRARY
|
||
|
// (c) 2002 Activision
|
||
|
//
|
||
|
//
|
||
|
// Matrix Library
|
||
|
// --------------
|
||
|
//
|
||
|
//
|
||
|
//
|
||
|
// NOTES:
|
||
|
//
|
||
|
//
|
||
|
////////////////////////////////////////////////////////////////////////////////////////
|
||
|
#if !defined(RAVL_MATRIX_INC)
|
||
|
#define RAVL_MATRIX_INC
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Includes
|
||
|
////////////////////////////////////////////////////////////////////////////////////////
|
||
|
#if defined(RA_DEBUG_LINKING)
|
||
|
#pragma message("...including CMatrix.h")
|
||
|
#endif
|
||
|
#if !defined(RAVL_VEC_INC)
|
||
|
#include "CVec.h"
|
||
|
#endif
|
||
|
//namespace ravl
|
||
|
//{
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////////
|
||
|
// The Matrix
|
||
|
////////////////////////////////////////////////////////////////////////////////////////
|
||
|
class CMatrix
|
||
|
{
|
||
|
public:
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Constructors
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
CMatrix() {}
|
||
|
CMatrix(const CVec4& x,const CVec4& y,const CVec4& z, const CVec4& w) {v[0]=x; v[1]=y; v[2]=z; v[3]=w;}
|
||
|
CMatrix(const CMatrix& t) {v[0]=t.v[0]; v[1]=t.v[1]; v[2]=t.v[2]; v[3]=t.v[3];}
|
||
|
CMatrix(const float t[16]) {v[0]=t[0]; v[1]=t[4]; v[2]=t[8]; v[3]=t[12];}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Initializers
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
void Set(const CVec4& x,const CVec4& y,const CVec4& z, const CVec4& w) {v[0]=x; v[1]=y; v[2]=z; v[3]=w;}
|
||
|
void Set(const CMatrix& t) {v[0]=t.v[0]; v[1]=t.v[1]; v[2]=t.v[2]; v[3]=t.v[3];}
|
||
|
void Set(const float t[16]) {v[0]=t[0]; v[1]=t[4]; v[2]=t[8]; v[3]=t[12];}
|
||
|
|
||
|
void Clear() {v[0].Set(0,0,0,0); v[1].Set(0,0,0,0); v[2].Set(0,0,0,0); v[3].Set(0,0,0,0);}
|
||
|
void Itentity() {v[0].Set(1,0,0,0); v[1].Set(0,1,0,0); v[2].Set(0,0,1,0); v[3].Set(0,0,0,1);}
|
||
|
void Translate(const float x, const float y, const float z) {v[0].Set(1,0,0,0); v[1].Set(0,1,0,0); v[2].Set(0,0,1,0); v[3].Set(x,y,z,1);}
|
||
|
void Scale(const float x, const float y, const float z) {v[0].Set(x,0,0,0); v[1].Set(0,y,0,0); v[2].Set(0,0,z,0); v[3].Set(0,0,0,1);}
|
||
|
void Rotate(int axis, const float s/*sin(angle)*/, const float c/*cos(angle)*/)
|
||
|
{
|
||
|
switch(axis)
|
||
|
{
|
||
|
case 0:
|
||
|
v[0].Set( 1, 0, 0, 0);
|
||
|
v[1].Set( 0, c,-s, 0);
|
||
|
v[2].Set( 0, s, c, 0);
|
||
|
break;
|
||
|
case 1:
|
||
|
v[0].Set( c, 0, s, 0);
|
||
|
v[1].Set( 0, 1, 0, 0);
|
||
|
v[2].Set(-s, 0, c, 0);
|
||
|
break;
|
||
|
case 2:
|
||
|
v[0].Set( c,-s, 0, 0);
|
||
|
v[1].Set( s, c, 0, 0);
|
||
|
v[2].Set( 0, 0, 1, 0);
|
||
|
break;
|
||
|
}
|
||
|
v[3].Set( 0, 0, 0, 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Member Accessors
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
const CVec4& operator[](int i) const {return v[i];}
|
||
|
CVec4& operator[](int i) {return v[i];}
|
||
|
|
||
|
CVec4& up() {return v[0];}
|
||
|
CVec4& left() {return v[1];}
|
||
|
CVec4& fwd() {return v[2];}
|
||
|
CVec4& origin() {return v[3];}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Equality / Inequality Operators
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
bool operator== (const CMatrix& t) const {return (v[0]==t.v[0] && v[1]==t.v[1] && v[2]==t.v[2] && v[3]==t.v[3]);}
|
||
|
bool operator!= (const CMatrix& t) const {return !(v[0]==t.v[0] && v[1]==t.v[1] && v[2]==t.v[2] && v[3]==t.v[3]);}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Basic Arithimitic Operators
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
const CMatrix &operator= (const CMatrix& t) {v[0]=t.v[0]; v[1]=t.v[1]; v[2]=t.v[2]; v[3]=t.v[3]; return *this;}
|
||
|
const CMatrix &operator+= (const CMatrix& t) {v[0]+=t.v[0]; v[1]+=t.v[1]; v[2]+=t.v[2]; v[3]+=t.v[3];return *this;}
|
||
|
const CMatrix &operator-= (const CMatrix& t) {v[0]-=t.v[0]; v[1]-=t.v[1]; v[2]-=t.v[2]; v[3]-=t.v[3];return *this;}
|
||
|
|
||
|
CMatrix operator+ (const CMatrix &t) const {return CMatrix(v[0]+t.v[0], v[1]+t.v[1], v[2]+t.v[2], v[3]+t.v[3]);}
|
||
|
CMatrix operator- (const CMatrix &t) const {return CMatrix(v[0]-t.v[0], v[1]-t.v[1], v[2]-t.v[2], v[3]-t.v[3]);}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Matrix Scale
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
const CMatrix &operator*= (const float d) {v[0]*=d; v[1]*=d; v[2]*=d; v[3]*=d; return *this;}
|
||
|
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Matrix To Matrix Multiply
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
CMatrix operator* (const CMatrix &t) const
|
||
|
{
|
||
|
// assert(this!=&t); // Don't Multiply With Self
|
||
|
|
||
|
CMatrix Result; // The Resulting Matrix
|
||
|
int i,j,k; // Counters
|
||
|
float Accumulator; // Current Value Of The Dot Product
|
||
|
for (i=0; i<4; i++)
|
||
|
{
|
||
|
for (j=0; j<4; j++)
|
||
|
{
|
||
|
Accumulator = 0.0f; // Reset The Accumulator
|
||
|
for(k=0; k<4; k++)
|
||
|
{
|
||
|
Accumulator += v[i][k]*t[k][j]; // Calculate Dot Product Of The Two Vectors
|
||
|
}
|
||
|
Result[i][j]=Accumulator; // Place In Result
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
// Vector To Matrix Multiply
|
||
|
////////////////////////////////////////////////////////////////////////////////////
|
||
|
CVec4 operator* (const CVec4 &t) const
|
||
|
{
|
||
|
CVec4 Result;
|
||
|
|
||
|
Result[0] = v[0][0]*t[0] + v[1][0]*t[1] + v[2][0]*t[2] + v[3][0];
|
||
|
Result[1] = v[0][1]*t[0] + v[1][1]*t[1] + v[2][1]*t[2] + v[3][1];
|
||
|
Result[2] = v[0][2]*t[0] + v[1][2]*t[1] + v[2][2]*t[2] + v[3][2];
|
||
|
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
CVec4 v[4];
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
//}
|
||
|
#endif
|