mirror of
https://github.com/DrBeef/JKXR.git
synced 2025-01-25 09:41:34 +00:00
586 lines
19 KiB
C++
586 lines
19 KiB
C++
|
/*
|
||
|
===========================================================================
|
||
|
Copyright (C) 1999 - 2005, Id Software, Inc.
|
||
|
Copyright (C) 2000 - 2013, Raven Software, Inc.
|
||
|
Copyright (C) 2001 - 2013, Activision, Inc.
|
||
|
Copyright (C) 2005 - 2015, ioquake3 contributors
|
||
|
Copyright (C) 2013 - 2015, OpenJK contributors
|
||
|
|
||
|
This file is part of the OpenJK source code.
|
||
|
|
||
|
OpenJK is free software; you can redistribute it and/or modify it
|
||
|
under the terms of the GNU General Public License version 2 as
|
||
|
published by the Free Software Foundation.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||
|
===========================================================================
|
||
|
*/
|
||
|
|
||
|
#include "../server/exe_headers.h"
|
||
|
|
||
|
#include "tr_common.h"
|
||
|
|
||
|
/*
|
||
|
* Include file for users of JPEG library.
|
||
|
* You will need to have included system headers that define at least
|
||
|
* the typedefs FILE and size_t before you can include jpeglib.h.
|
||
|
* (stdio.h is sufficient on ANSI-conforming systems.)
|
||
|
* You may also wish to include "jerror.h".
|
||
|
*/
|
||
|
|
||
|
#include <jpeglib.h>
|
||
|
|
||
|
static void R_JPGErrorExit(j_common_ptr cinfo)
|
||
|
{
|
||
|
char buffer[JMSG_LENGTH_MAX];
|
||
|
|
||
|
(*cinfo->err->format_message) (cinfo, buffer);
|
||
|
|
||
|
/* Let the memory manager delete any temp files before we die */
|
||
|
jpeg_destroy(cinfo);
|
||
|
|
||
|
Com_Printf("%s", buffer);
|
||
|
}
|
||
|
|
||
|
static void R_JPGOutputMessage(j_common_ptr cinfo)
|
||
|
{
|
||
|
char buffer[JMSG_LENGTH_MAX];
|
||
|
|
||
|
/* Create the message */
|
||
|
(*cinfo->err->format_message) (cinfo, buffer);
|
||
|
|
||
|
/* Send it to stderr, adding a newline */
|
||
|
Com_Printf("%s\n", buffer);
|
||
|
}
|
||
|
|
||
|
void LoadJPG( const char *filename, unsigned char **pic, int *width, int *height ) {
|
||
|
/* This struct contains the JPEG decompression parameters and pointers to
|
||
|
* working space (which is allocated as needed by the JPEG library).
|
||
|
*/
|
||
|
struct jpeg_decompress_struct cinfo = { NULL };
|
||
|
/* We use our private extension JPEG error handler.
|
||
|
* Note that this struct must live as long as the main JPEG parameter
|
||
|
* struct, to avoid dangling-pointer problems.
|
||
|
*/
|
||
|
/* This struct represents a JPEG error handler. It is declared separately
|
||
|
* because applications often want to supply a specialized error handler
|
||
|
* (see the second half of this file for an example). But here we just
|
||
|
* take the easy way out and use the standard error handler, which will
|
||
|
* print a message on stderr and call exit() if compression fails.
|
||
|
* Note that this struct must live as long as the main JPEG parameter
|
||
|
* struct, to avoid dangling-pointer problems.
|
||
|
*/
|
||
|
struct jpeg_error_mgr jerr;
|
||
|
/* More stuff */
|
||
|
JSAMPARRAY buffer; /* Output row buffer */
|
||
|
unsigned int row_stride; /* physical row width in output buffer */
|
||
|
unsigned int pixelcount, memcount;
|
||
|
unsigned int sindex, dindex;
|
||
|
byte *out;
|
||
|
union {
|
||
|
byte *b;
|
||
|
void *v;
|
||
|
} fbuffer;
|
||
|
byte *buf;
|
||
|
/* In this example we want to open the input file before doing anything else,
|
||
|
* so that the setjmp() error recovery below can assume the file is open.
|
||
|
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
|
||
|
* requires it in order to read binary files.
|
||
|
*/
|
||
|
|
||
|
int len = ri.FS_ReadFile ( ( char * ) filename, &fbuffer.v);
|
||
|
if (!fbuffer.b || len < 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Step 1: allocate and initialize JPEG decompression object */
|
||
|
|
||
|
/* We have to set up the error handler first, in case the initialization
|
||
|
* step fails. (Unlikely, but it could happen if you are out of memory.)
|
||
|
* This routine fills in the contents of struct jerr, and returns jerr's
|
||
|
* address which we place into the link field in cinfo.
|
||
|
*/
|
||
|
cinfo.err = jpeg_std_error(&jerr);
|
||
|
cinfo.err->error_exit = R_JPGErrorExit;
|
||
|
cinfo.err->output_message = R_JPGOutputMessage;
|
||
|
|
||
|
/* Now we can initialize the JPEG decompression object. */
|
||
|
jpeg_create_decompress(&cinfo);
|
||
|
|
||
|
/* Step 2: specify data source (eg, a file) */
|
||
|
|
||
|
jpeg_mem_src(&cinfo, fbuffer.b, len);
|
||
|
|
||
|
/* Step 3: read file parameters with jpeg_read_header() */
|
||
|
|
||
|
(void) jpeg_read_header(&cinfo, TRUE);
|
||
|
/* We can ignore the return value from jpeg_read_header since
|
||
|
* (a) suspension is not possible with the stdio data source, and
|
||
|
* (b) we passed TRUE to reject a tables-only JPEG file as an error.
|
||
|
* See libjpeg.doc for more info.
|
||
|
*/
|
||
|
|
||
|
/* Step 4: set parameters for decompression */
|
||
|
|
||
|
|
||
|
/* Make sure it always converts images to RGB color space. This will
|
||
|
* automatically convert 8-bit greyscale images to RGB as well. */
|
||
|
cinfo.out_color_space = JCS_RGB;
|
||
|
|
||
|
/* Step 5: Start decompressor */
|
||
|
|
||
|
(void) jpeg_start_decompress(&cinfo);
|
||
|
/* We can ignore the return value since suspension is not possible
|
||
|
* with the stdio data source.
|
||
|
*/
|
||
|
|
||
|
/* We may need to do some setup of our own at this point before reading
|
||
|
* the data. After jpeg_start_decompress() we have the correct scaled
|
||
|
* output image dimensions available, as well as the output colormap
|
||
|
* if we asked for color quantization.
|
||
|
* In this example, we need to make an output work buffer of the right size.
|
||
|
*/
|
||
|
/* JSAMPLEs per row in output buffer */
|
||
|
pixelcount = cinfo.output_width * cinfo.output_height;
|
||
|
|
||
|
if(!cinfo.output_width || !cinfo.output_height
|
||
|
|| ((pixelcount * 4) / cinfo.output_width) / 4 != cinfo.output_height
|
||
|
|| pixelcount > 0x1FFFFFFF || cinfo.output_components != 3
|
||
|
)
|
||
|
{
|
||
|
// Free the memory to make sure we don't leak memory
|
||
|
ri.FS_FreeFile (fbuffer.v);
|
||
|
jpeg_destroy_decompress(&cinfo);
|
||
|
|
||
|
ri.Printf( PRINT_ALL, "LoadJPG: %s has an invalid image format: %dx%d*4=%d, components: %d", filename,
|
||
|
cinfo.output_width, cinfo.output_height, pixelcount * 4, cinfo.output_components);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
memcount = pixelcount * 4;
|
||
|
row_stride = cinfo.output_width * cinfo.output_components;
|
||
|
|
||
|
out = (byte *)R_Malloc(memcount, TAG_TEMP_WORKSPACE, qfalse);
|
||
|
|
||
|
*width = cinfo.output_width;
|
||
|
*height = cinfo.output_height;
|
||
|
|
||
|
/* Step 6: while (scan lines remain to be read) */
|
||
|
/* jpeg_read_scanlines(...); */
|
||
|
|
||
|
/* Here we use the library's state variable cinfo.output_scanline as the
|
||
|
* loop counter, so that we don't have to keep track ourselves.
|
||
|
*/
|
||
|
while (cinfo.output_scanline < cinfo.output_height) {
|
||
|
/* jpeg_read_scanlines expects an array of pointers to scanlines.
|
||
|
* Here the array is only one element long, but you could ask for
|
||
|
* more than one scanline at a time if that's more convenient.
|
||
|
*/
|
||
|
buf = ((out+(row_stride*cinfo.output_scanline)));
|
||
|
buffer = &buf;
|
||
|
(void) jpeg_read_scanlines(&cinfo, buffer, 1);
|
||
|
}
|
||
|
|
||
|
buf = out;
|
||
|
// Expand from RGB to RGBA
|
||
|
sindex = pixelcount * cinfo.output_components;
|
||
|
dindex = memcount;
|
||
|
|
||
|
do {
|
||
|
buf[--dindex] = 255;
|
||
|
buf[--dindex] = buf[--sindex];
|
||
|
buf[--dindex] = buf[--sindex];
|
||
|
buf[--dindex] = buf[--sindex];
|
||
|
} while(sindex);
|
||
|
|
||
|
*pic = out;
|
||
|
|
||
|
/* Step 7: Finish decompression */
|
||
|
|
||
|
(void) jpeg_finish_decompress(&cinfo);
|
||
|
/* We can ignore the return value since suspension is not possible
|
||
|
* with the stdio data source.
|
||
|
*/
|
||
|
|
||
|
/* Step 8: Release JPEG decompression object */
|
||
|
|
||
|
/* This is an important step since it will release a good deal of memory. */
|
||
|
jpeg_destroy_decompress(&cinfo);
|
||
|
|
||
|
/* After finish_decompress, we can close the input file.
|
||
|
* Here we postpone it until after no more JPEG errors are possible,
|
||
|
* so as to simplify the setjmp error logic above. (Actually, I don't
|
||
|
* think that jpeg_destroy can do an error exit, but why assume anything...)
|
||
|
*/
|
||
|
ri.FS_FreeFile (fbuffer.v);
|
||
|
/* At this point you may want to check to see whether any corrupt-data
|
||
|
* warnings occurred (test whether jerr.pub.num_warnings is nonzero).
|
||
|
*/
|
||
|
|
||
|
/* And we're done! */
|
||
|
}
|
||
|
|
||
|
#ifdef JK2_MODE
|
||
|
void LoadJPGFromBuffer( byte *inputBuffer, size_t len, unsigned char **pic, int *width, int *height ) {
|
||
|
/* This struct contains the JPEG decompression parameters and pointers to
|
||
|
* working space (which is allocated as needed by the JPEG library).
|
||
|
*/
|
||
|
struct jpeg_decompress_struct cinfo = { NULL };
|
||
|
/* We use our private extension JPEG error handler.
|
||
|
* Note that this struct must live as long as the main JPEG parameter
|
||
|
* struct, to avoid dangling-pointer problems.
|
||
|
*/
|
||
|
/* This struct represents a JPEG error handler. It is declared separately
|
||
|
* because applications often want to supply a specialized error handler
|
||
|
* (see the second half of this file for an example). But here we just
|
||
|
* take the easy way out and use the standard error handler, which will
|
||
|
* print a message on stderr and call exit() if compression fails.
|
||
|
* Note that this struct must live as long as the main JPEG parameter
|
||
|
* struct, to avoid dangling-pointer problems.
|
||
|
*/
|
||
|
struct jpeg_error_mgr jerr;
|
||
|
/* More stuff */
|
||
|
JSAMPARRAY buffer; /* Output row buffer */
|
||
|
unsigned int row_stride; /* physical row width in output buffer */
|
||
|
unsigned int pixelcount, memcount;
|
||
|
unsigned int sindex, dindex;
|
||
|
byte *out;
|
||
|
byte *buf;
|
||
|
|
||
|
if (!inputBuffer) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Step 1: allocate and initialize JPEG decompression object */
|
||
|
|
||
|
/* We have to set up the error handler first, in case the initialization
|
||
|
* step fails. (Unlikely, but it could happen if you are out of memory.)
|
||
|
* This routine fills in the contents of struct jerr, and returns jerr's
|
||
|
* address which we place into the link field in cinfo.
|
||
|
*/
|
||
|
cinfo.err = jpeg_std_error(&jerr);
|
||
|
cinfo.err->error_exit = R_JPGErrorExit;
|
||
|
cinfo.err->output_message = R_JPGOutputMessage;
|
||
|
|
||
|
/* Now we can initialize the JPEG decompression object. */
|
||
|
jpeg_create_decompress(&cinfo);
|
||
|
|
||
|
/* Step 2: specify data source (eg, a file) */
|
||
|
|
||
|
jpeg_mem_src(&cinfo, inputBuffer, len);
|
||
|
|
||
|
/* Step 3: read file parameters with jpeg_read_header() */
|
||
|
|
||
|
(void) jpeg_read_header(&cinfo, TRUE);
|
||
|
/* We can ignore the return value from jpeg_read_header since
|
||
|
* (a) suspension is not possible with the stdio data source, and
|
||
|
* (b) we passed TRUE to reject a tables-only JPEG file as an error.
|
||
|
* See libjpeg.doc for more info.
|
||
|
*/
|
||
|
|
||
|
/* Step 4: set parameters for decompression */
|
||
|
|
||
|
|
||
|
/* Make sure it always converts images to RGB color space. This will
|
||
|
* automatically convert 8-bit greyscale images to RGB as well. */
|
||
|
cinfo.out_color_space = JCS_RGB;
|
||
|
|
||
|
/* Step 5: Start decompressor */
|
||
|
|
||
|
(void) jpeg_start_decompress(&cinfo);
|
||
|
/* We can ignore the return value since suspension is not possible
|
||
|
* with the stdio data source.
|
||
|
*/
|
||
|
|
||
|
/* We may need to do some setup of our own at this point before reading
|
||
|
* the data. After jpeg_start_decompress() we have the correct scaled
|
||
|
* output image dimensions available, as well as the output colormap
|
||
|
* if we asked for color quantization.
|
||
|
* In this example, we need to make an output work buffer of the right size.
|
||
|
*/
|
||
|
/* JSAMPLEs per row in output buffer */
|
||
|
pixelcount = cinfo.output_width * cinfo.output_height;
|
||
|
|
||
|
if(!cinfo.output_width || !cinfo.output_height
|
||
|
|| ((pixelcount * 4) / cinfo.output_width) / 4 != cinfo.output_height
|
||
|
|| pixelcount > 0x1FFFFFFF || cinfo.output_components != 3
|
||
|
)
|
||
|
{
|
||
|
// Free the memory to make sure we don't leak memory
|
||
|
jpeg_destroy_decompress(&cinfo);
|
||
|
|
||
|
ri.Printf( PRINT_ALL, "LoadJPG: invalid image format: %dx%d*4=%d, components: %d",
|
||
|
cinfo.output_width, cinfo.output_height, pixelcount * 4, cinfo.output_components);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
memcount = pixelcount * 4;
|
||
|
row_stride = cinfo.output_width * cinfo.output_components;
|
||
|
|
||
|
out = (byte *)R_Malloc(memcount, TAG_TEMP_WORKSPACE, qfalse);
|
||
|
|
||
|
*width = cinfo.output_width;
|
||
|
*height = cinfo.output_height;
|
||
|
|
||
|
/* Step 6: while (scan lines remain to be read) */
|
||
|
/* jpeg_read_scanlines(...); */
|
||
|
|
||
|
/* Here we use the library's state variable cinfo.output_scanline as the
|
||
|
* loop counter, so that we don't have to keep track ourselves.
|
||
|
*/
|
||
|
while (cinfo.output_scanline < cinfo.output_height) {
|
||
|
/* jpeg_read_scanlines expects an array of pointers to scanlines.
|
||
|
* Here the array is only one element long, but you could ask for
|
||
|
* more than one scanline at a time if that's more convenient.
|
||
|
*/
|
||
|
buf = ((out+(row_stride*(cinfo.output_height - cinfo.output_scanline - 1))));
|
||
|
buffer = &buf;
|
||
|
(void) jpeg_read_scanlines(&cinfo, buffer, 1);
|
||
|
}
|
||
|
|
||
|
buf = out;
|
||
|
// Expand from RGB to RGBA
|
||
|
sindex = pixelcount * cinfo.output_components;
|
||
|
dindex = memcount;
|
||
|
|
||
|
do {
|
||
|
buf[--dindex] = 255;
|
||
|
buf[--dindex] = buf[--sindex];
|
||
|
buf[--dindex] = buf[--sindex];
|
||
|
buf[--dindex] = buf[--sindex];
|
||
|
} while(sindex);
|
||
|
|
||
|
*pic = out;
|
||
|
|
||
|
/* Step 7: Finish decompression */
|
||
|
|
||
|
(void) jpeg_finish_decompress(&cinfo);
|
||
|
/* We can ignore the return value since suspension is not possible
|
||
|
* with the stdio data source.
|
||
|
*/
|
||
|
|
||
|
/* Step 8: Release JPEG decompression object */
|
||
|
|
||
|
/* This is an important step since it will release a good deal of memory. */
|
||
|
jpeg_destroy_decompress(&cinfo);
|
||
|
|
||
|
/* At this point you may want to check to see whether any corrupt-data
|
||
|
* warnings occurred (test whether jerr.pub.num_warnings is nonzero).
|
||
|
*/
|
||
|
|
||
|
/* And we're done! */
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* Expanded data destination object for stdio output */
|
||
|
|
||
|
typedef struct my_destination_mgr_s {
|
||
|
struct jpeg_destination_mgr pub; /* public fields */
|
||
|
|
||
|
byte* outfile; /* target stream */
|
||
|
int size;
|
||
|
} my_destination_mgr;
|
||
|
|
||
|
typedef my_destination_mgr * my_dest_ptr;
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Initialize destination --- called by jpeg_start_compress
|
||
|
* before any data is actually written.
|
||
|
*/
|
||
|
|
||
|
static void init_destination (j_compress_ptr cinfo)
|
||
|
{
|
||
|
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
||
|
|
||
|
dest->pub.next_output_byte = dest->outfile;
|
||
|
dest->pub.free_in_buffer = dest->size;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Empty the output buffer --- called whenever buffer fills up.
|
||
|
*
|
||
|
* In typical applications, this should write the entire output buffer
|
||
|
* (ignoring the current state of next_output_byte & free_in_buffer),
|
||
|
* reset the pointer & count to the start of the buffer, and return TRUE
|
||
|
* indicating that the buffer has been dumped.
|
||
|
*
|
||
|
* In applications that need to be able to suspend compression due to output
|
||
|
* overrun, a FALSE return indicates that the buffer cannot be emptied now.
|
||
|
* In this situation, the compressor will return to its caller (possibly with
|
||
|
* an indication that it has not accepted all the supplied scanlines). The
|
||
|
* application should resume compression after it has made more room in the
|
||
|
* output buffer. Note that there are substantial restrictions on the use of
|
||
|
* suspension --- see the documentation.
|
||
|
*
|
||
|
* When suspending, the compressor will back up to a convenient restart point
|
||
|
* (typically the start of the current MCU). next_output_byte & free_in_buffer
|
||
|
* indicate where the restart point will be if the current call returns FALSE.
|
||
|
* Data beyond this point will be regenerated after resumption, so do not
|
||
|
* write it out when emptying the buffer externally.
|
||
|
*/
|
||
|
|
||
|
static boolean empty_output_buffer (j_compress_ptr cinfo)
|
||
|
{
|
||
|
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
|
||
|
|
||
|
jpeg_destroy_compress(cinfo);
|
||
|
|
||
|
// Make crash fatal or we would probably leak memory.
|
||
|
Com_Error(ERR_FATAL, "Output buffer for encoded JPEG image has insufficient size of %d bytes", dest->size);
|
||
|
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Terminate destination --- called by jpeg_finish_compress
|
||
|
* after all data has been written. Usually needs to flush buffer.
|
||
|
*
|
||
|
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
|
||
|
* application must deal with any cleanup that should happen even
|
||
|
* for error exit.
|
||
|
*/
|
||
|
|
||
|
static void term_destination(j_compress_ptr cinfo)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Prepare for output to a stdio stream.
|
||
|
* The caller must have already opened the stream, and is responsible
|
||
|
* for closing it after finishing compression.
|
||
|
*/
|
||
|
|
||
|
static void jpegDest (j_compress_ptr cinfo, byte* outfile, int size)
|
||
|
{
|
||
|
my_dest_ptr dest;
|
||
|
|
||
|
/* The destination object is made permanent so that multiple JPEG images
|
||
|
* can be written to the same file without re-executing jpeg_stdio_dest.
|
||
|
* This makes it dangerous to use this manager and a different destination
|
||
|
* manager serially with the same JPEG object, because their private object
|
||
|
* sizes may be different. Caveat programmer.
|
||
|
*/
|
||
|
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
|
||
|
cinfo->dest = (struct jpeg_destination_mgr *)
|
||
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
|
||
|
sizeof(my_destination_mgr));
|
||
|
}
|
||
|
|
||
|
dest = (my_dest_ptr) cinfo->dest;
|
||
|
dest->pub.init_destination = init_destination;
|
||
|
dest->pub.empty_output_buffer = empty_output_buffer;
|
||
|
dest->pub.term_destination = term_destination;
|
||
|
dest->outfile = outfile;
|
||
|
dest->size = size;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
=================
|
||
|
SaveJPGToBuffer
|
||
|
|
||
|
Encodes JPEG from image in image_buffer and writes to buffer.
|
||
|
Expects RGB input data
|
||
|
=================
|
||
|
*/
|
||
|
size_t RE_SaveJPGToBuffer(byte *buffer, size_t bufSize, int quality,
|
||
|
int image_width, int image_height, byte *image_buffer, int padding, bool flip_vertical)
|
||
|
{
|
||
|
struct jpeg_compress_struct cinfo;
|
||
|
struct jpeg_error_mgr jerr;
|
||
|
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
|
||
|
my_dest_ptr dest;
|
||
|
int row_stride; /* physical row width in image buffer */
|
||
|
size_t outcount;
|
||
|
|
||
|
/* Step 1: allocate and initialize JPEG compression object */
|
||
|
|
||
|
cinfo.err = jpeg_std_error(&jerr);
|
||
|
cinfo.err->error_exit = R_JPGErrorExit;
|
||
|
cinfo.err->output_message = R_JPGOutputMessage;
|
||
|
|
||
|
/* Now we can initialize the JPEG compression object. */
|
||
|
jpeg_create_compress(&cinfo);
|
||
|
|
||
|
/* Step 2: specify data destination (eg, a file) */
|
||
|
/* Note: steps 2 and 3 can be done in either order. */
|
||
|
|
||
|
jpegDest(&cinfo, buffer, bufSize);
|
||
|
|
||
|
/* Step 3: set parameters for compression */
|
||
|
cinfo.image_width = image_width; /* image width and height, in pixels */
|
||
|
cinfo.image_height = image_height;
|
||
|
cinfo.input_components = 3; /* # of color components per pixel */
|
||
|
cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
|
||
|
jpeg_set_defaults(&cinfo);
|
||
|
jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
|
||
|
|
||
|
/* If quality is set high, disable chroma subsampling */
|
||
|
if (quality >= 85) {
|
||
|
cinfo.comp_info[0].h_samp_factor = 1;
|
||
|
cinfo.comp_info[0].v_samp_factor = 1;
|
||
|
}
|
||
|
|
||
|
/* Step 4: Start compressor */
|
||
|
|
||
|
jpeg_start_compress(&cinfo, TRUE);
|
||
|
|
||
|
/* Step 5: while (scan lines remain to be written) */
|
||
|
/* jpeg_write_scanlines(...); */
|
||
|
|
||
|
row_stride = image_width * cinfo.input_components + padding; /* JSAMPLEs per row in image_buffer */
|
||
|
|
||
|
while (cinfo.next_scanline < cinfo.image_height) {
|
||
|
/* jpeg_write_scanlines expects an array of pointers to scanlines.
|
||
|
* Here the array is only one element long, but you could pass
|
||
|
* more than one scanline at a time if that's more convenient.
|
||
|
*/
|
||
|
|
||
|
int row_index = cinfo.next_scanline;
|
||
|
|
||
|
if (!flip_vertical)
|
||
|
{
|
||
|
row_index = cinfo.image_height - cinfo.next_scanline - 1;
|
||
|
}
|
||
|
|
||
|
row_pointer[0] = &image_buffer[row_index * row_stride];
|
||
|
(void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
|
||
|
}
|
||
|
|
||
|
/* Step 6: Finish compression */
|
||
|
jpeg_finish_compress(&cinfo);
|
||
|
|
||
|
dest = (my_dest_ptr) cinfo.dest;
|
||
|
outcount = dest->size - dest->pub.free_in_buffer;
|
||
|
|
||
|
/* Step 7: release JPEG compression object */
|
||
|
jpeg_destroy_compress(&cinfo);
|
||
|
|
||
|
/* And we're done! */
|
||
|
return outcount;
|
||
|
}
|
||
|
|
||
|
|
||
|
void RE_SaveJPG(const char * filename, int quality, int image_width, int image_height, byte *image_buffer, int padding)
|
||
|
{
|
||
|
byte *out;
|
||
|
size_t bufSize;
|
||
|
|
||
|
bufSize = image_width * image_height * 3;
|
||
|
out = (byte *) R_Malloc( bufSize, TAG_TEMP_WORKSPACE, qfalse );
|
||
|
|
||
|
bufSize = RE_SaveJPGToBuffer(out, bufSize, quality, image_width, image_height, image_buffer, padding, false);
|
||
|
ri.FS_WriteFile(filename, out, bufSize);
|
||
|
|
||
|
R_Free(out);
|
||
|
}
|
||
|
|