jkxr/Projects/Android/jni/OpenJK/code/qcommon/cm_polylib.cpp

283 lines
5.8 KiB
C++
Raw Normal View History

/*
===========================================================================
Copyright (C) 1999 - 2005, Id Software, Inc.
Copyright (C) 2000 - 2013, Raven Software, Inc.
Copyright (C) 2001 - 2013, Activision, Inc.
Copyright (C) 2013 - 2015, OpenJK contributors
This file is part of the OpenJK source code.
OpenJK is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
===========================================================================
*/
// this is only used for visualization tools in cm_ debug functions
#include "cm_local.h"
// counters are only bumped when running single threaded,
// because they are an awefull coherence problem
int c_active_windings;
int c_peak_windings;
int c_winding_allocs;
int c_winding_points;
void pw(winding_t *w)
{
int i;
for (i=0 ; i<w->numpoints ; i++)
printf ("(%5.1f, %5.1f, %5.1f)\n",w->p[i][0], w->p[i][1],w->p[i][2]);
}
/*
=============
AllocWinding
=============
*/
winding_t *AllocWinding (int points)
{
winding_t *w;
int s;
c_winding_allocs++;
c_winding_points += points;
c_active_windings++;
if (c_active_windings > c_peak_windings)
c_peak_windings = c_active_windings;
s = sizeof(vec_t)*3*points + sizeof(int);
w = (winding_t *) Z_Malloc (s,TAG_BSP, qtrue);//TAG_WINDING);
// memset (w, 0, s); // qtrue above does this
return w;
}
void FreeWinding (winding_t *w)
{
if (*(unsigned *)w == 0xdeaddead)
Com_Error (ERR_FATAL, "FreeWinding: freed a freed winding");
*(unsigned *)w = 0xdeaddead;
c_active_windings--;
Z_Free (w);
}
void WindingBounds (winding_t *w, vec3_t mins, vec3_t maxs)
{
vec_t v;
int i,j;
mins[0] = mins[1] = mins[2] = WORLD_SIZE; // 99999; // WORLD_SIZE instead of MAX_WORLD_COORD so that...
maxs[0] = maxs[1] = maxs[2] = -WORLD_SIZE; //-99999; // ... it's guaranteed to be outide of legal
for (i=0 ; i<w->numpoints ; i++)
{
for (j=0 ; j<3 ; j++)
{
v = w->p[i][j];
if (v < mins[j])
mins[j] = v;
if (v > maxs[j])
maxs[j] = v;
}
}
}
/*
=================
BaseWindingForPlane
=================
*/
winding_t *BaseWindingForPlane (vec3_t normal, vec_t dist)
{
int i, x;
vec_t max, v;
vec3_t org, vright, vup;
winding_t *w;
// find the major axis
max = -MAX_MAP_BOUNDS;
x = -1;
for (i=0 ; i<3; i++)
{
v = fabs(normal[i]);
if (v > max)
{
x = i;
max = v;
}
}
if (x==-1)
Com_Error (ERR_DROP, "BaseWindingForPlane: no axis found");
VectorCopy (vec3_origin, vup);
switch (x)
{
case 0:
case 1:
vup[2] = 1;
break;
case 2:
vup[0] = 1;
break;
}
v = DotProduct (vup, normal);
VectorMA (vup, -v, normal, vup);
VectorNormalize2(vup, vup);
VectorScale (normal, dist, org);
CrossProduct (vup, normal, vright);
VectorScale (vup, MAX_MAP_BOUNDS, vup);
VectorScale (vright, MAX_MAP_BOUNDS, vright);
// project a really big axis aligned box onto the plane
w = AllocWinding (4);
VectorSubtract (org, vright, w->p[0]);
VectorAdd (w->p[0], vup, w->p[0]);
VectorAdd (org, vright, w->p[1]);
VectorAdd (w->p[1], vup, w->p[1]);
VectorAdd (org, vright, w->p[2]);
VectorSubtract (w->p[2], vup, w->p[2]);
VectorSubtract (org, vright, w->p[3]);
VectorSubtract (w->p[3], vup, w->p[3]);
w->numpoints = 4;
return w;
}
/*
==================
CopyWinding
==================
*/
winding_t *CopyWinding (winding_t *w)
{
intptr_t size;
winding_t *c;
c = AllocWinding (w->numpoints);
size = (intptr_t)((winding_t *)0)->p[w->numpoints];
memcpy (c, w, size);
return c;
}
/*
=============
ChopWindingInPlace
=============
*/
void ChopWindingInPlace (winding_t **inout, vec3_t normal, vec_t dist, vec_t epsilon)
{
winding_t *in;
vec_t dists[MAX_POINTS_ON_WINDING+4];
int sides[MAX_POINTS_ON_WINDING+4];
int counts[3];
static vec_t dot; // VC 4.2 optimizer bug if not static
int i, j;
vec_t *p1, *p2;
vec3_t mid;
winding_t *f;
int maxpts;
in = *inout;
counts[0] = counts[1] = counts[2] = 0;
// determine sides for each point
for (i=0 ; i<in->numpoints ; i++)
{
dot = DotProduct (in->p[i], normal);
dot -= dist;
dists[i] = dot;
if (dot > epsilon)
sides[i] = SIDE_FRONT;
else if (dot < -epsilon)
sides[i] = SIDE_BACK;
else
{
sides[i] = SIDE_ON;
}
counts[sides[i]]++;
}
sides[i] = sides[0];
dists[i] = dists[0];
if (!counts[0])
{
FreeWinding (in);
*inout = NULL;
return;
}
if (!counts[1])
return; // inout stays the same
maxpts = in->numpoints+4; // cant use counts[0]+2 because
// of fp grouping errors
f = AllocWinding (maxpts);
for (i=0 ; i<in->numpoints ; i++)
{
p1 = in->p[i];
if (sides[i] == SIDE_ON)
{
VectorCopy (p1, f->p[f->numpoints]);
f->numpoints++;
continue;
}
if (sides[i] == SIDE_FRONT)
{
VectorCopy (p1, f->p[f->numpoints]);
f->numpoints++;
}
if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
continue;
// generate a split point
p2 = in->p[(i+1)%in->numpoints];
dot = dists[i] / (dists[i]-dists[i+1]);
for (j=0 ; j<3 ; j++)
{ // avoid round off error when possible
if (normal[j] == 1)
mid[j] = dist;
else if (normal[j] == -1)
mid[j] = -dist;
else
mid[j] = p1[j] + dot*(p2[j]-p1[j]);
}
VectorCopy (mid, f->p[f->numpoints]);
f->numpoints++;
}
if (f->numpoints > maxpts)
Com_Error (ERR_DROP, "ClipWinding: points exceeded estimate");
if (f->numpoints > MAX_POINTS_ON_WINDING)
Com_Error (ERR_DROP, "ClipWinding: MAX_POINTS_ON_WINDING");
FreeWinding (in);
*inout = f;
}