ioq3quest/code/qcommon/vm_interpreted.c
2005-08-28 17:54:51 +00:00

889 lines
19 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Foobar; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
#include "vm_local.h"
#ifdef DEBUG_VM // bk001204
static char *opnames[256] = {
"OP_UNDEF",
"OP_IGNORE",
"OP_BREAK",
"OP_ENTER",
"OP_LEAVE",
"OP_CALL",
"OP_PUSH",
"OP_POP",
"OP_CONST",
"OP_LOCAL",
"OP_JUMP",
//-------------------
"OP_EQ",
"OP_NE",
"OP_LTI",
"OP_LEI",
"OP_GTI",
"OP_GEI",
"OP_LTU",
"OP_LEU",
"OP_GTU",
"OP_GEU",
"OP_EQF",
"OP_NEF",
"OP_LTF",
"OP_LEF",
"OP_GTF",
"OP_GEF",
//-------------------
"OP_LOAD1",
"OP_LOAD2",
"OP_LOAD4",
"OP_STORE1",
"OP_STORE2",
"OP_STORE4",
"OP_ARG",
"OP_BLOCK_COPY",
//-------------------
"OP_SEX8",
"OP_SEX16",
"OP_NEGI",
"OP_ADD",
"OP_SUB",
"OP_DIVI",
"OP_DIVU",
"OP_MODI",
"OP_MODU",
"OP_MULI",
"OP_MULU",
"OP_BAND",
"OP_BOR",
"OP_BXOR",
"OP_BCOM",
"OP_LSH",
"OP_RSHI",
"OP_RSHU",
"OP_NEGF",
"OP_ADDF",
"OP_SUBF",
"OP_DIVF",
"OP_MULF",
"OP_CVIF",
"OP_CVFI"
};
#endif
#if idppc
#if defined(__GNUC__)
static inline unsigned int loadWord(void *addr) {
unsigned int word;
asm("lwbrx %0,0,%1" : "=r" (word) : "r" (addr));
return word;
}
#else
#define loadWord(addr) __lwbrx(addr,0)
#endif
#else
#define loadWord(addr) *((int *)addr)
#endif
char *VM_Indent( vm_t *vm ) {
static char *string = " ";
if ( vm->callLevel > 20 ) {
return string;
}
return string + 2 * ( 20 - vm->callLevel );
}
void VM_StackTrace( vm_t *vm, int programCounter, int programStack ) {
int count;
count = 0;
do {
Com_Printf( "%s\n", VM_ValueToSymbol( vm, programCounter ) );
programStack = *(int *)&vm->dataBase[programStack+4];
programCounter = *(int *)&vm->dataBase[programStack];
} while ( programCounter != -1 && ++count < 32 );
}
/*
====================
VM_PrepareInterpreter
====================
*/
void VM_PrepareInterpreter( vm_t *vm, vmHeader_t *header ) {
int op;
int pc;
byte *code;
int instruction;
int *codeBase;
vm->codeBase = Hunk_Alloc( vm->codeLength*4, h_high ); // we're now int aligned
// memcpy( vm->codeBase, (byte *)header + header->codeOffset, vm->codeLength );
// we don't need to translate the instructions, but we still need
// to find each instructions starting point for jumps
pc = 0;
instruction = 0;
code = (byte *)header + header->codeOffset;
codeBase = (int *)vm->codeBase;
while ( instruction < header->instructionCount ) {
vm->instructionPointers[ instruction ] = pc;
instruction++;
op = code[ pc ];
codeBase[pc] = op;
if ( pc > header->codeLength ) {
Com_Error( ERR_FATAL, "VM_PrepareInterpreter: pc > header->codeLength" );
}
pc++;
// these are the only opcodes that aren't a single byte
switch ( op ) {
case OP_ENTER:
case OP_CONST:
case OP_LOCAL:
case OP_LEAVE:
case OP_EQ:
case OP_NE:
case OP_LTI:
case OP_LEI:
case OP_GTI:
case OP_GEI:
case OP_LTU:
case OP_LEU:
case OP_GTU:
case OP_GEU:
case OP_EQF:
case OP_NEF:
case OP_LTF:
case OP_LEF:
case OP_GTF:
case OP_GEF:
case OP_BLOCK_COPY:
codeBase[pc+0] = loadWord(&code[pc]);
pc += 4;
break;
case OP_ARG:
codeBase[pc+0] = code[pc];
pc += 1;
break;
default:
break;
}
}
pc = 0;
instruction = 0;
code = (byte *)header + header->codeOffset;
codeBase = (int *)vm->codeBase;
while ( instruction < header->instructionCount ) {
op = code[ pc ];
instruction++;
pc++;
switch ( op ) {
case OP_ENTER:
case OP_CONST:
case OP_LOCAL:
case OP_LEAVE:
case OP_EQ:
case OP_NE:
case OP_LTI:
case OP_LEI:
case OP_GTI:
case OP_GEI:
case OP_LTU:
case OP_LEU:
case OP_GTU:
case OP_GEU:
case OP_EQF:
case OP_NEF:
case OP_LTF:
case OP_LEF:
case OP_GTF:
case OP_GEF:
case OP_BLOCK_COPY:
switch(op) {
case OP_EQ:
case OP_NE:
case OP_LTI:
case OP_LEI:
case OP_GTI:
case OP_GEI:
case OP_LTU:
case OP_LEU:
case OP_GTU:
case OP_GEU:
case OP_EQF:
case OP_NEF:
case OP_LTF:
case OP_LEF:
case OP_GTF:
case OP_GEF:
codeBase[pc] = vm->instructionPointers[codeBase[pc]];
break;
default:
break;
}
pc += 4;
break;
case OP_ARG:
pc += 1;
break;
default:
break;
}
}
}
/*
==============
VM_Call
Upon a system call, the stack will look like:
sp+32 parm1
sp+28 parm0
sp+24 return stack
sp+20 return address
sp+16 local1
sp+14 local0
sp+12 arg1
sp+8 arg0
sp+4 return stack
sp return address
An interpreted function will immediately execute
an OP_ENTER instruction, which will subtract space for
locals from sp
==============
*/
#define MAX_STACK 256
#define STACK_MASK (MAX_STACK-1)
//#define DEBUG_VM
#define DEBUGSTR va("%s%i", VM_Indent(vm), opStack-stack )
int VM_CallInterpreted( vm_t *vm, int *args ) {
int stack[MAX_STACK];
int *opStack;
int programCounter;
int programStack;
int stackOnEntry;
byte *image;
int *codeImage;
int v1;
int dataMask;
#ifdef DEBUG_VM
vmSymbol_t *profileSymbol;
#endif
// interpret the code
vm->currentlyInterpreting = qtrue;
// we might be called recursively, so this might not be the very top
programStack = stackOnEntry = vm->programStack;
#ifdef DEBUG_VM
profileSymbol = VM_ValueToFunctionSymbol( vm, 0 );
// uncomment this for debugging breakpoints
vm->breakFunction = 0;
#endif
// set up the stack frame
image = vm->dataBase;
codeImage = (int *)vm->codeBase;
dataMask = vm->dataMask;
// leave a free spot at start of stack so
// that as long as opStack is valid, opStack-1 will
// not corrupt anything
opStack = stack;
programCounter = 0;
programStack -= 48;
*(int *)&image[ programStack + 44] = args[9];
*(int *)&image[ programStack + 40] = args[8];
*(int *)&image[ programStack + 36] = args[7];
*(int *)&image[ programStack + 32] = args[6];
*(int *)&image[ programStack + 28] = args[5];
*(int *)&image[ programStack + 24] = args[4];
*(int *)&image[ programStack + 20] = args[3];
*(int *)&image[ programStack + 16] = args[2];
*(int *)&image[ programStack + 12] = args[1];
*(int *)&image[ programStack + 8 ] = args[0];
*(int *)&image[ programStack + 4 ] = 0; // return stack
*(int *)&image[ programStack ] = -1; // will terminate the loop on return
vm->callLevel = 0;
VM_Debug(0);
// vm_debugLevel=2;
// main interpreter loop, will exit when a LEAVE instruction
// grabs the -1 program counter
#define r2 codeImage[programCounter]
while ( 1 ) {
int opcode, r0, r1;
// unsigned int r2;
nextInstruction:
r0 = ((int *)opStack)[0];
r1 = ((int *)opStack)[-1];
nextInstruction2:
opcode = codeImage[ programCounter++ ];
#ifdef DEBUG_VM
if ( (unsigned)programCounter > vm->codeLength ) {
Com_Error( ERR_DROP, "VM pc out of range" );
}
if ( opStack < stack ) {
Com_Error( ERR_DROP, "VM opStack underflow" );
}
if ( opStack >= stack+MAX_STACK ) {
Com_Error( ERR_DROP, "VM opStack overflow" );
}
if ( programStack <= vm->stackBottom ) {
Com_Error( ERR_DROP, "VM stack overflow" );
}
if ( programStack & 3 ) {
Com_Error( ERR_DROP, "VM program stack misaligned" );
}
if ( vm_debugLevel > 1 ) {
Com_Printf( "%s %s\n", DEBUGSTR, opnames[opcode] );
}
profileSymbol->profileCount++;
#endif
switch ( opcode ) {
#ifdef DEBUG_VM
default:
Com_Error( ERR_DROP, "Bad VM instruction" ); // this should be scanned on load!
#endif
case OP_BREAK:
vm->breakCount++;
goto nextInstruction2;
case OP_CONST:
opStack++;
r1 = r0;
r0 = *opStack = r2;
programCounter += 4;
goto nextInstruction2;
case OP_LOCAL:
opStack++;
r1 = r0;
r0 = *opStack = r2+programStack;
programCounter += 4;
goto nextInstruction2;
case OP_LOAD4:
#ifdef DEBUG_VM
if ( *opStack & 3 ) {
Com_Error( ERR_DROP, "OP_LOAD4 misaligned" );
}
#endif
r0 = *opStack = *(int *)&image[ r0&dataMask ];
goto nextInstruction2;
case OP_LOAD2:
r0 = *opStack = *(unsigned short *)&image[ r0&dataMask ];
goto nextInstruction2;
case OP_LOAD1:
r0 = *opStack = image[ r0&dataMask ];
goto nextInstruction2;
case OP_STORE4:
*(int *)&image[ r1&(dataMask & ~3) ] = r0;
opStack -= 2;
goto nextInstruction;
case OP_STORE2:
*(short *)&image[ r1&(dataMask & ~1) ] = r0;
opStack -= 2;
goto nextInstruction;
case OP_STORE1:
image[ r1&dataMask ] = r0;
opStack -= 2;
goto nextInstruction;
case OP_ARG:
// single byte offset from programStack
*(int *)&image[ codeImage[programCounter] + programStack ] = r0;
opStack--;
programCounter += 1;
goto nextInstruction;
case OP_BLOCK_COPY:
{
int *src, *dest;
int i, count, srci, desti;
count = r2;
// MrE: copy range check
srci = r0 & dataMask;
desti = r1 & dataMask;
count = ((srci + count) & dataMask) - srci;
count = ((desti + count) & dataMask) - desti;
src = (int *)&image[ r0&dataMask ];
dest = (int *)&image[ r1&dataMask ];
if ( ( (long)src | (long)dest | count ) & 3 ) {
Com_Error( ERR_DROP, "OP_BLOCK_COPY not dword aligned" );
}
count >>= 2;
for ( i = count-1 ; i>= 0 ; i-- ) {
dest[i] = src[i];
}
programCounter += 4;
opStack -= 2;
}
goto nextInstruction;
case OP_CALL:
// save current program counter
*(int *)&image[ programStack ] = programCounter;
// jump to the location on the stack
programCounter = r0;
opStack--;
if ( programCounter < 0 ) {
// system call
int r;
int temp;
#ifdef DEBUG_VM
int stomped;
if ( vm_debugLevel ) {
Com_Printf( "%s---> systemcall(%i)\n", DEBUGSTR, -1 - programCounter );
}
#endif
// save the stack to allow recursive VM entry
temp = vm->callLevel;
vm->programStack = programStack - 4;
#ifdef DEBUG_VM
stomped = *(int *)&image[ programStack + 4 ];
#endif
*(int *)&image[ programStack + 4 ] = -1 - programCounter;
//VM_LogSyscalls( (int *)&image[ programStack + 4 ] );
r = vm->systemCall( (int *)&image[ programStack + 4 ] );
#ifdef DEBUG_VM
// this is just our stack frame pointer, only needed
// for debugging
*(int *)&image[ programStack + 4 ] = stomped;
#endif
// save return value
opStack++;
*opStack = r;
programCounter = *(int *)&image[ programStack ];
vm->callLevel = temp;
#ifdef DEBUG_VM
if ( vm_debugLevel ) {
Com_Printf( "%s<--- %s\n", DEBUGSTR, VM_ValueToSymbol( vm, programCounter ) );
}
#endif
} else {
programCounter = vm->instructionPointers[ programCounter ];
}
goto nextInstruction;
// push and pop are only needed for discarded or bad function return values
case OP_PUSH:
opStack++;
goto nextInstruction;
case OP_POP:
opStack--;
goto nextInstruction;
case OP_ENTER:
#ifdef DEBUG_VM
profileSymbol = VM_ValueToFunctionSymbol( vm, programCounter );
#endif
// get size of stack frame
v1 = r2;
programCounter += 4;
programStack -= v1;
#ifdef DEBUG_VM
// save old stack frame for debugging traces
*(int *)&image[programStack+4] = programStack + v1;
if ( vm_debugLevel ) {
Com_Printf( "%s---> %s\n", DEBUGSTR, VM_ValueToSymbol( vm, programCounter - 5 ) );
if ( vm->breakFunction && programCounter - 5 == vm->breakFunction ) {
// this is to allow setting breakpoints here in the debugger
vm->breakCount++;
// vm_debugLevel = 2;
// VM_StackTrace( vm, programCounter, programStack );
}
vm->callLevel++;
}
#endif
goto nextInstruction;
case OP_LEAVE:
// remove our stack frame
v1 = r2;
programStack += v1;
// grab the saved program counter
programCounter = *(int *)&image[ programStack ];
#ifdef DEBUG_VM
profileSymbol = VM_ValueToFunctionSymbol( vm, programCounter );
if ( vm_debugLevel ) {
vm->callLevel--;
Com_Printf( "%s<--- %s\n", DEBUGSTR, VM_ValueToSymbol( vm, programCounter ) );
}
#endif
// check for leaving the VM
if ( programCounter == -1 ) {
goto done;
}
goto nextInstruction;
/*
===================================================================
BRANCHES
===================================================================
*/
case OP_JUMP:
programCounter = r0;
programCounter = vm->instructionPointers[ programCounter ];
opStack--;
goto nextInstruction;
case OP_EQ:
opStack -= 2;
if ( r1 == r0 ) {
programCounter = r2; //vm->instructionPointers[r2];
goto nextInstruction;
} else {
programCounter += 4;
goto nextInstruction;
}
case OP_NE:
opStack -= 2;
if ( r1 != r0 ) {
programCounter = r2; //vm->instructionPointers[r2];
goto nextInstruction;
} else {
programCounter += 4;
goto nextInstruction;
}
case OP_LTI:
opStack -= 2;
if ( r1 < r0 ) {
programCounter = r2; //vm->instructionPointers[r2];
goto nextInstruction;
} else {
programCounter += 4;
goto nextInstruction;
}
case OP_LEI:
opStack -= 2;
if ( r1 <= r0 ) {
programCounter = r2; //vm->instructionPointers[r2];
goto nextInstruction;
} else {
programCounter += 4;
goto nextInstruction;
}
case OP_GTI:
opStack -= 2;
if ( r1 > r0 ) {
programCounter = r2; //vm->instructionPointers[r2];
goto nextInstruction;
} else {
programCounter += 4;
goto nextInstruction;
}
case OP_GEI:
opStack -= 2;
if ( r1 >= r0 ) {
programCounter = r2; //vm->instructionPointers[r2];
goto nextInstruction;
} else {
programCounter += 4;
goto nextInstruction;
}
case OP_LTU:
opStack -= 2;
if ( ((unsigned)r1) < ((unsigned)r0) ) {
programCounter = r2; //vm->instructionPointers[r2];
goto nextInstruction;
} else {
programCounter += 4;
goto nextInstruction;
}
case OP_LEU:
opStack -= 2;
if ( ((unsigned)r1) <= ((unsigned)r0) ) {
programCounter = r2; //vm->instructionPointers[r2];
goto nextInstruction;
} else {
programCounter += 4;
goto nextInstruction;
}
case OP_GTU:
opStack -= 2;
if ( ((unsigned)r1) > ((unsigned)r0) ) {
programCounter = r2; //vm->instructionPointers[r2];
goto nextInstruction;
} else {
programCounter += 4;
goto nextInstruction;
}
case OP_GEU:
opStack -= 2;
if ( ((unsigned)r1) >= ((unsigned)r0) ) {
programCounter = r2; //vm->instructionPointers[r2];
goto nextInstruction;
} else {
programCounter += 4;
goto nextInstruction;
}
case OP_EQF:
if ( ((float *)opStack)[-1] == *(float *)opStack ) {
programCounter = r2; //vm->instructionPointers[r2];
opStack -= 2;
goto nextInstruction;
} else {
programCounter += 4;
opStack -= 2;
goto nextInstruction;
}
case OP_NEF:
if ( ((float *)opStack)[-1] != *(float *)opStack ) {
programCounter = r2; //vm->instructionPointers[r2];
opStack -= 2;
goto nextInstruction;
} else {
programCounter += 4;
opStack -= 2;
goto nextInstruction;
}
case OP_LTF:
if ( ((float *)opStack)[-1] < *(float *)opStack ) {
programCounter = r2; //vm->instructionPointers[r2];
opStack -= 2;
goto nextInstruction;
} else {
programCounter += 4;
opStack -= 2;
goto nextInstruction;
}
case OP_LEF:
if ( ((float *)opStack)[-1] <= *(float *)opStack ) {
programCounter = r2; //vm->instructionPointers[r2];
opStack -= 2;
goto nextInstruction;
} else {
programCounter += 4;
opStack -= 2;
goto nextInstruction;
}
case OP_GTF:
if ( ((float *)opStack)[-1] > *(float *)opStack ) {
programCounter = r2; //vm->instructionPointers[r2];
opStack -= 2;
goto nextInstruction;
} else {
programCounter += 4;
opStack -= 2;
goto nextInstruction;
}
case OP_GEF:
if ( ((float *)opStack)[-1] >= *(float *)opStack ) {
programCounter = r2; //vm->instructionPointers[r2];
opStack -= 2;
goto nextInstruction;
} else {
programCounter += 4;
opStack -= 2;
goto nextInstruction;
}
//===================================================================
case OP_NEGI:
*opStack = -r0;
goto nextInstruction;
case OP_ADD:
opStack[-1] = r1 + r0;
opStack--;
goto nextInstruction;
case OP_SUB:
opStack[-1] = r1 - r0;
opStack--;
goto nextInstruction;
case OP_DIVI:
opStack[-1] = r1 / r0;
opStack--;
goto nextInstruction;
case OP_DIVU:
opStack[-1] = ((unsigned)r1) / ((unsigned)r0);
opStack--;
goto nextInstruction;
case OP_MODI:
opStack[-1] = r1 % r0;
opStack--;
goto nextInstruction;
case OP_MODU:
opStack[-1] = ((unsigned)r1) % (unsigned)r0;
opStack--;
goto nextInstruction;
case OP_MULI:
opStack[-1] = r1 * r0;
opStack--;
goto nextInstruction;
case OP_MULU:
opStack[-1] = ((unsigned)r1) * ((unsigned)r0);
opStack--;
goto nextInstruction;
case OP_BAND:
opStack[-1] = ((unsigned)r1) & ((unsigned)r0);
opStack--;
goto nextInstruction;
case OP_BOR:
opStack[-1] = ((unsigned)r1) | ((unsigned)r0);
opStack--;
goto nextInstruction;
case OP_BXOR:
opStack[-1] = ((unsigned)r1) ^ ((unsigned)r0);
opStack--;
goto nextInstruction;
case OP_BCOM:
opStack[-1] = ~ ((unsigned)r0);
goto nextInstruction;
case OP_LSH:
opStack[-1] = r1 << r0;
opStack--;
goto nextInstruction;
case OP_RSHI:
opStack[-1] = r1 >> r0;
opStack--;
goto nextInstruction;
case OP_RSHU:
opStack[-1] = ((unsigned)r1) >> r0;
opStack--;
goto nextInstruction;
case OP_NEGF:
*(float *)opStack = -*(float *)opStack;
goto nextInstruction;
case OP_ADDF:
*(float *)(opStack-1) = *(float *)(opStack-1) + *(float *)opStack;
opStack--;
goto nextInstruction;
case OP_SUBF:
*(float *)(opStack-1) = *(float *)(opStack-1) - *(float *)opStack;
opStack--;
goto nextInstruction;
case OP_DIVF:
*(float *)(opStack-1) = *(float *)(opStack-1) / *(float *)opStack;
opStack--;
goto nextInstruction;
case OP_MULF:
*(float *)(opStack-1) = *(float *)(opStack-1) * *(float *)opStack;
opStack--;
goto nextInstruction;
case OP_CVIF:
*(float *)opStack = (float)*opStack;
goto nextInstruction;
case OP_CVFI:
*opStack = (int) *(float *)opStack;
goto nextInstruction;
case OP_SEX8:
*opStack = (signed char)*opStack;
goto nextInstruction;
case OP_SEX16:
*opStack = (short)*opStack;
goto nextInstruction;
}
}
done:
vm->currentlyInterpreting = qfalse;
if ( opStack != &stack[1] ) {
Com_Error( ERR_DROP, "Interpreter error: opStack = %i", opStack - stack );
}
vm->programStack = stackOnEntry;
// return the result
return *opStack;
}