mirror of
https://github.com/DrBeef/ioq3quest.git
synced 2024-11-27 14:22:11 +00:00
3370 lines
87 KiB
C
3370 lines
87 KiB
C
/*
|
|
===========================================================================
|
|
Copyright (C) 1999-2005 Id Software, Inc.
|
|
|
|
This file is part of Quake III Arena source code.
|
|
|
|
Quake III Arena source code is free software; you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
Quake III Arena source code is distributed in the hope that it will be
|
|
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Quake III Arena source code; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
===========================================================================
|
|
*/
|
|
// tr_map.c
|
|
|
|
#include "tr_local.h"
|
|
|
|
/*
|
|
|
|
Loads and prepares a map file for scene rendering.
|
|
|
|
A single entry point:
|
|
|
|
void RE_LoadWorldMap( const char *name );
|
|
|
|
*/
|
|
|
|
static world_t s_worldData;
|
|
static byte *fileBase;
|
|
|
|
int c_subdivisions;
|
|
int c_gridVerts;
|
|
|
|
//===============================================================================
|
|
|
|
static void HSVtoRGB( float h, float s, float v, float rgb[3] )
|
|
{
|
|
int i;
|
|
float f;
|
|
float p, q, t;
|
|
|
|
h *= 5;
|
|
|
|
i = floor( h );
|
|
f = h - i;
|
|
|
|
p = v * ( 1 - s );
|
|
q = v * ( 1 - s * f );
|
|
t = v * ( 1 - s * ( 1 - f ) );
|
|
|
|
switch ( i )
|
|
{
|
|
case 0:
|
|
rgb[0] = v;
|
|
rgb[1] = t;
|
|
rgb[2] = p;
|
|
break;
|
|
case 1:
|
|
rgb[0] = q;
|
|
rgb[1] = v;
|
|
rgb[2] = p;
|
|
break;
|
|
case 2:
|
|
rgb[0] = p;
|
|
rgb[1] = v;
|
|
rgb[2] = t;
|
|
break;
|
|
case 3:
|
|
rgb[0] = p;
|
|
rgb[1] = q;
|
|
rgb[2] = v;
|
|
break;
|
|
case 4:
|
|
rgb[0] = t;
|
|
rgb[1] = p;
|
|
rgb[2] = v;
|
|
break;
|
|
case 5:
|
|
rgb[0] = v;
|
|
rgb[1] = p;
|
|
rgb[2] = q;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_ColorShiftLightingBytes
|
|
|
|
===============
|
|
*/
|
|
static void R_ColorShiftLightingBytes( byte in[4], byte out[4] ) {
|
|
int shift, r, g, b;
|
|
|
|
// shift the color data based on overbright range
|
|
shift = r_mapOverBrightBits->integer - tr.overbrightBits;
|
|
|
|
// shift the data based on overbright range
|
|
r = in[0] << shift;
|
|
g = in[1] << shift;
|
|
b = in[2] << shift;
|
|
|
|
// normalize by color instead of saturating to white
|
|
if ( ( r | g | b ) > 255 ) {
|
|
int max;
|
|
|
|
max = r > g ? r : g;
|
|
max = max > b ? max : b;
|
|
r = r * 255 / max;
|
|
g = g * 255 / max;
|
|
b = b * 255 / max;
|
|
}
|
|
|
|
out[0] = r;
|
|
out[1] = g;
|
|
out[2] = b;
|
|
out[3] = in[3];
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
R_ColorShiftLightingBytes
|
|
|
|
===============
|
|
*/
|
|
static void R_ColorShiftLightingFloats(float in[4], float out[4], float scale )
|
|
{
|
|
scale *= pow(2.0f, r_mapOverBrightBits->integer - tr.overbrightBits);
|
|
|
|
out[0] = in[0] * scale;
|
|
out[1] = in[1] * scale;
|
|
out[2] = in[2] * scale;
|
|
out[3] = in[3];
|
|
}
|
|
|
|
|
|
void ColorToRGBE(const vec3_t color, unsigned char rgbe[4])
|
|
{
|
|
vec3_t sample;
|
|
float maxComponent;
|
|
int e;
|
|
|
|
VectorCopy(color, sample);
|
|
|
|
maxComponent = sample[0];
|
|
if(sample[1] > maxComponent)
|
|
maxComponent = sample[1];
|
|
if(sample[2] > maxComponent)
|
|
maxComponent = sample[2];
|
|
|
|
if(maxComponent < 1e-32)
|
|
{
|
|
rgbe[0] = 0;
|
|
rgbe[1] = 0;
|
|
rgbe[2] = 0;
|
|
rgbe[3] = 0;
|
|
}
|
|
else
|
|
{
|
|
#if 0
|
|
maxComponent = frexp(maxComponent, &e) * 255.0 / maxComponent;
|
|
rgbe[0] = (unsigned char) (sample[0] * maxComponent);
|
|
rgbe[1] = (unsigned char) (sample[1] * maxComponent);
|
|
rgbe[2] = (unsigned char) (sample[2] * maxComponent);
|
|
rgbe[3] = (unsigned char) (e + 128);
|
|
#else
|
|
e = ceil(log(maxComponent) / log(2.0f));//ceil(log2(maxComponent));
|
|
VectorScale(sample, 1.0 / pow(2.0f, e)/*exp2(e)*/, sample);
|
|
|
|
rgbe[0] = (unsigned char) (sample[0] * 255);
|
|
rgbe[1] = (unsigned char) (sample[1] * 255);
|
|
rgbe[2] = (unsigned char) (sample[2] * 255);
|
|
rgbe[3] = (unsigned char) (e + 128);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
void ColorToRGBA16F(const vec3_t color, unsigned short rgba16f[4])
|
|
{
|
|
rgba16f[0] = FloatToHalf(color[0]);
|
|
rgba16f[1] = FloatToHalf(color[1]);
|
|
rgba16f[2] = FloatToHalf(color[2]);
|
|
rgba16f[3] = FloatToHalf(1.0f);
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
R_LoadLightmaps
|
|
|
|
===============
|
|
*/
|
|
#define DEFAULT_LIGHTMAP_SIZE 128
|
|
#define MAX_LIGHTMAP_PAGES 2
|
|
static void R_LoadLightmaps( lump_t *l, lump_t *surfs ) {
|
|
byte *buf, *buf_p;
|
|
dsurface_t *surf;
|
|
int len;
|
|
byte *image;
|
|
int i, j, numLightmaps, textureInternalFormat = 0;
|
|
float maxIntensity = 0;
|
|
double sumIntensity = 0;
|
|
|
|
len = l->filelen;
|
|
if ( !len ) {
|
|
return;
|
|
}
|
|
buf = fileBase + l->fileofs;
|
|
|
|
// we are about to upload textures
|
|
R_IssuePendingRenderCommands();
|
|
|
|
tr.lightmapSize = DEFAULT_LIGHTMAP_SIZE;
|
|
numLightmaps = len / (tr.lightmapSize * tr.lightmapSize * 3);
|
|
|
|
// check for deluxe mapping
|
|
if (numLightmaps <= 1)
|
|
{
|
|
tr.worldDeluxeMapping = qfalse;
|
|
}
|
|
else
|
|
{
|
|
tr.worldDeluxeMapping = qtrue;
|
|
for( i = 0, surf = (dsurface_t *)(fileBase + surfs->fileofs);
|
|
i < surfs->filelen / sizeof(dsurface_t); i++, surf++ ) {
|
|
int lightmapNum = LittleLong( surf->lightmapNum );
|
|
|
|
if ( lightmapNum >= 0 && (lightmapNum & 1) != 0 ) {
|
|
tr.worldDeluxeMapping = qfalse;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
image = ri.Malloc(tr.lightmapSize * tr.lightmapSize * 4 * 2);
|
|
|
|
if (tr.worldDeluxeMapping)
|
|
numLightmaps >>= 1;
|
|
|
|
if(numLightmaps == 1)
|
|
{
|
|
//FIXME: HACK: maps with only one lightmap turn up fullbright for some reason.
|
|
//this avoids this, but isn't the correct solution.
|
|
numLightmaps++;
|
|
}
|
|
else if (r_mergeLightmaps->integer && numLightmaps >= 1024 )
|
|
{
|
|
// FIXME: fat light maps don't support more than 1024 light maps
|
|
ri.Printf(PRINT_WARNING, "WARNING: number of lightmaps > 1024\n");
|
|
numLightmaps = 1024;
|
|
}
|
|
|
|
// use fat lightmaps of an appropriate size
|
|
if (r_mergeLightmaps->integer)
|
|
{
|
|
tr.fatLightmapSize = 512;
|
|
tr.fatLightmapStep = tr.fatLightmapSize / tr.lightmapSize;
|
|
|
|
// at most MAX_LIGHTMAP_PAGES
|
|
while (tr.fatLightmapStep * tr.fatLightmapStep * MAX_LIGHTMAP_PAGES < numLightmaps && tr.fatLightmapSize != glConfig.maxTextureSize )
|
|
{
|
|
tr.fatLightmapSize <<= 1;
|
|
tr.fatLightmapStep = tr.fatLightmapSize / tr.lightmapSize;
|
|
}
|
|
|
|
tr.numLightmaps = numLightmaps / (tr.fatLightmapStep * tr.fatLightmapStep);
|
|
|
|
if (numLightmaps % (tr.fatLightmapStep * tr.fatLightmapStep) != 0)
|
|
tr.numLightmaps++;
|
|
}
|
|
else
|
|
{
|
|
tr.numLightmaps = numLightmaps;
|
|
}
|
|
|
|
tr.lightmaps = ri.Hunk_Alloc( tr.numLightmaps * sizeof(image_t *), h_low );
|
|
|
|
if (tr.worldDeluxeMapping)
|
|
{
|
|
tr.deluxemaps = ri.Hunk_Alloc( tr.numLightmaps * sizeof(image_t *), h_low );
|
|
}
|
|
|
|
if (r_hdr->integer && glRefConfig.textureFloat && glRefConfig.halfFloatPixel)
|
|
textureInternalFormat = GL_RGBA16F_ARB;
|
|
|
|
if (r_mergeLightmaps->integer)
|
|
{
|
|
for (i = 0; i < tr.numLightmaps; i++)
|
|
{
|
|
tr.lightmaps[i] = R_CreateImage(va("_fatlightmap%d", i), NULL, tr.fatLightmapSize, tr.fatLightmapSize, IMGTYPE_COLORALPHA, IMGFLAG_NOLIGHTSCALE | IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, textureInternalFormat );
|
|
|
|
if (tr.worldDeluxeMapping)
|
|
{
|
|
tr.deluxemaps[i] = R_CreateImage(va("_fatdeluxemap%d", i), NULL, tr.fatLightmapSize, tr.fatLightmapSize, IMGTYPE_DELUXE, IMGFLAG_NOLIGHTSCALE | IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, 0 );
|
|
}
|
|
}
|
|
}
|
|
|
|
for(i = 0; i < numLightmaps; i++)
|
|
{
|
|
int xoff = 0, yoff = 0;
|
|
int lightmapnum = i;
|
|
// expand the 24 bit on-disk to 32 bit
|
|
|
|
if (r_mergeLightmaps->integer)
|
|
{
|
|
int lightmaponpage = i % (tr.fatLightmapStep * tr.fatLightmapStep);
|
|
xoff = (lightmaponpage % tr.fatLightmapStep) * tr.lightmapSize;
|
|
yoff = (lightmaponpage / tr.fatLightmapStep) * tr.lightmapSize;
|
|
|
|
lightmapnum /= (tr.fatLightmapStep * tr.fatLightmapStep);
|
|
}
|
|
|
|
// if (tr.worldLightmapping)
|
|
{
|
|
char filename[MAX_QPATH];
|
|
byte *hdrLightmap = NULL;
|
|
float lightScale = 1.0f;
|
|
int size = 0;
|
|
|
|
// look for hdr lightmaps
|
|
if (r_hdr->integer)
|
|
{
|
|
Com_sprintf( filename, sizeof( filename ), "maps/%s/lm_%04d.hdr", s_worldData.baseName, i * (tr.worldDeluxeMapping ? 2 : 1) );
|
|
//ri.Printf(PRINT_ALL, "looking for %s\n", filename);
|
|
|
|
size = ri.FS_ReadFile(filename, (void **)&hdrLightmap);
|
|
}
|
|
|
|
if (hdrLightmap)
|
|
{
|
|
byte *p = hdrLightmap;
|
|
//ri.Printf(PRINT_ALL, "found!\n");
|
|
|
|
/* FIXME: don't just skip over this header and actually parse it */
|
|
while (size && !(*p == '\n' && *(p+1) == '\n'))
|
|
{
|
|
size--;
|
|
p++;
|
|
}
|
|
|
|
if (!size)
|
|
ri.Error(ERR_DROP, "Bad header for %s!\n", filename);
|
|
|
|
size -= 2;
|
|
p += 2;
|
|
|
|
while (size && !(*p == '\n'))
|
|
{
|
|
size--;
|
|
p++;
|
|
}
|
|
|
|
size--;
|
|
p++;
|
|
|
|
buf_p = (byte *)p;
|
|
|
|
#if 0 // HDRFILE_RGBE
|
|
if (size != tr.lightmapSize * tr.lightmapSize * 4)
|
|
ri.Error(ERR_DROP, "Bad size for %s (%i)!\n", filename, size);
|
|
#else // HDRFILE_FLOAT
|
|
if (size != tr.lightmapSize * tr.lightmapSize * 12)
|
|
ri.Error(ERR_DROP, "Bad size for %s (%i)!\n", filename, size);
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
if (tr.worldDeluxeMapping)
|
|
buf_p = buf + (i * 2) * tr.lightmapSize * tr.lightmapSize * 3;
|
|
else
|
|
buf_p = buf + i * tr.lightmapSize * tr.lightmapSize * 3;
|
|
}
|
|
|
|
lightScale = pow(2, r_mapOverBrightBits->integer - tr.overbrightBits - 8); //exp2(r_mapOverBrightBits->integer - tr.overbrightBits - 8);
|
|
|
|
for ( j = 0 ; j < tr.lightmapSize * tr.lightmapSize; j++ )
|
|
{
|
|
if (r_hdr->integer)
|
|
{
|
|
float color[3];
|
|
|
|
if (hdrLightmap)
|
|
{
|
|
#if 0 // HDRFILE_RGBE
|
|
float exponent = exp2(buf_p[j*4+3] - 128);
|
|
|
|
color[0] = buf_p[j*4+0] * exponent;
|
|
color[1] = buf_p[j*4+1] * exponent;
|
|
color[2] = buf_p[j*4+2] * exponent;
|
|
#else // HDRFILE_FLOAT
|
|
memcpy(color, &buf_p[j*12], 12);
|
|
|
|
color[0] = LittleFloat(color[0]);
|
|
color[1] = LittleFloat(color[1]);
|
|
color[2] = LittleFloat(color[2]);
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
//hack: convert LDR lightmap to HDR one
|
|
color[0] = (buf_p[j*3+0] + 1.0f);
|
|
color[1] = (buf_p[j*3+1] + 1.0f);
|
|
color[2] = (buf_p[j*3+2] + 1.0f);
|
|
|
|
// if under an arbitrary value (say 12) grey it out
|
|
// this prevents weird splotches in dimly lit areas
|
|
if (color[0] + color[1] + color[2] < 12.0f)
|
|
{
|
|
float avg = (color[0] + color[1] + color[2]) * 0.3333f;
|
|
color[0] = avg;
|
|
color[1] = avg;
|
|
color[2] = avg;
|
|
}
|
|
}
|
|
|
|
VectorScale(color, lightScale, color);
|
|
|
|
if (glRefConfig.textureFloat && glRefConfig.halfFloatPixel)
|
|
ColorToRGBA16F(color, (unsigned short *)(&image[j*8]));
|
|
else
|
|
ColorToRGBE(color, &image[j*4]);
|
|
}
|
|
else
|
|
{
|
|
if ( r_lightmap->integer == 2 )
|
|
{ // color code by intensity as development tool (FIXME: check range)
|
|
float r = buf_p[j*3+0];
|
|
float g = buf_p[j*3+1];
|
|
float b = buf_p[j*3+2];
|
|
float intensity;
|
|
float out[3] = {0.0, 0.0, 0.0};
|
|
|
|
intensity = 0.33f * r + 0.685f * g + 0.063f * b;
|
|
|
|
if ( intensity > 255 )
|
|
intensity = 1.0f;
|
|
else
|
|
intensity /= 255.0f;
|
|
|
|
if ( intensity > maxIntensity )
|
|
maxIntensity = intensity;
|
|
|
|
HSVtoRGB( intensity, 1.00, 0.50, out );
|
|
|
|
image[j*4+0] = out[0] * 255;
|
|
image[j*4+1] = out[1] * 255;
|
|
image[j*4+2] = out[2] * 255;
|
|
image[j*4+3] = 255;
|
|
|
|
sumIntensity += intensity;
|
|
}
|
|
else
|
|
{
|
|
R_ColorShiftLightingBytes( &buf_p[j*3], &image[j*4] );
|
|
image[j*4+3] = 255;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (r_mergeLightmaps->integer)
|
|
R_UpdateSubImage(tr.lightmaps[lightmapnum], image, xoff, yoff, tr.lightmapSize, tr.lightmapSize);
|
|
else
|
|
tr.lightmaps[i] = R_CreateImage(va("*lightmap%d", i), image, tr.lightmapSize, tr.lightmapSize, IMGTYPE_COLORALPHA, IMGFLAG_NOLIGHTSCALE | IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, textureInternalFormat );
|
|
|
|
if (hdrLightmap)
|
|
ri.FS_FreeFile(hdrLightmap);
|
|
}
|
|
|
|
if (tr.worldDeluxeMapping)
|
|
{
|
|
buf_p = buf + (i * 2 + 1) * tr.lightmapSize * tr.lightmapSize * 3;
|
|
|
|
for ( j = 0 ; j < tr.lightmapSize * tr.lightmapSize; j++ ) {
|
|
image[j*4+0] = buf_p[j*3+0];
|
|
image[j*4+1] = buf_p[j*3+1];
|
|
image[j*4+2] = buf_p[j*3+2];
|
|
|
|
// make 0,0,0 into 127,127,127
|
|
if ((image[j*4+0] == 0) && (image[j*4+0] == 0) && (image[j*4+2] == 0))
|
|
{
|
|
image[j*4+0] =
|
|
image[j*4+1] =
|
|
image[j*4+2] = 127;
|
|
}
|
|
|
|
image[j*4+3] = 255;
|
|
}
|
|
|
|
if (r_mergeLightmaps->integer)
|
|
{
|
|
R_UpdateSubImage(tr.deluxemaps[lightmapnum], image, xoff, yoff, tr.lightmapSize, tr.lightmapSize );
|
|
}
|
|
else
|
|
{
|
|
tr.deluxemaps[i] = R_CreateImage(va("*deluxemap%d", i), image, tr.lightmapSize, tr.lightmapSize, IMGTYPE_DELUXE, IMGFLAG_NOLIGHTSCALE | IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, 0 );
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( r_lightmap->integer == 2 ) {
|
|
ri.Printf( PRINT_ALL, "Brightest lightmap value: %d\n", ( int ) ( maxIntensity * 255 ) );
|
|
}
|
|
|
|
ri.Free(image);
|
|
}
|
|
|
|
|
|
static float FatPackU(float input, int lightmapnum)
|
|
{
|
|
if (lightmapnum < 0)
|
|
return input;
|
|
|
|
if (tr.worldDeluxeMapping)
|
|
lightmapnum >>= 1;
|
|
|
|
lightmapnum %= (tr.fatLightmapStep * tr.fatLightmapStep);
|
|
|
|
if(tr.fatLightmapSize > 0)
|
|
{
|
|
int x = lightmapnum % tr.fatLightmapStep;
|
|
|
|
return (input / ((float)tr.fatLightmapStep)) + ((1.0 / ((float)tr.fatLightmapStep)) * (float)x);
|
|
}
|
|
|
|
return input;
|
|
}
|
|
|
|
static float FatPackV(float input, int lightmapnum)
|
|
{
|
|
if (lightmapnum < 0)
|
|
return input;
|
|
|
|
if (tr.worldDeluxeMapping)
|
|
lightmapnum >>= 1;
|
|
|
|
lightmapnum %= (tr.fatLightmapStep * tr.fatLightmapStep);
|
|
|
|
if(tr.fatLightmapSize > 0)
|
|
{
|
|
int y = lightmapnum / tr.fatLightmapStep;
|
|
|
|
return (input / ((float)tr.fatLightmapStep)) + ((1.0 / ((float)tr.fatLightmapStep)) * (float)y);
|
|
}
|
|
|
|
return input;
|
|
}
|
|
|
|
|
|
static int FatLightmap(int lightmapnum)
|
|
{
|
|
if (lightmapnum < 0)
|
|
return lightmapnum;
|
|
|
|
if (tr.worldDeluxeMapping)
|
|
lightmapnum >>= 1;
|
|
|
|
if (tr.fatLightmapSize > 0)
|
|
{
|
|
return lightmapnum / (tr.fatLightmapStep * tr.fatLightmapStep);
|
|
}
|
|
|
|
return lightmapnum;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
RE_SetWorldVisData
|
|
|
|
This is called by the clipmodel subsystem so we can share the 1.8 megs of
|
|
space in big maps...
|
|
=================
|
|
*/
|
|
void RE_SetWorldVisData( const byte *vis ) {
|
|
tr.externalVisData = vis;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
R_LoadVisibility
|
|
=================
|
|
*/
|
|
static void R_LoadVisibility( lump_t *l ) {
|
|
int len;
|
|
byte *buf;
|
|
|
|
len = ( s_worldData.numClusters + 63 ) & ~63;
|
|
s_worldData.novis = ri.Hunk_Alloc( len, h_low );
|
|
Com_Memset( s_worldData.novis, 0xff, len );
|
|
|
|
len = l->filelen;
|
|
if ( !len ) {
|
|
return;
|
|
}
|
|
buf = fileBase + l->fileofs;
|
|
|
|
s_worldData.numClusters = LittleLong( ((int *)buf)[0] );
|
|
s_worldData.clusterBytes = LittleLong( ((int *)buf)[1] );
|
|
|
|
// CM_Load should have given us the vis data to share, so
|
|
// we don't need to allocate another copy
|
|
if ( tr.externalVisData ) {
|
|
s_worldData.vis = tr.externalVisData;
|
|
} else {
|
|
byte *dest;
|
|
|
|
dest = ri.Hunk_Alloc( len - 8, h_low );
|
|
Com_Memcpy( dest, buf + 8, len - 8 );
|
|
s_worldData.vis = dest;
|
|
}
|
|
}
|
|
|
|
//===============================================================================
|
|
|
|
|
|
/*
|
|
===============
|
|
ShaderForShaderNum
|
|
===============
|
|
*/
|
|
static shader_t *ShaderForShaderNum( int shaderNum, int lightmapNum ) {
|
|
shader_t *shader;
|
|
dshader_t *dsh;
|
|
|
|
int _shaderNum = LittleLong( shaderNum );
|
|
if ( _shaderNum < 0 || _shaderNum >= s_worldData.numShaders ) {
|
|
ri.Error( ERR_DROP, "ShaderForShaderNum: bad num %i", _shaderNum );
|
|
}
|
|
dsh = &s_worldData.shaders[ _shaderNum ];
|
|
|
|
if ( r_vertexLight->integer || glConfig.hardwareType == GLHW_PERMEDIA2 ) {
|
|
lightmapNum = LIGHTMAP_BY_VERTEX;
|
|
}
|
|
|
|
if ( r_fullbright->integer ) {
|
|
lightmapNum = LIGHTMAP_WHITEIMAGE;
|
|
}
|
|
|
|
shader = R_FindShader( dsh->shader, lightmapNum, qtrue );
|
|
|
|
// if the shader had errors, just use default shader
|
|
if ( shader->defaultShader ) {
|
|
return tr.defaultShader;
|
|
}
|
|
|
|
return shader;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
ParseFace
|
|
===============
|
|
*/
|
|
static void ParseFace( dsurface_t *ds, drawVert_t *verts, float *hdrVertColors, msurface_t *surf, int *indexes ) {
|
|
int i, j;
|
|
srfSurfaceFace_t *cv;
|
|
srfTriangle_t *tri;
|
|
int numVerts, numTriangles, badTriangles;
|
|
int realLightmapNum;
|
|
|
|
realLightmapNum = LittleLong( ds->lightmapNum );
|
|
|
|
// get fog volume
|
|
surf->fogIndex = LittleLong( ds->fogNum ) + 1;
|
|
|
|
// get shader value
|
|
surf->shader = ShaderForShaderNum( ds->shaderNum, FatLightmap(realLightmapNum) );
|
|
if ( r_singleShader->integer && !surf->shader->isSky ) {
|
|
surf->shader = tr.defaultShader;
|
|
}
|
|
|
|
numVerts = LittleLong(ds->numVerts);
|
|
if (numVerts > MAX_FACE_POINTS) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: MAX_FACE_POINTS exceeded: %i\n", numVerts);
|
|
numVerts = MAX_FACE_POINTS;
|
|
surf->shader = tr.defaultShader;
|
|
}
|
|
|
|
numTriangles = LittleLong(ds->numIndexes) / 3;
|
|
|
|
//cv = ri.Hunk_Alloc(sizeof(*cv), h_low);
|
|
cv = (void *)surf->data;
|
|
cv->surfaceType = SF_FACE;
|
|
|
|
cv->numTriangles = numTriangles;
|
|
cv->triangles = ri.Hunk_Alloc(numTriangles * sizeof(cv->triangles[0]), h_low);
|
|
|
|
cv->numVerts = numVerts;
|
|
cv->verts = ri.Hunk_Alloc(numVerts * sizeof(cv->verts[0]), h_low);
|
|
|
|
// copy vertexes
|
|
surf->cullinfo.type = CULLINFO_PLANE | CULLINFO_BOX;
|
|
ClearBounds(surf->cullinfo.bounds[0], surf->cullinfo.bounds[1]);
|
|
verts += LittleLong(ds->firstVert);
|
|
for(i = 0; i < numVerts; i++)
|
|
{
|
|
vec4_t color;
|
|
|
|
for(j = 0; j < 3; j++)
|
|
{
|
|
cv->verts[i].xyz[j] = LittleFloat(verts[i].xyz[j]);
|
|
cv->verts[i].normal[j] = LittleFloat(verts[i].normal[j]);
|
|
}
|
|
AddPointToBounds(cv->verts[i].xyz, surf->cullinfo.bounds[0], surf->cullinfo.bounds[1]);
|
|
for(j = 0; j < 2; j++)
|
|
{
|
|
cv->verts[i].st[j] = LittleFloat(verts[i].st[j]);
|
|
//cv->verts[i].lightmap[j] = LittleFloat(verts[i].lightmap[j]);
|
|
}
|
|
cv->verts[i].lightmap[0] = FatPackU(LittleFloat(verts[i].lightmap[0]), realLightmapNum);
|
|
cv->verts[i].lightmap[1] = FatPackV(LittleFloat(verts[i].lightmap[1]), realLightmapNum);
|
|
|
|
if (hdrVertColors)
|
|
{
|
|
color[0] = hdrVertColors[(ds->firstVert + i) * 3 ];
|
|
color[1] = hdrVertColors[(ds->firstVert + i) * 3 + 1];
|
|
color[2] = hdrVertColors[(ds->firstVert + i) * 3 + 2];
|
|
}
|
|
else
|
|
{
|
|
//hack: convert LDR vertex colors to HDR
|
|
if (r_hdr->integer)
|
|
{
|
|
color[0] = verts[i].color[0] + 1.0f;
|
|
color[1] = verts[i].color[1] + 1.0f;
|
|
color[2] = verts[i].color[2] + 1.0f;
|
|
}
|
|
else
|
|
{
|
|
color[0] = verts[i].color[0];
|
|
color[1] = verts[i].color[1];
|
|
color[2] = verts[i].color[2];
|
|
}
|
|
|
|
}
|
|
color[3] = verts[i].color[3] / 255.0f;
|
|
|
|
R_ColorShiftLightingFloats( color, cv->verts[i].vertexColors, 1.0f / 255.0f );
|
|
}
|
|
|
|
// copy triangles
|
|
badTriangles = 0;
|
|
indexes += LittleLong(ds->firstIndex);
|
|
for(i = 0, tri = cv->triangles; i < numTriangles; i++, tri++)
|
|
{
|
|
for(j = 0; j < 3; j++)
|
|
{
|
|
tri->indexes[j] = LittleLong(indexes[i * 3 + j]);
|
|
|
|
if(tri->indexes[j] < 0 || tri->indexes[j] >= numVerts)
|
|
{
|
|
ri.Error(ERR_DROP, "Bad index in face surface");
|
|
}
|
|
}
|
|
|
|
if ((tri->indexes[0] == tri->indexes[1]) || (tri->indexes[1] == tri->indexes[2]) || (tri->indexes[0] == tri->indexes[2]))
|
|
{
|
|
tri--;
|
|
badTriangles++;
|
|
}
|
|
}
|
|
|
|
if (badTriangles)
|
|
{
|
|
ri.Printf(PRINT_WARNING, "Face has bad triangles, originally shader %s %d tris %d verts, now %d tris\n", surf->shader->name, numTriangles, numVerts, numTriangles - badTriangles);
|
|
cv->numTriangles -= badTriangles;
|
|
}
|
|
|
|
// take the plane information from the lightmap vector
|
|
for ( i = 0 ; i < 3 ; i++ ) {
|
|
cv->plane.normal[i] = LittleFloat( ds->lightmapVecs[2][i] );
|
|
}
|
|
cv->plane.dist = DotProduct( cv->verts[0].xyz, cv->plane.normal );
|
|
SetPlaneSignbits( &cv->plane );
|
|
cv->plane.type = PlaneTypeForNormal( cv->plane.normal );
|
|
surf->cullinfo.plane = cv->plane;
|
|
|
|
surf->data = (surfaceType_t *)cv;
|
|
|
|
#ifdef USE_VERT_TANGENT_SPACE
|
|
// Calculate tangent spaces
|
|
{
|
|
srfVert_t *dv[3];
|
|
|
|
for(i = 0, tri = cv->triangles; i < numTriangles; i++, tri++)
|
|
{
|
|
dv[0] = &cv->verts[tri->indexes[0]];
|
|
dv[1] = &cv->verts[tri->indexes[1]];
|
|
dv[2] = &cv->verts[tri->indexes[2]];
|
|
|
|
R_CalcTangentVectors(dv);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
ParseMesh
|
|
===============
|
|
*/
|
|
static void ParseMesh ( dsurface_t *ds, drawVert_t *verts, float *hdrVertColors, msurface_t *surf ) {
|
|
srfGridMesh_t *grid;
|
|
int i, j;
|
|
int width, height, numPoints;
|
|
srfVert_t points[MAX_PATCH_SIZE*MAX_PATCH_SIZE];
|
|
vec3_t bounds[2];
|
|
vec3_t tmpVec;
|
|
static surfaceType_t skipData = SF_SKIP;
|
|
int realLightmapNum;
|
|
|
|
realLightmapNum = LittleLong( ds->lightmapNum );
|
|
|
|
// get fog volume
|
|
surf->fogIndex = LittleLong( ds->fogNum ) + 1;
|
|
|
|
// get shader value
|
|
surf->shader = ShaderForShaderNum( ds->shaderNum, FatLightmap(realLightmapNum) );
|
|
if ( r_singleShader->integer && !surf->shader->isSky ) {
|
|
surf->shader = tr.defaultShader;
|
|
}
|
|
|
|
// we may have a nodraw surface, because they might still need to
|
|
// be around for movement clipping
|
|
if ( s_worldData.shaders[ LittleLong( ds->shaderNum ) ].surfaceFlags & SURF_NODRAW ) {
|
|
surf->data = &skipData;
|
|
return;
|
|
}
|
|
|
|
width = LittleLong( ds->patchWidth );
|
|
height = LittleLong( ds->patchHeight );
|
|
|
|
if(width < 0 || width > MAX_PATCH_SIZE || height < 0 || height > MAX_PATCH_SIZE)
|
|
ri.Error(ERR_DROP, "ParseMesh: bad size");
|
|
|
|
verts += LittleLong( ds->firstVert );
|
|
numPoints = width * height;
|
|
for(i = 0; i < numPoints; i++)
|
|
{
|
|
vec4_t color;
|
|
|
|
for(j = 0; j < 3; j++)
|
|
{
|
|
points[i].xyz[j] = LittleFloat(verts[i].xyz[j]);
|
|
points[i].normal[j] = LittleFloat(verts[i].normal[j]);
|
|
}
|
|
|
|
for(j = 0; j < 2; j++)
|
|
{
|
|
points[i].st[j] = LittleFloat(verts[i].st[j]);
|
|
//points[i].lightmap[j] = LittleFloat(verts[i].lightmap[j]);
|
|
}
|
|
points[i].lightmap[0] = FatPackU(LittleFloat(verts[i].lightmap[0]), realLightmapNum);
|
|
points[i].lightmap[1] = FatPackV(LittleFloat(verts[i].lightmap[1]), realLightmapNum);
|
|
|
|
if (hdrVertColors)
|
|
{
|
|
color[0] = hdrVertColors[(ds->firstVert + i) * 3 ];
|
|
color[1] = hdrVertColors[(ds->firstVert + i) * 3 + 1];
|
|
color[2] = hdrVertColors[(ds->firstVert + i) * 3 + 2];
|
|
}
|
|
else
|
|
{
|
|
//hack: convert LDR vertex colors to HDR
|
|
if (r_hdr->integer)
|
|
{
|
|
color[0] = verts[i].color[0] + 1.0f;
|
|
color[1] = verts[i].color[1] + 1.0f;
|
|
color[2] = verts[i].color[2] + 1.0f;
|
|
}
|
|
else
|
|
{
|
|
color[0] = verts[i].color[0];
|
|
color[1] = verts[i].color[1];
|
|
color[2] = verts[i].color[2];
|
|
}
|
|
}
|
|
color[3] = verts[i].color[3] / 255.0f;
|
|
|
|
R_ColorShiftLightingFloats( color, points[i].vertexColors, 1.0f / 255.0f );
|
|
}
|
|
|
|
// pre-tesseleate
|
|
grid = R_SubdividePatchToGrid( width, height, points );
|
|
surf->data = (surfaceType_t *)grid;
|
|
|
|
// copy the level of detail origin, which is the center
|
|
// of the group of all curves that must subdivide the same
|
|
// to avoid cracking
|
|
for ( i = 0 ; i < 3 ; i++ ) {
|
|
bounds[0][i] = LittleFloat( ds->lightmapVecs[0][i] );
|
|
bounds[1][i] = LittleFloat( ds->lightmapVecs[1][i] );
|
|
}
|
|
VectorAdd( bounds[0], bounds[1], bounds[1] );
|
|
VectorScale( bounds[1], 0.5f, grid->lodOrigin );
|
|
VectorSubtract( bounds[0], grid->lodOrigin, tmpVec );
|
|
grid->lodRadius = VectorLength( tmpVec );
|
|
}
|
|
|
|
/*
|
|
===============
|
|
ParseTriSurf
|
|
===============
|
|
*/
|
|
static void ParseTriSurf( dsurface_t *ds, drawVert_t *verts, float *hdrVertColors, msurface_t *surf, int *indexes ) {
|
|
srfTriangles_t *cv;
|
|
srfTriangle_t *tri;
|
|
int i, j;
|
|
int numVerts, numTriangles, badTriangles;
|
|
|
|
// get fog volume
|
|
surf->fogIndex = LittleLong( ds->fogNum ) + 1;
|
|
|
|
// get shader
|
|
surf->shader = ShaderForShaderNum( ds->shaderNum, LIGHTMAP_BY_VERTEX );
|
|
if ( r_singleShader->integer && !surf->shader->isSky ) {
|
|
surf->shader = tr.defaultShader;
|
|
}
|
|
|
|
numVerts = LittleLong(ds->numVerts);
|
|
numTriangles = LittleLong(ds->numIndexes) / 3;
|
|
|
|
//cv = ri.Hunk_Alloc(sizeof(*cv), h_low);
|
|
cv = (void *)surf->data;
|
|
cv->surfaceType = SF_TRIANGLES;
|
|
|
|
cv->numTriangles = numTriangles;
|
|
cv->triangles = ri.Hunk_Alloc(numTriangles * sizeof(cv->triangles[0]), h_low);
|
|
|
|
cv->numVerts = numVerts;
|
|
cv->verts = ri.Hunk_Alloc(numVerts * sizeof(cv->verts[0]), h_low);
|
|
|
|
surf->data = (surfaceType_t *) cv;
|
|
|
|
// copy vertexes
|
|
surf->cullinfo.type = CULLINFO_BOX;
|
|
ClearBounds(surf->cullinfo.bounds[0], surf->cullinfo.bounds[1]);
|
|
verts += LittleLong(ds->firstVert);
|
|
for(i = 0; i < numVerts; i++)
|
|
{
|
|
vec4_t color;
|
|
|
|
for(j = 0; j < 3; j++)
|
|
{
|
|
cv->verts[i].xyz[j] = LittleFloat(verts[i].xyz[j]);
|
|
cv->verts[i].normal[j] = LittleFloat(verts[i].normal[j]);
|
|
}
|
|
|
|
AddPointToBounds( cv->verts[i].xyz, surf->cullinfo.bounds[0], surf->cullinfo.bounds[1] );
|
|
|
|
for(j = 0; j < 2; j++)
|
|
{
|
|
cv->verts[i].st[j] = LittleFloat(verts[i].st[j]);
|
|
cv->verts[i].lightmap[j] = LittleFloat(verts[i].lightmap[j]);
|
|
}
|
|
|
|
if (hdrVertColors)
|
|
{
|
|
color[0] = hdrVertColors[(ds->firstVert + i) * 3 ];
|
|
color[1] = hdrVertColors[(ds->firstVert + i) * 3 + 1];
|
|
color[2] = hdrVertColors[(ds->firstVert + i) * 3 + 2];
|
|
}
|
|
else
|
|
{
|
|
//hack: convert LDR vertex colors to HDR
|
|
if (r_hdr->integer)
|
|
{
|
|
color[0] = verts[i].color[0] + 1.0f;
|
|
color[1] = verts[i].color[1] + 1.0f;
|
|
color[2] = verts[i].color[2] + 1.0f;
|
|
}
|
|
else
|
|
{
|
|
color[0] = verts[i].color[0];
|
|
color[1] = verts[i].color[1];
|
|
color[2] = verts[i].color[2];
|
|
}
|
|
}
|
|
color[3] = verts[i].color[3] / 255.0f;
|
|
|
|
R_ColorShiftLightingFloats( color, cv->verts[i].vertexColors, 1.0f / 255.0f );
|
|
}
|
|
|
|
// copy triangles
|
|
badTriangles = 0;
|
|
indexes += LittleLong(ds->firstIndex);
|
|
for(i = 0, tri = cv->triangles; i < numTriangles; i++, tri++)
|
|
{
|
|
for(j = 0; j < 3; j++)
|
|
{
|
|
tri->indexes[j] = LittleLong(indexes[i * 3 + j]);
|
|
|
|
if(tri->indexes[j] < 0 || tri->indexes[j] >= numVerts)
|
|
{
|
|
ri.Error(ERR_DROP, "Bad index in face surface");
|
|
}
|
|
}
|
|
|
|
if ((tri->indexes[0] == tri->indexes[1]) || (tri->indexes[1] == tri->indexes[2]) || (tri->indexes[0] == tri->indexes[2]))
|
|
{
|
|
tri--;
|
|
badTriangles++;
|
|
}
|
|
}
|
|
|
|
if (badTriangles)
|
|
{
|
|
ri.Printf(PRINT_WARNING, "Trisurf has bad triangles, originally shader %s %d tris %d verts, now %d tris\n", surf->shader->name, numTriangles, numVerts, numTriangles - badTriangles);
|
|
cv->numTriangles -= badTriangles;
|
|
}
|
|
|
|
#ifdef USE_VERT_TANGENT_SPACE
|
|
// Calculate tangent spaces
|
|
{
|
|
srfVert_t *dv[3];
|
|
|
|
for(i = 0, tri = cv->triangles; i < numTriangles; i++, tri++)
|
|
{
|
|
dv[0] = &cv->verts[tri->indexes[0]];
|
|
dv[1] = &cv->verts[tri->indexes[1]];
|
|
dv[2] = &cv->verts[tri->indexes[2]];
|
|
|
|
R_CalcTangentVectors(dv);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
===============
|
|
ParseFlare
|
|
===============
|
|
*/
|
|
static void ParseFlare( dsurface_t *ds, drawVert_t *verts, msurface_t *surf, int *indexes ) {
|
|
srfFlare_t *flare;
|
|
int i;
|
|
|
|
// get fog volume
|
|
surf->fogIndex = LittleLong( ds->fogNum ) + 1;
|
|
|
|
// get shader
|
|
surf->shader = ShaderForShaderNum( ds->shaderNum, LIGHTMAP_BY_VERTEX );
|
|
if ( r_singleShader->integer && !surf->shader->isSky ) {
|
|
surf->shader = tr.defaultShader;
|
|
}
|
|
|
|
//flare = ri.Hunk_Alloc( sizeof( *flare ), h_low );
|
|
flare = (void *)surf->data;
|
|
flare->surfaceType = SF_FLARE;
|
|
|
|
surf->data = (surfaceType_t *)flare;
|
|
|
|
for ( i = 0 ; i < 3 ; i++ ) {
|
|
flare->origin[i] = LittleFloat( ds->lightmapOrigin[i] );
|
|
flare->color[i] = LittleFloat( ds->lightmapVecs[0][i] );
|
|
flare->normal[i] = LittleFloat( ds->lightmapVecs[2][i] );
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
R_MergedWidthPoints
|
|
|
|
returns true if there are grid points merged on a width edge
|
|
=================
|
|
*/
|
|
int R_MergedWidthPoints(srfGridMesh_t *grid, int offset) {
|
|
int i, j;
|
|
|
|
for (i = 1; i < grid->width-1; i++) {
|
|
for (j = i + 1; j < grid->width-1; j++) {
|
|
if ( fabs(grid->verts[i + offset].xyz[0] - grid->verts[j + offset].xyz[0]) > .1) continue;
|
|
if ( fabs(grid->verts[i + offset].xyz[1] - grid->verts[j + offset].xyz[1]) > .1) continue;
|
|
if ( fabs(grid->verts[i + offset].xyz[2] - grid->verts[j + offset].xyz[2]) > .1) continue;
|
|
return qtrue;
|
|
}
|
|
}
|
|
return qfalse;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
R_MergedHeightPoints
|
|
|
|
returns true if there are grid points merged on a height edge
|
|
=================
|
|
*/
|
|
int R_MergedHeightPoints(srfGridMesh_t *grid, int offset) {
|
|
int i, j;
|
|
|
|
for (i = 1; i < grid->height-1; i++) {
|
|
for (j = i + 1; j < grid->height-1; j++) {
|
|
if ( fabs(grid->verts[grid->width * i + offset].xyz[0] - grid->verts[grid->width * j + offset].xyz[0]) > .1) continue;
|
|
if ( fabs(grid->verts[grid->width * i + offset].xyz[1] - grid->verts[grid->width * j + offset].xyz[1]) > .1) continue;
|
|
if ( fabs(grid->verts[grid->width * i + offset].xyz[2] - grid->verts[grid->width * j + offset].xyz[2]) > .1) continue;
|
|
return qtrue;
|
|
}
|
|
}
|
|
return qfalse;
|
|
}
|
|
|
|
/*
|
|
=================
|
|
R_FixSharedVertexLodError_r
|
|
|
|
NOTE: never sync LoD through grid edges with merged points!
|
|
|
|
FIXME: write generalized version that also avoids cracks between a patch and one that meets half way?
|
|
=================
|
|
*/
|
|
void R_FixSharedVertexLodError_r( int start, srfGridMesh_t *grid1 ) {
|
|
int j, k, l, m, n, offset1, offset2, touch;
|
|
srfGridMesh_t *grid2;
|
|
|
|
for ( j = start; j < s_worldData.numsurfaces; j++ ) {
|
|
//
|
|
grid2 = (srfGridMesh_t *) s_worldData.surfaces[j].data;
|
|
// if this surface is not a grid
|
|
if ( grid2->surfaceType != SF_GRID ) continue;
|
|
// if the LOD errors are already fixed for this patch
|
|
if ( grid2->lodFixed == 2 ) continue;
|
|
// grids in the same LOD group should have the exact same lod radius
|
|
if ( grid1->lodRadius != grid2->lodRadius ) continue;
|
|
// grids in the same LOD group should have the exact same lod origin
|
|
if ( grid1->lodOrigin[0] != grid2->lodOrigin[0] ) continue;
|
|
if ( grid1->lodOrigin[1] != grid2->lodOrigin[1] ) continue;
|
|
if ( grid1->lodOrigin[2] != grid2->lodOrigin[2] ) continue;
|
|
//
|
|
touch = qfalse;
|
|
for (n = 0; n < 2; n++) {
|
|
//
|
|
if (n) offset1 = (grid1->height-1) * grid1->width;
|
|
else offset1 = 0;
|
|
if (R_MergedWidthPoints(grid1, offset1)) continue;
|
|
for (k = 1; k < grid1->width-1; k++) {
|
|
for (m = 0; m < 2; m++) {
|
|
|
|
if (m) offset2 = (grid2->height-1) * grid2->width;
|
|
else offset2 = 0;
|
|
if (R_MergedWidthPoints(grid2, offset2)) continue;
|
|
for ( l = 1; l < grid2->width-1; l++) {
|
|
//
|
|
if ( fabs(grid1->verts[k + offset1].xyz[0] - grid2->verts[l + offset2].xyz[0]) > .1) continue;
|
|
if ( fabs(grid1->verts[k + offset1].xyz[1] - grid2->verts[l + offset2].xyz[1]) > .1) continue;
|
|
if ( fabs(grid1->verts[k + offset1].xyz[2] - grid2->verts[l + offset2].xyz[2]) > .1) continue;
|
|
// ok the points are equal and should have the same lod error
|
|
grid2->widthLodError[l] = grid1->widthLodError[k];
|
|
touch = qtrue;
|
|
}
|
|
}
|
|
for (m = 0; m < 2; m++) {
|
|
|
|
if (m) offset2 = grid2->width-1;
|
|
else offset2 = 0;
|
|
if (R_MergedHeightPoints(grid2, offset2)) continue;
|
|
for ( l = 1; l < grid2->height-1; l++) {
|
|
//
|
|
if ( fabs(grid1->verts[k + offset1].xyz[0] - grid2->verts[grid2->width * l + offset2].xyz[0]) > .1) continue;
|
|
if ( fabs(grid1->verts[k + offset1].xyz[1] - grid2->verts[grid2->width * l + offset2].xyz[1]) > .1) continue;
|
|
if ( fabs(grid1->verts[k + offset1].xyz[2] - grid2->verts[grid2->width * l + offset2].xyz[2]) > .1) continue;
|
|
// ok the points are equal and should have the same lod error
|
|
grid2->heightLodError[l] = grid1->widthLodError[k];
|
|
touch = qtrue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (n = 0; n < 2; n++) {
|
|
//
|
|
if (n) offset1 = grid1->width-1;
|
|
else offset1 = 0;
|
|
if (R_MergedHeightPoints(grid1, offset1)) continue;
|
|
for (k = 1; k < grid1->height-1; k++) {
|
|
for (m = 0; m < 2; m++) {
|
|
|
|
if (m) offset2 = (grid2->height-1) * grid2->width;
|
|
else offset2 = 0;
|
|
if (R_MergedWidthPoints(grid2, offset2)) continue;
|
|
for ( l = 1; l < grid2->width-1; l++) {
|
|
//
|
|
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[0] - grid2->verts[l + offset2].xyz[0]) > .1) continue;
|
|
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[1] - grid2->verts[l + offset2].xyz[1]) > .1) continue;
|
|
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[2] - grid2->verts[l + offset2].xyz[2]) > .1) continue;
|
|
// ok the points are equal and should have the same lod error
|
|
grid2->widthLodError[l] = grid1->heightLodError[k];
|
|
touch = qtrue;
|
|
}
|
|
}
|
|
for (m = 0; m < 2; m++) {
|
|
|
|
if (m) offset2 = grid2->width-1;
|
|
else offset2 = 0;
|
|
if (R_MergedHeightPoints(grid2, offset2)) continue;
|
|
for ( l = 1; l < grid2->height-1; l++) {
|
|
//
|
|
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[0] - grid2->verts[grid2->width * l + offset2].xyz[0]) > .1) continue;
|
|
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[1] - grid2->verts[grid2->width * l + offset2].xyz[1]) > .1) continue;
|
|
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[2] - grid2->verts[grid2->width * l + offset2].xyz[2]) > .1) continue;
|
|
// ok the points are equal and should have the same lod error
|
|
grid2->heightLodError[l] = grid1->heightLodError[k];
|
|
touch = qtrue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (touch) {
|
|
grid2->lodFixed = 2;
|
|
R_FixSharedVertexLodError_r ( start, grid2 );
|
|
//NOTE: this would be correct but makes things really slow
|
|
//grid2->lodFixed = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
=================
|
|
R_FixSharedVertexLodError
|
|
|
|
This function assumes that all patches in one group are nicely stitched together for the highest LoD.
|
|
If this is not the case this function will still do its job but won't fix the highest LoD cracks.
|
|
=================
|
|
*/
|
|
void R_FixSharedVertexLodError( void ) {
|
|
int i;
|
|
srfGridMesh_t *grid1;
|
|
|
|
for ( i = 0; i < s_worldData.numsurfaces; i++ ) {
|
|
//
|
|
grid1 = (srfGridMesh_t *) s_worldData.surfaces[i].data;
|
|
// if this surface is not a grid
|
|
if ( grid1->surfaceType != SF_GRID )
|
|
continue;
|
|
//
|
|
if ( grid1->lodFixed )
|
|
continue;
|
|
//
|
|
grid1->lodFixed = 2;
|
|
// recursively fix other patches in the same LOD group
|
|
R_FixSharedVertexLodError_r( i + 1, grid1);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
R_StitchPatches
|
|
===============
|
|
*/
|
|
int R_StitchPatches( int grid1num, int grid2num ) {
|
|
float *v1, *v2;
|
|
srfGridMesh_t *grid1, *grid2;
|
|
int k, l, m, n, offset1, offset2, row, column;
|
|
|
|
grid1 = (srfGridMesh_t *) s_worldData.surfaces[grid1num].data;
|
|
grid2 = (srfGridMesh_t *) s_worldData.surfaces[grid2num].data;
|
|
for (n = 0; n < 2; n++) {
|
|
//
|
|
if (n) offset1 = (grid1->height-1) * grid1->width;
|
|
else offset1 = 0;
|
|
if (R_MergedWidthPoints(grid1, offset1))
|
|
continue;
|
|
for (k = 0; k < grid1->width-2; k += 2) {
|
|
|
|
for (m = 0; m < 2; m++) {
|
|
|
|
if ( grid2->width >= MAX_GRID_SIZE )
|
|
break;
|
|
if (m) offset2 = (grid2->height-1) * grid2->width;
|
|
else offset2 = 0;
|
|
for ( l = 0; l < grid2->width-1; l++) {
|
|
//
|
|
v1 = grid1->verts[k + offset1].xyz;
|
|
v2 = grid2->verts[l + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) > .1)
|
|
continue;
|
|
if ( fabs(v1[1] - v2[1]) > .1)
|
|
continue;
|
|
if ( fabs(v1[2] - v2[2]) > .1)
|
|
continue;
|
|
|
|
v1 = grid1->verts[k + 2 + offset1].xyz;
|
|
v2 = grid2->verts[l + 1 + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) > .1)
|
|
continue;
|
|
if ( fabs(v1[1] - v2[1]) > .1)
|
|
continue;
|
|
if ( fabs(v1[2] - v2[2]) > .1)
|
|
continue;
|
|
//
|
|
v1 = grid2->verts[l + offset2].xyz;
|
|
v2 = grid2->verts[l + 1 + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) < .01 &&
|
|
fabs(v1[1] - v2[1]) < .01 &&
|
|
fabs(v1[2] - v2[2]) < .01)
|
|
continue;
|
|
//
|
|
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
|
|
// insert column into grid2 right after after column l
|
|
if (m) row = grid2->height-1;
|
|
else row = 0;
|
|
grid2 = R_GridInsertColumn( grid2, l+1, row,
|
|
grid1->verts[k + 1 + offset1].xyz, grid1->widthLodError[k+1]);
|
|
grid2->lodStitched = qfalse;
|
|
s_worldData.surfaces[grid2num].data = (void *) grid2;
|
|
return qtrue;
|
|
}
|
|
}
|
|
for (m = 0; m < 2; m++) {
|
|
|
|
if (grid2->height >= MAX_GRID_SIZE)
|
|
break;
|
|
if (m) offset2 = grid2->width-1;
|
|
else offset2 = 0;
|
|
for ( l = 0; l < grid2->height-1; l++) {
|
|
//
|
|
v1 = grid1->verts[k + offset1].xyz;
|
|
v2 = grid2->verts[grid2->width * l + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) > .1)
|
|
continue;
|
|
if ( fabs(v1[1] - v2[1]) > .1)
|
|
continue;
|
|
if ( fabs(v1[2] - v2[2]) > .1)
|
|
continue;
|
|
|
|
v1 = grid1->verts[k + 2 + offset1].xyz;
|
|
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) > .1)
|
|
continue;
|
|
if ( fabs(v1[1] - v2[1]) > .1)
|
|
continue;
|
|
if ( fabs(v1[2] - v2[2]) > .1)
|
|
continue;
|
|
//
|
|
v1 = grid2->verts[grid2->width * l + offset2].xyz;
|
|
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) < .01 &&
|
|
fabs(v1[1] - v2[1]) < .01 &&
|
|
fabs(v1[2] - v2[2]) < .01)
|
|
continue;
|
|
//
|
|
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
|
|
// insert row into grid2 right after after row l
|
|
if (m) column = grid2->width-1;
|
|
else column = 0;
|
|
grid2 = R_GridInsertRow( grid2, l+1, column,
|
|
grid1->verts[k + 1 + offset1].xyz, grid1->widthLodError[k+1]);
|
|
grid2->lodStitched = qfalse;
|
|
s_worldData.surfaces[grid2num].data = (void *) grid2;
|
|
return qtrue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (n = 0; n < 2; n++) {
|
|
//
|
|
if (n) offset1 = grid1->width-1;
|
|
else offset1 = 0;
|
|
if (R_MergedHeightPoints(grid1, offset1))
|
|
continue;
|
|
for (k = 0; k < grid1->height-2; k += 2) {
|
|
for (m = 0; m < 2; m++) {
|
|
|
|
if ( grid2->width >= MAX_GRID_SIZE )
|
|
break;
|
|
if (m) offset2 = (grid2->height-1) * grid2->width;
|
|
else offset2 = 0;
|
|
for ( l = 0; l < grid2->width-1; l++) {
|
|
//
|
|
v1 = grid1->verts[grid1->width * k + offset1].xyz;
|
|
v2 = grid2->verts[l + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) > .1)
|
|
continue;
|
|
if ( fabs(v1[1] - v2[1]) > .1)
|
|
continue;
|
|
if ( fabs(v1[2] - v2[2]) > .1)
|
|
continue;
|
|
|
|
v1 = grid1->verts[grid1->width * (k + 2) + offset1].xyz;
|
|
v2 = grid2->verts[l + 1 + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) > .1)
|
|
continue;
|
|
if ( fabs(v1[1] - v2[1]) > .1)
|
|
continue;
|
|
if ( fabs(v1[2] - v2[2]) > .1)
|
|
continue;
|
|
//
|
|
v1 = grid2->verts[l + offset2].xyz;
|
|
v2 = grid2->verts[(l + 1) + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) < .01 &&
|
|
fabs(v1[1] - v2[1]) < .01 &&
|
|
fabs(v1[2] - v2[2]) < .01)
|
|
continue;
|
|
//
|
|
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
|
|
// insert column into grid2 right after after column l
|
|
if (m) row = grid2->height-1;
|
|
else row = 0;
|
|
grid2 = R_GridInsertColumn( grid2, l+1, row,
|
|
grid1->verts[grid1->width * (k + 1) + offset1].xyz, grid1->heightLodError[k+1]);
|
|
grid2->lodStitched = qfalse;
|
|
s_worldData.surfaces[grid2num].data = (void *) grid2;
|
|
return qtrue;
|
|
}
|
|
}
|
|
for (m = 0; m < 2; m++) {
|
|
|
|
if (grid2->height >= MAX_GRID_SIZE)
|
|
break;
|
|
if (m) offset2 = grid2->width-1;
|
|
else offset2 = 0;
|
|
for ( l = 0; l < grid2->height-1; l++) {
|
|
//
|
|
v1 = grid1->verts[grid1->width * k + offset1].xyz;
|
|
v2 = grid2->verts[grid2->width * l + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) > .1)
|
|
continue;
|
|
if ( fabs(v1[1] - v2[1]) > .1)
|
|
continue;
|
|
if ( fabs(v1[2] - v2[2]) > .1)
|
|
continue;
|
|
|
|
v1 = grid1->verts[grid1->width * (k + 2) + offset1].xyz;
|
|
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) > .1)
|
|
continue;
|
|
if ( fabs(v1[1] - v2[1]) > .1)
|
|
continue;
|
|
if ( fabs(v1[2] - v2[2]) > .1)
|
|
continue;
|
|
//
|
|
v1 = grid2->verts[grid2->width * l + offset2].xyz;
|
|
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) < .01 &&
|
|
fabs(v1[1] - v2[1]) < .01 &&
|
|
fabs(v1[2] - v2[2]) < .01)
|
|
continue;
|
|
//
|
|
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
|
|
// insert row into grid2 right after after row l
|
|
if (m) column = grid2->width-1;
|
|
else column = 0;
|
|
grid2 = R_GridInsertRow( grid2, l+1, column,
|
|
grid1->verts[grid1->width * (k + 1) + offset1].xyz, grid1->heightLodError[k+1]);
|
|
grid2->lodStitched = qfalse;
|
|
s_worldData.surfaces[grid2num].data = (void *) grid2;
|
|
return qtrue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (n = 0; n < 2; n++) {
|
|
//
|
|
if (n) offset1 = (grid1->height-1) * grid1->width;
|
|
else offset1 = 0;
|
|
if (R_MergedWidthPoints(grid1, offset1))
|
|
continue;
|
|
for (k = grid1->width-1; k > 1; k -= 2) {
|
|
|
|
for (m = 0; m < 2; m++) {
|
|
|
|
if ( grid2->width >= MAX_GRID_SIZE )
|
|
break;
|
|
if (m) offset2 = (grid2->height-1) * grid2->width;
|
|
else offset2 = 0;
|
|
for ( l = 0; l < grid2->width-1; l++) {
|
|
//
|
|
v1 = grid1->verts[k + offset1].xyz;
|
|
v2 = grid2->verts[l + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) > .1)
|
|
continue;
|
|
if ( fabs(v1[1] - v2[1]) > .1)
|
|
continue;
|
|
if ( fabs(v1[2] - v2[2]) > .1)
|
|
continue;
|
|
|
|
v1 = grid1->verts[k - 2 + offset1].xyz;
|
|
v2 = grid2->verts[l + 1 + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) > .1)
|
|
continue;
|
|
if ( fabs(v1[1] - v2[1]) > .1)
|
|
continue;
|
|
if ( fabs(v1[2] - v2[2]) > .1)
|
|
continue;
|
|
//
|
|
v1 = grid2->verts[l + offset2].xyz;
|
|
v2 = grid2->verts[(l + 1) + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) < .01 &&
|
|
fabs(v1[1] - v2[1]) < .01 &&
|
|
fabs(v1[2] - v2[2]) < .01)
|
|
continue;
|
|
//
|
|
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
|
|
// insert column into grid2 right after after column l
|
|
if (m) row = grid2->height-1;
|
|
else row = 0;
|
|
grid2 = R_GridInsertColumn( grid2, l+1, row,
|
|
grid1->verts[k - 1 + offset1].xyz, grid1->widthLodError[k+1]);
|
|
grid2->lodStitched = qfalse;
|
|
s_worldData.surfaces[grid2num].data = (void *) grid2;
|
|
return qtrue;
|
|
}
|
|
}
|
|
for (m = 0; m < 2; m++) {
|
|
|
|
if (grid2->height >= MAX_GRID_SIZE)
|
|
break;
|
|
if (m) offset2 = grid2->width-1;
|
|
else offset2 = 0;
|
|
for ( l = 0; l < grid2->height-1; l++) {
|
|
//
|
|
v1 = grid1->verts[k + offset1].xyz;
|
|
v2 = grid2->verts[grid2->width * l + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) > .1)
|
|
continue;
|
|
if ( fabs(v1[1] - v2[1]) > .1)
|
|
continue;
|
|
if ( fabs(v1[2] - v2[2]) > .1)
|
|
continue;
|
|
|
|
v1 = grid1->verts[k - 2 + offset1].xyz;
|
|
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) > .1)
|
|
continue;
|
|
if ( fabs(v1[1] - v2[1]) > .1)
|
|
continue;
|
|
if ( fabs(v1[2] - v2[2]) > .1)
|
|
continue;
|
|
//
|
|
v1 = grid2->verts[grid2->width * l + offset2].xyz;
|
|
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) < .01 &&
|
|
fabs(v1[1] - v2[1]) < .01 &&
|
|
fabs(v1[2] - v2[2]) < .01)
|
|
continue;
|
|
//
|
|
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
|
|
// insert row into grid2 right after after row l
|
|
if (m) column = grid2->width-1;
|
|
else column = 0;
|
|
grid2 = R_GridInsertRow( grid2, l+1, column,
|
|
grid1->verts[k - 1 + offset1].xyz, grid1->widthLodError[k+1]);
|
|
if (!grid2)
|
|
break;
|
|
grid2->lodStitched = qfalse;
|
|
s_worldData.surfaces[grid2num].data = (void *) grid2;
|
|
return qtrue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (n = 0; n < 2; n++) {
|
|
//
|
|
if (n) offset1 = grid1->width-1;
|
|
else offset1 = 0;
|
|
if (R_MergedHeightPoints(grid1, offset1))
|
|
continue;
|
|
for (k = grid1->height-1; k > 1; k -= 2) {
|
|
for (m = 0; m < 2; m++) {
|
|
|
|
if ( grid2->width >= MAX_GRID_SIZE )
|
|
break;
|
|
if (m) offset2 = (grid2->height-1) * grid2->width;
|
|
else offset2 = 0;
|
|
for ( l = 0; l < grid2->width-1; l++) {
|
|
//
|
|
v1 = grid1->verts[grid1->width * k + offset1].xyz;
|
|
v2 = grid2->verts[l + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) > .1)
|
|
continue;
|
|
if ( fabs(v1[1] - v2[1]) > .1)
|
|
continue;
|
|
if ( fabs(v1[2] - v2[2]) > .1)
|
|
continue;
|
|
|
|
v1 = grid1->verts[grid1->width * (k - 2) + offset1].xyz;
|
|
v2 = grid2->verts[l + 1 + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) > .1)
|
|
continue;
|
|
if ( fabs(v1[1] - v2[1]) > .1)
|
|
continue;
|
|
if ( fabs(v1[2] - v2[2]) > .1)
|
|
continue;
|
|
//
|
|
v1 = grid2->verts[l + offset2].xyz;
|
|
v2 = grid2->verts[(l + 1) + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) < .01 &&
|
|
fabs(v1[1] - v2[1]) < .01 &&
|
|
fabs(v1[2] - v2[2]) < .01)
|
|
continue;
|
|
//
|
|
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
|
|
// insert column into grid2 right after after column l
|
|
if (m) row = grid2->height-1;
|
|
else row = 0;
|
|
grid2 = R_GridInsertColumn( grid2, l+1, row,
|
|
grid1->verts[grid1->width * (k - 1) + offset1].xyz, grid1->heightLodError[k+1]);
|
|
grid2->lodStitched = qfalse;
|
|
s_worldData.surfaces[grid2num].data = (void *) grid2;
|
|
return qtrue;
|
|
}
|
|
}
|
|
for (m = 0; m < 2; m++) {
|
|
|
|
if (grid2->height >= MAX_GRID_SIZE)
|
|
break;
|
|
if (m) offset2 = grid2->width-1;
|
|
else offset2 = 0;
|
|
for ( l = 0; l < grid2->height-1; l++) {
|
|
//
|
|
v1 = grid1->verts[grid1->width * k + offset1].xyz;
|
|
v2 = grid2->verts[grid2->width * l + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) > .1)
|
|
continue;
|
|
if ( fabs(v1[1] - v2[1]) > .1)
|
|
continue;
|
|
if ( fabs(v1[2] - v2[2]) > .1)
|
|
continue;
|
|
|
|
v1 = grid1->verts[grid1->width * (k - 2) + offset1].xyz;
|
|
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) > .1)
|
|
continue;
|
|
if ( fabs(v1[1] - v2[1]) > .1)
|
|
continue;
|
|
if ( fabs(v1[2] - v2[2]) > .1)
|
|
continue;
|
|
//
|
|
v1 = grid2->verts[grid2->width * l + offset2].xyz;
|
|
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
|
|
if ( fabs(v1[0] - v2[0]) < .01 &&
|
|
fabs(v1[1] - v2[1]) < .01 &&
|
|
fabs(v1[2] - v2[2]) < .01)
|
|
continue;
|
|
//
|
|
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
|
|
// insert row into grid2 right after after row l
|
|
if (m) column = grid2->width-1;
|
|
else column = 0;
|
|
grid2 = R_GridInsertRow( grid2, l+1, column,
|
|
grid1->verts[grid1->width * (k - 1) + offset1].xyz, grid1->heightLodError[k+1]);
|
|
grid2->lodStitched = qfalse;
|
|
s_worldData.surfaces[grid2num].data = (void *) grid2;
|
|
return qtrue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return qfalse;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_TryStitchPatch
|
|
|
|
This function will try to stitch patches in the same LoD group together for the highest LoD.
|
|
|
|
Only single missing vertice cracks will be fixed.
|
|
|
|
Vertices will be joined at the patch side a crack is first found, at the other side
|
|
of the patch (on the same row or column) the vertices will not be joined and cracks
|
|
might still appear at that side.
|
|
===============
|
|
*/
|
|
int R_TryStitchingPatch( int grid1num ) {
|
|
int j, numstitches;
|
|
srfGridMesh_t *grid1, *grid2;
|
|
|
|
numstitches = 0;
|
|
grid1 = (srfGridMesh_t *) s_worldData.surfaces[grid1num].data;
|
|
for ( j = 0; j < s_worldData.numsurfaces; j++ ) {
|
|
//
|
|
grid2 = (srfGridMesh_t *) s_worldData.surfaces[j].data;
|
|
// if this surface is not a grid
|
|
if ( grid2->surfaceType != SF_GRID ) continue;
|
|
// grids in the same LOD group should have the exact same lod radius
|
|
if ( grid1->lodRadius != grid2->lodRadius ) continue;
|
|
// grids in the same LOD group should have the exact same lod origin
|
|
if ( grid1->lodOrigin[0] != grid2->lodOrigin[0] ) continue;
|
|
if ( grid1->lodOrigin[1] != grid2->lodOrigin[1] ) continue;
|
|
if ( grid1->lodOrigin[2] != grid2->lodOrigin[2] ) continue;
|
|
//
|
|
while (R_StitchPatches(grid1num, j))
|
|
{
|
|
numstitches++;
|
|
}
|
|
}
|
|
return numstitches;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_StitchAllPatches
|
|
===============
|
|
*/
|
|
void R_StitchAllPatches( void ) {
|
|
int i, stitched, numstitches;
|
|
srfGridMesh_t *grid1;
|
|
|
|
numstitches = 0;
|
|
do
|
|
{
|
|
stitched = qfalse;
|
|
for ( i = 0; i < s_worldData.numsurfaces; i++ ) {
|
|
//
|
|
grid1 = (srfGridMesh_t *) s_worldData.surfaces[i].data;
|
|
// if this surface is not a grid
|
|
if ( grid1->surfaceType != SF_GRID )
|
|
continue;
|
|
//
|
|
if ( grid1->lodStitched )
|
|
continue;
|
|
//
|
|
grid1->lodStitched = qtrue;
|
|
stitched = qtrue;
|
|
//
|
|
numstitches += R_TryStitchingPatch( i );
|
|
}
|
|
}
|
|
while (stitched);
|
|
ri.Printf( PRINT_ALL, "stitched %d LoD cracks\n", numstitches );
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_MovePatchSurfacesToHunk
|
|
===============
|
|
*/
|
|
void R_MovePatchSurfacesToHunk(void) {
|
|
int i, size;
|
|
srfGridMesh_t *grid, *hunkgrid;
|
|
|
|
for ( i = 0; i < s_worldData.numsurfaces; i++ ) {
|
|
//
|
|
grid = (srfGridMesh_t *) s_worldData.surfaces[i].data;
|
|
// if this surface is not a grid
|
|
if ( grid->surfaceType != SF_GRID )
|
|
continue;
|
|
//
|
|
size = sizeof(*grid);
|
|
hunkgrid = ri.Hunk_Alloc(size, h_low);
|
|
Com_Memcpy(hunkgrid, grid, size);
|
|
|
|
hunkgrid->widthLodError = ri.Hunk_Alloc( grid->width * 4, h_low );
|
|
Com_Memcpy( hunkgrid->widthLodError, grid->widthLodError, grid->width * 4 );
|
|
|
|
hunkgrid->heightLodError = ri.Hunk_Alloc( grid->height * 4, h_low );
|
|
Com_Memcpy( hunkgrid->heightLodError, grid->heightLodError, grid->height * 4 );
|
|
|
|
hunkgrid->numTriangles = grid->numTriangles;
|
|
hunkgrid->triangles = ri.Hunk_Alloc(grid->numTriangles * sizeof(srfTriangle_t), h_low);
|
|
Com_Memcpy(hunkgrid->triangles, grid->triangles, grid->numTriangles * sizeof(srfTriangle_t));
|
|
|
|
hunkgrid->numVerts = grid->numVerts;
|
|
hunkgrid->verts = ri.Hunk_Alloc(grid->numVerts * sizeof(srfVert_t), h_low);
|
|
Com_Memcpy(hunkgrid->verts, grid->verts, grid->numVerts * sizeof(srfVert_t));
|
|
|
|
R_FreeSurfaceGridMesh( grid );
|
|
|
|
s_worldData.surfaces[i].data = (void *) hunkgrid;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
BSPSurfaceCompare
|
|
compare function for qsort()
|
|
=================
|
|
*/
|
|
static int BSPSurfaceCompare(const void *a, const void *b)
|
|
{
|
|
msurface_t *aa, *bb;
|
|
|
|
aa = *(msurface_t **) a;
|
|
bb = *(msurface_t **) b;
|
|
|
|
// shader first
|
|
if(aa->shader->sortedIndex < bb->shader->sortedIndex)
|
|
return -1;
|
|
|
|
else if(aa->shader->sortedIndex > bb->shader->sortedIndex)
|
|
return 1;
|
|
|
|
// by fogIndex
|
|
if(aa->fogIndex < bb->fogIndex)
|
|
return -1;
|
|
|
|
else if(aa->fogIndex > bb->fogIndex)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void CopyVert(const srfVert_t * in, srfVert_t * out)
|
|
{
|
|
int j;
|
|
|
|
for(j = 0; j < 3; j++)
|
|
{
|
|
out->xyz[j] = in->xyz[j];
|
|
#ifdef USE_VERT_TANGENT_SPACE
|
|
out->tangent[j] = in->tangent[j];
|
|
out->bitangent[j] = in->bitangent[j];
|
|
#endif
|
|
out->normal[j] = in->normal[j];
|
|
out->lightdir[j] = in->lightdir[j];
|
|
}
|
|
|
|
for(j = 0; j < 2; j++)
|
|
{
|
|
out->st[j] = in->st[j];
|
|
out->lightmap[j] = in->lightmap[j];
|
|
}
|
|
|
|
for(j = 0; j < 4; j++)
|
|
{
|
|
out->vertexColors[j] = in->vertexColors[j];
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
R_CreateWorldVBO
|
|
===============
|
|
*/
|
|
static void R_CreateWorldVBO(void)
|
|
{
|
|
int i, j, k;
|
|
|
|
int numVerts;
|
|
srfVert_t *verts;
|
|
|
|
int numTriangles;
|
|
srfTriangle_t *triangles;
|
|
|
|
int numSurfaces;
|
|
msurface_t *surface;
|
|
msurface_t **surfacesSorted;
|
|
|
|
int startTime, endTime;
|
|
|
|
startTime = ri.Milliseconds();
|
|
|
|
numVerts = 0;
|
|
numTriangles = 0;
|
|
numSurfaces = 0;
|
|
for(k = 0, surface = &s_worldData.surfaces[0]; k < s_worldData.numsurfaces /* s_worldData.numWorldSurfaces */; k++, surface++)
|
|
{
|
|
if(*surface->data == SF_FACE)
|
|
{
|
|
srfSurfaceFace_t *face = (srfSurfaceFace_t *) surface->data;
|
|
|
|
if(face->numVerts)
|
|
numVerts += face->numVerts;
|
|
|
|
if(face->numTriangles)
|
|
numTriangles += face->numTriangles;
|
|
|
|
numSurfaces++;
|
|
}
|
|
else if(*surface->data == SF_GRID)
|
|
{
|
|
srfGridMesh_t *grid = (srfGridMesh_t *) surface->data;
|
|
|
|
if(grid->numVerts)
|
|
numVerts += grid->numVerts;
|
|
|
|
if(grid->numTriangles)
|
|
numTriangles += grid->numTriangles;
|
|
|
|
numSurfaces++;
|
|
}
|
|
else if(*surface->data == SF_TRIANGLES)
|
|
{
|
|
srfTriangles_t *tri = (srfTriangles_t *) surface->data;
|
|
|
|
if(tri->numVerts)
|
|
numVerts += tri->numVerts;
|
|
|
|
if(tri->numTriangles)
|
|
numTriangles += tri->numTriangles;
|
|
|
|
numSurfaces++;
|
|
}
|
|
}
|
|
|
|
if(!numVerts || !numTriangles)
|
|
return;
|
|
|
|
ri.Printf(PRINT_ALL, "...calculating world VBO ( %i verts %i tris )\n", numVerts, numTriangles);
|
|
|
|
// create arrays
|
|
|
|
verts = ri.Hunk_AllocateTempMemory(numVerts * sizeof(srfVert_t));
|
|
|
|
triangles = ri.Hunk_AllocateTempMemory(numTriangles * sizeof(srfTriangle_t));
|
|
|
|
// presort surfaces
|
|
surfacesSorted = ri.Malloc(numSurfaces * sizeof(*surfacesSorted));
|
|
|
|
j = 0;
|
|
for(k = 0, surface = &s_worldData.surfaces[0]; k < s_worldData.numsurfaces; k++, surface++)
|
|
{
|
|
if(*surface->data == SF_FACE || *surface->data == SF_GRID || *surface->data == SF_TRIANGLES)
|
|
{
|
|
surfacesSorted[j++] = surface;
|
|
}
|
|
}
|
|
|
|
qsort(surfacesSorted, numSurfaces, sizeof(*surfacesSorted), BSPSurfaceCompare);
|
|
|
|
// set up triangle indices
|
|
numVerts = 0;
|
|
numTriangles = 0;
|
|
for(k = 0, surface = surfacesSorted[k]; k < numSurfaces; k++, surface = surfacesSorted[k])
|
|
{
|
|
if(*surface->data == SF_FACE)
|
|
{
|
|
srfSurfaceFace_t *srf = (srfSurfaceFace_t *) surface->data;
|
|
|
|
srf->firstIndex = numTriangles * 3;
|
|
|
|
if(srf->numTriangles)
|
|
{
|
|
srfTriangle_t *tri;
|
|
|
|
srf->minIndex = numVerts + srf->triangles->indexes[0];
|
|
srf->maxIndex = numVerts + srf->triangles->indexes[0];
|
|
|
|
for(i = 0, tri = srf->triangles; i < srf->numTriangles; i++, tri++)
|
|
{
|
|
for(j = 0; j < 3; j++)
|
|
{
|
|
triangles[numTriangles + i].indexes[j] = numVerts + tri->indexes[j];
|
|
srf->minIndex = MIN(srf->minIndex, numVerts + tri->indexes[j]);
|
|
srf->maxIndex = MAX(srf->maxIndex, numVerts + tri->indexes[j]);
|
|
}
|
|
}
|
|
|
|
numTriangles += srf->numTriangles;
|
|
}
|
|
|
|
if(srf->numVerts)
|
|
numVerts += srf->numVerts;
|
|
}
|
|
else if(*surface->data == SF_GRID)
|
|
{
|
|
srfGridMesh_t *srf = (srfGridMesh_t *) surface->data;
|
|
|
|
srf->firstIndex = numTriangles * 3;
|
|
|
|
if(srf->numTriangles)
|
|
{
|
|
srfTriangle_t *tri;
|
|
|
|
srf->minIndex = numVerts + srf->triangles->indexes[0];
|
|
srf->maxIndex = numVerts + srf->triangles->indexes[0];
|
|
|
|
for(i = 0, tri = srf->triangles; i < srf->numTriangles; i++, tri++)
|
|
{
|
|
for(j = 0; j < 3; j++)
|
|
{
|
|
triangles[numTriangles + i].indexes[j] = numVerts + tri->indexes[j];
|
|
srf->minIndex = MIN(srf->minIndex, numVerts + tri->indexes[j]);
|
|
srf->maxIndex = MAX(srf->maxIndex, numVerts + tri->indexes[j]);
|
|
}
|
|
}
|
|
|
|
numTriangles += srf->numTriangles;
|
|
}
|
|
|
|
if(srf->numVerts)
|
|
numVerts += srf->numVerts;
|
|
}
|
|
else if(*surface->data == SF_TRIANGLES)
|
|
{
|
|
srfTriangles_t *srf = (srfTriangles_t *) surface->data;
|
|
|
|
srf->firstIndex = numTriangles * 3;
|
|
|
|
if(srf->numTriangles)
|
|
{
|
|
srfTriangle_t *tri;
|
|
|
|
srf->minIndex = numVerts + srf->triangles->indexes[0];
|
|
srf->maxIndex = numVerts + srf->triangles->indexes[0];
|
|
|
|
for(i = 0, tri = srf->triangles; i < srf->numTriangles; i++, tri++)
|
|
{
|
|
for(j = 0; j < 3; j++)
|
|
{
|
|
triangles[numTriangles + i].indexes[j] = numVerts + tri->indexes[j];
|
|
srf->minIndex = MIN(srf->minIndex, numVerts + tri->indexes[j]);
|
|
srf->maxIndex = MAX(srf->maxIndex, numVerts + tri->indexes[j]);
|
|
}
|
|
}
|
|
|
|
numTriangles += srf->numTriangles;
|
|
}
|
|
|
|
if(srf->numVerts)
|
|
numVerts += srf->numVerts;
|
|
}
|
|
}
|
|
|
|
// build vertices
|
|
numVerts = 0;
|
|
for(k = 0, surface = surfacesSorted[k]; k < numSurfaces; k++, surface = surfacesSorted[k])
|
|
{
|
|
if(*surface->data == SF_FACE)
|
|
{
|
|
srfSurfaceFace_t *srf = (srfSurfaceFace_t *) surface->data;
|
|
|
|
srf->firstVert = numVerts;
|
|
|
|
if(srf->numVerts)
|
|
{
|
|
for(i = 0; i < srf->numVerts; i++)
|
|
{
|
|
CopyVert(&srf->verts[i], &verts[numVerts + i]);
|
|
}
|
|
|
|
numVerts += srf->numVerts;
|
|
}
|
|
}
|
|
else if(*surface->data == SF_GRID)
|
|
{
|
|
srfGridMesh_t *srf = (srfGridMesh_t *) surface->data;
|
|
|
|
srf->firstVert = numVerts;
|
|
|
|
if(srf->numVerts)
|
|
{
|
|
for(i = 0; i < srf->numVerts; i++)
|
|
{
|
|
CopyVert(&srf->verts[i], &verts[numVerts + i]);
|
|
}
|
|
|
|
numVerts += srf->numVerts;
|
|
}
|
|
}
|
|
else if(*surface->data == SF_TRIANGLES)
|
|
{
|
|
srfTriangles_t *srf = (srfTriangles_t *) surface->data;
|
|
|
|
srf->firstVert = numVerts;
|
|
|
|
if(srf->numVerts)
|
|
{
|
|
for(i = 0; i < srf->numVerts; i++)
|
|
{
|
|
CopyVert(&srf->verts[i], &verts[numVerts + i]);
|
|
}
|
|
|
|
numVerts += srf->numVerts;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef USE_VERT_TANGENT_SPACE
|
|
s_worldData.vbo = R_CreateVBO2(va("staticBspModel0_VBO %i", 0), numVerts, verts,
|
|
ATTR_POSITION | ATTR_TEXCOORD | ATTR_LIGHTCOORD | ATTR_TANGENT | ATTR_BITANGENT |
|
|
ATTR_NORMAL | ATTR_COLOR | ATTR_LIGHTDIRECTION, VBO_USAGE_STATIC);
|
|
#else
|
|
s_worldData.vbo = R_CreateVBO2(va("staticBspModel0_VBO %i", 0), numVerts, verts,
|
|
ATTR_POSITION | ATTR_TEXCOORD | ATTR_LIGHTCOORD |
|
|
ATTR_NORMAL | ATTR_COLOR | ATTR_LIGHTDIRECTION, VBO_USAGE_STATIC);
|
|
#endif
|
|
|
|
s_worldData.ibo = R_CreateIBO2(va("staticBspModel0_IBO %i", 0), numTriangles, triangles, VBO_USAGE_STATIC);
|
|
|
|
endTime = ri.Milliseconds();
|
|
ri.Printf(PRINT_ALL, "world VBO calculation time = %5.2f seconds\n", (endTime - startTime) / 1000.0);
|
|
|
|
// point triangle surfaces to world VBO
|
|
for(k = 0, surface = surfacesSorted[k]; k < numSurfaces; k++, surface = surfacesSorted[k])
|
|
{
|
|
if(*surface->data == SF_FACE)
|
|
{
|
|
srfSurfaceFace_t *srf = (srfSurfaceFace_t *) surface->data;
|
|
|
|
if( srf->numVerts && srf->numTriangles)
|
|
{
|
|
srf->vbo = s_worldData.vbo;
|
|
srf->ibo = s_worldData.ibo;
|
|
}
|
|
}
|
|
else if(*surface->data == SF_GRID)
|
|
{
|
|
srfGridMesh_t *srf = (srfGridMesh_t *) surface->data;
|
|
|
|
if( srf->numVerts && srf->numTriangles)
|
|
{
|
|
srf->vbo = s_worldData.vbo;
|
|
srf->ibo = s_worldData.ibo;
|
|
}
|
|
}
|
|
else if(*surface->data == SF_TRIANGLES)
|
|
{
|
|
srfTriangles_t *srf = (srfTriangles_t *) surface->data;
|
|
|
|
if( srf->numVerts && srf->numTriangles)
|
|
{
|
|
srf->vbo = s_worldData.vbo;
|
|
srf->ibo = s_worldData.ibo;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
startTime = ri.Milliseconds();
|
|
|
|
ri.Free(surfacesSorted);
|
|
|
|
ri.Hunk_FreeTempMemory(triangles);
|
|
ri.Hunk_FreeTempMemory(verts);
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_LoadSurfaces
|
|
===============
|
|
*/
|
|
static void R_LoadSurfaces( lump_t *surfs, lump_t *verts, lump_t *indexLump ) {
|
|
dsurface_t *in;
|
|
msurface_t *out;
|
|
drawVert_t *dv;
|
|
int *indexes;
|
|
int count;
|
|
int numFaces, numMeshes, numTriSurfs, numFlares;
|
|
int i;
|
|
float *hdrVertColors = NULL;
|
|
|
|
numFaces = 0;
|
|
numMeshes = 0;
|
|
numTriSurfs = 0;
|
|
numFlares = 0;
|
|
|
|
in = (void *)(fileBase + surfs->fileofs);
|
|
if (surfs->filelen % sizeof(*in))
|
|
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
|
|
count = surfs->filelen / sizeof(*in);
|
|
|
|
dv = (void *)(fileBase + verts->fileofs);
|
|
if (verts->filelen % sizeof(*dv))
|
|
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
|
|
|
|
indexes = (void *)(fileBase + indexLump->fileofs);
|
|
if ( indexLump->filelen % sizeof(*indexes))
|
|
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
|
|
|
|
out = ri.Hunk_Alloc ( count * sizeof(*out), h_low );
|
|
|
|
s_worldData.surfaces = out;
|
|
s_worldData.numsurfaces = count;
|
|
s_worldData.surfacesViewCount = ri.Hunk_Alloc ( count * sizeof(*s_worldData.surfacesViewCount), h_low );
|
|
s_worldData.surfacesDlightBits = ri.Hunk_Alloc ( count * sizeof(*s_worldData.surfacesDlightBits), h_low );
|
|
s_worldData.surfacesPshadowBits = ri.Hunk_Alloc ( count * sizeof(*s_worldData.surfacesPshadowBits), h_low );
|
|
|
|
// load hdr vertex colors
|
|
if (r_hdr->integer)
|
|
{
|
|
char filename[MAX_QPATH];
|
|
int size;
|
|
|
|
Com_sprintf( filename, sizeof( filename ), "maps/%s/vertlight.raw", s_worldData.baseName);
|
|
//ri.Printf(PRINT_ALL, "looking for %s\n", filename);
|
|
|
|
size = ri.FS_ReadFile(filename, (void **)&hdrVertColors);
|
|
|
|
if (hdrVertColors)
|
|
{
|
|
//ri.Printf(PRINT_ALL, "Found!\n");
|
|
if (size != sizeof(float) * 3 * (verts->filelen / sizeof(*dv)))
|
|
ri.Error(ERR_DROP, "Bad size for %s (%i, expected %i)!\n", filename, size, (int)((sizeof(float)) * 3 * (verts->filelen / sizeof(*dv))));
|
|
}
|
|
}
|
|
|
|
|
|
// Two passes, allocate surfaces first, then load them full of data
|
|
// This ensures surfaces are close together to reduce L2 cache misses when using VBOs,
|
|
// which don't actually use the verts and tris
|
|
in = (void *)(fileBase + surfs->fileofs);
|
|
out = s_worldData.surfaces;
|
|
for ( i = 0 ; i < count ; i++, in++, out++ ) {
|
|
switch ( LittleLong( in->surfaceType ) ) {
|
|
case MST_PATCH:
|
|
// FIXME: do this
|
|
break;
|
|
case MST_TRIANGLE_SOUP:
|
|
out->data = ri.Hunk_Alloc( sizeof(srfTriangles_t), h_low);
|
|
break;
|
|
case MST_PLANAR:
|
|
out->data = ri.Hunk_Alloc( sizeof(srfSurfaceFace_t), h_low);
|
|
break;
|
|
case MST_FLARE:
|
|
out->data = ri.Hunk_Alloc( sizeof(srfFlare_t), h_low);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
in = (void *)(fileBase + surfs->fileofs);
|
|
out = s_worldData.surfaces;
|
|
for ( i = 0 ; i < count ; i++, in++, out++ ) {
|
|
switch ( LittleLong( in->surfaceType ) ) {
|
|
case MST_PATCH:
|
|
ParseMesh ( in, dv, hdrVertColors, out );
|
|
{
|
|
srfGridMesh_t *surface = (srfGridMesh_t *)out->data;
|
|
|
|
out->cullinfo.type = CULLINFO_BOX | CULLINFO_SPHERE;
|
|
VectorCopy(surface->meshBounds[0], out->cullinfo.bounds[0]);
|
|
VectorCopy(surface->meshBounds[1], out->cullinfo.bounds[1]);
|
|
VectorCopy(surface->localOrigin, out->cullinfo.localOrigin);
|
|
out->cullinfo.radius = surface->meshRadius;
|
|
}
|
|
numMeshes++;
|
|
break;
|
|
case MST_TRIANGLE_SOUP:
|
|
ParseTriSurf( in, dv, hdrVertColors, out, indexes );
|
|
numTriSurfs++;
|
|
break;
|
|
case MST_PLANAR:
|
|
ParseFace( in, dv, hdrVertColors, out, indexes );
|
|
numFaces++;
|
|
break;
|
|
case MST_FLARE:
|
|
ParseFlare( in, dv, out, indexes );
|
|
{
|
|
out->cullinfo.type = CULLINFO_NONE;
|
|
}
|
|
numFlares++;
|
|
break;
|
|
default:
|
|
ri.Error( ERR_DROP, "Bad surfaceType" );
|
|
}
|
|
}
|
|
|
|
if (hdrVertColors)
|
|
{
|
|
ri.FS_FreeFile(hdrVertColors);
|
|
}
|
|
|
|
#ifdef PATCH_STITCHING
|
|
R_StitchAllPatches();
|
|
#endif
|
|
|
|
R_FixSharedVertexLodError();
|
|
|
|
#ifdef PATCH_STITCHING
|
|
R_MovePatchSurfacesToHunk();
|
|
#endif
|
|
|
|
ri.Printf( PRINT_ALL, "...loaded %d faces, %i meshes, %i trisurfs, %i flares\n",
|
|
numFaces, numMeshes, numTriSurfs, numFlares );
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
=================
|
|
R_LoadSubmodels
|
|
=================
|
|
*/
|
|
static void R_LoadSubmodels( lump_t *l ) {
|
|
dmodel_t *in;
|
|
bmodel_t *out;
|
|
int i, j, count;
|
|
|
|
in = (void *)(fileBase + l->fileofs);
|
|
if (l->filelen % sizeof(*in))
|
|
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
|
|
count = l->filelen / sizeof(*in);
|
|
|
|
s_worldData.numBModels = count;
|
|
s_worldData.bmodels = out = ri.Hunk_Alloc( count * sizeof(*out), h_low );
|
|
|
|
for ( i=0 ; i<count ; i++, in++, out++ ) {
|
|
model_t *model;
|
|
|
|
model = R_AllocModel();
|
|
|
|
assert( model != NULL ); // this should never happen
|
|
if ( model == NULL ) {
|
|
ri.Error(ERR_DROP, "R_LoadSubmodels: R_AllocModel() failed");
|
|
}
|
|
|
|
model->type = MOD_BRUSH;
|
|
model->bmodel = out;
|
|
Com_sprintf( model->name, sizeof( model->name ), "*%d", i );
|
|
|
|
for (j=0 ; j<3 ; j++) {
|
|
out->bounds[0][j] = LittleFloat (in->mins[j]);
|
|
out->bounds[1][j] = LittleFloat (in->maxs[j]);
|
|
}
|
|
|
|
out->firstSurface = LittleLong( in->firstSurface );
|
|
out->numSurfaces = LittleLong( in->numSurfaces );
|
|
|
|
if(i == 0)
|
|
{
|
|
// Add this for limiting VBO surface creation
|
|
s_worldData.numWorldSurfaces = out->numSurfaces;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//==================================================================
|
|
|
|
/*
|
|
=================
|
|
R_SetParent
|
|
=================
|
|
*/
|
|
static void R_SetParent (mnode_t *node, mnode_t *parent)
|
|
{
|
|
node->parent = parent;
|
|
if (node->contents != -1)
|
|
return;
|
|
R_SetParent (node->children[0], node);
|
|
R_SetParent (node->children[1], node);
|
|
}
|
|
|
|
/*
|
|
=================
|
|
R_LoadNodesAndLeafs
|
|
=================
|
|
*/
|
|
static void R_LoadNodesAndLeafs (lump_t *nodeLump, lump_t *leafLump) {
|
|
int i, j, p;
|
|
dnode_t *in;
|
|
dleaf_t *inLeaf;
|
|
mnode_t *out;
|
|
int numNodes, numLeafs;
|
|
|
|
in = (void *)(fileBase + nodeLump->fileofs);
|
|
if (nodeLump->filelen % sizeof(dnode_t) ||
|
|
leafLump->filelen % sizeof(dleaf_t) ) {
|
|
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
|
|
}
|
|
numNodes = nodeLump->filelen / sizeof(dnode_t);
|
|
numLeafs = leafLump->filelen / sizeof(dleaf_t);
|
|
|
|
out = ri.Hunk_Alloc ( (numNodes + numLeafs) * sizeof(*out), h_low);
|
|
|
|
s_worldData.nodes = out;
|
|
s_worldData.numnodes = numNodes + numLeafs;
|
|
s_worldData.numDecisionNodes = numNodes;
|
|
|
|
// load nodes
|
|
for ( i=0 ; i<numNodes; i++, in++, out++)
|
|
{
|
|
for (j=0 ; j<3 ; j++)
|
|
{
|
|
out->mins[j] = LittleLong (in->mins[j]);
|
|
out->maxs[j] = LittleLong (in->maxs[j]);
|
|
}
|
|
|
|
p = LittleLong(in->planeNum);
|
|
out->plane = s_worldData.planes + p;
|
|
|
|
out->contents = CONTENTS_NODE; // differentiate from leafs
|
|
|
|
for (j=0 ; j<2 ; j++)
|
|
{
|
|
p = LittleLong (in->children[j]);
|
|
if (p >= 0)
|
|
out->children[j] = s_worldData.nodes + p;
|
|
else
|
|
out->children[j] = s_worldData.nodes + numNodes + (-1 - p);
|
|
}
|
|
}
|
|
|
|
// load leafs
|
|
inLeaf = (void *)(fileBase + leafLump->fileofs);
|
|
for ( i=0 ; i<numLeafs ; i++, inLeaf++, out++)
|
|
{
|
|
for (j=0 ; j<3 ; j++)
|
|
{
|
|
out->mins[j] = LittleLong (inLeaf->mins[j]);
|
|
out->maxs[j] = LittleLong (inLeaf->maxs[j]);
|
|
}
|
|
|
|
out->cluster = LittleLong(inLeaf->cluster);
|
|
out->area = LittleLong(inLeaf->area);
|
|
|
|
if ( out->cluster >= s_worldData.numClusters ) {
|
|
s_worldData.numClusters = out->cluster + 1;
|
|
}
|
|
|
|
out->firstmarksurface = LittleLong(inLeaf->firstLeafSurface);
|
|
out->nummarksurfaces = LittleLong(inLeaf->numLeafSurfaces);
|
|
}
|
|
|
|
// chain decendants
|
|
R_SetParent (s_worldData.nodes, NULL);
|
|
}
|
|
|
|
//=============================================================================
|
|
|
|
/*
|
|
=================
|
|
R_LoadShaders
|
|
=================
|
|
*/
|
|
static void R_LoadShaders( lump_t *l ) {
|
|
int i, count;
|
|
dshader_t *in, *out;
|
|
|
|
in = (void *)(fileBase + l->fileofs);
|
|
if (l->filelen % sizeof(*in))
|
|
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
|
|
count = l->filelen / sizeof(*in);
|
|
out = ri.Hunk_Alloc ( count*sizeof(*out), h_low );
|
|
|
|
s_worldData.shaders = out;
|
|
s_worldData.numShaders = count;
|
|
|
|
Com_Memcpy( out, in, count*sizeof(*out) );
|
|
|
|
for ( i=0 ; i<count ; i++ ) {
|
|
out[i].surfaceFlags = LittleLong( out[i].surfaceFlags );
|
|
out[i].contentFlags = LittleLong( out[i].contentFlags );
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
R_LoadMarksurfaces
|
|
=================
|
|
*/
|
|
static void R_LoadMarksurfaces (lump_t *l)
|
|
{
|
|
int i, j, count;
|
|
int *in;
|
|
int *out;
|
|
|
|
in = (void *)(fileBase + l->fileofs);
|
|
if (l->filelen % sizeof(*in))
|
|
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
|
|
count = l->filelen / sizeof(*in);
|
|
out = ri.Hunk_Alloc ( count*sizeof(*out), h_low);
|
|
|
|
s_worldData.marksurfaces = out;
|
|
s_worldData.nummarksurfaces = count;
|
|
|
|
for ( i=0 ; i<count ; i++)
|
|
{
|
|
j = LittleLong(in[i]);
|
|
out[i] = j;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
R_LoadPlanes
|
|
=================
|
|
*/
|
|
static void R_LoadPlanes( lump_t *l ) {
|
|
int i, j;
|
|
cplane_t *out;
|
|
dplane_t *in;
|
|
int count;
|
|
int bits;
|
|
|
|
in = (void *)(fileBase + l->fileofs);
|
|
if (l->filelen % sizeof(*in))
|
|
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
|
|
count = l->filelen / sizeof(*in);
|
|
out = ri.Hunk_Alloc ( count*2*sizeof(*out), h_low);
|
|
|
|
s_worldData.planes = out;
|
|
s_worldData.numplanes = count;
|
|
|
|
for ( i=0 ; i<count ; i++, in++, out++) {
|
|
bits = 0;
|
|
for (j=0 ; j<3 ; j++) {
|
|
out->normal[j] = LittleFloat (in->normal[j]);
|
|
if (out->normal[j] < 0) {
|
|
bits |= 1<<j;
|
|
}
|
|
}
|
|
|
|
out->dist = LittleFloat (in->dist);
|
|
out->type = PlaneTypeForNormal( out->normal );
|
|
out->signbits = bits;
|
|
}
|
|
}
|
|
|
|
/*
|
|
=================
|
|
R_LoadFogs
|
|
|
|
=================
|
|
*/
|
|
static void R_LoadFogs( lump_t *l, lump_t *brushesLump, lump_t *sidesLump ) {
|
|
int i;
|
|
fog_t *out;
|
|
dfog_t *fogs;
|
|
dbrush_t *brushes, *brush;
|
|
dbrushside_t *sides;
|
|
int count, brushesCount, sidesCount;
|
|
int sideNum;
|
|
int planeNum;
|
|
shader_t *shader;
|
|
float d;
|
|
int firstSide;
|
|
|
|
fogs = (void *)(fileBase + l->fileofs);
|
|
if (l->filelen % sizeof(*fogs)) {
|
|
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
|
|
}
|
|
count = l->filelen / sizeof(*fogs);
|
|
|
|
// create fog strucutres for them
|
|
s_worldData.numfogs = count + 1;
|
|
s_worldData.fogs = ri.Hunk_Alloc ( s_worldData.numfogs*sizeof(*out), h_low);
|
|
out = s_worldData.fogs + 1;
|
|
|
|
if ( !count ) {
|
|
return;
|
|
}
|
|
|
|
brushes = (void *)(fileBase + brushesLump->fileofs);
|
|
if (brushesLump->filelen % sizeof(*brushes)) {
|
|
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
|
|
}
|
|
brushesCount = brushesLump->filelen / sizeof(*brushes);
|
|
|
|
sides = (void *)(fileBase + sidesLump->fileofs);
|
|
if (sidesLump->filelen % sizeof(*sides)) {
|
|
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
|
|
}
|
|
sidesCount = sidesLump->filelen / sizeof(*sides);
|
|
|
|
for ( i=0 ; i<count ; i++, fogs++) {
|
|
out->originalBrushNumber = LittleLong( fogs->brushNum );
|
|
|
|
if ( (unsigned)out->originalBrushNumber >= brushesCount ) {
|
|
ri.Error( ERR_DROP, "fog brushNumber out of range" );
|
|
}
|
|
brush = brushes + out->originalBrushNumber;
|
|
|
|
firstSide = LittleLong( brush->firstSide );
|
|
|
|
if ( (unsigned)firstSide > sidesCount - 6 ) {
|
|
ri.Error( ERR_DROP, "fog brush sideNumber out of range" );
|
|
}
|
|
|
|
// brushes are always sorted with the axial sides first
|
|
sideNum = firstSide + 0;
|
|
planeNum = LittleLong( sides[ sideNum ].planeNum );
|
|
out->bounds[0][0] = -s_worldData.planes[ planeNum ].dist;
|
|
|
|
sideNum = firstSide + 1;
|
|
planeNum = LittleLong( sides[ sideNum ].planeNum );
|
|
out->bounds[1][0] = s_worldData.planes[ planeNum ].dist;
|
|
|
|
sideNum = firstSide + 2;
|
|
planeNum = LittleLong( sides[ sideNum ].planeNum );
|
|
out->bounds[0][1] = -s_worldData.planes[ planeNum ].dist;
|
|
|
|
sideNum = firstSide + 3;
|
|
planeNum = LittleLong( sides[ sideNum ].planeNum );
|
|
out->bounds[1][1] = s_worldData.planes[ planeNum ].dist;
|
|
|
|
sideNum = firstSide + 4;
|
|
planeNum = LittleLong( sides[ sideNum ].planeNum );
|
|
out->bounds[0][2] = -s_worldData.planes[ planeNum ].dist;
|
|
|
|
sideNum = firstSide + 5;
|
|
planeNum = LittleLong( sides[ sideNum ].planeNum );
|
|
out->bounds[1][2] = s_worldData.planes[ planeNum ].dist;
|
|
|
|
// get information from the shader for fog parameters
|
|
shader = R_FindShader( fogs->shader, LIGHTMAP_NONE, qtrue );
|
|
|
|
out->parms = shader->fogParms;
|
|
|
|
out->colorInt = ColorBytes4 ( shader->fogParms.color[0] * tr.identityLight,
|
|
shader->fogParms.color[1] * tr.identityLight,
|
|
shader->fogParms.color[2] * tr.identityLight, 1.0 );
|
|
|
|
d = shader->fogParms.depthForOpaque < 1 ? 1 : shader->fogParms.depthForOpaque;
|
|
out->tcScale = 1.0f / ( d * 8 );
|
|
|
|
// set the gradient vector
|
|
sideNum = LittleLong( fogs->visibleSide );
|
|
|
|
if ( sideNum == -1 ) {
|
|
out->hasSurface = qfalse;
|
|
} else {
|
|
out->hasSurface = qtrue;
|
|
planeNum = LittleLong( sides[ firstSide + sideNum ].planeNum );
|
|
VectorSubtract( vec3_origin, s_worldData.planes[ planeNum ].normal, out->surface );
|
|
out->surface[3] = -s_worldData.planes[ planeNum ].dist;
|
|
}
|
|
|
|
out++;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_LoadLightGrid
|
|
|
|
================
|
|
*/
|
|
void R_LoadLightGrid( lump_t *l ) {
|
|
int i;
|
|
vec3_t maxs;
|
|
int numGridPoints;
|
|
world_t *w;
|
|
float *wMins, *wMaxs;
|
|
|
|
w = &s_worldData;
|
|
|
|
w->lightGridInverseSize[0] = 1.0f / w->lightGridSize[0];
|
|
w->lightGridInverseSize[1] = 1.0f / w->lightGridSize[1];
|
|
w->lightGridInverseSize[2] = 1.0f / w->lightGridSize[2];
|
|
|
|
wMins = w->bmodels[0].bounds[0];
|
|
wMaxs = w->bmodels[0].bounds[1];
|
|
|
|
for ( i = 0 ; i < 3 ; i++ ) {
|
|
w->lightGridOrigin[i] = w->lightGridSize[i] * ceil( wMins[i] / w->lightGridSize[i] );
|
|
maxs[i] = w->lightGridSize[i] * floor( wMaxs[i] / w->lightGridSize[i] );
|
|
w->lightGridBounds[i] = (maxs[i] - w->lightGridOrigin[i])/w->lightGridSize[i] + 1;
|
|
}
|
|
|
|
numGridPoints = w->lightGridBounds[0] * w->lightGridBounds[1] * w->lightGridBounds[2];
|
|
|
|
if ( l->filelen != numGridPoints * 8 ) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: light grid mismatch\n" );
|
|
w->lightGridData = NULL;
|
|
return;
|
|
}
|
|
|
|
w->lightGridData = ri.Hunk_Alloc( l->filelen, h_low );
|
|
Com_Memcpy( w->lightGridData, (void *)(fileBase + l->fileofs), l->filelen );
|
|
|
|
// deal with overbright bits
|
|
for ( i = 0 ; i < numGridPoints ; i++ ) {
|
|
R_ColorShiftLightingBytes( &w->lightGridData[i*8], &w->lightGridData[i*8] );
|
|
R_ColorShiftLightingBytes( &w->lightGridData[i*8+3], &w->lightGridData[i*8+3] );
|
|
}
|
|
|
|
// load hdr lightgrid
|
|
if (r_hdr->integer)
|
|
{
|
|
char filename[MAX_QPATH];
|
|
float *hdrLightGrid;
|
|
int size;
|
|
|
|
Com_sprintf( filename, sizeof( filename ), "maps/%s/lightgrid.raw", s_worldData.baseName);
|
|
//ri.Printf(PRINT_ALL, "looking for %s\n", filename);
|
|
|
|
size = ri.FS_ReadFile(filename, (void **)&hdrLightGrid);
|
|
|
|
if (hdrLightGrid)
|
|
{
|
|
float lightScale = pow(2, r_mapOverBrightBits->integer - tr.overbrightBits);
|
|
|
|
//ri.Printf(PRINT_ALL, "found!\n");
|
|
|
|
if (size != sizeof(float) * 6 * numGridPoints)
|
|
{
|
|
ri.Error(ERR_DROP, "Bad size for %s (%i, expected %i)!\n", filename, size, (int)(sizeof(float)) * 6 * numGridPoints);
|
|
}
|
|
|
|
w->hdrLightGrid = ri.Hunk_Alloc(size, h_low);
|
|
|
|
for (i = 0; i < numGridPoints ; i++)
|
|
{
|
|
w->hdrLightGrid[i * 6 ] = hdrLightGrid[i * 6 ] * lightScale;
|
|
w->hdrLightGrid[i * 6 + 1] = hdrLightGrid[i * 6 + 1] * lightScale;
|
|
w->hdrLightGrid[i * 6 + 2] = hdrLightGrid[i * 6 + 2] * lightScale;
|
|
w->hdrLightGrid[i * 6 + 3] = hdrLightGrid[i * 6 + 3] * lightScale;
|
|
w->hdrLightGrid[i * 6 + 4] = hdrLightGrid[i * 6 + 4] * lightScale;
|
|
w->hdrLightGrid[i * 6 + 5] = hdrLightGrid[i * 6 + 5] * lightScale;
|
|
}
|
|
}
|
|
|
|
if (hdrLightGrid)
|
|
ri.FS_FreeFile(hdrLightGrid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_LoadEntities
|
|
================
|
|
*/
|
|
void R_LoadEntities( lump_t *l ) {
|
|
char *p, *token, *s;
|
|
char keyname[MAX_TOKEN_CHARS];
|
|
char value[MAX_TOKEN_CHARS];
|
|
world_t *w;
|
|
|
|
w = &s_worldData;
|
|
w->lightGridSize[0] = 64;
|
|
w->lightGridSize[1] = 64;
|
|
w->lightGridSize[2] = 128;
|
|
|
|
p = (char *)(fileBase + l->fileofs);
|
|
|
|
// store for reference by the cgame
|
|
w->entityString = ri.Hunk_Alloc( l->filelen + 1, h_low );
|
|
strcpy( w->entityString, p );
|
|
w->entityParsePoint = w->entityString;
|
|
|
|
token = COM_ParseExt( &p, qtrue );
|
|
if (!*token || *token != '{') {
|
|
return;
|
|
}
|
|
|
|
// only parse the world spawn
|
|
while ( 1 ) {
|
|
// parse key
|
|
token = COM_ParseExt( &p, qtrue );
|
|
|
|
if ( !*token || *token == '}' ) {
|
|
break;
|
|
}
|
|
Q_strncpyz(keyname, token, sizeof(keyname));
|
|
|
|
// parse value
|
|
token = COM_ParseExt( &p, qtrue );
|
|
|
|
if ( !*token || *token == '}' ) {
|
|
break;
|
|
}
|
|
Q_strncpyz(value, token, sizeof(value));
|
|
|
|
// check for remapping of shaders for vertex lighting
|
|
s = "vertexremapshader";
|
|
if (!Q_strncmp(keyname, s, strlen(s)) ) {
|
|
s = strchr(value, ';');
|
|
if (!s) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: no semi colon in vertexshaderremap '%s'\n", value );
|
|
break;
|
|
}
|
|
*s++ = 0;
|
|
if (r_vertexLight->integer) {
|
|
R_RemapShader(value, s, "0");
|
|
}
|
|
continue;
|
|
}
|
|
// check for remapping of shaders
|
|
s = "remapshader";
|
|
if (!Q_strncmp(keyname, s, strlen(s)) ) {
|
|
s = strchr(value, ';');
|
|
if (!s) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: no semi colon in shaderremap '%s'\n", value );
|
|
break;
|
|
}
|
|
*s++ = 0;
|
|
R_RemapShader(value, s, "0");
|
|
continue;
|
|
}
|
|
// check for a different grid size
|
|
if (!Q_stricmp(keyname, "gridsize")) {
|
|
sscanf(value, "%f %f %f", &w->lightGridSize[0], &w->lightGridSize[1], &w->lightGridSize[2] );
|
|
continue;
|
|
}
|
|
|
|
// check for auto exposure
|
|
if (!Q_stricmp(keyname, "autoExposureMinMax")) {
|
|
sscanf(value, "%f %f", &tr.autoExposureMinMax[0], &tr.autoExposureMinMax[1]);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
=================
|
|
R_GetEntityToken
|
|
=================
|
|
*/
|
|
qboolean R_GetEntityToken( char *buffer, int size ) {
|
|
const char *s;
|
|
|
|
s = COM_Parse( &s_worldData.entityParsePoint );
|
|
Q_strncpyz( buffer, s, size );
|
|
if ( !s_worldData.entityParsePoint || !s[0] ) {
|
|
s_worldData.entityParsePoint = s_worldData.entityString;
|
|
return qfalse;
|
|
} else {
|
|
return qtrue;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
R_MergeLeafSurfaces
|
|
|
|
Merges surfaces that share a common leaf
|
|
=================
|
|
*/
|
|
void R_MergeLeafSurfaces(void)
|
|
{
|
|
int i, j, k;
|
|
int numWorldSurfaces;
|
|
int mergedSurfIndex;
|
|
int numMergedSurfaces;
|
|
int numUnmergedSurfaces;
|
|
IBO_t *ibo;
|
|
|
|
msurface_t *mergedSurf;
|
|
|
|
glIndex_t *iboIndexes, *outIboIndexes;
|
|
int numIboIndexes;
|
|
|
|
int startTime, endTime;
|
|
|
|
startTime = ri.Milliseconds();
|
|
|
|
numWorldSurfaces = s_worldData.numWorldSurfaces;
|
|
|
|
// use viewcount to keep track of mergers
|
|
for (i = 0; i < numWorldSurfaces; i++)
|
|
{
|
|
s_worldData.surfacesViewCount[i] = -1;
|
|
}
|
|
|
|
// create ibo
|
|
ibo = tr.ibos[tr.numIBOs++] = ri.Hunk_Alloc(sizeof(*ibo), h_low);
|
|
memset(ibo, 0, sizeof(*ibo));
|
|
Q_strncpyz(ibo->name, "staticWorldMesh_IBO_mergedSurfs", sizeof(ibo->name));
|
|
|
|
// allocate more than we need
|
|
iboIndexes = outIboIndexes = ri.Malloc(s_worldData.ibo->indexesSize);
|
|
|
|
// mark matching surfaces
|
|
for (i = 0; i < s_worldData.numnodes - s_worldData.numDecisionNodes; i++)
|
|
{
|
|
mnode_t *leaf = s_worldData.nodes + s_worldData.numDecisionNodes + i;
|
|
|
|
for (j = 0; j < leaf->nummarksurfaces; j++)
|
|
{
|
|
msurface_t *surf1;
|
|
shader_t *shader1;
|
|
int fogIndex1;
|
|
int surfNum1;
|
|
|
|
surfNum1 = *(s_worldData.marksurfaces + leaf->firstmarksurface + j);
|
|
|
|
if (s_worldData.surfacesViewCount[surfNum1] != -1)
|
|
continue;
|
|
|
|
surf1 = s_worldData.surfaces + surfNum1;
|
|
|
|
if ((*surf1->data != SF_GRID) && (*surf1->data != SF_TRIANGLES) && (*surf1->data != SF_FACE))
|
|
continue;
|
|
|
|
shader1 = surf1->shader;
|
|
|
|
if(shader1->isSky)
|
|
continue;
|
|
|
|
if(shader1->isPortal)
|
|
continue;
|
|
|
|
if(ShaderRequiresCPUDeforms(shader1))
|
|
continue;
|
|
|
|
fogIndex1 = surf1->fogIndex;
|
|
|
|
s_worldData.surfacesViewCount[surfNum1] = surfNum1;
|
|
|
|
for (k = j + 1; k < leaf->nummarksurfaces; k++)
|
|
{
|
|
msurface_t *surf2;
|
|
shader_t *shader2;
|
|
int fogIndex2;
|
|
int surfNum2;
|
|
|
|
surfNum2 = *(s_worldData.marksurfaces + leaf->firstmarksurface + k);
|
|
|
|
if (s_worldData.surfacesViewCount[surfNum2] != -1)
|
|
continue;
|
|
|
|
surf2 = s_worldData.surfaces + surfNum2;
|
|
|
|
if ((*surf2->data != SF_GRID) && (*surf2->data != SF_TRIANGLES) && (*surf2->data != SF_FACE))
|
|
continue;
|
|
|
|
shader2 = surf2->shader;
|
|
|
|
if (shader1 != shader2)
|
|
continue;
|
|
|
|
fogIndex2 = surf2->fogIndex;
|
|
|
|
if (fogIndex1 != fogIndex2)
|
|
continue;
|
|
|
|
s_worldData.surfacesViewCount[surfNum2] = surfNum1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// don't add surfaces that don't merge to any others to the merged list
|
|
for (i = 0; i < numWorldSurfaces; i++)
|
|
{
|
|
qboolean merges = qfalse;
|
|
|
|
if (s_worldData.surfacesViewCount[i] != i)
|
|
continue;
|
|
|
|
for (j = 0; j < numWorldSurfaces; j++)
|
|
{
|
|
if (j == i)
|
|
continue;
|
|
|
|
if (s_worldData.surfacesViewCount[j] == i)
|
|
{
|
|
merges = qtrue;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!merges)
|
|
s_worldData.surfacesViewCount[i] = -1;
|
|
}
|
|
|
|
// count merged/unmerged surfaces
|
|
numMergedSurfaces = 0;
|
|
numUnmergedSurfaces = 0;
|
|
for (i = 0; i < numWorldSurfaces; i++)
|
|
{
|
|
if (s_worldData.surfacesViewCount[i] == i)
|
|
{
|
|
numMergedSurfaces++;
|
|
}
|
|
else if (s_worldData.surfacesViewCount[i] == -1)
|
|
{
|
|
numUnmergedSurfaces++;
|
|
}
|
|
}
|
|
|
|
// Allocate merged surfaces
|
|
s_worldData.mergedSurfaces = ri.Hunk_Alloc(sizeof(*s_worldData.mergedSurfaces) * numMergedSurfaces, h_low);
|
|
s_worldData.mergedSurfacesViewCount = ri.Hunk_Alloc(sizeof(*s_worldData.mergedSurfacesViewCount) * numMergedSurfaces, h_low);
|
|
s_worldData.mergedSurfacesDlightBits = ri.Hunk_Alloc(sizeof(*s_worldData.mergedSurfacesDlightBits) * numMergedSurfaces, h_low);
|
|
s_worldData.mergedSurfacesPshadowBits = ri.Hunk_Alloc(sizeof(*s_worldData.mergedSurfacesPshadowBits) * numMergedSurfaces, h_low);
|
|
s_worldData.numMergedSurfaces = numMergedSurfaces;
|
|
|
|
// view surfaces are like mark surfaces, except negative ones represent merged surfaces
|
|
// -1 represents 0, -2 represents 1, and so on
|
|
s_worldData.viewSurfaces = ri.Hunk_Alloc(sizeof(*s_worldData.viewSurfaces) * s_worldData.nummarksurfaces, h_low);
|
|
|
|
// copy view surfaces into mark surfaces
|
|
for (i = 0; i < s_worldData.nummarksurfaces; i++)
|
|
{
|
|
s_worldData.viewSurfaces[i] = s_worldData.marksurfaces[i];
|
|
}
|
|
|
|
// actually merge surfaces
|
|
numIboIndexes = 0;
|
|
mergedSurfIndex = 0;
|
|
mergedSurf = s_worldData.mergedSurfaces;
|
|
for (i = 0; i < numWorldSurfaces; i++)
|
|
{
|
|
msurface_t *surf1;
|
|
|
|
vec3_t bounds[2];
|
|
|
|
int numSurfsToMerge;
|
|
int numTriangles;
|
|
int numVerts;
|
|
int firstIndex;
|
|
|
|
srfVBOMesh_t *vboSurf;
|
|
|
|
if (s_worldData.surfacesViewCount[i] != i)
|
|
continue;
|
|
|
|
surf1 = s_worldData.surfaces + i;
|
|
|
|
// count verts, indexes, and surfaces
|
|
numSurfsToMerge = 0;
|
|
numTriangles = 0;
|
|
numVerts = 0;
|
|
for (j = 0; j < numWorldSurfaces; j++)
|
|
{
|
|
msurface_t *surf2;
|
|
|
|
if (s_worldData.surfacesViewCount[j] != i)
|
|
continue;
|
|
|
|
surf2 = s_worldData.surfaces + j;
|
|
|
|
switch(*surf2->data)
|
|
{
|
|
case SF_FACE:
|
|
{
|
|
srfSurfaceFace_t *face;
|
|
|
|
face = (srfSurfaceFace_t *) surf2->data;
|
|
numTriangles += face->numTriangles;
|
|
numVerts += face->numVerts;
|
|
}
|
|
break;
|
|
|
|
case SF_GRID:
|
|
{
|
|
srfGridMesh_t *grid;
|
|
|
|
grid = (srfGridMesh_t *) surf2->data;
|
|
numTriangles += grid->numTriangles;
|
|
numVerts += grid->numVerts;
|
|
}
|
|
break;
|
|
|
|
case SF_TRIANGLES:
|
|
{
|
|
srfTriangles_t *tris;
|
|
|
|
tris = (srfTriangles_t *) surf2->data;
|
|
numTriangles += tris->numTriangles;
|
|
numVerts += tris->numVerts;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
numSurfsToMerge++;
|
|
}
|
|
|
|
if (numVerts == 0 || numTriangles == 0 || numSurfsToMerge < 2)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
// Merge surfaces (indexes) and calculate bounds
|
|
ClearBounds(bounds[0], bounds[1]);
|
|
firstIndex = numIboIndexes;
|
|
for (j = 0; j < numWorldSurfaces; j++)
|
|
{
|
|
msurface_t *surf2;
|
|
|
|
if (s_worldData.surfacesViewCount[j] != i)
|
|
continue;
|
|
|
|
surf2 = s_worldData.surfaces + j;
|
|
|
|
AddPointToBounds(surf2->cullinfo.bounds[0], bounds[0], bounds[1]);
|
|
AddPointToBounds(surf2->cullinfo.bounds[1], bounds[0], bounds[1]);
|
|
|
|
switch(*surf2->data)
|
|
{
|
|
case SF_FACE:
|
|
{
|
|
srfSurfaceFace_t *face;
|
|
|
|
face = (srfSurfaceFace_t *) surf2->data;
|
|
|
|
for (k = 0; k < face->numTriangles; k++)
|
|
{
|
|
*outIboIndexes++ = face->triangles[k].indexes[0] + face->firstVert;
|
|
*outIboIndexes++ = face->triangles[k].indexes[1] + face->firstVert;
|
|
*outIboIndexes++ = face->triangles[k].indexes[2] + face->firstVert;
|
|
numIboIndexes += 3;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case SF_GRID:
|
|
{
|
|
srfGridMesh_t *grid;
|
|
|
|
grid = (srfGridMesh_t *) surf2->data;
|
|
|
|
for (k = 0; k < grid->numTriangles; k++)
|
|
{
|
|
*outIboIndexes++ = grid->triangles[k].indexes[0] + grid->firstVert;
|
|
*outIboIndexes++ = grid->triangles[k].indexes[1] + grid->firstVert;
|
|
*outIboIndexes++ = grid->triangles[k].indexes[2] + grid->firstVert;
|
|
numIboIndexes += 3;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case SF_TRIANGLES:
|
|
{
|
|
srfTriangles_t *tris;
|
|
|
|
tris = (srfTriangles_t *) surf2->data;
|
|
|
|
for (k = 0; k < tris->numTriangles; k++)
|
|
{
|
|
*outIboIndexes++ = tris->triangles[k].indexes[0] + tris->firstVert;
|
|
*outIboIndexes++ = tris->triangles[k].indexes[1] + tris->firstVert;
|
|
*outIboIndexes++ = tris->triangles[k].indexes[2] + tris->firstVert;
|
|
numIboIndexes += 3;
|
|
}
|
|
}
|
|
break;
|
|
|
|
// never happens, but silences a compile warning
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
vboSurf = ri.Hunk_Alloc(sizeof(*vboSurf), h_low);
|
|
memset(vboSurf, 0, sizeof(*vboSurf));
|
|
vboSurf->surfaceType = SF_VBO_MESH;
|
|
|
|
vboSurf->vbo = s_worldData.vbo;
|
|
vboSurf->ibo = ibo;
|
|
|
|
vboSurf->numIndexes = numTriangles * 3;
|
|
vboSurf->numVerts = numVerts;
|
|
vboSurf->firstIndex = firstIndex;
|
|
|
|
vboSurf->minIndex = *(iboIndexes + firstIndex);
|
|
vboSurf->maxIndex = *(iboIndexes + firstIndex);
|
|
|
|
for (j = 1; j < numTriangles * 3; j++)
|
|
{
|
|
vboSurf->minIndex = MIN(vboSurf->minIndex, *(iboIndexes + firstIndex + j));
|
|
vboSurf->maxIndex = MAX(vboSurf->maxIndex, *(iboIndexes + firstIndex + j));
|
|
}
|
|
|
|
vboSurf->shader = surf1->shader;
|
|
vboSurf->fogIndex = surf1->fogIndex;
|
|
|
|
VectorCopy(bounds[0], vboSurf->bounds[0]);
|
|
VectorCopy(bounds[1], vboSurf->bounds[1]);
|
|
|
|
VectorCopy(bounds[0], mergedSurf->cullinfo.bounds[0]);
|
|
VectorCopy(bounds[1], mergedSurf->cullinfo.bounds[1]);
|
|
|
|
mergedSurf->cullinfo.type = CULLINFO_BOX;
|
|
mergedSurf->data = (surfaceType_t *)vboSurf;
|
|
mergedSurf->fogIndex = surf1->fogIndex;
|
|
mergedSurf->shader = surf1->shader;
|
|
|
|
// redirect view surfaces to this surf
|
|
for (j = 0; j < numWorldSurfaces; j++)
|
|
{
|
|
if (s_worldData.surfacesViewCount[j] != i)
|
|
continue;
|
|
|
|
for (k = 0; k < s_worldData.nummarksurfaces; k++)
|
|
{
|
|
int *mark = s_worldData.marksurfaces + k;
|
|
int *view = s_worldData.viewSurfaces + k;
|
|
|
|
if (*mark == j)
|
|
*view = -(mergedSurfIndex + 1);
|
|
}
|
|
}
|
|
|
|
mergedSurfIndex++;
|
|
mergedSurf++;
|
|
}
|
|
|
|
// finish up the ibo
|
|
R_IssuePendingRenderCommands();
|
|
|
|
qglGenBuffersARB(1, &ibo->indexesVBO);
|
|
|
|
R_BindIBO(ibo);
|
|
|
|
qglBufferDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, numIboIndexes * sizeof(*iboIndexes), iboIndexes, GL_STATIC_DRAW_ARB);
|
|
|
|
R_BindNullIBO();
|
|
|
|
GL_CheckErrors();
|
|
|
|
ri.Free(iboIndexes);
|
|
|
|
endTime = ri.Milliseconds();
|
|
|
|
ri.Printf(PRINT_ALL, "Processed %d surfaces into %d merged, %d unmerged in %5.2f seconds\n",
|
|
numWorldSurfaces, numMergedSurfaces, numUnmergedSurfaces, (endTime - startTime) / 1000.0f);
|
|
|
|
// reset viewcounts
|
|
for (i = 0; i < numWorldSurfaces; i++)
|
|
{
|
|
s_worldData.surfacesViewCount[i] = -1;
|
|
}
|
|
}
|
|
|
|
|
|
void R_CalcVertexLightDirs( void )
|
|
{
|
|
int i, k;
|
|
msurface_t *surface;
|
|
|
|
for(k = 0, surface = &s_worldData.surfaces[0]; k < s_worldData.numsurfaces /* s_worldData.numWorldSurfaces */; k++, surface++)
|
|
{
|
|
if(*surface->data == SF_FACE)
|
|
{
|
|
srfSurfaceFace_t *srf = (srfSurfaceFace_t *) surface->data;
|
|
|
|
if(srf->numVerts)
|
|
{
|
|
for(i = 0; i < srf->numVerts; i++)
|
|
{
|
|
R_LightDirForPoint( srf->verts[i].xyz, srf->verts[i].lightdir, srf->verts[i].normal, &s_worldData );
|
|
}
|
|
}
|
|
}
|
|
else if(*surface->data == SF_GRID)
|
|
{
|
|
srfGridMesh_t *srf = (srfGridMesh_t *) surface->data;
|
|
|
|
if(srf->numVerts)
|
|
{
|
|
for(i = 0; i < srf->numVerts; i++)
|
|
{
|
|
R_LightDirForPoint( srf->verts[i].xyz, srf->verts[i].lightdir, srf->verts[i].normal, &s_worldData );
|
|
}
|
|
}
|
|
}
|
|
else if(*surface->data == SF_TRIANGLES)
|
|
{
|
|
srfTriangles_t *srf = (srfTriangles_t *) surface->data;
|
|
|
|
if(srf->numVerts)
|
|
{
|
|
for(i = 0; i < srf->numVerts; i++)
|
|
{
|
|
R_LightDirForPoint( srf->verts[i].xyz, srf->verts[i].lightdir, srf->verts[i].normal, &s_worldData );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
RE_LoadWorldMap
|
|
|
|
Called directly from cgame
|
|
=================
|
|
*/
|
|
void RE_LoadWorldMap( const char *name ) {
|
|
int i;
|
|
dheader_t *header;
|
|
union {
|
|
byte *b;
|
|
void *v;
|
|
} buffer;
|
|
byte *startMarker;
|
|
|
|
if ( tr.worldMapLoaded ) {
|
|
ri.Error( ERR_DROP, "ERROR: attempted to redundantly load world map" );
|
|
}
|
|
|
|
// set default map light scale
|
|
tr.mapLightScale = 1.0f;
|
|
|
|
// set default sun direction to be used if it isn't
|
|
// overridden by a shader
|
|
tr.sunDirection[0] = 0.45f;
|
|
tr.sunDirection[1] = 0.3f;
|
|
tr.sunDirection[2] = 0.9f;
|
|
|
|
VectorNormalize( tr.sunDirection );
|
|
|
|
// set default autoexposure settings
|
|
tr.autoExposureMinMax[0] = -2.0f;
|
|
tr.autoExposureMinMax[1] = 2.0f;
|
|
|
|
// set default tone mapping settings
|
|
tr.toneMinAvgMaxLevel[0] = -8.0f;
|
|
tr.toneMinAvgMaxLevel[1] = -2.0f;
|
|
tr.toneMinAvgMaxLevel[2] = 0.0f;
|
|
|
|
tr.worldMapLoaded = qtrue;
|
|
|
|
// load it
|
|
ri.FS_ReadFile( name, &buffer.v );
|
|
if ( !buffer.b ) {
|
|
ri.Error (ERR_DROP, "RE_LoadWorldMap: %s not found", name);
|
|
}
|
|
|
|
// clear tr.world so if the level fails to load, the next
|
|
// try will not look at the partially loaded version
|
|
tr.world = NULL;
|
|
|
|
Com_Memset( &s_worldData, 0, sizeof( s_worldData ) );
|
|
Q_strncpyz( s_worldData.name, name, sizeof( s_worldData.name ) );
|
|
|
|
Q_strncpyz( s_worldData.baseName, COM_SkipPath( s_worldData.name ), sizeof( s_worldData.name ) );
|
|
COM_StripExtension(s_worldData.baseName, s_worldData.baseName, sizeof(s_worldData.baseName));
|
|
|
|
startMarker = ri.Hunk_Alloc(0, h_low);
|
|
c_gridVerts = 0;
|
|
|
|
header = (dheader_t *)buffer.b;
|
|
fileBase = (byte *)header;
|
|
|
|
i = LittleLong (header->version);
|
|
if ( i != BSP_VERSION ) {
|
|
ri.Error (ERR_DROP, "RE_LoadWorldMap: %s has wrong version number (%i should be %i)",
|
|
name, i, BSP_VERSION);
|
|
}
|
|
|
|
// swap all the lumps
|
|
for (i=0 ; i<sizeof(dheader_t)/4 ; i++) {
|
|
((int *)header)[i] = LittleLong ( ((int *)header)[i]);
|
|
}
|
|
|
|
// load into heap
|
|
R_LoadEntities( &header->lumps[LUMP_ENTITIES] );
|
|
R_LoadShaders( &header->lumps[LUMP_SHADERS] );
|
|
R_LoadLightmaps( &header->lumps[LUMP_LIGHTMAPS], &header->lumps[LUMP_SURFACES] );
|
|
R_LoadPlanes (&header->lumps[LUMP_PLANES]);
|
|
R_LoadFogs( &header->lumps[LUMP_FOGS], &header->lumps[LUMP_BRUSHES], &header->lumps[LUMP_BRUSHSIDES] );
|
|
R_LoadSurfaces( &header->lumps[LUMP_SURFACES], &header->lumps[LUMP_DRAWVERTS], &header->lumps[LUMP_DRAWINDEXES] );
|
|
R_LoadMarksurfaces (&header->lumps[LUMP_LEAFSURFACES]);
|
|
R_LoadNodesAndLeafs (&header->lumps[LUMP_NODES], &header->lumps[LUMP_LEAFS]);
|
|
R_LoadSubmodels (&header->lumps[LUMP_MODELS]);
|
|
R_LoadVisibility( &header->lumps[LUMP_VISIBILITY] );
|
|
R_LoadLightGrid( &header->lumps[LUMP_LIGHTGRID] );
|
|
|
|
// determine vertex light directions
|
|
R_CalcVertexLightDirs();
|
|
|
|
// create static VBOS from the world
|
|
R_CreateWorldVBO();
|
|
if (r_mergeLeafSurfaces->integer)
|
|
{
|
|
R_MergeLeafSurfaces();
|
|
}
|
|
|
|
s_worldData.dataSize = (byte *)ri.Hunk_Alloc(0, h_low) - startMarker;
|
|
|
|
// only set tr.world now that we know the entire level has loaded properly
|
|
tr.world = &s_worldData;
|
|
|
|
// make sure the VBO glState entries are safe
|
|
R_BindNullVBO();
|
|
R_BindNullIBO();
|
|
|
|
ri.FS_FreeFile( buffer.v );
|
|
}
|