mirror of
https://github.com/DrBeef/ioq3quest.git
synced 2024-12-04 01:41:40 +00:00
1124 lines
64 KiB
C
1124 lines
64 KiB
C
/***********************************************************************
|
|
Copyright (c) 2017 Google Inc.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
|
names of specific contributors, may be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
***********************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <arm_neon.h>
|
|
#ifdef OPUS_CHECK_ASM
|
|
# include <string.h>
|
|
#endif
|
|
#include "main.h"
|
|
#include "stack_alloc.h"
|
|
|
|
/* NEON intrinsics optimization now can only parallelize up to 4 delay decision states. */
|
|
/* If there are more states, C function is called, and this optimization must be expanded. */
|
|
#define NEON_MAX_DEL_DEC_STATES 4
|
|
|
|
typedef struct {
|
|
opus_int32 sLPC_Q14[ MAX_SUB_FRAME_LENGTH + NSQ_LPC_BUF_LENGTH ][ NEON_MAX_DEL_DEC_STATES ];
|
|
opus_int32 RandState[ DECISION_DELAY ][ NEON_MAX_DEL_DEC_STATES ];
|
|
opus_int32 Q_Q10[ DECISION_DELAY ][ NEON_MAX_DEL_DEC_STATES ];
|
|
opus_int32 Xq_Q14[ DECISION_DELAY ][ NEON_MAX_DEL_DEC_STATES ];
|
|
opus_int32 Pred_Q15[ DECISION_DELAY ][ NEON_MAX_DEL_DEC_STATES ];
|
|
opus_int32 Shape_Q14[ DECISION_DELAY ][ NEON_MAX_DEL_DEC_STATES ];
|
|
opus_int32 sAR2_Q14[ MAX_SHAPE_LPC_ORDER ][ NEON_MAX_DEL_DEC_STATES ];
|
|
opus_int32 LF_AR_Q14[ NEON_MAX_DEL_DEC_STATES ];
|
|
opus_int32 Diff_Q14[ NEON_MAX_DEL_DEC_STATES ];
|
|
opus_int32 Seed[ NEON_MAX_DEL_DEC_STATES ];
|
|
opus_int32 SeedInit[ NEON_MAX_DEL_DEC_STATES ];
|
|
opus_int32 RD_Q10[ NEON_MAX_DEL_DEC_STATES ];
|
|
} NSQ_del_decs_struct;
|
|
|
|
typedef struct {
|
|
opus_int32 Q_Q10[ NEON_MAX_DEL_DEC_STATES ];
|
|
opus_int32 RD_Q10[ NEON_MAX_DEL_DEC_STATES ];
|
|
opus_int32 xq_Q14[ NEON_MAX_DEL_DEC_STATES ];
|
|
opus_int32 LF_AR_Q14[ NEON_MAX_DEL_DEC_STATES ];
|
|
opus_int32 Diff_Q14[ NEON_MAX_DEL_DEC_STATES ];
|
|
opus_int32 sLTP_shp_Q14[ NEON_MAX_DEL_DEC_STATES ];
|
|
opus_int32 LPC_exc_Q14[ NEON_MAX_DEL_DEC_STATES ];
|
|
} NSQ_samples_struct;
|
|
|
|
static OPUS_INLINE void silk_nsq_del_dec_scale_states_neon(
|
|
const silk_encoder_state *psEncC, /* I Encoder State */
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
NSQ_del_decs_struct psDelDec[], /* I/O Delayed decision states */
|
|
const opus_int16 x16[], /* I Input */
|
|
opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */
|
|
const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */
|
|
opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
|
|
opus_int subfr, /* I Subframe number */
|
|
const opus_int LTP_scale_Q14, /* I LTP state scaling */
|
|
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
|
|
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
|
|
const opus_int signal_type, /* I Signal type */
|
|
const opus_int decisionDelay /* I Decision delay */
|
|
);
|
|
|
|
/******************************************/
|
|
/* Noise shape quantizer for one subframe */
|
|
/******************************************/
|
|
static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_neon(
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
NSQ_del_decs_struct psDelDec[], /* I/O Delayed decision states */
|
|
opus_int signalType, /* I Signal type */
|
|
const opus_int32 x_Q10[], /* I */
|
|
opus_int8 pulses[], /* O */
|
|
opus_int16 xq[], /* O */
|
|
opus_int32 sLTP_Q15[], /* I/O LTP filter state */
|
|
opus_int32 delayedGain_Q10[], /* I/O Gain delay buffer */
|
|
const opus_int16 a_Q12[], /* I Short term prediction coefs */
|
|
const opus_int16 b_Q14[], /* I Long term prediction coefs */
|
|
const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */
|
|
opus_int lag, /* I Pitch lag */
|
|
opus_int32 HarmShapeFIRPacked_Q14, /* I */
|
|
opus_int Tilt_Q14, /* I Spectral tilt */
|
|
opus_int32 LF_shp_Q14, /* I */
|
|
opus_int32 Gain_Q16, /* I */
|
|
opus_int Lambda_Q10, /* I */
|
|
opus_int offset_Q10, /* I */
|
|
opus_int length, /* I Input length */
|
|
opus_int subfr, /* I Subframe number */
|
|
opus_int shapingLPCOrder, /* I Shaping LPC filter order */
|
|
opus_int predictLPCOrder, /* I Prediction filter order */
|
|
opus_int warping_Q16, /* I */
|
|
opus_int nStatesDelayedDecision, /* I Number of states in decision tree */
|
|
opus_int *smpl_buf_idx, /* I/O Index to newest samples in buffers */
|
|
opus_int decisionDelay /* I */
|
|
);
|
|
|
|
static OPUS_INLINE void copy_winner_state_kernel(
|
|
const NSQ_del_decs_struct *psDelDec,
|
|
const opus_int offset,
|
|
const opus_int last_smple_idx,
|
|
const opus_int Winner_ind,
|
|
const int32x2_t gain_lo_s32x2,
|
|
const int32x2_t gain_hi_s32x2,
|
|
const int32x4_t shift_s32x4,
|
|
int32x4_t t0_s32x4,
|
|
int32x4_t t1_s32x4,
|
|
opus_int8 *const pulses,
|
|
opus_int16 *pxq,
|
|
silk_nsq_state *NSQ
|
|
)
|
|
{
|
|
int16x8_t t_s16x8;
|
|
int32x4_t o0_s32x4, o1_s32x4;
|
|
|
|
t0_s32x4 = vld1q_lane_s32( &psDelDec->Q_Q10[ last_smple_idx - 0 ][ Winner_ind ], t0_s32x4, 0 );
|
|
t0_s32x4 = vld1q_lane_s32( &psDelDec->Q_Q10[ last_smple_idx - 1 ][ Winner_ind ], t0_s32x4, 1 );
|
|
t0_s32x4 = vld1q_lane_s32( &psDelDec->Q_Q10[ last_smple_idx - 2 ][ Winner_ind ], t0_s32x4, 2 );
|
|
t0_s32x4 = vld1q_lane_s32( &psDelDec->Q_Q10[ last_smple_idx - 3 ][ Winner_ind ], t0_s32x4, 3 );
|
|
t1_s32x4 = vld1q_lane_s32( &psDelDec->Q_Q10[ last_smple_idx - 4 ][ Winner_ind ], t1_s32x4, 0 );
|
|
t1_s32x4 = vld1q_lane_s32( &psDelDec->Q_Q10[ last_smple_idx - 5 ][ Winner_ind ], t1_s32x4, 1 );
|
|
t1_s32x4 = vld1q_lane_s32( &psDelDec->Q_Q10[ last_smple_idx - 6 ][ Winner_ind ], t1_s32x4, 2 );
|
|
t1_s32x4 = vld1q_lane_s32( &psDelDec->Q_Q10[ last_smple_idx - 7 ][ Winner_ind ], t1_s32x4, 3 );
|
|
t_s16x8 = vcombine_s16( vrshrn_n_s32( t0_s32x4, 10 ), vrshrn_n_s32( t1_s32x4, 10 ) );
|
|
vst1_s8( &pulses[ offset ], vmovn_s16( t_s16x8 ) );
|
|
|
|
t0_s32x4 = vld1q_lane_s32( &psDelDec->Xq_Q14[ last_smple_idx - 0 ][ Winner_ind ], t0_s32x4, 0 );
|
|
t0_s32x4 = vld1q_lane_s32( &psDelDec->Xq_Q14[ last_smple_idx - 1 ][ Winner_ind ], t0_s32x4, 1 );
|
|
t0_s32x4 = vld1q_lane_s32( &psDelDec->Xq_Q14[ last_smple_idx - 2 ][ Winner_ind ], t0_s32x4, 2 );
|
|
t0_s32x4 = vld1q_lane_s32( &psDelDec->Xq_Q14[ last_smple_idx - 3 ][ Winner_ind ], t0_s32x4, 3 );
|
|
t1_s32x4 = vld1q_lane_s32( &psDelDec->Xq_Q14[ last_smple_idx - 4 ][ Winner_ind ], t1_s32x4, 0 );
|
|
t1_s32x4 = vld1q_lane_s32( &psDelDec->Xq_Q14[ last_smple_idx - 5 ][ Winner_ind ], t1_s32x4, 1 );
|
|
t1_s32x4 = vld1q_lane_s32( &psDelDec->Xq_Q14[ last_smple_idx - 6 ][ Winner_ind ], t1_s32x4, 2 );
|
|
t1_s32x4 = vld1q_lane_s32( &psDelDec->Xq_Q14[ last_smple_idx - 7 ][ Winner_ind ], t1_s32x4, 3 );
|
|
o0_s32x4 = vqdmulhq_lane_s32( t0_s32x4, gain_lo_s32x2, 0 );
|
|
o1_s32x4 = vqdmulhq_lane_s32( t1_s32x4, gain_lo_s32x2, 0 );
|
|
o0_s32x4 = vmlaq_lane_s32( o0_s32x4, t0_s32x4, gain_hi_s32x2, 0 );
|
|
o1_s32x4 = vmlaq_lane_s32( o1_s32x4, t1_s32x4, gain_hi_s32x2, 0 );
|
|
o0_s32x4 = vrshlq_s32( o0_s32x4, shift_s32x4 );
|
|
o1_s32x4 = vrshlq_s32( o1_s32x4, shift_s32x4 );
|
|
vst1_s16( &pxq[ offset + 0 ], vqmovn_s32( o0_s32x4 ) );
|
|
vst1_s16( &pxq[ offset + 4 ], vqmovn_s32( o1_s32x4 ) );
|
|
|
|
t0_s32x4 = vld1q_lane_s32( &psDelDec->Shape_Q14[ last_smple_idx - 0 ][ Winner_ind ], t0_s32x4, 0 );
|
|
t0_s32x4 = vld1q_lane_s32( &psDelDec->Shape_Q14[ last_smple_idx - 1 ][ Winner_ind ], t0_s32x4, 1 );
|
|
t0_s32x4 = vld1q_lane_s32( &psDelDec->Shape_Q14[ last_smple_idx - 2 ][ Winner_ind ], t0_s32x4, 2 );
|
|
t0_s32x4 = vld1q_lane_s32( &psDelDec->Shape_Q14[ last_smple_idx - 3 ][ Winner_ind ], t0_s32x4, 3 );
|
|
t1_s32x4 = vld1q_lane_s32( &psDelDec->Shape_Q14[ last_smple_idx - 4 ][ Winner_ind ], t1_s32x4, 0 );
|
|
t1_s32x4 = vld1q_lane_s32( &psDelDec->Shape_Q14[ last_smple_idx - 5 ][ Winner_ind ], t1_s32x4, 1 );
|
|
t1_s32x4 = vld1q_lane_s32( &psDelDec->Shape_Q14[ last_smple_idx - 6 ][ Winner_ind ], t1_s32x4, 2 );
|
|
t1_s32x4 = vld1q_lane_s32( &psDelDec->Shape_Q14[ last_smple_idx - 7 ][ Winner_ind ], t1_s32x4, 3 );
|
|
vst1q_s32( &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx + offset + 0 ], t0_s32x4 );
|
|
vst1q_s32( &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx + offset + 4 ], t1_s32x4 );
|
|
}
|
|
|
|
static OPUS_INLINE void copy_winner_state(
|
|
const NSQ_del_decs_struct *psDelDec,
|
|
const opus_int decisionDelay,
|
|
const opus_int smpl_buf_idx,
|
|
const opus_int Winner_ind,
|
|
const opus_int32 gain,
|
|
const opus_int32 shift,
|
|
opus_int8 *const pulses,
|
|
opus_int16 *pxq,
|
|
silk_nsq_state *NSQ
|
|
)
|
|
{
|
|
opus_int i, last_smple_idx;
|
|
const int32x2_t gain_lo_s32x2 = vdup_n_s32( silk_LSHIFT32( gain & 0x0000FFFF, 15 ) );
|
|
const int32x2_t gain_hi_s32x2 = vdup_n_s32( gain >> 16 );
|
|
const int32x4_t shift_s32x4 = vdupq_n_s32( -shift );
|
|
int32x4_t t0_s32x4, t1_s32x4;
|
|
|
|
t0_s32x4 = t1_s32x4 = vdupq_n_s32( 0 ); /* initialization */
|
|
last_smple_idx = smpl_buf_idx + decisionDelay - 1 + DECISION_DELAY;
|
|
if( last_smple_idx >= DECISION_DELAY ) last_smple_idx -= DECISION_DELAY;
|
|
if( last_smple_idx >= DECISION_DELAY ) last_smple_idx -= DECISION_DELAY;
|
|
|
|
for( i = 0; ( i < ( decisionDelay - 7 ) ) && ( last_smple_idx >= 7 ); i += 8, last_smple_idx -= 8 ) {
|
|
copy_winner_state_kernel( psDelDec, i - decisionDelay, last_smple_idx, Winner_ind, gain_lo_s32x2, gain_hi_s32x2, shift_s32x4, t0_s32x4, t1_s32x4, pulses, pxq, NSQ );
|
|
}
|
|
for( ; ( i < decisionDelay ) && ( last_smple_idx >= 0 ); i++, last_smple_idx-- ) {
|
|
pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDelDec->Q_Q10[ last_smple_idx ][ Winner_ind ], 10 );
|
|
pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( psDelDec->Xq_Q14[ last_smple_idx ][ Winner_ind ], gain ), shift ) );
|
|
NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDelDec->Shape_Q14[ last_smple_idx ][ Winner_ind ];
|
|
}
|
|
|
|
last_smple_idx += DECISION_DELAY;
|
|
for( ; i < ( decisionDelay - 7 ); i++, last_smple_idx-- ) {
|
|
copy_winner_state_kernel( psDelDec, i - decisionDelay, last_smple_idx, Winner_ind, gain_lo_s32x2, gain_hi_s32x2, shift_s32x4, t0_s32x4, t1_s32x4, pulses, pxq, NSQ );
|
|
}
|
|
for( ; i < decisionDelay; i++, last_smple_idx-- ) {
|
|
pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDelDec->Q_Q10[ last_smple_idx ][ Winner_ind ], 10 );
|
|
pxq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( silk_SMULWW( psDelDec->Xq_Q14[ last_smple_idx ][ Winner_ind ], gain ), shift ) );
|
|
NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay + i ] = psDelDec->Shape_Q14[ last_smple_idx ][ Winner_ind ];
|
|
}
|
|
}
|
|
|
|
void silk_NSQ_del_dec_neon(
|
|
const silk_encoder_state *psEncC, /* I Encoder State */
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
SideInfoIndices *psIndices, /* I/O Quantization Indices */
|
|
const opus_int16 x16[], /* I Input */
|
|
opus_int8 pulses[], /* O Quantized pulse signal */
|
|
const opus_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefs */
|
|
const opus_int16 LTPCoef_Q14[ LTP_ORDER * MAX_NB_SUBFR ], /* I Long term prediction coefs */
|
|
const opus_int16 AR_Q13[ MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I Noise shaping coefs */
|
|
const opus_int HarmShapeGain_Q14[ MAX_NB_SUBFR ], /* I Long term shaping coefs */
|
|
const opus_int Tilt_Q14[ MAX_NB_SUBFR ], /* I Spectral tilt */
|
|
const opus_int32 LF_shp_Q14[ MAX_NB_SUBFR ], /* I Low frequency shaping coefs */
|
|
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I Quantization step sizes */
|
|
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lags */
|
|
const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */
|
|
const opus_int LTP_scale_Q14 /* I LTP state scaling */
|
|
)
|
|
{
|
|
#ifdef OPUS_CHECK_ASM
|
|
silk_nsq_state NSQ_c;
|
|
SideInfoIndices psIndices_c;
|
|
opus_int8 pulses_c[ MAX_FRAME_LENGTH ];
|
|
const opus_int8 *const pulses_a = pulses;
|
|
|
|
( void )pulses_a;
|
|
silk_memcpy( &NSQ_c, NSQ, sizeof( NSQ_c ) );
|
|
silk_memcpy( &psIndices_c, psIndices, sizeof( psIndices_c ) );
|
|
silk_memcpy( pulses_c, pulses, sizeof( pulses_c ) );
|
|
silk_NSQ_del_dec_c( psEncC, &NSQ_c, &psIndices_c, x16, pulses_c, PredCoef_Q12, LTPCoef_Q14, AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16,
|
|
pitchL, Lambda_Q10, LTP_scale_Q14 );
|
|
#endif
|
|
|
|
/* The optimization parallelizes the different delay decision states. */
|
|
if(( psEncC->nStatesDelayedDecision > NEON_MAX_DEL_DEC_STATES ) || ( psEncC->nStatesDelayedDecision <= 2 )) {
|
|
/* NEON intrinsics optimization now can only parallelize up to 4 delay decision states. */
|
|
/* If there are more states, C function is called, and this optimization must be expanded. */
|
|
/* When the number of delay decision states is less than 3, there are penalties using this */
|
|
/* optimization, and C function is called. */
|
|
/* When the number of delay decision states is 2, it's better to specialize another */
|
|
/* structure NSQ_del_dec2_struct and optimize with shorter NEON registers. (Low priority) */
|
|
silk_NSQ_del_dec_c( psEncC, NSQ, psIndices, x16, pulses, PredCoef_Q12, LTPCoef_Q14, AR_Q13, HarmShapeGain_Q14,
|
|
Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14 );
|
|
} else {
|
|
opus_int i, k, lag, start_idx, LSF_interpolation_flag, Winner_ind, subfr;
|
|
opus_int smpl_buf_idx, decisionDelay;
|
|
const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13;
|
|
opus_int16 *pxq;
|
|
VARDECL( opus_int32, sLTP_Q15 );
|
|
VARDECL( opus_int16, sLTP );
|
|
opus_int32 HarmShapeFIRPacked_Q14;
|
|
opus_int offset_Q10;
|
|
opus_int32 RDmin_Q10, Gain_Q10;
|
|
VARDECL( opus_int32, x_sc_Q10 );
|
|
VARDECL( opus_int32, delayedGain_Q10 );
|
|
VARDECL( NSQ_del_decs_struct, psDelDec );
|
|
int32x4_t t_s32x4;
|
|
SAVE_STACK;
|
|
|
|
/* Set unvoiced lag to the previous one, overwrite later for voiced */
|
|
lag = NSQ->lagPrev;
|
|
|
|
silk_assert( NSQ->prev_gain_Q16 != 0 );
|
|
|
|
/* Initialize delayed decision states */
|
|
ALLOC( psDelDec, 1, NSQ_del_decs_struct );
|
|
/* Only RandState and RD_Q10 need to be initialized to 0. */
|
|
silk_memset( psDelDec->RandState, 0, sizeof( psDelDec->RandState ) );
|
|
vst1q_s32( psDelDec->RD_Q10, vdupq_n_s32( 0 ) );
|
|
|
|
for( k = 0; k < psEncC->nStatesDelayedDecision; k++ ) {
|
|
psDelDec->SeedInit[ k ] = psDelDec->Seed[ k ] = ( k + psIndices->Seed ) & 3;
|
|
}
|
|
vst1q_s32( psDelDec->LF_AR_Q14, vld1q_dup_s32( &NSQ->sLF_AR_shp_Q14 ) );
|
|
vst1q_s32( psDelDec->Diff_Q14, vld1q_dup_s32( &NSQ->sDiff_shp_Q14 ) );
|
|
vst1q_s32( psDelDec->Shape_Q14[ 0 ], vld1q_dup_s32( &NSQ->sLTP_shp_Q14[ psEncC->ltp_mem_length - 1 ] ) );
|
|
for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) {
|
|
vst1q_s32( psDelDec->sLPC_Q14[ i ], vld1q_dup_s32( &NSQ->sLPC_Q14[ i ] ) );
|
|
}
|
|
for( i = 0; i < (opus_int)( sizeof( NSQ->sAR2_Q14 ) / sizeof( NSQ->sAR2_Q14[ 0 ] ) ); i++ ) {
|
|
vst1q_s32( psDelDec->sAR2_Q14[ i ], vld1q_dup_s32( &NSQ->sAR2_Q14[ i ] ) );
|
|
}
|
|
|
|
offset_Q10 = silk_Quantization_Offsets_Q10[ psIndices->signalType >> 1 ][ psIndices->quantOffsetType ];
|
|
smpl_buf_idx = 0; /* index of oldest samples */
|
|
|
|
decisionDelay = silk_min_int( DECISION_DELAY, psEncC->subfr_length );
|
|
|
|
/* For voiced frames limit the decision delay to lower than the pitch lag */
|
|
if( psIndices->signalType == TYPE_VOICED ) {
|
|
opus_int pitch_min = pitchL[ 0 ];
|
|
for( k = 1; k < psEncC->nb_subfr; k++ ) {
|
|
pitch_min = silk_min_int( pitch_min, pitchL[ k ] );
|
|
}
|
|
decisionDelay = silk_min_int( decisionDelay, pitch_min - LTP_ORDER / 2 - 1 );
|
|
} else {
|
|
if( lag > 0 ) {
|
|
decisionDelay = silk_min_int( decisionDelay, lag - LTP_ORDER / 2 - 1 );
|
|
}
|
|
}
|
|
|
|
if( psIndices->NLSFInterpCoef_Q2 == 4 ) {
|
|
LSF_interpolation_flag = 0;
|
|
} else {
|
|
LSF_interpolation_flag = 1;
|
|
}
|
|
|
|
ALLOC( sLTP_Q15, psEncC->ltp_mem_length + psEncC->frame_length, opus_int32 );
|
|
ALLOC( sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16 );
|
|
ALLOC( x_sc_Q10, psEncC->subfr_length, opus_int32 );
|
|
ALLOC( delayedGain_Q10, DECISION_DELAY, opus_int32 );
|
|
/* Set up pointers to start of sub frame */
|
|
pxq = &NSQ->xq[ psEncC->ltp_mem_length ];
|
|
NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length;
|
|
NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
|
|
subfr = 0;
|
|
for( k = 0; k < psEncC->nb_subfr; k++ ) {
|
|
A_Q12 = &PredCoef_Q12[ ( ( k >> 1 ) | ( 1 - LSF_interpolation_flag ) ) * MAX_LPC_ORDER ];
|
|
B_Q14 = <PCoef_Q14[ k * LTP_ORDER ];
|
|
AR_shp_Q13 = &AR_Q13[ k * MAX_SHAPE_LPC_ORDER ];
|
|
|
|
/* Noise shape parameters */
|
|
silk_assert( HarmShapeGain_Q14[ k ] >= 0 );
|
|
HarmShapeFIRPacked_Q14 = silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 );
|
|
HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 );
|
|
|
|
NSQ->rewhite_flag = 0;
|
|
if( psIndices->signalType == TYPE_VOICED ) {
|
|
/* Voiced */
|
|
lag = pitchL[ k ];
|
|
|
|
/* Re-whitening */
|
|
if( ( k & ( 3 - silk_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) {
|
|
if( k == 2 ) {
|
|
/* RESET DELAYED DECISIONS */
|
|
/* Find winner */
|
|
int32x4_t RD_Q10_s32x4;
|
|
RDmin_Q10 = psDelDec->RD_Q10[ 0 ];
|
|
Winner_ind = 0;
|
|
for( i = 1; i < psEncC->nStatesDelayedDecision; i++ ) {
|
|
if( psDelDec->RD_Q10[ i ] < RDmin_Q10 ) {
|
|
RDmin_Q10 = psDelDec->RD_Q10[ i ];
|
|
Winner_ind = i;
|
|
}
|
|
}
|
|
psDelDec->RD_Q10[ Winner_ind ] -= ( silk_int32_MAX >> 4 );
|
|
RD_Q10_s32x4 = vld1q_s32( psDelDec->RD_Q10 );
|
|
RD_Q10_s32x4 = vaddq_s32( RD_Q10_s32x4, vdupq_n_s32( silk_int32_MAX >> 4 ) );
|
|
vst1q_s32( psDelDec->RD_Q10, RD_Q10_s32x4 );
|
|
|
|
/* Copy final part of signals from winner state to output and long-term filter states */
|
|
copy_winner_state( psDelDec, decisionDelay, smpl_buf_idx, Winner_ind, Gains_Q16[ 1 ], 14, pulses, pxq, NSQ );
|
|
|
|
subfr = 0;
|
|
}
|
|
|
|
/* Rewhiten with new A coefs */
|
|
start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2;
|
|
silk_assert( start_idx > 0 );
|
|
|
|
silk_LPC_analysis_filter( &sLTP[ start_idx ], &NSQ->xq[ start_idx + k * psEncC->subfr_length ],
|
|
A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder, psEncC->arch );
|
|
|
|
NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
|
|
NSQ->rewhite_flag = 1;
|
|
}
|
|
}
|
|
|
|
silk_nsq_del_dec_scale_states_neon( psEncC, NSQ, psDelDec, x16, x_sc_Q10, sLTP, sLTP_Q15, k,
|
|
LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType, decisionDelay );
|
|
|
|
silk_noise_shape_quantizer_del_dec_neon( NSQ, psDelDec, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15,
|
|
delayedGain_Q10, A_Q12, B_Q14, AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ],
|
|
Gains_Q16[ k ], Lambda_Q10, offset_Q10, psEncC->subfr_length, subfr++, psEncC->shapingLPCOrder,
|
|
psEncC->predictLPCOrder, psEncC->warping_Q16, psEncC->nStatesDelayedDecision, &smpl_buf_idx, decisionDelay );
|
|
|
|
x16 += psEncC->subfr_length;
|
|
pulses += psEncC->subfr_length;
|
|
pxq += psEncC->subfr_length;
|
|
}
|
|
|
|
/* Find winner */
|
|
RDmin_Q10 = psDelDec->RD_Q10[ 0 ];
|
|
Winner_ind = 0;
|
|
for( k = 1; k < psEncC->nStatesDelayedDecision; k++ ) {
|
|
if( psDelDec->RD_Q10[ k ] < RDmin_Q10 ) {
|
|
RDmin_Q10 = psDelDec->RD_Q10[ k ];
|
|
Winner_ind = k;
|
|
}
|
|
}
|
|
|
|
/* Copy final part of signals from winner state to output and long-term filter states */
|
|
psIndices->Seed = psDelDec->SeedInit[ Winner_ind ];
|
|
Gain_Q10 = silk_RSHIFT32( Gains_Q16[ psEncC->nb_subfr - 1 ], 6 );
|
|
copy_winner_state( psDelDec, decisionDelay, smpl_buf_idx, Winner_ind, Gain_Q10, 8, pulses, pxq, NSQ );
|
|
|
|
t_s32x4 = vdupq_n_s32( 0 ); /* initialization */
|
|
for( i = 0; i < ( NSQ_LPC_BUF_LENGTH - 3 ); i += 4 ) {
|
|
t_s32x4 = vld1q_lane_s32( &psDelDec->sLPC_Q14[ i + 0 ][ Winner_ind ], t_s32x4, 0 );
|
|
t_s32x4 = vld1q_lane_s32( &psDelDec->sLPC_Q14[ i + 1 ][ Winner_ind ], t_s32x4, 1 );
|
|
t_s32x4 = vld1q_lane_s32( &psDelDec->sLPC_Q14[ i + 2 ][ Winner_ind ], t_s32x4, 2 );
|
|
t_s32x4 = vld1q_lane_s32( &psDelDec->sLPC_Q14[ i + 3 ][ Winner_ind ], t_s32x4, 3 );
|
|
vst1q_s32( &NSQ->sLPC_Q14[ i ], t_s32x4 );
|
|
}
|
|
|
|
for( ; i < NSQ_LPC_BUF_LENGTH; i++ ) {
|
|
NSQ->sLPC_Q14[ i ] = psDelDec->sLPC_Q14[ i ][ Winner_ind ];
|
|
}
|
|
|
|
for( i = 0; i < (opus_int)( sizeof( NSQ->sAR2_Q14 ) / sizeof( NSQ->sAR2_Q14[ 0 ] ) - 3 ); i += 4 ) {
|
|
t_s32x4 = vld1q_lane_s32( &psDelDec->sAR2_Q14[ i + 0 ][ Winner_ind ], t_s32x4, 0 );
|
|
t_s32x4 = vld1q_lane_s32( &psDelDec->sAR2_Q14[ i + 1 ][ Winner_ind ], t_s32x4, 1 );
|
|
t_s32x4 = vld1q_lane_s32( &psDelDec->sAR2_Q14[ i + 2 ][ Winner_ind ], t_s32x4, 2 );
|
|
t_s32x4 = vld1q_lane_s32( &psDelDec->sAR2_Q14[ i + 3 ][ Winner_ind ], t_s32x4, 3 );
|
|
vst1q_s32( &NSQ->sAR2_Q14[ i ], t_s32x4 );
|
|
}
|
|
|
|
for( ; i < (opus_int)( sizeof( NSQ->sAR2_Q14 ) / sizeof( NSQ->sAR2_Q14[ 0 ] ) ); i++ ) {
|
|
NSQ->sAR2_Q14[ i ] = psDelDec->sAR2_Q14[ i ][ Winner_ind ];
|
|
}
|
|
|
|
/* Update states */
|
|
NSQ->sLF_AR_shp_Q14 = psDelDec->LF_AR_Q14[ Winner_ind ];
|
|
NSQ->sDiff_shp_Q14 = psDelDec->Diff_Q14[ Winner_ind ];
|
|
NSQ->lagPrev = pitchL[ psEncC->nb_subfr - 1 ];
|
|
|
|
/* Save quantized speech signal */
|
|
silk_memmove( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int16 ) );
|
|
silk_memmove( NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[ psEncC->frame_length ], psEncC->ltp_mem_length * sizeof( opus_int32 ) );
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
#ifdef OPUS_CHECK_ASM
|
|
silk_assert( !memcmp( &NSQ_c, NSQ, sizeof( NSQ_c ) ) );
|
|
silk_assert( !memcmp( &psIndices_c, psIndices, sizeof( psIndices_c ) ) );
|
|
silk_assert( !memcmp( pulses_c, pulses_a, sizeof( pulses_c ) ) );
|
|
#endif
|
|
}
|
|
|
|
/******************************************/
|
|
/* Noise shape quantizer for one subframe */
|
|
/******************************************/
|
|
/* Note: Function silk_short_prediction_create_arch_coef_neon() defined in NSQ_neon.h is actually a hacking C function. */
|
|
/* Therefore here we append "_local" to the NEON function name to avoid confusion. */
|
|
static OPUS_INLINE void silk_short_prediction_create_arch_coef_neon_local(opus_int32 *out, const opus_int16 *in, opus_int order)
|
|
{
|
|
int16x8_t t_s16x8;
|
|
int32x4_t t0_s32x4, t1_s32x4, t2_s32x4, t3_s32x4;
|
|
silk_assert( order == 10 || order == 16 );
|
|
|
|
t_s16x8 = vld1q_s16( in + 0 ); /* 7 6 5 4 3 2 1 0 */
|
|
t_s16x8 = vrev64q_s16( t_s16x8 ); /* 4 5 6 7 0 1 2 3 */
|
|
t2_s32x4 = vshll_n_s16( vget_high_s16( t_s16x8 ), 15 ); /* 4 5 6 7 */
|
|
t3_s32x4 = vshll_n_s16( vget_low_s16( t_s16x8 ), 15 ); /* 0 1 2 3 */
|
|
|
|
if( order == 16 ) {
|
|
t_s16x8 = vld1q_s16( in + 8 ); /* F E D C B A 9 8 */
|
|
t_s16x8 = vrev64q_s16( t_s16x8 ); /* C D E F 8 9 A B */
|
|
t0_s32x4 = vshll_n_s16( vget_high_s16( t_s16x8 ), 15 ); /* C D E F */
|
|
t1_s32x4 = vshll_n_s16( vget_low_s16( t_s16x8 ), 15 ); /* 8 9 A B */
|
|
} else {
|
|
int16x4_t t_s16x4;
|
|
|
|
t0_s32x4 = vdupq_n_s32( 0 ); /* zero zero zero zero */
|
|
t_s16x4 = vld1_s16( in + 6 ); /* 9 8 7 6 */
|
|
t_s16x4 = vrev64_s16( t_s16x4 ); /* 6 7 8 9 */
|
|
t1_s32x4 = vshll_n_s16( t_s16x4, 15 );
|
|
t1_s32x4 = vcombine_s32( vget_low_s32(t0_s32x4), vget_low_s32( t1_s32x4 ) ); /* 8 9 zero zero */
|
|
}
|
|
vst1q_s32( out + 0, t0_s32x4 );
|
|
vst1q_s32( out + 4, t1_s32x4 );
|
|
vst1q_s32( out + 8, t2_s32x4 );
|
|
vst1q_s32( out + 12, t3_s32x4 );
|
|
}
|
|
|
|
static OPUS_INLINE int32x4_t silk_SMLAWB_lane0_neon(
|
|
const int32x4_t out_s32x4,
|
|
const int32x4_t in_s32x4,
|
|
const int32x2_t coef_s32x2
|
|
)
|
|
{
|
|
return vaddq_s32( out_s32x4, vqdmulhq_lane_s32( in_s32x4, coef_s32x2, 0 ) );
|
|
}
|
|
|
|
static OPUS_INLINE int32x4_t silk_SMLAWB_lane1_neon(
|
|
const int32x4_t out_s32x4,
|
|
const int32x4_t in_s32x4,
|
|
const int32x2_t coef_s32x2
|
|
)
|
|
{
|
|
return vaddq_s32( out_s32x4, vqdmulhq_lane_s32( in_s32x4, coef_s32x2, 1 ) );
|
|
}
|
|
|
|
/* Note: This function has different return value than silk_noise_shape_quantizer_short_prediction_neon(). */
|
|
/* Therefore here we append "_local" to the function name to avoid confusion. */
|
|
static OPUS_INLINE int32x4_t silk_noise_shape_quantizer_short_prediction_neon_local(const opus_int32 *buf32, const opus_int32 *a_Q12_arch, opus_int order)
|
|
{
|
|
const int32x4_t a_Q12_arch0_s32x4 = vld1q_s32( a_Q12_arch + 0 );
|
|
const int32x4_t a_Q12_arch1_s32x4 = vld1q_s32( a_Q12_arch + 4 );
|
|
const int32x4_t a_Q12_arch2_s32x4 = vld1q_s32( a_Q12_arch + 8 );
|
|
const int32x4_t a_Q12_arch3_s32x4 = vld1q_s32( a_Q12_arch + 12 );
|
|
int32x4_t LPC_pred_Q14_s32x4;
|
|
|
|
silk_assert( order == 10 || order == 16 );
|
|
/* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
|
|
LPC_pred_Q14_s32x4 = vdupq_n_s32( silk_RSHIFT( order, 1 ) );
|
|
LPC_pred_Q14_s32x4 = silk_SMLAWB_lane0_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 0 * NEON_MAX_DEL_DEC_STATES ), vget_low_s32( a_Q12_arch0_s32x4 ) );
|
|
LPC_pred_Q14_s32x4 = silk_SMLAWB_lane1_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 1 * NEON_MAX_DEL_DEC_STATES ), vget_low_s32( a_Q12_arch0_s32x4 ) );
|
|
LPC_pred_Q14_s32x4 = silk_SMLAWB_lane0_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 2 * NEON_MAX_DEL_DEC_STATES ), vget_high_s32( a_Q12_arch0_s32x4 ) );
|
|
LPC_pred_Q14_s32x4 = silk_SMLAWB_lane1_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 3 * NEON_MAX_DEL_DEC_STATES ), vget_high_s32( a_Q12_arch0_s32x4 ) );
|
|
LPC_pred_Q14_s32x4 = silk_SMLAWB_lane0_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 4 * NEON_MAX_DEL_DEC_STATES ), vget_low_s32( a_Q12_arch1_s32x4 ) );
|
|
LPC_pred_Q14_s32x4 = silk_SMLAWB_lane1_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 5 * NEON_MAX_DEL_DEC_STATES ), vget_low_s32( a_Q12_arch1_s32x4 ) );
|
|
LPC_pred_Q14_s32x4 = silk_SMLAWB_lane0_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 6 * NEON_MAX_DEL_DEC_STATES ), vget_high_s32( a_Q12_arch1_s32x4 ) );
|
|
LPC_pred_Q14_s32x4 = silk_SMLAWB_lane1_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 7 * NEON_MAX_DEL_DEC_STATES ), vget_high_s32( a_Q12_arch1_s32x4 ) );
|
|
LPC_pred_Q14_s32x4 = silk_SMLAWB_lane0_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 8 * NEON_MAX_DEL_DEC_STATES ), vget_low_s32( a_Q12_arch2_s32x4 ) );
|
|
LPC_pred_Q14_s32x4 = silk_SMLAWB_lane1_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 9 * NEON_MAX_DEL_DEC_STATES ), vget_low_s32( a_Q12_arch2_s32x4 ) );
|
|
LPC_pred_Q14_s32x4 = silk_SMLAWB_lane0_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 10 * NEON_MAX_DEL_DEC_STATES ), vget_high_s32( a_Q12_arch2_s32x4 ) );
|
|
LPC_pred_Q14_s32x4 = silk_SMLAWB_lane1_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 11 * NEON_MAX_DEL_DEC_STATES ), vget_high_s32( a_Q12_arch2_s32x4 ) );
|
|
LPC_pred_Q14_s32x4 = silk_SMLAWB_lane0_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 12 * NEON_MAX_DEL_DEC_STATES ), vget_low_s32( a_Q12_arch3_s32x4 ) );
|
|
LPC_pred_Q14_s32x4 = silk_SMLAWB_lane1_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 13 * NEON_MAX_DEL_DEC_STATES ), vget_low_s32( a_Q12_arch3_s32x4 ) );
|
|
LPC_pred_Q14_s32x4 = silk_SMLAWB_lane0_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 14 * NEON_MAX_DEL_DEC_STATES ), vget_high_s32( a_Q12_arch3_s32x4 ) );
|
|
LPC_pred_Q14_s32x4 = silk_SMLAWB_lane1_neon( LPC_pred_Q14_s32x4, vld1q_s32( buf32 + 15 * NEON_MAX_DEL_DEC_STATES ), vget_high_s32( a_Q12_arch3_s32x4 ) );
|
|
|
|
return LPC_pred_Q14_s32x4;
|
|
}
|
|
|
|
static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_neon(
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
NSQ_del_decs_struct psDelDec[], /* I/O Delayed decision states */
|
|
opus_int signalType, /* I Signal type */
|
|
const opus_int32 x_Q10[], /* I */
|
|
opus_int8 pulses[], /* O */
|
|
opus_int16 xq[], /* O */
|
|
opus_int32 sLTP_Q15[], /* I/O LTP filter state */
|
|
opus_int32 delayedGain_Q10[], /* I/O Gain delay buffer */
|
|
const opus_int16 a_Q12[], /* I Short term prediction coefs */
|
|
const opus_int16 b_Q14[], /* I Long term prediction coefs */
|
|
const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */
|
|
opus_int lag, /* I Pitch lag */
|
|
opus_int32 HarmShapeFIRPacked_Q14, /* I */
|
|
opus_int Tilt_Q14, /* I Spectral tilt */
|
|
opus_int32 LF_shp_Q14, /* I */
|
|
opus_int32 Gain_Q16, /* I */
|
|
opus_int Lambda_Q10, /* I */
|
|
opus_int offset_Q10, /* I */
|
|
opus_int length, /* I Input length */
|
|
opus_int subfr, /* I Subframe number */
|
|
opus_int shapingLPCOrder, /* I Shaping LPC filter order */
|
|
opus_int predictLPCOrder, /* I Prediction filter order */
|
|
opus_int warping_Q16, /* I */
|
|
opus_int nStatesDelayedDecision, /* I Number of states in decision tree */
|
|
opus_int *smpl_buf_idx, /* I/O Index to newest samples in buffers */
|
|
opus_int decisionDelay /* I */
|
|
)
|
|
{
|
|
opus_int i, j, k, Winner_ind, RDmin_ind, RDmax_ind, last_smple_idx;
|
|
opus_int32 Winner_rand_state;
|
|
opus_int32 LTP_pred_Q14, n_LTP_Q14;
|
|
opus_int32 RDmin_Q10, RDmax_Q10;
|
|
opus_int32 Gain_Q10;
|
|
opus_int32 *pred_lag_ptr, *shp_lag_ptr;
|
|
opus_int32 a_Q12_arch[MAX_LPC_ORDER];
|
|
const int32x2_t warping_Q16_s32x2 = vdup_n_s32( silk_LSHIFT32( warping_Q16, 16 ) >> 1 );
|
|
const opus_int32 LF_shp_Q29 = silk_LSHIFT32( LF_shp_Q14, 16 ) >> 1;
|
|
opus_int32 AR_shp_Q28[ MAX_SHAPE_LPC_ORDER ];
|
|
const uint32x4_t rand_multiplier_u32x4 = vdupq_n_u32( RAND_MULTIPLIER );
|
|
const uint32x4_t rand_increment_u32x4 = vdupq_n_u32( RAND_INCREMENT );
|
|
|
|
VARDECL( NSQ_samples_struct, psSampleState );
|
|
SAVE_STACK;
|
|
|
|
silk_assert( nStatesDelayedDecision > 0 );
|
|
silk_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */
|
|
ALLOC( psSampleState, 2, NSQ_samples_struct );
|
|
|
|
shp_lag_ptr = &NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ];
|
|
pred_lag_ptr = &sLTP_Q15[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ];
|
|
Gain_Q10 = silk_RSHIFT( Gain_Q16, 6 );
|
|
|
|
for( i = 0; i < ( MAX_SHAPE_LPC_ORDER - 7 ); i += 8 ) {
|
|
const int16x8_t t_s16x8 = vld1q_s16( AR_shp_Q13 + i );
|
|
vst1q_s32( AR_shp_Q28 + i + 0, vshll_n_s16( vget_low_s16( t_s16x8 ), 15 ) );
|
|
vst1q_s32( AR_shp_Q28 + i + 4, vshll_n_s16( vget_high_s16( t_s16x8 ), 15 ) );
|
|
}
|
|
|
|
for( ; i < MAX_SHAPE_LPC_ORDER; i++ ) {
|
|
AR_shp_Q28[i] = silk_LSHIFT32( AR_shp_Q13[i], 15 );
|
|
}
|
|
|
|
silk_short_prediction_create_arch_coef_neon_local( a_Q12_arch, a_Q12, predictLPCOrder );
|
|
|
|
for( i = 0; i < length; i++ ) {
|
|
int32x4_t Seed_s32x4, LPC_pred_Q14_s32x4;
|
|
int32x4_t sign_s32x4, tmp1_s32x4, tmp2_s32x4;
|
|
int32x4_t n_AR_Q14_s32x4, n_LF_Q14_s32x4;
|
|
int32x2_t AR_shp_Q28_s32x2;
|
|
int16x4_t r_Q10_s16x4, rr_Q10_s16x4;
|
|
|
|
/* Perform common calculations used in all states */
|
|
|
|
/* Long-term prediction */
|
|
if( signalType == TYPE_VOICED ) {
|
|
/* Unrolled loop */
|
|
/* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
|
|
LTP_pred_Q14 = 2;
|
|
LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ 0 ], b_Q14[ 0 ] );
|
|
LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -1 ], b_Q14[ 1 ] );
|
|
LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -2 ], b_Q14[ 2 ] );
|
|
LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -3 ], b_Q14[ 3 ] );
|
|
LTP_pred_Q14 = silk_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -4 ], b_Q14[ 4 ] );
|
|
LTP_pred_Q14 = silk_LSHIFT( LTP_pred_Q14, 1 ); /* Q13 -> Q14 */
|
|
pred_lag_ptr++;
|
|
} else {
|
|
LTP_pred_Q14 = 0;
|
|
}
|
|
|
|
/* Long-term shaping */
|
|
if( lag > 0 ) {
|
|
/* Symmetric, packed FIR coefficients */
|
|
n_LTP_Q14 = silk_SMULWB( silk_ADD32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 );
|
|
n_LTP_Q14 = silk_SMLAWT( n_LTP_Q14, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 );
|
|
n_LTP_Q14 = silk_SUB_LSHIFT32( LTP_pred_Q14, n_LTP_Q14, 2 ); /* Q12 -> Q14 */
|
|
shp_lag_ptr++;
|
|
} else {
|
|
n_LTP_Q14 = 0;
|
|
}
|
|
|
|
/* Generate dither */
|
|
Seed_s32x4 = vld1q_s32( psDelDec->Seed );
|
|
Seed_s32x4 = vreinterpretq_s32_u32( vmlaq_u32( rand_increment_u32x4, vreinterpretq_u32_s32( Seed_s32x4 ), rand_multiplier_u32x4 ) );
|
|
vst1q_s32( psDelDec->Seed, Seed_s32x4 );
|
|
|
|
/* Short-term prediction */
|
|
LPC_pred_Q14_s32x4 = silk_noise_shape_quantizer_short_prediction_neon_local(psDelDec->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 16 + i ], a_Q12_arch, predictLPCOrder);
|
|
LPC_pred_Q14_s32x4 = vshlq_n_s32( LPC_pred_Q14_s32x4, 4 ); /* Q10 -> Q14 */
|
|
|
|
/* Noise shape feedback */
|
|
/* Output of lowpass section */
|
|
tmp2_s32x4 = silk_SMLAWB_lane0_neon( vld1q_s32( psDelDec->Diff_Q14 ), vld1q_s32( psDelDec->sAR2_Q14[ 0 ] ), warping_Q16_s32x2 );
|
|
/* Output of allpass section */
|
|
tmp1_s32x4 = vsubq_s32( vld1q_s32( psDelDec->sAR2_Q14[ 1 ] ), tmp2_s32x4 );
|
|
tmp1_s32x4 = silk_SMLAWB_lane0_neon( vld1q_s32( psDelDec->sAR2_Q14[ 0 ] ), tmp1_s32x4, warping_Q16_s32x2 );
|
|
vst1q_s32( psDelDec->sAR2_Q14[ 0 ], tmp2_s32x4 );
|
|
AR_shp_Q28_s32x2 = vld1_s32( AR_shp_Q28 );
|
|
n_AR_Q14_s32x4 = vaddq_s32( vdupq_n_s32( silk_RSHIFT( shapingLPCOrder, 1 ) ), vqdmulhq_lane_s32( tmp2_s32x4, AR_shp_Q28_s32x2, 0 ) );
|
|
|
|
/* Loop over allpass sections */
|
|
for( j = 2; j < shapingLPCOrder; j += 2 ) {
|
|
/* Output of allpass section */
|
|
tmp2_s32x4 = vsubq_s32( vld1q_s32( psDelDec->sAR2_Q14[ j + 0 ] ), tmp1_s32x4 );
|
|
tmp2_s32x4 = silk_SMLAWB_lane0_neon( vld1q_s32( psDelDec->sAR2_Q14[ j - 1 ] ), tmp2_s32x4, warping_Q16_s32x2 );
|
|
vst1q_s32( psDelDec->sAR2_Q14[ j - 1 ], tmp1_s32x4 );
|
|
n_AR_Q14_s32x4 = vaddq_s32( n_AR_Q14_s32x4, vqdmulhq_lane_s32( tmp1_s32x4, AR_shp_Q28_s32x2, 1 ) );
|
|
/* Output of allpass section */
|
|
tmp1_s32x4 = vsubq_s32( vld1q_s32( psDelDec->sAR2_Q14[ j + 1 ] ), tmp2_s32x4 );
|
|
tmp1_s32x4 = silk_SMLAWB_lane0_neon( vld1q_s32( psDelDec->sAR2_Q14[ j + 0 ] ), tmp1_s32x4, warping_Q16_s32x2 );
|
|
vst1q_s32( psDelDec->sAR2_Q14[ j + 0 ], tmp2_s32x4 );
|
|
AR_shp_Q28_s32x2 = vld1_s32( &AR_shp_Q28[ j ] );
|
|
n_AR_Q14_s32x4 = vaddq_s32( n_AR_Q14_s32x4, vqdmulhq_lane_s32( tmp2_s32x4, AR_shp_Q28_s32x2, 0 ) );
|
|
}
|
|
vst1q_s32( psDelDec->sAR2_Q14[ shapingLPCOrder - 1 ], tmp1_s32x4 );
|
|
n_AR_Q14_s32x4 = vaddq_s32( n_AR_Q14_s32x4, vqdmulhq_lane_s32( tmp1_s32x4, AR_shp_Q28_s32x2, 1 ) );
|
|
n_AR_Q14_s32x4 = vshlq_n_s32( n_AR_Q14_s32x4, 1 ); /* Q11 -> Q12 */
|
|
n_AR_Q14_s32x4 = vaddq_s32( n_AR_Q14_s32x4, vqdmulhq_n_s32( vld1q_s32( psDelDec->LF_AR_Q14 ), silk_LSHIFT32( Tilt_Q14, 16 ) >> 1 ) ); /* Q12 */
|
|
n_AR_Q14_s32x4 = vshlq_n_s32( n_AR_Q14_s32x4, 2 ); /* Q12 -> Q14 */
|
|
n_LF_Q14_s32x4 = vqdmulhq_n_s32( vld1q_s32( psDelDec->Shape_Q14[ *smpl_buf_idx ] ), LF_shp_Q29 ); /* Q12 */
|
|
n_LF_Q14_s32x4 = vaddq_s32( n_LF_Q14_s32x4, vqdmulhq_n_s32( vld1q_s32( psDelDec->LF_AR_Q14 ), silk_LSHIFT32( LF_shp_Q14 >> 16 , 15 ) ) ); /* Q12 */
|
|
n_LF_Q14_s32x4 = vshlq_n_s32( n_LF_Q14_s32x4, 2 ); /* Q12 -> Q14 */
|
|
|
|
/* Input minus prediction plus noise feedback */
|
|
/* r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP */
|
|
tmp1_s32x4 = vaddq_s32( n_AR_Q14_s32x4, n_LF_Q14_s32x4 ); /* Q14 */
|
|
tmp2_s32x4 = vaddq_s32( vdupq_n_s32( n_LTP_Q14 ), LPC_pred_Q14_s32x4 ); /* Q13 */
|
|
tmp1_s32x4 = vsubq_s32( tmp2_s32x4, tmp1_s32x4 ); /* Q13 */
|
|
tmp1_s32x4 = vrshrq_n_s32( tmp1_s32x4, 4 ); /* Q10 */
|
|
tmp1_s32x4 = vsubq_s32( vdupq_n_s32( x_Q10[ i ] ), tmp1_s32x4 ); /* residual error Q10 */
|
|
|
|
/* Flip sign depending on dither */
|
|
sign_s32x4 = vreinterpretq_s32_u32( vcltq_s32( Seed_s32x4, vdupq_n_s32( 0 ) ) );
|
|
tmp1_s32x4 = veorq_s32( tmp1_s32x4, sign_s32x4 );
|
|
tmp1_s32x4 = vsubq_s32( tmp1_s32x4, sign_s32x4 );
|
|
tmp1_s32x4 = vmaxq_s32( tmp1_s32x4, vdupq_n_s32( -( 31 << 10 ) ) );
|
|
tmp1_s32x4 = vminq_s32( tmp1_s32x4, vdupq_n_s32( 30 << 10 ) );
|
|
r_Q10_s16x4 = vmovn_s32( tmp1_s32x4 );
|
|
|
|
/* Find two quantization level candidates and measure their rate-distortion */
|
|
{
|
|
int16x4_t q1_Q10_s16x4 = vsub_s16( r_Q10_s16x4, vdup_n_s16( offset_Q10 ) );
|
|
int16x4_t q1_Q0_s16x4 = vshr_n_s16( q1_Q10_s16x4, 10 );
|
|
int16x4_t q2_Q10_s16x4;
|
|
int32x4_t rd1_Q10_s32x4, rd2_Q10_s32x4;
|
|
uint32x4_t t_u32x4;
|
|
|
|
if( Lambda_Q10 > 2048 ) {
|
|
/* For aggressive RDO, the bias becomes more than one pulse. */
|
|
const int rdo_offset = Lambda_Q10/2 - 512;
|
|
const uint16x4_t greaterThanRdo = vcgt_s16( q1_Q10_s16x4, vdup_n_s16( rdo_offset ) );
|
|
const uint16x4_t lessThanMinusRdo = vclt_s16( q1_Q10_s16x4, vdup_n_s16( -rdo_offset ) );
|
|
/* If Lambda_Q10 > 32767, then q1_Q0, q1_Q10 and q2_Q10 must change to 32-bit. */
|
|
silk_assert( Lambda_Q10 <= 32767 );
|
|
|
|
q1_Q0_s16x4 = vreinterpret_s16_u16( vclt_s16( q1_Q10_s16x4, vdup_n_s16( 0 ) ) );
|
|
q1_Q0_s16x4 = vbsl_s16( greaterThanRdo, vsub_s16( q1_Q10_s16x4, vdup_n_s16( rdo_offset ) ), q1_Q0_s16x4 );
|
|
q1_Q0_s16x4 = vbsl_s16( lessThanMinusRdo, vadd_s16( q1_Q10_s16x4, vdup_n_s16( rdo_offset ) ), q1_Q0_s16x4 );
|
|
q1_Q0_s16x4 = vshr_n_s16( q1_Q0_s16x4, 10 );
|
|
}
|
|
{
|
|
const uint16x4_t equal0_u16x4 = vceq_s16( q1_Q0_s16x4, vdup_n_s16( 0 ) );
|
|
const uint16x4_t equalMinus1_u16x4 = vceq_s16( q1_Q0_s16x4, vdup_n_s16( -1 ) );
|
|
const uint16x4_t lessThanMinus1_u16x4 = vclt_s16( q1_Q0_s16x4, vdup_n_s16( -1 ) );
|
|
int16x4_t tmp1_s16x4, tmp2_s16x4;
|
|
|
|
q1_Q10_s16x4 = vshl_n_s16( q1_Q0_s16x4, 10 );
|
|
tmp1_s16x4 = vadd_s16( q1_Q10_s16x4, vdup_n_s16( offset_Q10 - QUANT_LEVEL_ADJUST_Q10 ) );
|
|
q1_Q10_s16x4 = vadd_s16( q1_Q10_s16x4, vdup_n_s16( offset_Q10 + QUANT_LEVEL_ADJUST_Q10 ) );
|
|
q1_Q10_s16x4 = vbsl_s16( lessThanMinus1_u16x4, q1_Q10_s16x4, tmp1_s16x4 );
|
|
q1_Q10_s16x4 = vbsl_s16( equal0_u16x4, vdup_n_s16( offset_Q10 ), q1_Q10_s16x4 );
|
|
q1_Q10_s16x4 = vbsl_s16( equalMinus1_u16x4, vdup_n_s16( offset_Q10 - ( 1024 - QUANT_LEVEL_ADJUST_Q10 ) ), q1_Q10_s16x4 );
|
|
q2_Q10_s16x4 = vadd_s16( q1_Q10_s16x4, vdup_n_s16( 1024 ) );
|
|
q2_Q10_s16x4 = vbsl_s16( equal0_u16x4, vdup_n_s16( offset_Q10 + 1024 - QUANT_LEVEL_ADJUST_Q10 ), q2_Q10_s16x4 );
|
|
q2_Q10_s16x4 = vbsl_s16( equalMinus1_u16x4, vdup_n_s16( offset_Q10 ), q2_Q10_s16x4 );
|
|
tmp1_s16x4 = q1_Q10_s16x4;
|
|
tmp2_s16x4 = q2_Q10_s16x4;
|
|
tmp1_s16x4 = vbsl_s16( vorr_u16( equalMinus1_u16x4, lessThanMinus1_u16x4 ), vneg_s16( tmp1_s16x4 ), tmp1_s16x4 );
|
|
tmp2_s16x4 = vbsl_s16( lessThanMinus1_u16x4, vneg_s16( tmp2_s16x4 ), tmp2_s16x4 );
|
|
rd1_Q10_s32x4 = vmull_s16( tmp1_s16x4, vdup_n_s16( Lambda_Q10 ) );
|
|
rd2_Q10_s32x4 = vmull_s16( tmp2_s16x4, vdup_n_s16( Lambda_Q10 ) );
|
|
}
|
|
|
|
rr_Q10_s16x4 = vsub_s16( r_Q10_s16x4, q1_Q10_s16x4 );
|
|
rd1_Q10_s32x4 = vmlal_s16( rd1_Q10_s32x4, rr_Q10_s16x4, rr_Q10_s16x4 );
|
|
rd1_Q10_s32x4 = vshrq_n_s32( rd1_Q10_s32x4, 10 );
|
|
|
|
rr_Q10_s16x4 = vsub_s16( r_Q10_s16x4, q2_Q10_s16x4 );
|
|
rd2_Q10_s32x4 = vmlal_s16( rd2_Q10_s32x4, rr_Q10_s16x4, rr_Q10_s16x4 );
|
|
rd2_Q10_s32x4 = vshrq_n_s32( rd2_Q10_s32x4, 10 );
|
|
|
|
tmp2_s32x4 = vld1q_s32( psDelDec->RD_Q10 );
|
|
tmp1_s32x4 = vaddq_s32( tmp2_s32x4, vminq_s32( rd1_Q10_s32x4, rd2_Q10_s32x4 ) );
|
|
tmp2_s32x4 = vaddq_s32( tmp2_s32x4, vmaxq_s32( rd1_Q10_s32x4, rd2_Q10_s32x4 ) );
|
|
vst1q_s32( psSampleState[ 0 ].RD_Q10, tmp1_s32x4 );
|
|
vst1q_s32( psSampleState[ 1 ].RD_Q10, tmp2_s32x4 );
|
|
t_u32x4 = vcltq_s32( rd1_Q10_s32x4, rd2_Q10_s32x4 );
|
|
tmp1_s32x4 = vbslq_s32( t_u32x4, vmovl_s16( q1_Q10_s16x4 ), vmovl_s16( q2_Q10_s16x4 ) );
|
|
tmp2_s32x4 = vbslq_s32( t_u32x4, vmovl_s16( q2_Q10_s16x4 ), vmovl_s16( q1_Q10_s16x4 ) );
|
|
vst1q_s32( psSampleState[ 0 ].Q_Q10, tmp1_s32x4 );
|
|
vst1q_s32( psSampleState[ 1 ].Q_Q10, tmp2_s32x4 );
|
|
}
|
|
|
|
{
|
|
/* Update states for best quantization */
|
|
int32x4_t exc_Q14_s32x4, LPC_exc_Q14_s32x4, xq_Q14_s32x4, sLF_AR_shp_Q14_s32x4;
|
|
|
|
/* Quantized excitation */
|
|
exc_Q14_s32x4 = vshlq_n_s32( tmp1_s32x4, 4 );
|
|
exc_Q14_s32x4 = veorq_s32( exc_Q14_s32x4, sign_s32x4 );
|
|
exc_Q14_s32x4 = vsubq_s32( exc_Q14_s32x4, sign_s32x4 );
|
|
|
|
/* Add predictions */
|
|
LPC_exc_Q14_s32x4 = vaddq_s32( exc_Q14_s32x4, vdupq_n_s32( LTP_pred_Q14 ) );
|
|
xq_Q14_s32x4 = vaddq_s32( LPC_exc_Q14_s32x4, LPC_pred_Q14_s32x4 );
|
|
|
|
/* Update states */
|
|
tmp1_s32x4 = vsubq_s32( xq_Q14_s32x4, vshlq_n_s32( vdupq_n_s32( x_Q10[ i ] ), 4 ) );
|
|
vst1q_s32( psSampleState[ 0 ].Diff_Q14, tmp1_s32x4 );
|
|
sLF_AR_shp_Q14_s32x4 = vsubq_s32( tmp1_s32x4, n_AR_Q14_s32x4 );
|
|
vst1q_s32( psSampleState[ 0 ].sLTP_shp_Q14, vsubq_s32( sLF_AR_shp_Q14_s32x4, n_LF_Q14_s32x4 ) );
|
|
vst1q_s32( psSampleState[ 0 ].LF_AR_Q14, sLF_AR_shp_Q14_s32x4 );
|
|
vst1q_s32( psSampleState[ 0 ].LPC_exc_Q14, LPC_exc_Q14_s32x4 );
|
|
vst1q_s32( psSampleState[ 0 ].xq_Q14, xq_Q14_s32x4 );
|
|
|
|
/* Quantized excitation */
|
|
exc_Q14_s32x4 = vshlq_n_s32( tmp2_s32x4, 4 );
|
|
exc_Q14_s32x4 = veorq_s32( exc_Q14_s32x4, sign_s32x4 );
|
|
exc_Q14_s32x4 = vsubq_s32( exc_Q14_s32x4, sign_s32x4 );
|
|
|
|
/* Add predictions */
|
|
LPC_exc_Q14_s32x4 = vaddq_s32( exc_Q14_s32x4, vdupq_n_s32( LTP_pred_Q14 ) );
|
|
xq_Q14_s32x4 = vaddq_s32( LPC_exc_Q14_s32x4, LPC_pred_Q14_s32x4 );
|
|
|
|
/* Update states */
|
|
tmp1_s32x4 = vsubq_s32( xq_Q14_s32x4, vshlq_n_s32( vdupq_n_s32( x_Q10[ i ] ), 4 ) );
|
|
vst1q_s32( psSampleState[ 1 ].Diff_Q14, tmp1_s32x4 );
|
|
sLF_AR_shp_Q14_s32x4 = vsubq_s32( tmp1_s32x4, n_AR_Q14_s32x4 );
|
|
vst1q_s32( psSampleState[ 1 ].sLTP_shp_Q14, vsubq_s32( sLF_AR_shp_Q14_s32x4, n_LF_Q14_s32x4 ) );
|
|
vst1q_s32( psSampleState[ 1 ].LF_AR_Q14, sLF_AR_shp_Q14_s32x4 );
|
|
vst1q_s32( psSampleState[ 1 ].LPC_exc_Q14, LPC_exc_Q14_s32x4 );
|
|
vst1q_s32( psSampleState[ 1 ].xq_Q14, xq_Q14_s32x4 );
|
|
}
|
|
|
|
*smpl_buf_idx = *smpl_buf_idx ? ( *smpl_buf_idx - 1 ) : ( DECISION_DELAY - 1);
|
|
last_smple_idx = *smpl_buf_idx + decisionDelay + DECISION_DELAY;
|
|
if( last_smple_idx >= DECISION_DELAY ) last_smple_idx -= DECISION_DELAY;
|
|
if( last_smple_idx >= DECISION_DELAY ) last_smple_idx -= DECISION_DELAY;
|
|
|
|
/* Find winner */
|
|
RDmin_Q10 = psSampleState[ 0 ].RD_Q10[ 0 ];
|
|
Winner_ind = 0;
|
|
for( k = 1; k < nStatesDelayedDecision; k++ ) {
|
|
if( psSampleState[ 0 ].RD_Q10[ k ] < RDmin_Q10 ) {
|
|
RDmin_Q10 = psSampleState[ 0 ].RD_Q10[ k ];
|
|
Winner_ind = k;
|
|
}
|
|
}
|
|
|
|
/* Increase RD values of expired states */
|
|
{
|
|
uint32x4_t t_u32x4;
|
|
Winner_rand_state = psDelDec->RandState[ last_smple_idx ][ Winner_ind ];
|
|
t_u32x4 = vceqq_s32( vld1q_s32( psDelDec->RandState[ last_smple_idx ] ), vdupq_n_s32( Winner_rand_state ) );
|
|
t_u32x4 = vmvnq_u32( t_u32x4 );
|
|
t_u32x4 = vshrq_n_u32( t_u32x4, 5 );
|
|
tmp1_s32x4 = vld1q_s32( psSampleState[ 0 ].RD_Q10 );
|
|
tmp2_s32x4 = vld1q_s32( psSampleState[ 1 ].RD_Q10 );
|
|
tmp1_s32x4 = vaddq_s32( tmp1_s32x4, vreinterpretq_s32_u32( t_u32x4 ) );
|
|
tmp2_s32x4 = vaddq_s32( tmp2_s32x4, vreinterpretq_s32_u32( t_u32x4 ) );
|
|
vst1q_s32( psSampleState[ 0 ].RD_Q10, tmp1_s32x4 );
|
|
vst1q_s32( psSampleState[ 1 ].RD_Q10, tmp2_s32x4 );
|
|
|
|
/* Find worst in first set and best in second set */
|
|
RDmax_Q10 = psSampleState[ 0 ].RD_Q10[ 0 ];
|
|
RDmin_Q10 = psSampleState[ 1 ].RD_Q10[ 0 ];
|
|
RDmax_ind = 0;
|
|
RDmin_ind = 0;
|
|
for( k = 1; k < nStatesDelayedDecision; k++ ) {
|
|
/* find worst in first set */
|
|
if( psSampleState[ 0 ].RD_Q10[ k ] > RDmax_Q10 ) {
|
|
RDmax_Q10 = psSampleState[ 0 ].RD_Q10[ k ];
|
|
RDmax_ind = k;
|
|
}
|
|
/* find best in second set */
|
|
if( psSampleState[ 1 ].RD_Q10[ k ] < RDmin_Q10 ) {
|
|
RDmin_Q10 = psSampleState[ 1 ].RD_Q10[ k ];
|
|
RDmin_ind = k;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Replace a state if best from second set outperforms worst in first set */
|
|
if( RDmin_Q10 < RDmax_Q10 ) {
|
|
opus_int32 (*ptr)[NEON_MAX_DEL_DEC_STATES] = psDelDec->RandState;
|
|
const int numOthers = (int)( ( sizeof( NSQ_del_decs_struct ) - sizeof( ( (NSQ_del_decs_struct *)0 )->sLPC_Q14 ) )
|
|
/ ( NEON_MAX_DEL_DEC_STATES * sizeof( opus_int32 ) ) );
|
|
/* Only ( predictLPCOrder - 1 ) of sLPC_Q14 buffer need to be updated, though the first several */
|
|
/* useless sLPC_Q14[] will be different comparing with C when predictLPCOrder < NSQ_LPC_BUF_LENGTH. */
|
|
/* Here just update constant ( NSQ_LPC_BUF_LENGTH - 1 ) for simplicity. */
|
|
for( j = i + 1; j < i + NSQ_LPC_BUF_LENGTH; j++ ) {
|
|
psDelDec->sLPC_Q14[ j ][ RDmax_ind ] = psDelDec->sLPC_Q14[ j ][ RDmin_ind ];
|
|
}
|
|
for( j = 0; j < numOthers; j++ ) {
|
|
ptr[ j ][ RDmax_ind ] = ptr[ j ][ RDmin_ind ];
|
|
}
|
|
|
|
psSampleState[ 0 ].Q_Q10[ RDmax_ind ] = psSampleState[ 1 ].Q_Q10[ RDmin_ind ];
|
|
psSampleState[ 0 ].RD_Q10[ RDmax_ind ] = psSampleState[ 1 ].RD_Q10[ RDmin_ind ];
|
|
psSampleState[ 0 ].xq_Q14[ RDmax_ind ] = psSampleState[ 1 ].xq_Q14[ RDmin_ind ];
|
|
psSampleState[ 0 ].LF_AR_Q14[ RDmax_ind ] = psSampleState[ 1 ].LF_AR_Q14[ RDmin_ind ];
|
|
psSampleState[ 0 ].Diff_Q14[ RDmax_ind ] = psSampleState[ 1 ].Diff_Q14[ RDmin_ind ];
|
|
psSampleState[ 0 ].sLTP_shp_Q14[ RDmax_ind ] = psSampleState[ 1 ].sLTP_shp_Q14[ RDmin_ind ];
|
|
psSampleState[ 0 ].LPC_exc_Q14[ RDmax_ind ] = psSampleState[ 1 ].LPC_exc_Q14[ RDmin_ind ];
|
|
}
|
|
|
|
/* Write samples from winner to output and long-term filter states */
|
|
if( subfr > 0 || i >= decisionDelay ) {
|
|
pulses[ i - decisionDelay ] = (opus_int8)silk_RSHIFT_ROUND( psDelDec->Q_Q10[ last_smple_idx ][ Winner_ind ], 10 );
|
|
xq[ i - decisionDelay ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND(
|
|
silk_SMULWW( psDelDec->Xq_Q14[ last_smple_idx ][ Winner_ind ], delayedGain_Q10[ last_smple_idx ] ), 8 ) );
|
|
NSQ->sLTP_shp_Q14[ NSQ->sLTP_shp_buf_idx - decisionDelay ] = psDelDec->Shape_Q14[ last_smple_idx ][ Winner_ind ];
|
|
sLTP_Q15[ NSQ->sLTP_buf_idx - decisionDelay ] = psDelDec->Pred_Q15[ last_smple_idx ][ Winner_ind ];
|
|
}
|
|
NSQ->sLTP_shp_buf_idx++;
|
|
NSQ->sLTP_buf_idx++;
|
|
|
|
/* Update states */
|
|
vst1q_s32( psDelDec->LF_AR_Q14, vld1q_s32( psSampleState[ 0 ].LF_AR_Q14 ) );
|
|
vst1q_s32( psDelDec->Diff_Q14, vld1q_s32( psSampleState[ 0 ].Diff_Q14 ) );
|
|
vst1q_s32( psDelDec->sLPC_Q14[ NSQ_LPC_BUF_LENGTH + i ], vld1q_s32( psSampleState[ 0 ].xq_Q14 ) );
|
|
vst1q_s32( psDelDec->Xq_Q14[ *smpl_buf_idx ], vld1q_s32( psSampleState[ 0 ].xq_Q14 ) );
|
|
tmp1_s32x4 = vld1q_s32( psSampleState[ 0 ].Q_Q10 );
|
|
vst1q_s32( psDelDec->Q_Q10[ *smpl_buf_idx ], tmp1_s32x4 );
|
|
vst1q_s32( psDelDec->Pred_Q15[ *smpl_buf_idx ], vshlq_n_s32( vld1q_s32( psSampleState[ 0 ].LPC_exc_Q14 ), 1 ) );
|
|
vst1q_s32( psDelDec->Shape_Q14[ *smpl_buf_idx ], vld1q_s32( psSampleState[ 0 ].sLTP_shp_Q14 ) );
|
|
tmp1_s32x4 = vrshrq_n_s32( tmp1_s32x4, 10 );
|
|
tmp1_s32x4 = vaddq_s32( vld1q_s32( psDelDec->Seed ), tmp1_s32x4 );
|
|
vst1q_s32( psDelDec->Seed, tmp1_s32x4 );
|
|
vst1q_s32( psDelDec->RandState[ *smpl_buf_idx ], tmp1_s32x4 );
|
|
vst1q_s32( psDelDec->RD_Q10, vld1q_s32( psSampleState[ 0 ].RD_Q10 ) );
|
|
delayedGain_Q10[ *smpl_buf_idx ] = Gain_Q10;
|
|
}
|
|
/* Update LPC states */
|
|
silk_memcpy( psDelDec->sLPC_Q14[ 0 ], psDelDec->sLPC_Q14[ length ], NEON_MAX_DEL_DEC_STATES * NSQ_LPC_BUF_LENGTH * sizeof( opus_int32 ) );
|
|
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
static OPUS_INLINE void silk_SMULWB_8_neon(
|
|
const opus_int16 *a,
|
|
const int32x2_t b,
|
|
opus_int32 *o
|
|
)
|
|
{
|
|
const int16x8_t a_s16x8 = vld1q_s16( a );
|
|
int32x4_t o0_s32x4, o1_s32x4;
|
|
|
|
o0_s32x4 = vshll_n_s16( vget_low_s16( a_s16x8 ), 15 );
|
|
o1_s32x4 = vshll_n_s16( vget_high_s16( a_s16x8 ), 15 );
|
|
o0_s32x4 = vqdmulhq_lane_s32( o0_s32x4, b, 0 );
|
|
o1_s32x4 = vqdmulhq_lane_s32( o1_s32x4, b, 0 );
|
|
vst1q_s32( o, o0_s32x4 );
|
|
vst1q_s32( o + 4, o1_s32x4 );
|
|
}
|
|
|
|
/* Only works when ( b >= -65536 ) && ( b < 65536 ). */
|
|
static OPUS_INLINE void silk_SMULWW_small_b_4_neon(
|
|
opus_int32 *a,
|
|
const int32x2_t b_s32x2)
|
|
{
|
|
int32x4_t o_s32x4;
|
|
|
|
o_s32x4 = vld1q_s32( a );
|
|
o_s32x4 = vqdmulhq_lane_s32( o_s32x4, b_s32x2, 0 );
|
|
vst1q_s32( a, o_s32x4 );
|
|
}
|
|
|
|
/* Only works when ( b >= -65536 ) && ( b < 65536 ). */
|
|
static OPUS_INLINE void silk_SMULWW_small_b_8_neon(
|
|
opus_int32 *a,
|
|
const int32x2_t b_s32x2
|
|
)
|
|
{
|
|
int32x4_t o0_s32x4, o1_s32x4;
|
|
|
|
o0_s32x4 = vld1q_s32( a );
|
|
o1_s32x4 = vld1q_s32( a + 4 );
|
|
o0_s32x4 = vqdmulhq_lane_s32( o0_s32x4, b_s32x2, 0 );
|
|
o1_s32x4 = vqdmulhq_lane_s32( o1_s32x4, b_s32x2, 0 );
|
|
vst1q_s32( a, o0_s32x4 );
|
|
vst1q_s32( a + 4, o1_s32x4 );
|
|
}
|
|
|
|
static OPUS_INLINE void silk_SMULWW_4_neon(
|
|
opus_int32 *a,
|
|
const int32x2_t b_s32x2)
|
|
{
|
|
int32x4_t a_s32x4, o_s32x4;
|
|
|
|
a_s32x4 = vld1q_s32( a );
|
|
o_s32x4 = vqdmulhq_lane_s32( a_s32x4, b_s32x2, 0 );
|
|
o_s32x4 = vmlaq_lane_s32( o_s32x4, a_s32x4, b_s32x2, 1 );
|
|
vst1q_s32( a, o_s32x4 );
|
|
}
|
|
|
|
static OPUS_INLINE void silk_SMULWW_8_neon(
|
|
opus_int32 *a,
|
|
const int32x2_t b_s32x2
|
|
)
|
|
{
|
|
int32x4_t a0_s32x4, a1_s32x4, o0_s32x4, o1_s32x4;
|
|
|
|
a0_s32x4 = vld1q_s32( a );
|
|
a1_s32x4 = vld1q_s32( a + 4 );
|
|
o0_s32x4 = vqdmulhq_lane_s32( a0_s32x4, b_s32x2, 0 );
|
|
o1_s32x4 = vqdmulhq_lane_s32( a1_s32x4, b_s32x2, 0 );
|
|
o0_s32x4 = vmlaq_lane_s32( o0_s32x4, a0_s32x4, b_s32x2, 1 );
|
|
o1_s32x4 = vmlaq_lane_s32( o1_s32x4, a1_s32x4, b_s32x2, 1 );
|
|
vst1q_s32( a, o0_s32x4 );
|
|
vst1q_s32( a + 4, o1_s32x4 );
|
|
}
|
|
|
|
static OPUS_INLINE void silk_SMULWW_loop_neon(
|
|
const opus_int16 *a,
|
|
const opus_int32 b,
|
|
opus_int32 *o,
|
|
const opus_int loop_num
|
|
)
|
|
{
|
|
opus_int i;
|
|
int32x2_t b_s32x2;
|
|
|
|
b_s32x2 = vdup_n_s32( b );
|
|
for( i = 0; i < loop_num - 7; i += 8 ) {
|
|
silk_SMULWB_8_neon( a + i, b_s32x2, o + i );
|
|
}
|
|
for( ; i < loop_num; i++ ) {
|
|
o[ i ] = silk_SMULWW( a[ i ], b );
|
|
}
|
|
}
|
|
|
|
static OPUS_INLINE void silk_nsq_del_dec_scale_states_neon(
|
|
const silk_encoder_state *psEncC, /* I Encoder State */
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
NSQ_del_decs_struct psDelDec[], /* I/O Delayed decision states */
|
|
const opus_int16 x16[], /* I Input */
|
|
opus_int32 x_sc_Q10[], /* O Input scaled with 1/Gain in Q10 */
|
|
const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */
|
|
opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
|
|
opus_int subfr, /* I Subframe number */
|
|
const opus_int LTP_scale_Q14, /* I LTP state scaling */
|
|
const opus_int32 Gains_Q16[ MAX_NB_SUBFR ], /* I */
|
|
const opus_int pitchL[ MAX_NB_SUBFR ], /* I Pitch lag */
|
|
const opus_int signal_type, /* I Signal type */
|
|
const opus_int decisionDelay /* I Decision delay */
|
|
)
|
|
{
|
|
opus_int i, lag;
|
|
opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q26;
|
|
|
|
lag = pitchL[ subfr ];
|
|
inv_gain_Q31 = silk_INVERSE32_varQ( silk_max( Gains_Q16[ subfr ], 1 ), 47 );
|
|
silk_assert( inv_gain_Q31 != 0 );
|
|
|
|
/* Scale input */
|
|
inv_gain_Q26 = silk_RSHIFT_ROUND( inv_gain_Q31, 5 );
|
|
silk_SMULWW_loop_neon( x16, inv_gain_Q26, x_sc_Q10, psEncC->subfr_length );
|
|
|
|
/* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */
|
|
if( NSQ->rewhite_flag ) {
|
|
if( subfr == 0 ) {
|
|
/* Do LTP downscaling */
|
|
inv_gain_Q31 = silk_LSHIFT( silk_SMULWB( inv_gain_Q31, LTP_scale_Q14 ), 2 );
|
|
}
|
|
silk_SMULWW_loop_neon( sLTP + NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2, inv_gain_Q31, sLTP_Q15 + NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2, lag + LTP_ORDER / 2 );
|
|
}
|
|
|
|
/* Adjust for changing gain */
|
|
if( Gains_Q16[ subfr ] != NSQ->prev_gain_Q16 ) {
|
|
int32x2_t gain_adj_Q16_s32x2;
|
|
gain_adj_Q16 = silk_DIV32_varQ( NSQ->prev_gain_Q16, Gains_Q16[ subfr ], 16 );
|
|
|
|
/* Scale long-term shaping state */
|
|
if( ( gain_adj_Q16 >= -65536 ) && ( gain_adj_Q16 < 65536 ) ) {
|
|
gain_adj_Q16_s32x2 = vdup_n_s32( silk_LSHIFT32( gain_adj_Q16, 15 ) );
|
|
for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx - 7; i += 8 ) {
|
|
silk_SMULWW_small_b_8_neon( NSQ->sLTP_shp_Q14 + i, gain_adj_Q16_s32x2 );
|
|
}
|
|
for( ; i < NSQ->sLTP_shp_buf_idx; i++ ) {
|
|
NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] );
|
|
}
|
|
|
|
/* Scale long-term prediction state */
|
|
if( signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0 ) {
|
|
for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx - decisionDelay - 7; i += 8 ) {
|
|
silk_SMULWW_small_b_8_neon( sLTP_Q15 + i, gain_adj_Q16_s32x2 );
|
|
}
|
|
for( ; i < NSQ->sLTP_buf_idx - decisionDelay; i++ ) {
|
|
sLTP_Q15[ i ] = silk_SMULWW( gain_adj_Q16, sLTP_Q15[ i ] );
|
|
}
|
|
}
|
|
|
|
/* Scale scalar states */
|
|
silk_SMULWW_small_b_4_neon( psDelDec->LF_AR_Q14, gain_adj_Q16_s32x2 );
|
|
silk_SMULWW_small_b_4_neon( psDelDec->Diff_Q14, gain_adj_Q16_s32x2 );
|
|
|
|
/* Scale short-term prediction and shaping states */
|
|
for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) {
|
|
silk_SMULWW_small_b_4_neon( psDelDec->sLPC_Q14[ i ], gain_adj_Q16_s32x2 );
|
|
}
|
|
|
|
for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) {
|
|
silk_SMULWW_small_b_4_neon( psDelDec->sAR2_Q14[ i ], gain_adj_Q16_s32x2 );
|
|
}
|
|
|
|
for( i = 0; i < DECISION_DELAY; i++ ) {
|
|
silk_SMULWW_small_b_4_neon( psDelDec->Pred_Q15[ i ], gain_adj_Q16_s32x2 );
|
|
silk_SMULWW_small_b_4_neon( psDelDec->Shape_Q14[ i ], gain_adj_Q16_s32x2 );
|
|
}
|
|
} else {
|
|
gain_adj_Q16_s32x2 = vdup_n_s32( silk_LSHIFT32( gain_adj_Q16 & 0x0000FFFF, 15 ) );
|
|
gain_adj_Q16_s32x2 = vset_lane_s32( gain_adj_Q16 >> 16, gain_adj_Q16_s32x2, 1 );
|
|
for( i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx - 7; i += 8 ) {
|
|
silk_SMULWW_8_neon( NSQ->sLTP_shp_Q14 + i, gain_adj_Q16_s32x2 );
|
|
}
|
|
for( ; i < NSQ->sLTP_shp_buf_idx; i++ ) {
|
|
NSQ->sLTP_shp_Q14[ i ] = silk_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q14[ i ] );
|
|
}
|
|
|
|
/* Scale long-term prediction state */
|
|
if( signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0 ) {
|
|
for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx - decisionDelay - 7; i += 8 ) {
|
|
silk_SMULWW_8_neon( sLTP_Q15 + i, gain_adj_Q16_s32x2 );
|
|
}
|
|
for( ; i < NSQ->sLTP_buf_idx - decisionDelay; i++ ) {
|
|
sLTP_Q15[ i ] = silk_SMULWW( gain_adj_Q16, sLTP_Q15[ i ] );
|
|
}
|
|
}
|
|
|
|
/* Scale scalar states */
|
|
silk_SMULWW_4_neon( psDelDec->LF_AR_Q14, gain_adj_Q16_s32x2 );
|
|
silk_SMULWW_4_neon( psDelDec->Diff_Q14, gain_adj_Q16_s32x2 );
|
|
|
|
/* Scale short-term prediction and shaping states */
|
|
for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) {
|
|
silk_SMULWW_4_neon( psDelDec->sLPC_Q14[ i ], gain_adj_Q16_s32x2 );
|
|
}
|
|
|
|
for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) {
|
|
silk_SMULWW_4_neon( psDelDec->sAR2_Q14[ i ], gain_adj_Q16_s32x2 );
|
|
}
|
|
|
|
for( i = 0; i < DECISION_DELAY; i++ ) {
|
|
silk_SMULWW_4_neon( psDelDec->Pred_Q15[ i ], gain_adj_Q16_s32x2 );
|
|
silk_SMULWW_4_neon( psDelDec->Shape_Q14[ i ], gain_adj_Q16_s32x2 );
|
|
}
|
|
}
|
|
|
|
/* Save inverse gain */
|
|
NSQ->prev_gain_Q16 = Gains_Q16[ subfr ];
|
|
}
|
|
}
|