ioq3quest/code/renderergl1/tr_shade.c
Simon McVittie 5909b9a1cf Isolate the Altivec code so non-Altivec PPC targets can use the same binary.
Moved all the code using Altivec intrinsics to separate files. This 
means we can optionally use GCC's -maltivec on just these files, which
are chosen at runtime if the CPU supports Altivec, and compile the rest
without it, making a single binary that has Altivec optimizations but
can still work on G3.

Unlike SSE and similar extensions on x86, there does not seem to be
a way to enable conditional, targeted use of Altivec based on runtime
detection (which is what ioquake3 wants to do) without also giving the
compiler permission to use Altivec in code generation; so to not crash
on CPUs that do not implement Altivec, we'll have to turn it off
altogether, except in translation units that are only entered when
runtime Altivec detection is successful.

This has been tested on Linux PPC (on an Altivec-enabled CPU),
but we may need further work after testing trickles out to other
PowerPC devices and ancient Mac OS X builds.

I did a little work on this patch, but the majority of the effort belongs 
to Simon McVittie (thanks!).
2018-05-12 14:14:47 -04:00

1341 lines
30 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_shade.c
#include "tr_local.h"
/*
THIS ENTIRE FILE IS BACK END
This file deals with applying shaders to surface data in the tess struct.
*/
/*
================
R_ArrayElementDiscrete
This is just for OpenGL conformance testing, it should never be the fastest
================
*/
static void APIENTRY R_ArrayElementDiscrete( GLint index ) {
qglColor4ubv( tess.svars.colors[ index ] );
if ( glState.currenttmu ) {
qglMultiTexCoord2fARB( 0, tess.svars.texcoords[ 0 ][ index ][0], tess.svars.texcoords[ 0 ][ index ][1] );
qglMultiTexCoord2fARB( 1, tess.svars.texcoords[ 1 ][ index ][0], tess.svars.texcoords[ 1 ][ index ][1] );
} else {
qglTexCoord2fv( tess.svars.texcoords[ 0 ][ index ] );
}
qglVertex3fv( tess.xyz[ index ] );
}
/*
===================
R_DrawStripElements
===================
*/
static int c_vertexes; // for seeing how long our average strips are
static int c_begins;
static void R_DrawStripElements( int numIndexes, const glIndex_t *indexes, void ( APIENTRY *element )(GLint) ) {
int i;
int last[3] = { -1, -1, -1 };
qboolean even;
c_begins++;
if ( numIndexes <= 0 ) {
return;
}
qglBegin( GL_TRIANGLE_STRIP );
// prime the strip
element( indexes[0] );
element( indexes[1] );
element( indexes[2] );
c_vertexes += 3;
last[0] = indexes[0];
last[1] = indexes[1];
last[2] = indexes[2];
even = qfalse;
for ( i = 3; i < numIndexes; i += 3 )
{
// odd numbered triangle in potential strip
if ( !even )
{
// check previous triangle to see if we're continuing a strip
if ( ( indexes[i+0] == last[2] ) && ( indexes[i+1] == last[1] ) )
{
element( indexes[i+2] );
c_vertexes++;
assert( indexes[i+2] < tess.numVertexes );
even = qtrue;
}
// otherwise we're done with this strip so finish it and start
// a new one
else
{
qglEnd();
qglBegin( GL_TRIANGLE_STRIP );
c_begins++;
element( indexes[i+0] );
element( indexes[i+1] );
element( indexes[i+2] );
c_vertexes += 3;
even = qfalse;
}
}
else
{
// check previous triangle to see if we're continuing a strip
if ( ( last[2] == indexes[i+1] ) && ( last[0] == indexes[i+0] ) )
{
element( indexes[i+2] );
c_vertexes++;
even = qfalse;
}
// otherwise we're done with this strip so finish it and start
// a new one
else
{
qglEnd();
qglBegin( GL_TRIANGLE_STRIP );
c_begins++;
element( indexes[i+0] );
element( indexes[i+1] );
element( indexes[i+2] );
c_vertexes += 3;
even = qfalse;
}
}
// cache the last three vertices
last[0] = indexes[i+0];
last[1] = indexes[i+1];
last[2] = indexes[i+2];
}
qglEnd();
}
/*
==================
R_DrawElements
Optionally performs our own glDrawElements that looks for strip conditions
instead of using the single glDrawElements call that may be inefficient
without compiled vertex arrays.
==================
*/
void R_DrawElements( int numIndexes, const glIndex_t *indexes ) {
int primitives;
primitives = r_primitives->integer;
// default is to use triangles if compiled vertex arrays are present
if ( primitives == 0 ) {
if ( qglLockArraysEXT ) {
primitives = 2;
} else {
primitives = 1;
}
}
if ( primitives == 2 ) {
qglDrawElements( GL_TRIANGLES,
numIndexes,
GL_INDEX_TYPE,
indexes );
return;
}
if ( primitives == 1 ) {
R_DrawStripElements( numIndexes, indexes, qglArrayElement );
return;
}
if ( primitives == 3 ) {
R_DrawStripElements( numIndexes, indexes, R_ArrayElementDiscrete );
return;
}
// anything else will cause no drawing
}
/*
=============================================================
SURFACE SHADERS
=============================================================
*/
shaderCommands_t tess;
static qboolean setArraysOnce;
/*
=================
R_BindAnimatedImage
=================
*/
static void R_BindAnimatedImage( textureBundle_t *bundle ) {
int64_t index;
if ( bundle->isVideoMap ) {
ri.CIN_RunCinematic(bundle->videoMapHandle);
ri.CIN_UploadCinematic(bundle->videoMapHandle);
return;
}
if ( bundle->numImageAnimations <= 1 ) {
GL_Bind( bundle->image[0] );
return;
}
// it is necessary to do this messy calc to make sure animations line up
// exactly with waveforms of the same frequency
index = tess.shaderTime * bundle->imageAnimationSpeed * FUNCTABLE_SIZE;
index >>= FUNCTABLE_SIZE2;
if ( index < 0 ) {
index = 0; // may happen with shader time offsets
}
// Windows x86 doesn't load renderer DLL with 64 bit modulus
//index %= bundle->numImageAnimations;
while ( index >= bundle->numImageAnimations ) {
index -= bundle->numImageAnimations;
}
GL_Bind( bundle->image[ index ] );
}
/*
================
DrawTris
Draws triangle outlines for debugging
================
*/
static void DrawTris (shaderCommands_t *input) {
GL_Bind( tr.whiteImage );
qglColor3f (1,1,1);
GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE );
qglDepthRange( 0, 0 );
qglDisableClientState (GL_COLOR_ARRAY);
qglDisableClientState (GL_TEXTURE_COORD_ARRAY);
qglVertexPointer (3, GL_FLOAT, 16, input->xyz); // padded for SIMD
if (qglLockArraysEXT) {
qglLockArraysEXT(0, input->numVertexes);
GLimp_LogComment( "glLockArraysEXT\n" );
}
R_DrawElements( input->numIndexes, input->indexes );
if (qglUnlockArraysEXT) {
qglUnlockArraysEXT();
GLimp_LogComment( "glUnlockArraysEXT\n" );
}
qglDepthRange( 0, 1 );
}
/*
================
DrawNormals
Draws vertex normals for debugging
================
*/
static void DrawNormals (shaderCommands_t *input) {
int i;
vec3_t temp;
GL_Bind( tr.whiteImage );
qglColor3f (1,1,1);
qglDepthRange( 0, 0 ); // never occluded
GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE );
qglBegin (GL_LINES);
for (i = 0 ; i < input->numVertexes ; i++) {
qglVertex3fv (input->xyz[i]);
VectorMA (input->xyz[i], 2, input->normal[i], temp);
qglVertex3fv (temp);
}
qglEnd ();
qglDepthRange( 0, 1 );
}
/*
==============
RB_BeginSurface
We must set some things up before beginning any tesselation,
because a surface may be forced to perform a RB_End due
to overflow.
==============
*/
void RB_BeginSurface( shader_t *shader, int fogNum ) {
shader_t *state = (shader->remappedShader) ? shader->remappedShader : shader;
tess.numIndexes = 0;
tess.numVertexes = 0;
tess.shader = state;
tess.fogNum = fogNum;
tess.dlightBits = 0; // will be OR'd in by surface functions
tess.xstages = state->stages;
tess.numPasses = state->numUnfoggedPasses;
tess.currentStageIteratorFunc = state->optimalStageIteratorFunc;
tess.shaderTime = backEnd.refdef.floatTime - tess.shader->timeOffset;
if (tess.shader->clampTime && tess.shaderTime >= tess.shader->clampTime) {
tess.shaderTime = tess.shader->clampTime;
}
}
/*
===================
DrawMultitextured
output = t0 * t1 or t0 + t1
t0 = most upstream according to spec
t1 = most downstream according to spec
===================
*/
static void DrawMultitextured( shaderCommands_t *input, int stage ) {
shaderStage_t *pStage;
pStage = tess.xstages[stage];
GL_State( pStage->stateBits );
// this is an ugly hack to work around a GeForce driver
// bug with multitexture and clip planes
if ( backEnd.viewParms.isPortal ) {
qglPolygonMode( GL_FRONT_AND_BACK, GL_FILL );
}
//
// base
//
GL_SelectTexture( 0 );
qglTexCoordPointer( 2, GL_FLOAT, 0, input->svars.texcoords[0] );
R_BindAnimatedImage( &pStage->bundle[0] );
//
// lightmap/secondary pass
//
GL_SelectTexture( 1 );
qglEnable( GL_TEXTURE_2D );
qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
if ( r_lightmap->integer ) {
GL_TexEnv( GL_REPLACE );
} else {
GL_TexEnv( tess.shader->multitextureEnv );
}
qglTexCoordPointer( 2, GL_FLOAT, 0, input->svars.texcoords[1] );
R_BindAnimatedImage( &pStage->bundle[1] );
R_DrawElements( input->numIndexes, input->indexes );
//
// disable texturing on TEXTURE1, then select TEXTURE0
//
//qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
qglDisable( GL_TEXTURE_2D );
GL_SelectTexture( 0 );
}
/*
===================
ProjectDlightTexture
Perform dynamic lighting with another rendering pass
===================
*/
static void ProjectDlightTexture_scalar( void ) {
int i, l;
vec3_t origin;
float *texCoords;
byte *colors;
byte clipBits[SHADER_MAX_VERTEXES];
float texCoordsArray[SHADER_MAX_VERTEXES][2];
byte colorArray[SHADER_MAX_VERTEXES][4];
glIndex_t hitIndexes[SHADER_MAX_INDEXES];
int numIndexes;
float scale;
float radius;
vec3_t floatColor;
float modulate = 0.0f;
if ( !backEnd.refdef.num_dlights ) {
return;
}
for ( l = 0 ; l < backEnd.refdef.num_dlights ; l++ ) {
dlight_t *dl;
if ( !( tess.dlightBits & ( 1 << l ) ) ) {
continue; // this surface definitely doesn't have any of this light
}
texCoords = texCoordsArray[0];
colors = colorArray[0];
dl = &backEnd.refdef.dlights[l];
VectorCopy( dl->transformed, origin );
radius = dl->radius;
scale = 1.0f / radius;
if(r_greyscale->integer)
{
float luminance;
luminance = LUMA(dl->color[0], dl->color[1], dl->color[2]) * 255.0f;
floatColor[0] = floatColor[1] = floatColor[2] = luminance;
}
else if(r_greyscale->value)
{
float luminance;
luminance = LUMA(dl->color[0], dl->color[1], dl->color[2]) * 255.0f;
floatColor[0] = LERP(dl->color[0] * 255.0f, luminance, r_greyscale->value);
floatColor[1] = LERP(dl->color[1] * 255.0f, luminance, r_greyscale->value);
floatColor[2] = LERP(dl->color[2] * 255.0f, luminance, r_greyscale->value);
}
else
{
floatColor[0] = dl->color[0] * 255.0f;
floatColor[1] = dl->color[1] * 255.0f;
floatColor[2] = dl->color[2] * 255.0f;
}
for ( i = 0 ; i < tess.numVertexes ; i++, texCoords += 2, colors += 4 ) {
int clip = 0;
vec3_t dist;
VectorSubtract( origin, tess.xyz[i], dist );
backEnd.pc.c_dlightVertexes++;
texCoords[0] = 0.5f + dist[0] * scale;
texCoords[1] = 0.5f + dist[1] * scale;
if( !r_dlightBacks->integer &&
// dist . tess.normal[i]
( dist[0] * tess.normal[i][0] +
dist[1] * tess.normal[i][1] +
dist[2] * tess.normal[i][2] ) < 0.0f ) {
clip = 63;
} else {
if ( texCoords[0] < 0.0f ) {
clip |= 1;
} else if ( texCoords[0] > 1.0f ) {
clip |= 2;
}
if ( texCoords[1] < 0.0f ) {
clip |= 4;
} else if ( texCoords[1] > 1.0f ) {
clip |= 8;
}
texCoords[0] = texCoords[0];
texCoords[1] = texCoords[1];
// modulate the strength based on the height and color
if ( dist[2] > radius ) {
clip |= 16;
modulate = 0.0f;
} else if ( dist[2] < -radius ) {
clip |= 32;
modulate = 0.0f;
} else {
dist[2] = Q_fabs(dist[2]);
if ( dist[2] < radius * 0.5f ) {
modulate = 1.0f;
} else {
modulate = 2.0f * (radius - dist[2]) * scale;
}
}
}
clipBits[i] = clip;
colors[0] = ri.ftol(floatColor[0] * modulate);
colors[1] = ri.ftol(floatColor[1] * modulate);
colors[2] = ri.ftol(floatColor[2] * modulate);
colors[3] = 255;
}
// build a list of triangles that need light
numIndexes = 0;
for ( i = 0 ; i < tess.numIndexes ; i += 3 ) {
int a, b, c;
a = tess.indexes[i];
b = tess.indexes[i+1];
c = tess.indexes[i+2];
if ( clipBits[a] & clipBits[b] & clipBits[c] ) {
continue; // not lighted
}
hitIndexes[numIndexes] = a;
hitIndexes[numIndexes+1] = b;
hitIndexes[numIndexes+2] = c;
numIndexes += 3;
}
if ( !numIndexes ) {
continue;
}
qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
qglTexCoordPointer( 2, GL_FLOAT, 0, texCoordsArray[0] );
qglEnableClientState( GL_COLOR_ARRAY );
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, colorArray );
GL_Bind( tr.dlightImage );
// include GLS_DEPTHFUNC_EQUAL so alpha tested surfaces don't add light
// where they aren't rendered
if ( dl->additive ) {
GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL );
}
else {
GL_State( GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL );
}
R_DrawElements( numIndexes, hitIndexes );
backEnd.pc.c_totalIndexes += numIndexes;
backEnd.pc.c_dlightIndexes += numIndexes;
}
}
static void ProjectDlightTexture( void ) {
#if idppc_altivec
if (com_altivec->integer) {
// must be in a separate translation unit or G3 systems will crash.
ProjectDlightTexture_altivec();
return;
}
#endif
ProjectDlightTexture_scalar();
}
/*
===================
RB_FogPass
Blends a fog texture on top of everything else
===================
*/
static void RB_FogPass( void ) {
fog_t *fog;
int i;
qglEnableClientState( GL_COLOR_ARRAY );
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, tess.svars.colors );
qglEnableClientState( GL_TEXTURE_COORD_ARRAY);
qglTexCoordPointer( 2, GL_FLOAT, 0, tess.svars.texcoords[0] );
fog = tr.world->fogs + tess.fogNum;
for ( i = 0; i < tess.numVertexes; i++ ) {
* ( int * )&tess.svars.colors[i] = fog->colorInt;
}
RB_CalcFogTexCoords( ( float * ) tess.svars.texcoords[0] );
GL_Bind( tr.fogImage );
if ( tess.shader->fogPass == FP_EQUAL ) {
GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA | GLS_DEPTHFUNC_EQUAL );
} else {
GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA );
}
R_DrawElements( tess.numIndexes, tess.indexes );
}
/*
===============
ComputeColors
===============
*/
static void ComputeColors( shaderStage_t *pStage )
{
int i;
//
// rgbGen
//
switch ( pStage->rgbGen )
{
case CGEN_IDENTITY:
Com_Memset( tess.svars.colors, 0xff, tess.numVertexes * 4 );
break;
default:
case CGEN_IDENTITY_LIGHTING:
Com_Memset( tess.svars.colors, tr.identityLightByte, tess.numVertexes * 4 );
break;
case CGEN_LIGHTING_DIFFUSE:
RB_CalcDiffuseColor( ( unsigned char * ) tess.svars.colors );
break;
case CGEN_EXACT_VERTEX:
Com_Memcpy( tess.svars.colors, tess.vertexColors, tess.numVertexes * sizeof( tess.vertexColors[0] ) );
break;
case CGEN_CONST:
for ( i = 0; i < tess.numVertexes; i++ ) {
*(int *)tess.svars.colors[i] = *(int *)pStage->constantColor;
}
break;
case CGEN_VERTEX:
if ( tr.identityLight == 1 )
{
Com_Memcpy( tess.svars.colors, tess.vertexColors, tess.numVertexes * sizeof( tess.vertexColors[0] ) );
}
else
{
for ( i = 0; i < tess.numVertexes; i++ )
{
tess.svars.colors[i][0] = tess.vertexColors[i][0] * tr.identityLight;
tess.svars.colors[i][1] = tess.vertexColors[i][1] * tr.identityLight;
tess.svars.colors[i][2] = tess.vertexColors[i][2] * tr.identityLight;
tess.svars.colors[i][3] = tess.vertexColors[i][3];
}
}
break;
case CGEN_ONE_MINUS_VERTEX:
if ( tr.identityLight == 1 )
{
for ( i = 0; i < tess.numVertexes; i++ )
{
tess.svars.colors[i][0] = 255 - tess.vertexColors[i][0];
tess.svars.colors[i][1] = 255 - tess.vertexColors[i][1];
tess.svars.colors[i][2] = 255 - tess.vertexColors[i][2];
}
}
else
{
for ( i = 0; i < tess.numVertexes; i++ )
{
tess.svars.colors[i][0] = ( 255 - tess.vertexColors[i][0] ) * tr.identityLight;
tess.svars.colors[i][1] = ( 255 - tess.vertexColors[i][1] ) * tr.identityLight;
tess.svars.colors[i][2] = ( 255 - tess.vertexColors[i][2] ) * tr.identityLight;
}
}
break;
case CGEN_FOG:
{
fog_t *fog;
fog = tr.world->fogs + tess.fogNum;
for ( i = 0; i < tess.numVertexes; i++ ) {
* ( int * )&tess.svars.colors[i] = fog->colorInt;
}
}
break;
case CGEN_WAVEFORM:
RB_CalcWaveColor( &pStage->rgbWave, ( unsigned char * ) tess.svars.colors );
break;
case CGEN_ENTITY:
RB_CalcColorFromEntity( ( unsigned char * ) tess.svars.colors );
break;
case CGEN_ONE_MINUS_ENTITY:
RB_CalcColorFromOneMinusEntity( ( unsigned char * ) tess.svars.colors );
break;
}
//
// alphaGen
//
switch ( pStage->alphaGen )
{
case AGEN_SKIP:
break;
case AGEN_IDENTITY:
if ( pStage->rgbGen != CGEN_IDENTITY ) {
if ( ( pStage->rgbGen == CGEN_VERTEX && tr.identityLight != 1 ) ||
pStage->rgbGen != CGEN_VERTEX ) {
for ( i = 0; i < tess.numVertexes; i++ ) {
tess.svars.colors[i][3] = 0xff;
}
}
}
break;
case AGEN_CONST:
if ( pStage->rgbGen != CGEN_CONST ) {
for ( i = 0; i < tess.numVertexes; i++ ) {
tess.svars.colors[i][3] = pStage->constantColor[3];
}
}
break;
case AGEN_WAVEFORM:
RB_CalcWaveAlpha( &pStage->alphaWave, ( unsigned char * ) tess.svars.colors );
break;
case AGEN_LIGHTING_SPECULAR:
RB_CalcSpecularAlpha( ( unsigned char * ) tess.svars.colors );
break;
case AGEN_ENTITY:
RB_CalcAlphaFromEntity( ( unsigned char * ) tess.svars.colors );
break;
case AGEN_ONE_MINUS_ENTITY:
RB_CalcAlphaFromOneMinusEntity( ( unsigned char * ) tess.svars.colors );
break;
case AGEN_VERTEX:
if ( pStage->rgbGen != CGEN_VERTEX ) {
for ( i = 0; i < tess.numVertexes; i++ ) {
tess.svars.colors[i][3] = tess.vertexColors[i][3];
}
}
break;
case AGEN_ONE_MINUS_VERTEX:
for ( i = 0; i < tess.numVertexes; i++ )
{
tess.svars.colors[i][3] = 255 - tess.vertexColors[i][3];
}
break;
case AGEN_PORTAL:
{
unsigned char alpha;
for ( i = 0; i < tess.numVertexes; i++ )
{
float len;
vec3_t v;
VectorSubtract( tess.xyz[i], backEnd.viewParms.or.origin, v );
len = VectorLength( v );
len /= tess.shader->portalRange;
if ( len < 0 )
{
alpha = 0;
}
else if ( len > 1 )
{
alpha = 0xff;
}
else
{
alpha = len * 0xff;
}
tess.svars.colors[i][3] = alpha;
}
}
break;
}
//
// fog adjustment for colors to fade out as fog increases
//
if ( tess.fogNum )
{
switch ( pStage->adjustColorsForFog )
{
case ACFF_MODULATE_RGB:
RB_CalcModulateColorsByFog( ( unsigned char * ) tess.svars.colors );
break;
case ACFF_MODULATE_ALPHA:
RB_CalcModulateAlphasByFog( ( unsigned char * ) tess.svars.colors );
break;
case ACFF_MODULATE_RGBA:
RB_CalcModulateRGBAsByFog( ( unsigned char * ) tess.svars.colors );
break;
case ACFF_NONE:
break;
}
}
// if in greyscale rendering mode turn all color values into greyscale.
if(r_greyscale->integer)
{
int scale;
for(i = 0; i < tess.numVertexes; i++)
{
scale = LUMA(tess.svars.colors[i][0], tess.svars.colors[i][1], tess.svars.colors[i][2]);
tess.svars.colors[i][0] = tess.svars.colors[i][1] = tess.svars.colors[i][2] = scale;
}
}
else if(r_greyscale->value)
{
float scale;
for(i = 0; i < tess.numVertexes; i++)
{
scale = LUMA(tess.svars.colors[i][0], tess.svars.colors[i][1], tess.svars.colors[i][2]);
tess.svars.colors[i][0] = LERP(tess.svars.colors[i][0], scale, r_greyscale->value);
tess.svars.colors[i][1] = LERP(tess.svars.colors[i][1], scale, r_greyscale->value);
tess.svars.colors[i][2] = LERP(tess.svars.colors[i][2], scale, r_greyscale->value);
}
}
}
/*
===============
ComputeTexCoords
===============
*/
static void ComputeTexCoords( shaderStage_t *pStage ) {
int i;
int b;
for ( b = 0; b < NUM_TEXTURE_BUNDLES; b++ ) {
int tm;
//
// generate the texture coordinates
//
switch ( pStage->bundle[b].tcGen )
{
case TCGEN_IDENTITY:
Com_Memset( tess.svars.texcoords[b], 0, sizeof( float ) * 2 * tess.numVertexes );
break;
case TCGEN_TEXTURE:
for ( i = 0 ; i < tess.numVertexes ; i++ ) {
tess.svars.texcoords[b][i][0] = tess.texCoords[i][0][0];
tess.svars.texcoords[b][i][1] = tess.texCoords[i][0][1];
}
break;
case TCGEN_LIGHTMAP:
for ( i = 0 ; i < tess.numVertexes ; i++ ) {
tess.svars.texcoords[b][i][0] = tess.texCoords[i][1][0];
tess.svars.texcoords[b][i][1] = tess.texCoords[i][1][1];
}
break;
case TCGEN_VECTOR:
for ( i = 0 ; i < tess.numVertexes ; i++ ) {
tess.svars.texcoords[b][i][0] = DotProduct( tess.xyz[i], pStage->bundle[b].tcGenVectors[0] );
tess.svars.texcoords[b][i][1] = DotProduct( tess.xyz[i], pStage->bundle[b].tcGenVectors[1] );
}
break;
case TCGEN_FOG:
RB_CalcFogTexCoords( ( float * ) tess.svars.texcoords[b] );
break;
case TCGEN_ENVIRONMENT_MAPPED:
RB_CalcEnvironmentTexCoords( ( float * ) tess.svars.texcoords[b] );
break;
case TCGEN_BAD:
return;
}
//
// alter texture coordinates
//
for ( tm = 0; tm < pStage->bundle[b].numTexMods ; tm++ ) {
switch ( pStage->bundle[b].texMods[tm].type )
{
case TMOD_NONE:
tm = TR_MAX_TEXMODS; // break out of for loop
break;
case TMOD_TURBULENT:
RB_CalcTurbulentTexCoords( &pStage->bundle[b].texMods[tm].wave,
( float * ) tess.svars.texcoords[b] );
break;
case TMOD_ENTITY_TRANSLATE:
RB_CalcScrollTexCoords( backEnd.currentEntity->e.shaderTexCoord,
( float * ) tess.svars.texcoords[b] );
break;
case TMOD_SCROLL:
RB_CalcScrollTexCoords( pStage->bundle[b].texMods[tm].scroll,
( float * ) tess.svars.texcoords[b] );
break;
case TMOD_SCALE:
RB_CalcScaleTexCoords( pStage->bundle[b].texMods[tm].scale,
( float * ) tess.svars.texcoords[b] );
break;
case TMOD_STRETCH:
RB_CalcStretchTexCoords( &pStage->bundle[b].texMods[tm].wave,
( float * ) tess.svars.texcoords[b] );
break;
case TMOD_TRANSFORM:
RB_CalcTransformTexCoords( &pStage->bundle[b].texMods[tm],
( float * ) tess.svars.texcoords[b] );
break;
case TMOD_ROTATE:
RB_CalcRotateTexCoords( pStage->bundle[b].texMods[tm].rotateSpeed,
( float * ) tess.svars.texcoords[b] );
break;
default:
ri.Error( ERR_DROP, "ERROR: unknown texmod '%d' in shader '%s'", pStage->bundle[b].texMods[tm].type, tess.shader->name );
break;
}
}
}
}
/*
** RB_IterateStagesGeneric
*/
static void RB_IterateStagesGeneric( shaderCommands_t *input )
{
int stage;
for ( stage = 0; stage < MAX_SHADER_STAGES; stage++ )
{
shaderStage_t *pStage = tess.xstages[stage];
if ( !pStage )
{
break;
}
ComputeColors( pStage );
ComputeTexCoords( pStage );
if ( !setArraysOnce )
{
qglEnableClientState( GL_COLOR_ARRAY );
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, input->svars.colors );
}
//
// do multitexture
//
if ( pStage->bundle[1].image[0] != 0 )
{
DrawMultitextured( input, stage );
}
else
{
if ( !setArraysOnce )
{
qglTexCoordPointer( 2, GL_FLOAT, 0, input->svars.texcoords[0] );
}
//
// set state
//
R_BindAnimatedImage( &pStage->bundle[0] );
GL_State( pStage->stateBits );
//
// draw
//
R_DrawElements( input->numIndexes, input->indexes );
}
// allow skipping out to show just lightmaps during development
if ( r_lightmap->integer && ( pStage->bundle[0].isLightmap || pStage->bundle[1].isLightmap ) )
{
break;
}
}
}
/*
** RB_StageIteratorGeneric
*/
void RB_StageIteratorGeneric( void )
{
shaderCommands_t *input;
shader_t *shader;
input = &tess;
shader = input->shader;
RB_DeformTessGeometry();
//
// log this call
//
if ( r_logFile->integer )
{
// don't just call LogComment, or we will get
// a call to va() every frame!
GLimp_LogComment( va("--- RB_StageIteratorGeneric( %s ) ---\n", tess.shader->name) );
}
//
// set face culling appropriately
//
GL_Cull( shader->cullType );
// set polygon offset if necessary
if ( shader->polygonOffset )
{
qglEnable( GL_POLYGON_OFFSET_FILL );
qglPolygonOffset( r_offsetFactor->value, r_offsetUnits->value );
}
//
// if there is only a single pass then we can enable color
// and texture arrays before we compile, otherwise we need
// to avoid compiling those arrays since they will change
// during multipass rendering
//
if ( tess.numPasses > 1 || shader->multitextureEnv )
{
setArraysOnce = qfalse;
qglDisableClientState (GL_COLOR_ARRAY);
qglDisableClientState (GL_TEXTURE_COORD_ARRAY);
}
else
{
setArraysOnce = qtrue;
qglEnableClientState( GL_COLOR_ARRAY);
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, tess.svars.colors );
qglEnableClientState( GL_TEXTURE_COORD_ARRAY);
qglTexCoordPointer( 2, GL_FLOAT, 0, tess.svars.texcoords[0] );
}
//
// lock XYZ
//
qglVertexPointer (3, GL_FLOAT, 16, input->xyz); // padded for SIMD
if (qglLockArraysEXT)
{
qglLockArraysEXT(0, input->numVertexes);
GLimp_LogComment( "glLockArraysEXT\n" );
}
//
// enable color and texcoord arrays after the lock if necessary
//
if ( !setArraysOnce )
{
qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
qglEnableClientState( GL_COLOR_ARRAY );
}
//
// call shader function
//
RB_IterateStagesGeneric( input );
//
// now do any dynamic lighting needed
//
if ( tess.dlightBits && tess.shader->sort <= SS_OPAQUE
&& !(tess.shader->surfaceFlags & (SURF_NODLIGHT | SURF_SKY) ) ) {
ProjectDlightTexture();
}
//
// now do fog
//
if ( tess.fogNum && tess.shader->fogPass ) {
RB_FogPass();
}
//
// unlock arrays
//
if (qglUnlockArraysEXT)
{
qglUnlockArraysEXT();
GLimp_LogComment( "glUnlockArraysEXT\n" );
}
//
// reset polygon offset
//
if ( shader->polygonOffset )
{
qglDisable( GL_POLYGON_OFFSET_FILL );
}
}
/*
** RB_StageIteratorVertexLitTexture
*/
void RB_StageIteratorVertexLitTexture( void )
{
shaderCommands_t *input;
shader_t *shader;
input = &tess;
shader = input->shader;
//
// compute colors
//
RB_CalcDiffuseColor( ( unsigned char * ) tess.svars.colors );
//
// log this call
//
if ( r_logFile->integer )
{
// don't just call LogComment, or we will get
// a call to va() every frame!
GLimp_LogComment( va("--- RB_StageIteratorVertexLitTexturedUnfogged( %s ) ---\n", tess.shader->name) );
}
//
// set face culling appropriately
//
GL_Cull( shader->cullType );
//
// set arrays and lock
//
qglEnableClientState( GL_COLOR_ARRAY);
qglEnableClientState( GL_TEXTURE_COORD_ARRAY);
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, tess.svars.colors );
qglTexCoordPointer( 2, GL_FLOAT, 16, tess.texCoords[0][0] );
qglVertexPointer (3, GL_FLOAT, 16, input->xyz);
if ( qglLockArraysEXT )
{
qglLockArraysEXT(0, input->numVertexes);
GLimp_LogComment( "glLockArraysEXT\n" );
}
//
// call special shade routine
//
R_BindAnimatedImage( &tess.xstages[0]->bundle[0] );
GL_State( tess.xstages[0]->stateBits );
R_DrawElements( input->numIndexes, input->indexes );
//
// now do any dynamic lighting needed
//
if ( tess.dlightBits && tess.shader->sort <= SS_OPAQUE ) {
ProjectDlightTexture();
}
//
// now do fog
//
if ( tess.fogNum && tess.shader->fogPass ) {
RB_FogPass();
}
//
// unlock arrays
//
if (qglUnlockArraysEXT)
{
qglUnlockArraysEXT();
GLimp_LogComment( "glUnlockArraysEXT\n" );
}
}
//define REPLACE_MODE
void RB_StageIteratorLightmappedMultitexture( void ) {
shaderCommands_t *input;
shader_t *shader;
input = &tess;
shader = input->shader;
//
// log this call
//
if ( r_logFile->integer ) {
// don't just call LogComment, or we will get
// a call to va() every frame!
GLimp_LogComment( va("--- RB_StageIteratorLightmappedMultitexture( %s ) ---\n", tess.shader->name) );
}
//
// set face culling appropriately
//
GL_Cull( shader->cullType );
//
// set color, pointers, and lock
//
GL_State( GLS_DEFAULT );
qglVertexPointer( 3, GL_FLOAT, 16, input->xyz );
#ifdef REPLACE_MODE
qglDisableClientState( GL_COLOR_ARRAY );
qglColor3f( 1, 1, 1 );
qglShadeModel( GL_FLAT );
#else
qglEnableClientState( GL_COLOR_ARRAY );
qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, tess.constantColor255 );
#endif
//
// select base stage
//
GL_SelectTexture( 0 );
qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
R_BindAnimatedImage( &tess.xstages[0]->bundle[0] );
qglTexCoordPointer( 2, GL_FLOAT, 16, tess.texCoords[0][0] );
//
// configure second stage
//
GL_SelectTexture( 1 );
qglEnable( GL_TEXTURE_2D );
if ( r_lightmap->integer ) {
GL_TexEnv( GL_REPLACE );
} else {
GL_TexEnv( GL_MODULATE );
}
R_BindAnimatedImage( &tess.xstages[0]->bundle[1] );
qglEnableClientState( GL_TEXTURE_COORD_ARRAY );
qglTexCoordPointer( 2, GL_FLOAT, 16, tess.texCoords[0][1] );
//
// lock arrays
//
if ( qglLockArraysEXT ) {
qglLockArraysEXT(0, input->numVertexes);
GLimp_LogComment( "glLockArraysEXT\n" );
}
R_DrawElements( input->numIndexes, input->indexes );
//
// disable texturing on TEXTURE1, then select TEXTURE0
//
qglDisable( GL_TEXTURE_2D );
qglDisableClientState( GL_TEXTURE_COORD_ARRAY );
GL_SelectTexture( 0 );
#ifdef REPLACE_MODE
GL_TexEnv( GL_MODULATE );
qglShadeModel( GL_SMOOTH );
#endif
//
// now do any dynamic lighting needed
//
if ( tess.dlightBits && tess.shader->sort <= SS_OPAQUE ) {
ProjectDlightTexture();
}
//
// now do fog
//
if ( tess.fogNum && tess.shader->fogPass ) {
RB_FogPass();
}
//
// unlock arrays
//
if ( qglUnlockArraysEXT ) {
qglUnlockArraysEXT();
GLimp_LogComment( "glUnlockArraysEXT\n" );
}
}
/*
** RB_EndSurface
*/
void RB_EndSurface( void ) {
shaderCommands_t *input;
input = &tess;
if (input->numIndexes == 0) {
return;
}
if (input->indexes[SHADER_MAX_INDEXES-1] != 0) {
ri.Error (ERR_DROP, "RB_EndSurface() - SHADER_MAX_INDEXES hit");
}
if (input->xyz[SHADER_MAX_VERTEXES-1][0] != 0) {
ri.Error (ERR_DROP, "RB_EndSurface() - SHADER_MAX_VERTEXES hit");
}
if ( tess.shader == tr.shadowShader ) {
RB_ShadowTessEnd();
return;
}
// for debugging of sort order issues, stop rendering after a given sort value
if ( r_debugSort->integer && r_debugSort->integer < tess.shader->sort ) {
return;
}
//
// update performance counters
//
backEnd.pc.c_shaders++;
backEnd.pc.c_vertexes += tess.numVertexes;
backEnd.pc.c_indexes += tess.numIndexes;
backEnd.pc.c_totalIndexes += tess.numIndexes * tess.numPasses;
//
// call off to shader specific tess end function
//
tess.currentStageIteratorFunc();
//
// draw debugging stuff
//
if ( r_showtris->integer ) {
DrawTris (input);
}
if ( r_shownormals->integer ) {
DrawNormals (input);
}
// clear shader so we can tell we don't have any unclosed surfaces
tess.numIndexes = 0;
GLimp_LogComment( "----------\n" );
}