mirror of
https://github.com/DrBeef/ioq3quest.git
synced 2024-12-12 05:22:24 +00:00
280 lines
16 KiB
C
280 lines
16 KiB
C
/***********************************************************************
|
|
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
|
names of specific contributors, may be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
***********************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "SigProc_FIX.h"
|
|
#include "define.h"
|
|
#include "tuning_parameters.h"
|
|
#include "pitch.h"
|
|
|
|
#define MAX_FRAME_SIZE 384 /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 */
|
|
|
|
#define QA 25
|
|
#define N_BITS_HEAD_ROOM 3
|
|
#define MIN_RSHIFTS -16
|
|
#define MAX_RSHIFTS (32 - QA)
|
|
|
|
/* Compute reflection coefficients from input signal */
|
|
void silk_burg_modified_c(
|
|
opus_int32 *res_nrg, /* O Residual energy */
|
|
opus_int *res_nrg_Q, /* O Residual energy Q value */
|
|
opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
|
|
const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
|
|
const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */
|
|
const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */
|
|
const opus_int nb_subfr, /* I Number of subframes stacked in x */
|
|
const opus_int D, /* I Order */
|
|
int arch /* I Run-time architecture */
|
|
)
|
|
{
|
|
opus_int k, n, s, lz, rshifts, reached_max_gain;
|
|
opus_int32 C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
|
|
const opus_int16 *x_ptr;
|
|
opus_int32 C_first_row[ SILK_MAX_ORDER_LPC ];
|
|
opus_int32 C_last_row[ SILK_MAX_ORDER_LPC ];
|
|
opus_int32 Af_QA[ SILK_MAX_ORDER_LPC ];
|
|
opus_int32 CAf[ SILK_MAX_ORDER_LPC + 1 ];
|
|
opus_int32 CAb[ SILK_MAX_ORDER_LPC + 1 ];
|
|
opus_int32 xcorr[ SILK_MAX_ORDER_LPC ];
|
|
opus_int64 C0_64;
|
|
|
|
silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
|
|
|
|
/* Compute autocorrelations, added over subframes */
|
|
C0_64 = silk_inner_prod16_aligned_64( x, x, subfr_length*nb_subfr, arch );
|
|
lz = silk_CLZ64(C0_64);
|
|
rshifts = 32 + 1 + N_BITS_HEAD_ROOM - lz;
|
|
if (rshifts > MAX_RSHIFTS) rshifts = MAX_RSHIFTS;
|
|
if (rshifts < MIN_RSHIFTS) rshifts = MIN_RSHIFTS;
|
|
|
|
if (rshifts > 0) {
|
|
C0 = (opus_int32)silk_RSHIFT64(C0_64, rshifts );
|
|
} else {
|
|
C0 = silk_LSHIFT32((opus_int32)C0_64, -rshifts );
|
|
}
|
|
|
|
CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
|
|
silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
|
|
if( rshifts > 0 ) {
|
|
for( s = 0; s < nb_subfr; s++ ) {
|
|
x_ptr = x + s * subfr_length;
|
|
for( n = 1; n < D + 1; n++ ) {
|
|
C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64(
|
|
silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n, arch ), rshifts );
|
|
}
|
|
}
|
|
} else {
|
|
for( s = 0; s < nb_subfr; s++ ) {
|
|
int i;
|
|
opus_int32 d;
|
|
x_ptr = x + s * subfr_length;
|
|
celt_pitch_xcorr(x_ptr, x_ptr + 1, xcorr, subfr_length - D, D, arch );
|
|
for( n = 1; n < D + 1; n++ ) {
|
|
for ( i = n + subfr_length - D, d = 0; i < subfr_length; i++ )
|
|
d = MAC16_16( d, x_ptr[ i ], x_ptr[ i - n ] );
|
|
xcorr[ n - 1 ] += d;
|
|
}
|
|
for( n = 1; n < D + 1; n++ ) {
|
|
C_first_row[ n - 1 ] += silk_LSHIFT32( xcorr[ n - 1 ], -rshifts );
|
|
}
|
|
}
|
|
}
|
|
silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
|
|
|
|
/* Initialize */
|
|
CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1; /* Q(-rshifts) */
|
|
|
|
invGain_Q30 = (opus_int32)1 << 30;
|
|
reached_max_gain = 0;
|
|
for( n = 0; n < D; n++ ) {
|
|
/* Update first row of correlation matrix (without first element) */
|
|
/* Update last row of correlation matrix (without last element, stored in reversed order) */
|
|
/* Update C * Af */
|
|
/* Update C * flipud(Af) (stored in reversed order) */
|
|
if( rshifts > -2 ) {
|
|
for( s = 0; s < nb_subfr; s++ ) {
|
|
x_ptr = x + s * subfr_length;
|
|
x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], 16 - rshifts ); /* Q(16-rshifts) */
|
|
x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts ); /* Q(16-rshifts) */
|
|
tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], QA - 16 ); /* Q(QA-16) */
|
|
tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 ); /* Q(QA-16) */
|
|
for( k = 0; k < n; k++ ) {
|
|
C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
|
|
C_last_row[ k ] = silk_SMLAWB( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
|
|
Atmp_QA = Af_QA[ k ];
|
|
tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ] ); /* Q(QA-16) */
|
|
tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] ); /* Q(QA-16) */
|
|
}
|
|
tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts ); /* Q(16-rshifts) */
|
|
tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts ); /* Q(16-rshifts) */
|
|
for( k = 0; k <= n; k++ ) {
|
|
CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ] ); /* Q( -rshift ) */
|
|
CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] ); /* Q( -rshift ) */
|
|
}
|
|
}
|
|
} else {
|
|
for( s = 0; s < nb_subfr; s++ ) {
|
|
x_ptr = x + s * subfr_length;
|
|
x1 = -silk_LSHIFT32( (opus_int32)x_ptr[ n ], -rshifts ); /* Q( -rshifts ) */
|
|
x2 = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts ); /* Q( -rshifts ) */
|
|
tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ], 17 ); /* Q17 */
|
|
tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 ); /* Q17 */
|
|
for( k = 0; k < n; k++ ) {
|
|
C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ] ); /* Q( -rshifts ) */
|
|
C_last_row[ k ] = silk_MLA( C_last_row[ k ], x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
|
|
Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 ); /* Q17 */
|
|
/* We sometimes have get overflows in the multiplications (even beyond +/- 2^32),
|
|
but they cancel each other and the real result seems to always fit in a 32-bit
|
|
signed integer. This was determined experimentally, not theoretically (unfortunately). */
|
|
tmp1 = silk_MLA_ovflw( tmp1, x_ptr[ n - k - 1 ], Atmp1 ); /* Q17 */
|
|
tmp2 = silk_MLA_ovflw( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 ); /* Q17 */
|
|
}
|
|
tmp1 = -tmp1; /* Q17 */
|
|
tmp2 = -tmp2; /* Q17 */
|
|
for( k = 0; k <= n; k++ ) {
|
|
CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1,
|
|
silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) ); /* Q( -rshift ) */
|
|
CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2,
|
|
silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
|
|
tmp1 = C_first_row[ n ]; /* Q( -rshifts ) */
|
|
tmp2 = C_last_row[ n ]; /* Q( -rshifts ) */
|
|
num = 0; /* Q( -rshifts ) */
|
|
nrg = silk_ADD32( CAb[ 0 ], CAf[ 0 ] ); /* Q( 1-rshifts ) */
|
|
for( k = 0; k < n; k++ ) {
|
|
Atmp_QA = Af_QA[ k ];
|
|
lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1;
|
|
lz = silk_min( 32 - QA, lz );
|
|
Atmp1 = silk_LSHIFT32( Atmp_QA, lz ); /* Q( QA + lz ) */
|
|
|
|
tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
|
|
tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
|
|
num = silk_ADD_LSHIFT32( num, silk_SMMUL( CAb[ n - k ], Atmp1 ), 32 - QA - lz ); /* Q( -rshifts ) */
|
|
nrg = silk_ADD_LSHIFT32( nrg, silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ),
|
|
Atmp1 ), 32 - QA - lz ); /* Q( 1-rshifts ) */
|
|
}
|
|
CAf[ n + 1 ] = tmp1; /* Q( -rshifts ) */
|
|
CAb[ n + 1 ] = tmp2; /* Q( -rshifts ) */
|
|
num = silk_ADD32( num, tmp2 ); /* Q( -rshifts ) */
|
|
num = silk_LSHIFT32( -num, 1 ); /* Q( 1-rshifts ) */
|
|
|
|
/* Calculate the next order reflection (parcor) coefficient */
|
|
if( silk_abs( num ) < nrg ) {
|
|
rc_Q31 = silk_DIV32_varQ( num, nrg, 31 );
|
|
} else {
|
|
rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN;
|
|
}
|
|
|
|
/* Update inverse prediction gain */
|
|
tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
|
|
tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 );
|
|
if( tmp1 <= minInvGain_Q30 ) {
|
|
/* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
|
|
tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 ); /* Q30 */
|
|
rc_Q31 = silk_SQRT_APPROX( tmp2 ); /* Q15 */
|
|
if( rc_Q31 > 0 ) {
|
|
/* Newton-Raphson iteration */
|
|
rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 ); /* Q15 */
|
|
rc_Q31 = silk_LSHIFT32( rc_Q31, 16 ); /* Q31 */
|
|
if( num < 0 ) {
|
|
/* Ensure adjusted reflection coefficients has the original sign */
|
|
rc_Q31 = -rc_Q31;
|
|
}
|
|
}
|
|
invGain_Q30 = minInvGain_Q30;
|
|
reached_max_gain = 1;
|
|
} else {
|
|
invGain_Q30 = tmp1;
|
|
}
|
|
|
|
/* Update the AR coefficients */
|
|
for( k = 0; k < (n + 1) >> 1; k++ ) {
|
|
tmp1 = Af_QA[ k ]; /* QA */
|
|
tmp2 = Af_QA[ n - k - 1 ]; /* QA */
|
|
Af_QA[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* QA */
|
|
Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* QA */
|
|
}
|
|
Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA ); /* QA */
|
|
|
|
if( reached_max_gain ) {
|
|
/* Reached max prediction gain; set remaining coefficients to zero and exit loop */
|
|
for( k = n + 1; k < D; k++ ) {
|
|
Af_QA[ k ] = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Update C * Af and C * Ab */
|
|
for( k = 0; k <= n + 1; k++ ) {
|
|
tmp1 = CAf[ k ]; /* Q( -rshifts ) */
|
|
tmp2 = CAb[ n - k + 1 ]; /* Q( -rshifts ) */
|
|
CAf[ k ] = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 ); /* Q( -rshifts ) */
|
|
CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 ); /* Q( -rshifts ) */
|
|
}
|
|
}
|
|
|
|
if( reached_max_gain ) {
|
|
for( k = 0; k < D; k++ ) {
|
|
/* Scale coefficients */
|
|
A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );
|
|
}
|
|
/* Subtract energy of preceding samples from C0 */
|
|
if( rshifts > 0 ) {
|
|
for( s = 0; s < nb_subfr; s++ ) {
|
|
x_ptr = x + s * subfr_length;
|
|
C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D, arch ), rshifts );
|
|
}
|
|
} else {
|
|
for( s = 0; s < nb_subfr; s++ ) {
|
|
x_ptr = x + s * subfr_length;
|
|
C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D, arch), -rshifts);
|
|
}
|
|
}
|
|
/* Approximate residual energy */
|
|
*res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 );
|
|
*res_nrg_Q = -rshifts;
|
|
} else {
|
|
/* Return residual energy */
|
|
nrg = CAf[ 0 ]; /* Q( -rshifts ) */
|
|
tmp1 = (opus_int32)1 << 16; /* Q16 */
|
|
for( k = 0; k < D; k++ ) {
|
|
Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 ); /* Q16 */
|
|
nrg = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 ); /* Q( -rshifts ) */
|
|
tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 ); /* Q16 */
|
|
A_Q16[ k ] = -Atmp1;
|
|
}
|
|
*res_nrg = silk_SMLAWW( nrg, silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ), -tmp1 );/* Q( -rshifts ) */
|
|
*res_nrg_Q = -rshifts;
|
|
}
|
|
}
|