mirror of
https://github.com/DrBeef/ioq3quest.git
synced 2024-11-30 15:51:53 +00:00
1611 lines
35 KiB
C
1611 lines
35 KiB
C
/*
|
|
===========================================================================
|
|
Copyright (C) 1999-2005 Id Software, Inc.
|
|
|
|
This file is part of Quake III Arena source code.
|
|
|
|
Quake III Arena source code is free software; you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
Quake III Arena source code is distributed in the hope that it will be
|
|
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Quake III Arena source code; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
===========================================================================
|
|
*/
|
|
// tr_image.c
|
|
#include "tr_local.h"
|
|
|
|
static byte s_intensitytable[256];
|
|
static unsigned char s_gammatable[256];
|
|
|
|
int gl_filter_min = GL_LINEAR_MIPMAP_NEAREST;
|
|
int gl_filter_max = GL_LINEAR;
|
|
|
|
#define FILE_HASH_SIZE 1024
|
|
static image_t* hashTable[FILE_HASH_SIZE];
|
|
|
|
/*
|
|
** R_GammaCorrect
|
|
*/
|
|
void R_GammaCorrect( byte *buffer, int bufSize ) {
|
|
int i;
|
|
|
|
for ( i = 0; i < bufSize; i++ ) {
|
|
buffer[i] = s_gammatable[buffer[i]];
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
char *name;
|
|
int minimize, maximize;
|
|
} textureMode_t;
|
|
|
|
textureMode_t modes[] = {
|
|
{"GL_NEAREST", GL_NEAREST, GL_NEAREST},
|
|
{"GL_LINEAR", GL_LINEAR, GL_LINEAR},
|
|
{"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST},
|
|
{"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR},
|
|
{"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST},
|
|
{"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR}
|
|
};
|
|
|
|
/*
|
|
================
|
|
return a hash value for the filename
|
|
================
|
|
*/
|
|
static long generateHashValue( const char *fname ) {
|
|
int i;
|
|
long hash;
|
|
char letter;
|
|
|
|
hash = 0;
|
|
i = 0;
|
|
while (fname[i] != '\0') {
|
|
letter = tolower(fname[i]);
|
|
if (letter =='.') break; // don't include extension
|
|
if (letter =='\\') letter = '/'; // damn path names
|
|
hash+=(long)(letter)*(i+119);
|
|
i++;
|
|
}
|
|
hash &= (FILE_HASH_SIZE-1);
|
|
return hash;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
GL_TextureMode
|
|
===============
|
|
*/
|
|
void GL_TextureMode( const char *string ) {
|
|
int i;
|
|
image_t *glt;
|
|
|
|
for ( i=0 ; i< 6 ; i++ ) {
|
|
if ( !Q_stricmp( modes[i].name, string ) ) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// hack to prevent trilinear from being set on voodoo,
|
|
// because their driver freaks...
|
|
if ( i == 5 && glConfig.hardwareType == GLHW_3DFX_2D3D ) {
|
|
ri.Printf( PRINT_ALL, "Refusing to set trilinear on a voodoo.\n" );
|
|
i = 3;
|
|
}
|
|
|
|
|
|
if ( i == 6 ) {
|
|
ri.Printf (PRINT_ALL, "bad filter name\n");
|
|
return;
|
|
}
|
|
|
|
gl_filter_min = modes[i].minimize;
|
|
gl_filter_max = modes[i].maximize;
|
|
|
|
// change all the existing mipmap texture objects
|
|
for ( i = 0 ; i < tr.numImages ; i++ ) {
|
|
glt = tr.images[ i ];
|
|
if ( glt->mipmap ) {
|
|
GL_Bind (glt);
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_SumOfUsedImages
|
|
===============
|
|
*/
|
|
int R_SumOfUsedImages( void ) {
|
|
int total;
|
|
int i;
|
|
|
|
total = 0;
|
|
for ( i = 0; i < tr.numImages; i++ ) {
|
|
if ( tr.images[i]->frameUsed == tr.frameCount ) {
|
|
total += tr.images[i]->uploadWidth * tr.images[i]->uploadHeight;
|
|
}
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_ImageList_f
|
|
===============
|
|
*/
|
|
void R_ImageList_f( void ) {
|
|
int i;
|
|
image_t *image;
|
|
int texels;
|
|
const char *yesno[] = {
|
|
"no ", "yes"
|
|
};
|
|
|
|
ri.Printf (PRINT_ALL, "\n -w-- -h-- -mm- -TMU- -if-- wrap --name-------\n");
|
|
texels = 0;
|
|
|
|
for ( i = 0 ; i < tr.numImages ; i++ ) {
|
|
image = tr.images[ i ];
|
|
|
|
texels += image->uploadWidth*image->uploadHeight;
|
|
ri.Printf (PRINT_ALL, "%4i: %4i %4i %s %d ",
|
|
i, image->uploadWidth, image->uploadHeight, yesno[image->mipmap], image->TMU );
|
|
switch ( image->internalFormat ) {
|
|
case 1:
|
|
ri.Printf( PRINT_ALL, "I " );
|
|
break;
|
|
case 2:
|
|
ri.Printf( PRINT_ALL, "IA " );
|
|
break;
|
|
case 3:
|
|
ri.Printf( PRINT_ALL, "RGB " );
|
|
break;
|
|
case 4:
|
|
ri.Printf( PRINT_ALL, "RGBA " );
|
|
break;
|
|
case GL_RGBA8:
|
|
ri.Printf( PRINT_ALL, "RGBA8" );
|
|
break;
|
|
case GL_RGB8:
|
|
ri.Printf( PRINT_ALL, "RGB8" );
|
|
break;
|
|
case GL_RGB4_S3TC:
|
|
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
|
|
ri.Printf( PRINT_ALL, "S3TC " );
|
|
break;
|
|
case GL_RGBA4:
|
|
ri.Printf( PRINT_ALL, "RGBA4" );
|
|
break;
|
|
case GL_RGB5:
|
|
ri.Printf( PRINT_ALL, "RGB5 " );
|
|
break;
|
|
default:
|
|
ri.Printf( PRINT_ALL, "???? " );
|
|
}
|
|
|
|
switch ( image->wrapClampMode ) {
|
|
case GL_REPEAT:
|
|
ri.Printf( PRINT_ALL, "rept " );
|
|
break;
|
|
case GL_CLAMP_TO_EDGE:
|
|
ri.Printf( PRINT_ALL, "clmp " );
|
|
break;
|
|
default:
|
|
ri.Printf( PRINT_ALL, "%4i ", image->wrapClampMode );
|
|
break;
|
|
}
|
|
|
|
ri.Printf( PRINT_ALL, " %s\n", image->imgName );
|
|
}
|
|
ri.Printf (PRINT_ALL, " ---------\n");
|
|
ri.Printf (PRINT_ALL, " %i total texels (not including mipmaps)\n", texels);
|
|
ri.Printf (PRINT_ALL, " %i total images\n\n", tr.numImages );
|
|
}
|
|
|
|
//=======================================================================
|
|
|
|
/*
|
|
================
|
|
ResampleTexture
|
|
|
|
Used to resample images in a more general than quartering fashion.
|
|
|
|
This will only be filtered properly if the resampled size
|
|
is greater than half the original size.
|
|
|
|
If a larger shrinking is needed, use the mipmap function
|
|
before or after.
|
|
================
|
|
*/
|
|
static void ResampleTexture( unsigned *in, int inwidth, int inheight, unsigned *out,
|
|
int outwidth, int outheight ) {
|
|
int i, j;
|
|
unsigned *inrow, *inrow2;
|
|
unsigned frac, fracstep;
|
|
unsigned p1[2048], p2[2048];
|
|
byte *pix1, *pix2, *pix3, *pix4;
|
|
|
|
if (outwidth>2048)
|
|
ri.Error(ERR_DROP, "ResampleTexture: max width");
|
|
|
|
fracstep = inwidth*0x10000/outwidth;
|
|
|
|
frac = fracstep>>2;
|
|
for ( i=0 ; i<outwidth ; i++ ) {
|
|
p1[i] = 4*(frac>>16);
|
|
frac += fracstep;
|
|
}
|
|
frac = 3*(fracstep>>2);
|
|
for ( i=0 ; i<outwidth ; i++ ) {
|
|
p2[i] = 4*(frac>>16);
|
|
frac += fracstep;
|
|
}
|
|
|
|
for (i=0 ; i<outheight ; i++, out += outwidth) {
|
|
inrow = in + inwidth*(int)((i+0.25)*inheight/outheight);
|
|
inrow2 = in + inwidth*(int)((i+0.75)*inheight/outheight);
|
|
frac = fracstep >> 1;
|
|
for (j=0 ; j<outwidth ; j++) {
|
|
pix1 = (byte *)inrow + p1[j];
|
|
pix2 = (byte *)inrow + p2[j];
|
|
pix3 = (byte *)inrow2 + p1[j];
|
|
pix4 = (byte *)inrow2 + p2[j];
|
|
((byte *)(out+j))[0] = (pix1[0] + pix2[0] + pix3[0] + pix4[0])>>2;
|
|
((byte *)(out+j))[1] = (pix1[1] + pix2[1] + pix3[1] + pix4[1])>>2;
|
|
((byte *)(out+j))[2] = (pix1[2] + pix2[2] + pix3[2] + pix4[2])>>2;
|
|
((byte *)(out+j))[3] = (pix1[3] + pix2[3] + pix3[3] + pix4[3])>>2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_LightScaleTexture
|
|
|
|
Scale up the pixel values in a texture to increase the
|
|
lighting range
|
|
================
|
|
*/
|
|
void R_LightScaleTexture (unsigned *in, int inwidth, int inheight, qboolean only_gamma )
|
|
{
|
|
if ( only_gamma )
|
|
{
|
|
if ( !glConfig.deviceSupportsGamma )
|
|
{
|
|
int i, c;
|
|
byte *p;
|
|
|
|
p = (byte *)in;
|
|
|
|
c = inwidth*inheight;
|
|
for (i=0 ; i<c ; i++, p+=4)
|
|
{
|
|
p[0] = s_gammatable[p[0]];
|
|
p[1] = s_gammatable[p[1]];
|
|
p[2] = s_gammatable[p[2]];
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int i, c;
|
|
byte *p;
|
|
|
|
p = (byte *)in;
|
|
|
|
c = inwidth*inheight;
|
|
|
|
if ( glConfig.deviceSupportsGamma )
|
|
{
|
|
for (i=0 ; i<c ; i++, p+=4)
|
|
{
|
|
p[0] = s_intensitytable[p[0]];
|
|
p[1] = s_intensitytable[p[1]];
|
|
p[2] = s_intensitytable[p[2]];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i=0 ; i<c ; i++, p+=4)
|
|
{
|
|
p[0] = s_gammatable[s_intensitytable[p[0]]];
|
|
p[1] = s_gammatable[s_intensitytable[p[1]]];
|
|
p[2] = s_gammatable[s_intensitytable[p[2]]];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_MipMap2
|
|
|
|
Operates in place, quartering the size of the texture
|
|
Proper linear filter
|
|
================
|
|
*/
|
|
static void R_MipMap2( unsigned *in, int inWidth, int inHeight ) {
|
|
int i, j, k;
|
|
byte *outpix;
|
|
int inWidthMask, inHeightMask;
|
|
int total;
|
|
int outWidth, outHeight;
|
|
unsigned *temp;
|
|
|
|
outWidth = inWidth >> 1;
|
|
outHeight = inHeight >> 1;
|
|
temp = ri.Hunk_AllocateTempMemory( outWidth * outHeight * 4 );
|
|
|
|
inWidthMask = inWidth - 1;
|
|
inHeightMask = inHeight - 1;
|
|
|
|
for ( i = 0 ; i < outHeight ; i++ ) {
|
|
for ( j = 0 ; j < outWidth ; j++ ) {
|
|
outpix = (byte *) ( temp + i * outWidth + j );
|
|
for ( k = 0 ; k < 4 ; k++ ) {
|
|
total =
|
|
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
|
|
1 * ((byte *)&in[ ((i*2-1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
|
|
|
|
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
|
|
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
|
|
4 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
|
|
|
|
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
|
|
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
|
|
4 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2+1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k] +
|
|
|
|
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2)&inWidthMask) ])[k] +
|
|
2 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask) ])[k] +
|
|
1 * ((byte *)&in[ ((i*2+2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask) ])[k];
|
|
outpix[k] = total / 36;
|
|
}
|
|
}
|
|
}
|
|
|
|
Com_Memcpy( in, temp, outWidth * outHeight * 4 );
|
|
ri.Hunk_FreeTempMemory( temp );
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_MipMap
|
|
|
|
Operates in place, quartering the size of the texture
|
|
================
|
|
*/
|
|
static void R_MipMap (byte *in, int width, int height) {
|
|
int i, j;
|
|
byte *out;
|
|
int row;
|
|
|
|
if ( !r_simpleMipMaps->integer ) {
|
|
R_MipMap2( (unsigned *)in, width, height );
|
|
return;
|
|
}
|
|
|
|
if ( width == 1 && height == 1 ) {
|
|
return;
|
|
}
|
|
|
|
row = width * 4;
|
|
out = in;
|
|
width >>= 1;
|
|
height >>= 1;
|
|
|
|
if ( width == 0 || height == 0 ) {
|
|
width += height; // get largest
|
|
for (i=0 ; i<width ; i++, out+=4, in+=8 ) {
|
|
out[0] = ( in[0] + in[4] )>>1;
|
|
out[1] = ( in[1] + in[5] )>>1;
|
|
out[2] = ( in[2] + in[6] )>>1;
|
|
out[3] = ( in[3] + in[7] )>>1;
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (i=0 ; i<height ; i++, in+=row) {
|
|
for (j=0 ; j<width ; j++, out+=4, in+=8) {
|
|
out[0] = (in[0] + in[4] + in[row+0] + in[row+4])>>2;
|
|
out[1] = (in[1] + in[5] + in[row+1] + in[row+5])>>2;
|
|
out[2] = (in[2] + in[6] + in[row+2] + in[row+6])>>2;
|
|
out[3] = (in[3] + in[7] + in[row+3] + in[row+7])>>2;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
==================
|
|
R_BlendOverTexture
|
|
|
|
Apply a color blend over a set of pixels
|
|
==================
|
|
*/
|
|
static void R_BlendOverTexture( byte *data, int pixelCount, byte blend[4] ) {
|
|
int i;
|
|
int inverseAlpha;
|
|
int premult[3];
|
|
|
|
inverseAlpha = 255 - blend[3];
|
|
premult[0] = blend[0] * blend[3];
|
|
premult[1] = blend[1] * blend[3];
|
|
premult[2] = blend[2] * blend[3];
|
|
|
|
for ( i = 0 ; i < pixelCount ; i++, data+=4 ) {
|
|
data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9;
|
|
data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9;
|
|
data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9;
|
|
}
|
|
}
|
|
|
|
byte mipBlendColors[16][4] = {
|
|
{0,0,0,0},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
{255,0,0,128},
|
|
{0,255,0,128},
|
|
{0,0,255,128},
|
|
};
|
|
|
|
|
|
/*
|
|
===============
|
|
Upload32
|
|
|
|
===============
|
|
*/
|
|
extern qboolean charSet;
|
|
static void Upload32( unsigned *data,
|
|
int width, int height,
|
|
qboolean mipmap,
|
|
qboolean picmip,
|
|
qboolean lightMap,
|
|
int *format,
|
|
int *pUploadWidth, int *pUploadHeight )
|
|
{
|
|
int samples;
|
|
unsigned *scaledBuffer = NULL;
|
|
unsigned *resampledBuffer = NULL;
|
|
int scaled_width, scaled_height;
|
|
int i, c;
|
|
byte *scan;
|
|
GLenum internalFormat = GL_RGB;
|
|
float rMax = 0, gMax = 0, bMax = 0;
|
|
|
|
//
|
|
// convert to exact power of 2 sizes
|
|
//
|
|
for (scaled_width = 1 ; scaled_width < width ; scaled_width<<=1)
|
|
;
|
|
for (scaled_height = 1 ; scaled_height < height ; scaled_height<<=1)
|
|
;
|
|
if ( r_roundImagesDown->integer && scaled_width > width )
|
|
scaled_width >>= 1;
|
|
if ( r_roundImagesDown->integer && scaled_height > height )
|
|
scaled_height >>= 1;
|
|
|
|
if ( scaled_width != width || scaled_height != height ) {
|
|
resampledBuffer = ri.Hunk_AllocateTempMemory( scaled_width * scaled_height * 4 );
|
|
ResampleTexture (data, width, height, resampledBuffer, scaled_width, scaled_height);
|
|
data = resampledBuffer;
|
|
width = scaled_width;
|
|
height = scaled_height;
|
|
}
|
|
|
|
//
|
|
// perform optional picmip operation
|
|
//
|
|
if ( picmip ) {
|
|
scaled_width >>= r_picmip->integer;
|
|
scaled_height >>= r_picmip->integer;
|
|
}
|
|
|
|
//
|
|
// clamp to minimum size
|
|
//
|
|
if (scaled_width < 1) {
|
|
scaled_width = 1;
|
|
}
|
|
if (scaled_height < 1) {
|
|
scaled_height = 1;
|
|
}
|
|
|
|
//
|
|
// clamp to the current upper OpenGL limit
|
|
// scale both axis down equally so we don't have to
|
|
// deal with a half mip resampling
|
|
//
|
|
while ( scaled_width > glConfig.maxTextureSize
|
|
|| scaled_height > glConfig.maxTextureSize ) {
|
|
scaled_width >>= 1;
|
|
scaled_height >>= 1;
|
|
}
|
|
|
|
scaledBuffer = ri.Hunk_AllocateTempMemory( sizeof( unsigned ) * scaled_width * scaled_height );
|
|
|
|
//
|
|
// scan the texture for each channel's max values
|
|
// and verify if the alpha channel is being used or not
|
|
//
|
|
c = width*height;
|
|
scan = ((byte *)data);
|
|
samples = 3;
|
|
|
|
if( r_greyscale->integer )
|
|
{
|
|
for ( i = 0; i < c; i++ )
|
|
{
|
|
byte luma = LUMA(scan[i*4], scan[i*4 + 1], scan[i*4 + 2]);
|
|
scan[i*4] = luma;
|
|
scan[i*4 + 1] = luma;
|
|
scan[i*4 + 2] = luma;
|
|
}
|
|
}
|
|
else if( r_greyscale->value )
|
|
{
|
|
for ( i = 0; i < c; i++ )
|
|
{
|
|
float luma = LUMA(scan[i*4], scan[i*4 + 1], scan[i*4 + 2]);
|
|
scan[i*4] = LERP(scan[i*4], luma, r_greyscale->value);
|
|
scan[i*4 + 1] = LERP(scan[i*4 + 1], luma, r_greyscale->value);
|
|
scan[i*4 + 2] = LERP(scan[i*4 + 2], luma, r_greyscale->value);
|
|
}
|
|
}
|
|
|
|
if(lightMap)
|
|
{
|
|
if(r_greyscale->integer)
|
|
internalFormat = GL_LUMINANCE;
|
|
else
|
|
internalFormat = GL_RGB;
|
|
}
|
|
else
|
|
{
|
|
for ( i = 0; i < c; i++ )
|
|
{
|
|
if ( scan[i*4+0] > rMax )
|
|
{
|
|
rMax = scan[i*4+0];
|
|
}
|
|
if ( scan[i*4+1] > gMax )
|
|
{
|
|
gMax = scan[i*4+1];
|
|
}
|
|
if ( scan[i*4+2] > bMax )
|
|
{
|
|
bMax = scan[i*4+2];
|
|
}
|
|
if ( scan[i*4 + 3] != 255 )
|
|
{
|
|
samples = 4;
|
|
break;
|
|
}
|
|
}
|
|
// select proper internal format
|
|
if ( samples == 3 )
|
|
{
|
|
if(r_greyscale->integer)
|
|
{
|
|
if(r_texturebits->integer == 16)
|
|
internalFormat = GL_LUMINANCE8;
|
|
else if(r_texturebits->integer == 32)
|
|
internalFormat = GL_LUMINANCE16;
|
|
else
|
|
internalFormat = GL_LUMINANCE;
|
|
}
|
|
else
|
|
{
|
|
if ( glConfig.textureCompression == TC_S3TC_ARB )
|
|
{
|
|
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
|
|
}
|
|
else if ( glConfig.textureCompression == TC_S3TC )
|
|
{
|
|
internalFormat = GL_RGB4_S3TC;
|
|
}
|
|
else if ( r_texturebits->integer == 16 )
|
|
{
|
|
internalFormat = GL_RGB5;
|
|
}
|
|
else if ( r_texturebits->integer == 32 )
|
|
{
|
|
internalFormat = GL_RGB8;
|
|
}
|
|
else
|
|
{
|
|
internalFormat = GL_RGB;
|
|
}
|
|
}
|
|
}
|
|
else if ( samples == 4 )
|
|
{
|
|
if(r_greyscale->integer)
|
|
{
|
|
if(r_texturebits->integer == 16)
|
|
internalFormat = GL_LUMINANCE8_ALPHA8;
|
|
else if(r_texturebits->integer == 32)
|
|
internalFormat = GL_LUMINANCE16_ALPHA16;
|
|
else
|
|
internalFormat = GL_LUMINANCE_ALPHA;
|
|
}
|
|
else
|
|
{
|
|
if ( r_texturebits->integer == 16 )
|
|
{
|
|
internalFormat = GL_RGBA4;
|
|
}
|
|
else if ( r_texturebits->integer == 32 )
|
|
{
|
|
internalFormat = GL_RGBA8;
|
|
}
|
|
else
|
|
{
|
|
internalFormat = GL_RGBA;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// copy or resample data as appropriate for first MIP level
|
|
if ( ( scaled_width == width ) &&
|
|
( scaled_height == height ) ) {
|
|
if (!mipmap)
|
|
{
|
|
qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
|
|
*pUploadWidth = scaled_width;
|
|
*pUploadHeight = scaled_height;
|
|
*format = internalFormat;
|
|
|
|
goto done;
|
|
}
|
|
Com_Memcpy (scaledBuffer, data, width*height*4);
|
|
}
|
|
else
|
|
{
|
|
// use the normal mip-mapping function to go down from here
|
|
while ( width > scaled_width || height > scaled_height ) {
|
|
R_MipMap( (byte *)data, width, height );
|
|
width >>= 1;
|
|
height >>= 1;
|
|
if ( width < 1 ) {
|
|
width = 1;
|
|
}
|
|
if ( height < 1 ) {
|
|
height = 1;
|
|
}
|
|
}
|
|
Com_Memcpy( scaledBuffer, data, width * height * 4 );
|
|
}
|
|
|
|
R_LightScaleTexture (scaledBuffer, scaled_width, scaled_height, !mipmap );
|
|
|
|
*pUploadWidth = scaled_width;
|
|
*pUploadHeight = scaled_height;
|
|
*format = internalFormat;
|
|
|
|
qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, scaledBuffer );
|
|
|
|
if (mipmap)
|
|
{
|
|
int miplevel;
|
|
|
|
miplevel = 0;
|
|
while (scaled_width > 1 || scaled_height > 1)
|
|
{
|
|
R_MipMap( (byte *)scaledBuffer, scaled_width, scaled_height );
|
|
scaled_width >>= 1;
|
|
scaled_height >>= 1;
|
|
if (scaled_width < 1)
|
|
scaled_width = 1;
|
|
if (scaled_height < 1)
|
|
scaled_height = 1;
|
|
miplevel++;
|
|
|
|
if ( r_colorMipLevels->integer ) {
|
|
R_BlendOverTexture( (byte *)scaledBuffer, scaled_width * scaled_height, mipBlendColors[miplevel] );
|
|
}
|
|
|
|
qglTexImage2D (GL_TEXTURE_2D, miplevel, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, scaledBuffer );
|
|
}
|
|
}
|
|
done:
|
|
|
|
if (mipmap)
|
|
{
|
|
if ( textureFilterAnisotropic )
|
|
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT,
|
|
(GLint)Com_Clamp( 1, maxAnisotropy, r_ext_max_anisotropy->integer ) );
|
|
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
|
|
}
|
|
else
|
|
{
|
|
if ( textureFilterAnisotropic )
|
|
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1 );
|
|
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
|
|
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
|
|
}
|
|
|
|
GL_CheckErrors();
|
|
|
|
if ( scaledBuffer != 0 )
|
|
ri.Hunk_FreeTempMemory( scaledBuffer );
|
|
if ( resampledBuffer != 0 )
|
|
ri.Hunk_FreeTempMemory( resampledBuffer );
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_CreateImage
|
|
|
|
This is the only way any image_t are created
|
|
================
|
|
*/
|
|
image_t *R_CreateImage( const char *name, const byte *pic, int width, int height,
|
|
qboolean mipmap, qboolean allowPicmip, int glWrapClampMode ) {
|
|
image_t *image;
|
|
qboolean isLightmap = qfalse;
|
|
long hash;
|
|
|
|
if (strlen(name) >= MAX_QPATH ) {
|
|
ri.Error (ERR_DROP, "R_CreateImage: \"%s\" is too long", name);
|
|
}
|
|
if ( !strncmp( name, "*lightmap", 9 ) ) {
|
|
isLightmap = qtrue;
|
|
}
|
|
|
|
if ( tr.numImages == MAX_DRAWIMAGES ) {
|
|
ri.Error( ERR_DROP, "R_CreateImage: MAX_DRAWIMAGES hit");
|
|
}
|
|
|
|
image = tr.images[tr.numImages] = ri.Hunk_Alloc( sizeof( image_t ), h_low );
|
|
image->texnum = 1024 + tr.numImages;
|
|
tr.numImages++;
|
|
|
|
image->mipmap = mipmap;
|
|
image->allowPicmip = allowPicmip;
|
|
|
|
strcpy (image->imgName, name);
|
|
|
|
image->width = width;
|
|
image->height = height;
|
|
image->wrapClampMode = glWrapClampMode;
|
|
|
|
// lightmaps are always allocated on TMU 1
|
|
if ( qglActiveTextureARB && isLightmap ) {
|
|
image->TMU = 1;
|
|
} else {
|
|
image->TMU = 0;
|
|
}
|
|
|
|
if ( qglActiveTextureARB ) {
|
|
GL_SelectTexture( image->TMU );
|
|
}
|
|
|
|
GL_Bind(image);
|
|
|
|
Upload32( (unsigned *)pic, image->width, image->height,
|
|
image->mipmap,
|
|
allowPicmip,
|
|
isLightmap,
|
|
&image->internalFormat,
|
|
&image->uploadWidth,
|
|
&image->uploadHeight );
|
|
|
|
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, glWrapClampMode );
|
|
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, glWrapClampMode );
|
|
|
|
qglBindTexture( GL_TEXTURE_2D, 0 );
|
|
|
|
if ( image->TMU == 1 ) {
|
|
GL_SelectTexture( 0 );
|
|
}
|
|
|
|
hash = generateHashValue(name);
|
|
image->next = hashTable[hash];
|
|
hashTable[hash] = image;
|
|
|
|
return image;
|
|
}
|
|
|
|
//===================================================================
|
|
|
|
typedef struct
|
|
{
|
|
char *ext;
|
|
void (*ImageLoader)( const char *, unsigned char **, int *, int * );
|
|
} imageExtToLoaderMap_t;
|
|
|
|
// Note that the ordering indicates the order of preference used
|
|
// when there are multiple images of different formats available
|
|
static imageExtToLoaderMap_t imageLoaders[ ] =
|
|
{
|
|
{ "tga", R_LoadTGA },
|
|
{ "jpg", R_LoadJPG },
|
|
{ "jpeg", R_LoadJPG },
|
|
{ "png", R_LoadPNG },
|
|
{ "pcx", R_LoadPCX },
|
|
{ "bmp", R_LoadBMP }
|
|
};
|
|
|
|
static int numImageLoaders = ARRAY_LEN( imageLoaders );
|
|
|
|
/*
|
|
=================
|
|
R_LoadImage
|
|
|
|
Loads any of the supported image types into a cannonical
|
|
32 bit format.
|
|
=================
|
|
*/
|
|
void R_LoadImage( const char *name, byte **pic, int *width, int *height )
|
|
{
|
|
qboolean orgNameFailed = qfalse;
|
|
int orgLoader = -1;
|
|
int i;
|
|
char localName[ MAX_QPATH ];
|
|
const char *ext;
|
|
char *altName;
|
|
|
|
*pic = NULL;
|
|
*width = 0;
|
|
*height = 0;
|
|
|
|
Q_strncpyz( localName, name, MAX_QPATH );
|
|
|
|
ext = COM_GetExtension( localName );
|
|
|
|
if( *ext )
|
|
{
|
|
// Look for the correct loader and use it
|
|
for( i = 0; i < numImageLoaders; i++ )
|
|
{
|
|
if( !Q_stricmp( ext, imageLoaders[ i ].ext ) )
|
|
{
|
|
// Load
|
|
imageLoaders[ i ].ImageLoader( localName, pic, width, height );
|
|
break;
|
|
}
|
|
}
|
|
|
|
// A loader was found
|
|
if( i < numImageLoaders )
|
|
{
|
|
if( *pic == NULL )
|
|
{
|
|
// Loader failed, most likely because the file isn't there;
|
|
// try again without the extension
|
|
orgNameFailed = qtrue;
|
|
orgLoader = i;
|
|
COM_StripExtension( name, localName, MAX_QPATH );
|
|
}
|
|
else
|
|
{
|
|
// Something loaded
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try and find a suitable match using all
|
|
// the image formats supported
|
|
for( i = 0; i < numImageLoaders; i++ )
|
|
{
|
|
if (i == orgLoader)
|
|
continue;
|
|
|
|
altName = va( "%s.%s", localName, imageLoaders[ i ].ext );
|
|
|
|
// Load
|
|
imageLoaders[ i ].ImageLoader( altName, pic, width, height );
|
|
|
|
if( *pic )
|
|
{
|
|
if( orgNameFailed )
|
|
{
|
|
ri.Printf( PRINT_DEVELOPER, "WARNING: %s not present, using %s instead\n",
|
|
name, altName );
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
R_FindImageFile
|
|
|
|
Finds or loads the given image.
|
|
Returns NULL if it fails, not a default image.
|
|
==============
|
|
*/
|
|
image_t *R_FindImageFile( const char *name, qboolean mipmap, qboolean allowPicmip, int glWrapClampMode ) {
|
|
image_t *image;
|
|
int width, height;
|
|
byte *pic;
|
|
long hash;
|
|
|
|
if (!name) {
|
|
return NULL;
|
|
}
|
|
|
|
hash = generateHashValue(name);
|
|
|
|
//
|
|
// see if the image is already loaded
|
|
//
|
|
for (image=hashTable[hash]; image; image=image->next) {
|
|
if ( !strcmp( name, image->imgName ) ) {
|
|
// the white image can be used with any set of parms, but other mismatches are errors
|
|
if ( strcmp( name, "*white" ) ) {
|
|
if ( image->mipmap != mipmap ) {
|
|
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed mipmap parm\n", name );
|
|
}
|
|
if ( image->allowPicmip != allowPicmip ) {
|
|
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed allowPicmip parm\n", name );
|
|
}
|
|
if ( image->wrapClampMode != glWrapClampMode ) {
|
|
ri.Printf( PRINT_ALL, "WARNING: reused image %s with mixed glWrapClampMode parm\n", name );
|
|
}
|
|
}
|
|
return image;
|
|
}
|
|
}
|
|
|
|
//
|
|
// load the pic from disk
|
|
//
|
|
R_LoadImage( name, &pic, &width, &height );
|
|
if ( pic == NULL ) {
|
|
return NULL;
|
|
}
|
|
|
|
image = R_CreateImage( ( char * ) name, pic, width, height, mipmap, allowPicmip, glWrapClampMode );
|
|
ri.Free( pic );
|
|
return image;
|
|
}
|
|
|
|
|
|
/*
|
|
================
|
|
R_CreateDlightImage
|
|
================
|
|
*/
|
|
#define DLIGHT_SIZE 16
|
|
static void R_CreateDlightImage( void ) {
|
|
int x,y;
|
|
byte data[DLIGHT_SIZE][DLIGHT_SIZE][4];
|
|
int b;
|
|
|
|
// make a centered inverse-square falloff blob for dynamic lighting
|
|
for (x=0 ; x<DLIGHT_SIZE ; x++) {
|
|
for (y=0 ; y<DLIGHT_SIZE ; y++) {
|
|
float d;
|
|
|
|
d = ( DLIGHT_SIZE/2 - 0.5f - x ) * ( DLIGHT_SIZE/2 - 0.5f - x ) +
|
|
( DLIGHT_SIZE/2 - 0.5f - y ) * ( DLIGHT_SIZE/2 - 0.5f - y );
|
|
b = 4000 / d;
|
|
if (b > 255) {
|
|
b = 255;
|
|
} else if ( b < 75 ) {
|
|
b = 0;
|
|
}
|
|
data[y][x][0] =
|
|
data[y][x][1] =
|
|
data[y][x][2] = b;
|
|
data[y][x][3] = 255;
|
|
}
|
|
}
|
|
tr.dlightImage = R_CreateImage("*dlight", (byte *)data, DLIGHT_SIZE, DLIGHT_SIZE, qfalse, qfalse, GL_CLAMP_TO_EDGE );
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
R_InitFogTable
|
|
=================
|
|
*/
|
|
void R_InitFogTable( void ) {
|
|
int i;
|
|
float d;
|
|
float exp;
|
|
|
|
exp = 0.5;
|
|
|
|
for ( i = 0 ; i < FOG_TABLE_SIZE ; i++ ) {
|
|
d = pow ( (float)i/(FOG_TABLE_SIZE-1), exp );
|
|
|
|
tr.fogTable[i] = d;
|
|
}
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_FogFactor
|
|
|
|
Returns a 0.0 to 1.0 fog density value
|
|
This is called for each texel of the fog texture on startup
|
|
and for each vertex of transparent shaders in fog dynamically
|
|
================
|
|
*/
|
|
float R_FogFactor( float s, float t ) {
|
|
float d;
|
|
|
|
s -= 1.0/512;
|
|
if ( s < 0 ) {
|
|
return 0;
|
|
}
|
|
if ( t < 1.0/32 ) {
|
|
return 0;
|
|
}
|
|
if ( t < 31.0/32 ) {
|
|
s *= (t - 1.0f/32.0f) / (30.0f/32.0f);
|
|
}
|
|
|
|
// we need to leave a lot of clamp range
|
|
s *= 8;
|
|
|
|
if ( s > 1.0 ) {
|
|
s = 1.0;
|
|
}
|
|
|
|
d = tr.fogTable[ (int)(s * (FOG_TABLE_SIZE-1)) ];
|
|
|
|
return d;
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_CreateFogImage
|
|
================
|
|
*/
|
|
#define FOG_S 256
|
|
#define FOG_T 32
|
|
static void R_CreateFogImage( void ) {
|
|
int x,y;
|
|
byte *data;
|
|
float g;
|
|
float d;
|
|
float borderColor[4];
|
|
|
|
data = ri.Hunk_AllocateTempMemory( FOG_S * FOG_T * 4 );
|
|
|
|
g = 2.0;
|
|
|
|
// S is distance, T is depth
|
|
for (x=0 ; x<FOG_S ; x++) {
|
|
for (y=0 ; y<FOG_T ; y++) {
|
|
d = R_FogFactor( ( x + 0.5f ) / FOG_S, ( y + 0.5f ) / FOG_T );
|
|
|
|
data[(y*FOG_S+x)*4+0] =
|
|
data[(y*FOG_S+x)*4+1] =
|
|
data[(y*FOG_S+x)*4+2] = 255;
|
|
data[(y*FOG_S+x)*4+3] = 255*d;
|
|
}
|
|
}
|
|
// standard openGL clamping doesn't really do what we want -- it includes
|
|
// the border color at the edges. OpenGL 1.2 has clamp-to-edge, which does
|
|
// what we want.
|
|
tr.fogImage = R_CreateImage("*fog", (byte *)data, FOG_S, FOG_T, qfalse, qfalse, GL_CLAMP_TO_EDGE );
|
|
ri.Hunk_FreeTempMemory( data );
|
|
|
|
borderColor[0] = 1.0;
|
|
borderColor[1] = 1.0;
|
|
borderColor[2] = 1.0;
|
|
borderColor[3] = 1;
|
|
|
|
qglTexParameterfv( GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor );
|
|
}
|
|
|
|
/*
|
|
==================
|
|
R_CreateDefaultImage
|
|
==================
|
|
*/
|
|
#define DEFAULT_SIZE 16
|
|
static void R_CreateDefaultImage( void ) {
|
|
int x;
|
|
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
|
|
|
|
// the default image will be a box, to allow you to see the mapping coordinates
|
|
Com_Memset( data, 32, sizeof( data ) );
|
|
for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) {
|
|
data[0][x][0] =
|
|
data[0][x][1] =
|
|
data[0][x][2] =
|
|
data[0][x][3] = 255;
|
|
|
|
data[x][0][0] =
|
|
data[x][0][1] =
|
|
data[x][0][2] =
|
|
data[x][0][3] = 255;
|
|
|
|
data[DEFAULT_SIZE-1][x][0] =
|
|
data[DEFAULT_SIZE-1][x][1] =
|
|
data[DEFAULT_SIZE-1][x][2] =
|
|
data[DEFAULT_SIZE-1][x][3] = 255;
|
|
|
|
data[x][DEFAULT_SIZE-1][0] =
|
|
data[x][DEFAULT_SIZE-1][1] =
|
|
data[x][DEFAULT_SIZE-1][2] =
|
|
data[x][DEFAULT_SIZE-1][3] = 255;
|
|
}
|
|
tr.defaultImage = R_CreateImage("*default", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, qtrue, qfalse, GL_REPEAT );
|
|
}
|
|
|
|
/*
|
|
==================
|
|
R_CreateBuiltinImages
|
|
==================
|
|
*/
|
|
void R_CreateBuiltinImages( void ) {
|
|
int x,y;
|
|
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
|
|
|
|
R_CreateDefaultImage();
|
|
|
|
// we use a solid white image instead of disabling texturing
|
|
Com_Memset( data, 255, sizeof( data ) );
|
|
tr.whiteImage = R_CreateImage("*white", (byte *)data, 8, 8, qfalse, qfalse, GL_REPEAT );
|
|
|
|
// with overbright bits active, we need an image which is some fraction of full color,
|
|
// for default lightmaps, etc
|
|
for (x=0 ; x<DEFAULT_SIZE ; x++) {
|
|
for (y=0 ; y<DEFAULT_SIZE ; y++) {
|
|
data[y][x][0] =
|
|
data[y][x][1] =
|
|
data[y][x][2] = tr.identityLightByte;
|
|
data[y][x][3] = 255;
|
|
}
|
|
}
|
|
|
|
tr.identityLightImage = R_CreateImage("*identityLight", (byte *)data, 8, 8, qfalse, qfalse, GL_REPEAT );
|
|
|
|
|
|
for(x=0;x<32;x++) {
|
|
// scratchimage is usually used for cinematic drawing
|
|
tr.scratchImage[x] = R_CreateImage("*scratch", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, qfalse, qtrue, GL_CLAMP_TO_EDGE );
|
|
}
|
|
|
|
R_CreateDlightImage();
|
|
R_CreateFogImage();
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
R_SetColorMappings
|
|
===============
|
|
*/
|
|
void R_SetColorMappings( void ) {
|
|
int i, j;
|
|
float g;
|
|
int inf;
|
|
int shift;
|
|
|
|
// setup the overbright lighting
|
|
tr.overbrightBits = r_overBrightBits->integer;
|
|
if ( !glConfig.deviceSupportsGamma ) {
|
|
tr.overbrightBits = 0; // need hardware gamma for overbright
|
|
}
|
|
|
|
// never overbright in windowed mode
|
|
if ( !glConfig.isFullscreen )
|
|
{
|
|
tr.overbrightBits = 0;
|
|
}
|
|
|
|
// allow 2 overbright bits in 24 bit, but only 1 in 16 bit
|
|
if ( glConfig.colorBits > 16 ) {
|
|
if ( tr.overbrightBits > 2 ) {
|
|
tr.overbrightBits = 2;
|
|
}
|
|
} else {
|
|
if ( tr.overbrightBits > 1 ) {
|
|
tr.overbrightBits = 1;
|
|
}
|
|
}
|
|
if ( tr.overbrightBits < 0 ) {
|
|
tr.overbrightBits = 0;
|
|
}
|
|
|
|
tr.identityLight = 1.0f / ( 1 << tr.overbrightBits );
|
|
tr.identityLightByte = 255 * tr.identityLight;
|
|
|
|
|
|
if ( r_intensity->value <= 1 ) {
|
|
ri.Cvar_Set( "r_intensity", "1" );
|
|
}
|
|
|
|
if ( r_gamma->value < 0.5f ) {
|
|
ri.Cvar_Set( "r_gamma", "0.5" );
|
|
} else if ( r_gamma->value > 3.0f ) {
|
|
ri.Cvar_Set( "r_gamma", "3.0" );
|
|
}
|
|
|
|
g = r_gamma->value;
|
|
|
|
shift = tr.overbrightBits;
|
|
|
|
for ( i = 0; i < 256; i++ ) {
|
|
if ( g == 1 ) {
|
|
inf = i;
|
|
} else {
|
|
inf = 255 * pow ( i/255.0f, 1.0f / g ) + 0.5f;
|
|
}
|
|
inf <<= shift;
|
|
if (inf < 0) {
|
|
inf = 0;
|
|
}
|
|
if (inf > 255) {
|
|
inf = 255;
|
|
}
|
|
s_gammatable[i] = inf;
|
|
}
|
|
|
|
for (i=0 ; i<256 ; i++) {
|
|
j = i * r_intensity->value;
|
|
if (j > 255) {
|
|
j = 255;
|
|
}
|
|
s_intensitytable[i] = j;
|
|
}
|
|
|
|
if ( glConfig.deviceSupportsGamma )
|
|
{
|
|
GLimp_SetGamma( s_gammatable, s_gammatable, s_gammatable );
|
|
}
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_InitImages
|
|
===============
|
|
*/
|
|
void R_InitImages( void ) {
|
|
Com_Memset(hashTable, 0, sizeof(hashTable));
|
|
// build brightness translation tables
|
|
R_SetColorMappings();
|
|
|
|
// create default texture and white texture
|
|
R_CreateBuiltinImages();
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_DeleteTextures
|
|
===============
|
|
*/
|
|
void R_DeleteTextures( void ) {
|
|
int i;
|
|
|
|
for ( i=0; i<tr.numImages ; i++ ) {
|
|
qglDeleteTextures( 1, &tr.images[i]->texnum );
|
|
}
|
|
Com_Memset( tr.images, 0, sizeof( tr.images ) );
|
|
|
|
tr.numImages = 0;
|
|
|
|
Com_Memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) );
|
|
if ( qglActiveTextureARB ) {
|
|
GL_SelectTexture( 1 );
|
|
qglBindTexture( GL_TEXTURE_2D, 0 );
|
|
GL_SelectTexture( 0 );
|
|
qglBindTexture( GL_TEXTURE_2D, 0 );
|
|
} else {
|
|
qglBindTexture( GL_TEXTURE_2D, 0 );
|
|
}
|
|
}
|
|
|
|
/*
|
|
============================================================================
|
|
|
|
SKINS
|
|
|
|
============================================================================
|
|
*/
|
|
|
|
/*
|
|
==================
|
|
CommaParse
|
|
|
|
This is unfortunate, but the skin files aren't
|
|
compatable with our normal parsing rules.
|
|
==================
|
|
*/
|
|
static char *CommaParse( char **data_p ) {
|
|
int c = 0, len;
|
|
char *data;
|
|
static char com_token[MAX_TOKEN_CHARS];
|
|
|
|
data = *data_p;
|
|
len = 0;
|
|
com_token[0] = 0;
|
|
|
|
// make sure incoming data is valid
|
|
if ( !data ) {
|
|
*data_p = NULL;
|
|
return com_token;
|
|
}
|
|
|
|
while ( 1 ) {
|
|
// skip whitespace
|
|
while( (c = *data) <= ' ') {
|
|
if( !c ) {
|
|
break;
|
|
}
|
|
data++;
|
|
}
|
|
|
|
|
|
c = *data;
|
|
|
|
// skip double slash comments
|
|
if ( c == '/' && data[1] == '/' )
|
|
{
|
|
while (*data && *data != '\n')
|
|
data++;
|
|
}
|
|
// skip /* */ comments
|
|
else if ( c=='/' && data[1] == '*' )
|
|
{
|
|
while ( *data && ( *data != '*' || data[1] != '/' ) )
|
|
{
|
|
data++;
|
|
}
|
|
if ( *data )
|
|
{
|
|
data += 2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ( c == 0 ) {
|
|
return "";
|
|
}
|
|
|
|
// handle quoted strings
|
|
if (c == '\"')
|
|
{
|
|
data++;
|
|
while (1)
|
|
{
|
|
c = *data++;
|
|
if (c=='\"' || !c)
|
|
{
|
|
com_token[len] = 0;
|
|
*data_p = ( char * ) data;
|
|
return com_token;
|
|
}
|
|
if (len < MAX_TOKEN_CHARS)
|
|
{
|
|
com_token[len] = c;
|
|
len++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// parse a regular word
|
|
do
|
|
{
|
|
if (len < MAX_TOKEN_CHARS)
|
|
{
|
|
com_token[len] = c;
|
|
len++;
|
|
}
|
|
data++;
|
|
c = *data;
|
|
} while (c>32 && c != ',' );
|
|
|
|
if (len == MAX_TOKEN_CHARS)
|
|
{
|
|
// Com_Printf ("Token exceeded %i chars, discarded.\n", MAX_TOKEN_CHARS);
|
|
len = 0;
|
|
}
|
|
com_token[len] = 0;
|
|
|
|
*data_p = ( char * ) data;
|
|
return com_token;
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
RE_RegisterSkin
|
|
|
|
===============
|
|
*/
|
|
qhandle_t RE_RegisterSkin( const char *name ) {
|
|
qhandle_t hSkin;
|
|
skin_t *skin;
|
|
skinSurface_t *surf;
|
|
union {
|
|
char *c;
|
|
void *v;
|
|
} text;
|
|
char *text_p;
|
|
char *token;
|
|
char surfName[MAX_QPATH];
|
|
|
|
if ( !name || !name[0] ) {
|
|
Com_Printf( "Empty name passed to RE_RegisterSkin\n" );
|
|
return 0;
|
|
}
|
|
|
|
if ( strlen( name ) >= MAX_QPATH ) {
|
|
Com_Printf( "Skin name exceeds MAX_QPATH\n" );
|
|
return 0;
|
|
}
|
|
|
|
|
|
// see if the skin is already loaded
|
|
for ( hSkin = 1; hSkin < tr.numSkins ; hSkin++ ) {
|
|
skin = tr.skins[hSkin];
|
|
if ( !Q_stricmp( skin->name, name ) ) {
|
|
if( skin->numSurfaces == 0 ) {
|
|
return 0; // default skin
|
|
}
|
|
return hSkin;
|
|
}
|
|
}
|
|
|
|
// allocate a new skin
|
|
if ( tr.numSkins == MAX_SKINS ) {
|
|
ri.Printf( PRINT_WARNING, "WARNING: RE_RegisterSkin( '%s' ) MAX_SKINS hit\n", name );
|
|
return 0;
|
|
}
|
|
tr.numSkins++;
|
|
skin = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
|
|
tr.skins[hSkin] = skin;
|
|
Q_strncpyz( skin->name, name, sizeof( skin->name ) );
|
|
skin->numSurfaces = 0;
|
|
|
|
// make sure the render thread is stopped
|
|
R_SyncRenderThread();
|
|
|
|
// If not a .skin file, load as a single shader
|
|
if ( strcmp( name + strlen( name ) - 5, ".skin" ) ) {
|
|
skin->numSurfaces = 1;
|
|
skin->surfaces[0] = ri.Hunk_Alloc( sizeof(skin->surfaces[0]), h_low );
|
|
skin->surfaces[0]->shader = R_FindShader( name, LIGHTMAP_NONE, qtrue );
|
|
return hSkin;
|
|
}
|
|
|
|
// load and parse the skin file
|
|
ri.FS_ReadFile( name, &text.v );
|
|
if ( !text.c ) {
|
|
return 0;
|
|
}
|
|
|
|
text_p = text.c;
|
|
while ( text_p && *text_p ) {
|
|
// get surface name
|
|
token = CommaParse( &text_p );
|
|
Q_strncpyz( surfName, token, sizeof( surfName ) );
|
|
|
|
if ( !token[0] ) {
|
|
break;
|
|
}
|
|
// lowercase the surface name so skin compares are faster
|
|
Q_strlwr( surfName );
|
|
|
|
if ( *text_p == ',' ) {
|
|
text_p++;
|
|
}
|
|
|
|
if ( strstr( token, "tag_" ) ) {
|
|
continue;
|
|
}
|
|
|
|
// parse the shader name
|
|
token = CommaParse( &text_p );
|
|
|
|
surf = skin->surfaces[ skin->numSurfaces ] = ri.Hunk_Alloc( sizeof( *skin->surfaces[0] ), h_low );
|
|
Q_strncpyz( surf->name, surfName, sizeof( surf->name ) );
|
|
surf->shader = R_FindShader( token, LIGHTMAP_NONE, qtrue );
|
|
skin->numSurfaces++;
|
|
}
|
|
|
|
ri.FS_FreeFile( text.v );
|
|
|
|
|
|
// never let a skin have 0 shaders
|
|
if ( skin->numSurfaces == 0 ) {
|
|
return 0; // use default skin
|
|
}
|
|
|
|
return hSkin;
|
|
}
|
|
|
|
|
|
/*
|
|
===============
|
|
R_InitSkins
|
|
===============
|
|
*/
|
|
void R_InitSkins( void ) {
|
|
skin_t *skin;
|
|
|
|
tr.numSkins = 1;
|
|
|
|
// make the default skin have all default shaders
|
|
skin = tr.skins[0] = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
|
|
Q_strncpyz( skin->name, "<default skin>", sizeof( skin->name ) );
|
|
skin->numSurfaces = 1;
|
|
skin->surfaces[0] = ri.Hunk_Alloc( sizeof( *skin->surfaces ), h_low );
|
|
skin->surfaces[0]->shader = tr.defaultShader;
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_GetSkinByHandle
|
|
===============
|
|
*/
|
|
skin_t *R_GetSkinByHandle( qhandle_t hSkin ) {
|
|
if ( hSkin < 1 || hSkin >= tr.numSkins ) {
|
|
return tr.skins[0];
|
|
}
|
|
return tr.skins[ hSkin ];
|
|
}
|
|
|
|
/*
|
|
===============
|
|
R_SkinList_f
|
|
===============
|
|
*/
|
|
void R_SkinList_f( void ) {
|
|
int i, j;
|
|
skin_t *skin;
|
|
|
|
ri.Printf (PRINT_ALL, "------------------\n");
|
|
|
|
for ( i = 0 ; i < tr.numSkins ; i++ ) {
|
|
skin = tr.skins[i];
|
|
|
|
ri.Printf( PRINT_ALL, "%3i:%s\n", i, skin->name );
|
|
for ( j = 0 ; j < skin->numSurfaces ; j++ ) {
|
|
ri.Printf( PRINT_ALL, " %s = %s\n",
|
|
skin->surfaces[j]->name, skin->surfaces[j]->shader->name );
|
|
}
|
|
}
|
|
ri.Printf (PRINT_ALL, "------------------\n");
|
|
}
|
|
|