ioq3quest/code/renderergl2/tr_mesh.c

418 lines
10 KiB
C
Raw Normal View History

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_mesh.c: triangle model functions
#include "tr_local.h"
static float ProjectRadius( float r, vec3_t location )
{
float pr;
float dist;
float c;
vec3_t p;
float projected[4];
c = DotProduct( tr.viewParms.or.axis[0], tr.viewParms.or.origin );
dist = DotProduct( tr.viewParms.or.axis[0], location ) - c;
if ( dist <= 0 )
return 0;
p[0] = 0;
p[1] = fabs( r );
p[2] = -dist;
projected[0] = p[0] * tr.viewParms.projectionMatrix[0] +
p[1] * tr.viewParms.projectionMatrix[4] +
p[2] * tr.viewParms.projectionMatrix[8] +
tr.viewParms.projectionMatrix[12];
projected[1] = p[0] * tr.viewParms.projectionMatrix[1] +
p[1] * tr.viewParms.projectionMatrix[5] +
p[2] * tr.viewParms.projectionMatrix[9] +
tr.viewParms.projectionMatrix[13];
projected[2] = p[0] * tr.viewParms.projectionMatrix[2] +
p[1] * tr.viewParms.projectionMatrix[6] +
p[2] * tr.viewParms.projectionMatrix[10] +
tr.viewParms.projectionMatrix[14];
projected[3] = p[0] * tr.viewParms.projectionMatrix[3] +
p[1] * tr.viewParms.projectionMatrix[7] +
p[2] * tr.viewParms.projectionMatrix[11] +
tr.viewParms.projectionMatrix[15];
pr = projected[1] / projected[3];
if ( pr > 1.0f )
pr = 1.0f;
return pr;
}
/*
=============
R_CullModel
=============
*/
static int R_CullModel( mdvModel_t *model, trRefEntity_t *ent ) {
vec3_t bounds[2];
mdvFrame_t *oldFrame, *newFrame;
int i;
// compute frame pointers
newFrame = model->frames + ent->e.frame;
oldFrame = model->frames + ent->e.oldframe;
// cull bounding sphere ONLY if this is not an upscaled entity
if ( !ent->e.nonNormalizedAxes )
{
if ( ent->e.frame == ent->e.oldframe )
{
switch ( R_CullLocalPointAndRadius( newFrame->localOrigin, newFrame->radius ) )
{
case CULL_OUT:
tr.pc.c_sphere_cull_md3_out++;
return CULL_OUT;
case CULL_IN:
tr.pc.c_sphere_cull_md3_in++;
return CULL_IN;
case CULL_CLIP:
tr.pc.c_sphere_cull_md3_clip++;
break;
}
}
else
{
int sphereCull, sphereCullB;
sphereCull = R_CullLocalPointAndRadius( newFrame->localOrigin, newFrame->radius );
if ( newFrame == oldFrame ) {
sphereCullB = sphereCull;
} else {
sphereCullB = R_CullLocalPointAndRadius( oldFrame->localOrigin, oldFrame->radius );
}
if ( sphereCull == sphereCullB )
{
if ( sphereCull == CULL_OUT )
{
tr.pc.c_sphere_cull_md3_out++;
return CULL_OUT;
}
else if ( sphereCull == CULL_IN )
{
tr.pc.c_sphere_cull_md3_in++;
return CULL_IN;
}
else
{
tr.pc.c_sphere_cull_md3_clip++;
}
}
}
}
// calculate a bounding box in the current coordinate system
for (i = 0 ; i < 3 ; i++) {
bounds[0][i] = oldFrame->bounds[0][i] < newFrame->bounds[0][i] ? oldFrame->bounds[0][i] : newFrame->bounds[0][i];
bounds[1][i] = oldFrame->bounds[1][i] > newFrame->bounds[1][i] ? oldFrame->bounds[1][i] : newFrame->bounds[1][i];
}
switch ( R_CullLocalBox( bounds ) )
{
case CULL_IN:
tr.pc.c_box_cull_md3_in++;
return CULL_IN;
case CULL_CLIP:
tr.pc.c_box_cull_md3_clip++;
return CULL_CLIP;
case CULL_OUT:
default:
tr.pc.c_box_cull_md3_out++;
return CULL_OUT;
}
}
/*
=================
R_ComputeLOD
=================
*/
int R_ComputeLOD( trRefEntity_t *ent ) {
float radius;
float flod, lodscale;
float projectedRadius;
mdvFrame_t *frame;
mdrHeader_t *mdr;
mdrFrame_t *mdrframe;
int lod;
if ( tr.currentModel->numLods < 2 )
{
// model has only 1 LOD level, skip computations and bias
lod = 0;
}
else
{
// multiple LODs exist, so compute projected bounding sphere
// and use that as a criteria for selecting LOD
if(tr.currentModel->type == MOD_MDR)
{
int frameSize;
mdr = (mdrHeader_t *) tr.currentModel->modelData;
frameSize = (size_t) (&((mdrFrame_t *)0)->bones[mdr->numBones]);
mdrframe = (mdrFrame_t *) ((byte *) mdr + mdr->ofsFrames + frameSize * ent->e.frame);
radius = RadiusFromBounds(mdrframe->bounds[0], mdrframe->bounds[1]);
}
else
{
//frame = ( md3Frame_t * ) ( ( ( unsigned char * ) tr.currentModel->md3[0] ) + tr.currentModel->md3[0]->ofsFrames );
frame = tr.currentModel->mdv[0]->frames;
frame += ent->e.frame;
radius = RadiusFromBounds( frame->bounds[0], frame->bounds[1] );
}
if ( ( projectedRadius = ProjectRadius( radius, ent->e.origin ) ) != 0 )
{
lodscale = r_lodscale->value;
if (lodscale > 20) lodscale = 20;
flod = 1.0f - projectedRadius * lodscale;
}
else
{
// object intersects near view plane, e.g. view weapon
flod = 0;
}
flod *= tr.currentModel->numLods;
lod = ri.ftol(flod);
if ( lod < 0 )
{
lod = 0;
}
else if ( lod >= tr.currentModel->numLods )
{
lod = tr.currentModel->numLods - 1;
}
}
lod += r_lodbias->integer;
if ( lod >= tr.currentModel->numLods )
lod = tr.currentModel->numLods - 1;
if ( lod < 0 )
lod = 0;
return lod;
}
/*
=================
R_ComputeFogNum
=================
*/
int R_ComputeFogNum( mdvModel_t *model, trRefEntity_t *ent ) {
int i, j;
fog_t *fog;
mdvFrame_t *mdvFrame;
vec3_t localOrigin;
if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
return 0;
}
// FIXME: non-normalized axis issues
mdvFrame = model->frames + ent->e.frame;
VectorAdd( ent->e.origin, mdvFrame->localOrigin, localOrigin );
for ( i = 1 ; i < tr.world->numfogs ; i++ ) {
fog = &tr.world->fogs[i];
for ( j = 0 ; j < 3 ; j++ ) {
if ( localOrigin[j] - mdvFrame->radius >= fog->bounds[1][j] ) {
break;
}
if ( localOrigin[j] + mdvFrame->radius <= fog->bounds[0][j] ) {
break;
}
}
if ( j == 3 ) {
return i;
}
}
return 0;
}
/*
=================
R_AddMD3Surfaces
=================
*/
void R_AddMD3Surfaces( trRefEntity_t *ent ) {
int i;
mdvModel_t *model = NULL;
mdvSurface_t *surface = NULL;
shader_t *shader = NULL;
int cull;
int lod;
int fogNum;
2013-09-16 07:54:26 +00:00
int cubemapIndex;
qboolean personalModel;
// don't add third_person objects if not in a portal
personalModel = (ent->e.renderfx & RF_THIRD_PERSON) && !(tr.viewParms.isPortal
|| (tr.viewParms.flags & (VPF_SHADOWMAP | VPF_DEPTHSHADOW)));
if ( ent->e.renderfx & RF_WRAP_FRAMES ) {
ent->e.frame %= tr.currentModel->mdv[0]->numFrames;
ent->e.oldframe %= tr.currentModel->mdv[0]->numFrames;
}
//
// Validate the frames so there is no chance of a crash.
// This will write directly into the entity structure, so
// when the surfaces are rendered, they don't need to be
// range checked again.
//
if ( (ent->e.frame >= tr.currentModel->mdv[0]->numFrames)
|| (ent->e.frame < 0)
|| (ent->e.oldframe >= tr.currentModel->mdv[0]->numFrames)
|| (ent->e.oldframe < 0) ) {
ri.Printf( PRINT_DEVELOPER, "R_AddMD3Surfaces: no such frame %d to %d for '%s'\n",
ent->e.oldframe, ent->e.frame,
tr.currentModel->name );
ent->e.frame = 0;
ent->e.oldframe = 0;
}
//
// compute LOD
//
lod = R_ComputeLOD( ent );
model = tr.currentModel->mdv[lod];
//
// cull the entire model if merged bounding box of both frames
// is outside the view frustum.
//
cull = R_CullModel ( model, ent );
if ( cull == CULL_OUT ) {
return;
}
//
// set up lighting now that we know we aren't culled
//
if ( !personalModel || r_shadows->integer > 1 ) {
R_SetupEntityLighting( &tr.refdef, ent );
}
//
// see if we are in a fog volume
//
fogNum = R_ComputeFogNum( model, ent );
2013-09-16 07:54:26 +00:00
cubemapIndex = R_CubemapForPoint(ent->e.origin);
//
// draw all surfaces
//
surface = model->surfaces;
for ( i = 0 ; i < model->numSurfaces ; i++ ) {
if ( ent->e.customShader ) {
shader = R_GetShaderByHandle( ent->e.customShader );
} else if ( ent->e.customSkin > 0 && ent->e.customSkin < tr.numSkins ) {
skin_t *skin;
int j;
skin = R_GetSkinByHandle( ent->e.customSkin );
// match the surface name to something in the skin file
shader = tr.defaultShader;
for ( j = 0 ; j < skin->numSurfaces ; j++ ) {
// the names have both been lowercased
if ( !strcmp( skin->surfaces[j].name, surface->name ) ) {
shader = skin->surfaces[j].shader;
break;
}
}
if (shader == tr.defaultShader) {
ri.Printf( PRINT_DEVELOPER, "WARNING: no shader for surface %s in skin %s\n", surface->name, skin->name);
}
else if (shader->defaultShader) {
ri.Printf( PRINT_DEVELOPER, "WARNING: shader %s in skin %s not found\n", shader->name, skin->name);
}
} else if ( surface->numShaderIndexes <= 0 ) {
shader = tr.defaultShader;
} else {
shader = tr.shaders[ surface->shaderIndexes[ ent->e.skinNum % surface->numShaderIndexes ] ];
}
// we will add shadows even if the main object isn't visible in the view
// stencil shadows can't do personal models unless I polyhedron clip
if ( !personalModel
&& r_shadows->integer == 2
&& fogNum == 0
&& !(ent->e.renderfx & ( RF_NOSHADOW | RF_DEPTHHACK ) )
&& shader->sort == SS_OPAQUE ) {
R_AddDrawSurf( (void *)&model->vaoSurfaces[i], tr.shadowShader, 0, qfalse, qfalse, 0 );
}
// projection shadows work fine with personal models
if ( r_shadows->integer == 3
&& fogNum == 0
&& (ent->e.renderfx & RF_SHADOW_PLANE )
&& shader->sort == SS_OPAQUE ) {
R_AddDrawSurf( (void *)&model->vaoSurfaces[i], tr.projectionShadowShader, 0, qfalse, qfalse, 0 );
}
// don't add third_person objects if not viewing through a portal
if ( !personalModel ) {
R_AddDrawSurf((void *)&model->vaoSurfaces[i], shader, fogNum, qfalse, qfalse, cubemapIndex );
}
surface++;
}
}