dvr/app/jni/prboom/r_patch.c
2016-03-03 22:28:59 +00:00

788 lines
26 KiB
C

/* Emacs style mode select -*- C++ -*-
*-----------------------------------------------------------------------------
*
*
* PrBoom: a Doom port merged with LxDoom and LSDLDoom
* based on BOOM, a modified and improved DOOM engine
* Copyright (C) 1999 by
* id Software, Chi Hoang, Lee Killough, Jim Flynn, Rand Phares, Ty Halderman
* Copyright (C) 1999-2002 by
* Jess Haas, Nicolas Kalkhof, Colin Phipps, Florian Schulze
* Copyright 2005, 2006 by
* Florian Schulze, Colin Phipps, Neil Stevens, Andrey Budko
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*
*-----------------------------------------------------------------------------*/
#include "z_zone.h"
#include "doomstat.h"
#include "w_wad.h"
#include "r_main.h"
#include "r_sky.h"
#include "r_bsp.h"
#include "r_things.h"
#include "p_tick.h"
#include "i_system.h"
#include "r_draw.h"
#include "lprintf.h"
#include "r_patch.h"
#include <assert.h>
// posts are runs of non masked source pixels
typedef struct
{
byte topdelta; // -1 is the last post in a column
byte length; // length data bytes follows
} post_t;
// column_t is a list of 0 or more post_t, (byte)-1 terminated
typedef post_t column_t;
//
// Patches.
// A patch holds one or more columns.
// Patches are used for sprites and all masked pictures,
// and we compose textures from the TEXTURE1/2 lists
// of patches.
//
typedef struct
{
short width, height; // bounding box size
short leftoffset; // pixels to the left of origin
short topoffset; // pixels below the origin
int columnofs[8]; // only [width] used
} patch_t;
//---------------------------------------------------------------------------
// Re-engineered patch support
//---------------------------------------------------------------------------
static rpatch_t *patches = 0;
static rpatch_t *texture_composites = 0;
//---------------------------------------------------------------------------
void R_InitPatches(void) {
if (!patches)
{
patches = (rpatch_t*)malloc(numlumps * sizeof(rpatch_t));
// clear out new patches to signal they're uninitialized
memset(patches, 0, sizeof(rpatch_t)*numlumps);
}
if (!texture_composites)
{
texture_composites = (rpatch_t*)malloc(numtextures * sizeof(rpatch_t));
// clear out new patches to signal they're uninitialized
memset(texture_composites, 0, sizeof(rpatch_t)*numtextures);
}
}
//---------------------------------------------------------------------------
void R_FlushAllPatches(void) {
int i;
if (patches)
{
for (i=0; i < numlumps; i++)
if (patches[i].locks > 0)
I_Error("R_FlushAllPatches: patch number %i still locked",i);
free(patches);
patches = NULL;
}
if (texture_composites)
{
for (i=0; i<numtextures; i++)
if (texture_composites[i].data)
free(texture_composites[i].data);
free(texture_composites);
texture_composites = NULL;
}
}
//---------------------------------------------------------------------------
int R_NumPatchWidth(int lump)
{
const rpatch_t *patch = R_CachePatchNum(lump);
int width = patch->width;
R_UnlockPatchNum(lump);
return width;
}
//---------------------------------------------------------------------------
int R_NumPatchHeight(int lump)
{
const rpatch_t *patch = R_CachePatchNum(lump);
int height = patch->height;
R_UnlockPatchNum(lump);
return height;
}
//---------------------------------------------------------------------------
static int getPatchIsNotTileable(const patch_t *patch) {
int x=0, numPosts, lastColumnDelta = 0;
const column_t *column;
int cornerCount = 0;
int hasAHole = 0;
for (x=0; x<SHORT(patch->width); x++) {
column = (const column_t *)((const byte *)patch + LONG(patch->columnofs[x]));
if (!x) lastColumnDelta = column->topdelta;
else if (lastColumnDelta != column->topdelta) hasAHole = 1;
numPosts = 0;
while (column->topdelta != 0xff) {
// check to see if a corner pixel filled
if (x == 0 && column->topdelta == 0) cornerCount++;
else if (x == 0 && column->topdelta + column->length >= SHORT(patch->height)) cornerCount++;
else if (x == SHORT(patch->width)-1 && column->topdelta == 0) cornerCount++;
else if (x == SHORT(patch->width)-1 && column->topdelta + column->length >= SHORT(patch->height)) cornerCount++;
if (numPosts++) hasAHole = 1;
column = (const column_t *)((const byte *)column + column->length + 4);
}
}
if (cornerCount == 4) return 0;
return hasAHole;
}
//---------------------------------------------------------------------------
static int getIsSolidAtSpot(const column_t *column, int spot) {
if (!column) return 0;
while (column->topdelta != 0xff) {
if (spot < column->topdelta) return 0;
if ((spot >= column->topdelta) && (spot <= column->topdelta + column->length)) return 1;
column = (const column_t*)((const byte*)column + 3 + column->length + 1);
}
return 0;
}
//---------------------------------------------------------------------------
// Used to determine whether a column edge (top or bottom) should slope
// up or down for smoothed masked edges - POPE
//---------------------------------------------------------------------------
static int getColumnEdgeSlope(const column_t *prevcolumn, const column_t *nextcolumn, int spot) {
int holeToLeft = !getIsSolidAtSpot(prevcolumn, spot);
int holeToRight = !getIsSolidAtSpot(nextcolumn, spot);
if (holeToLeft && !holeToRight) return 1;
if (!holeToLeft && holeToRight) return -1;
return 0;
}
//---------------------------------------------------------------------------
static void createPatch(int id) {
rpatch_t *patch;
const int patchNum = id;
const patch_t *oldPatch = (const patch_t*)W_CacheLumpNum(patchNum);
const column_t *oldColumn, *oldPrevColumn, *oldNextColumn;
int x, y;
int pixelDataSize;
int columnsDataSize;
int postsDataSize;
int dataSize;
int *numPostsInColumn;
int numPostsTotal;
const unsigned char *oldColumnPixelData;
int numPostsUsedSoFar;
int edgeSlope;
#ifdef RANGECHECK
if (id >= numlumps)
I_Error("createPatch: %i >= numlumps", id);
#endif
patch = &patches[id];
// proff - 2003-02-16 What about endianess?
patch->width = SHORT(oldPatch->width);
patch->widthmask = 0;
patch->height = SHORT(oldPatch->height);
patch->leftoffset = SHORT(oldPatch->leftoffset);
patch->topoffset = SHORT(oldPatch->topoffset);
patch->isNotTileable = getPatchIsNotTileable(oldPatch);
// work out how much memory we need to allocate for this patch's data
pixelDataSize = (patch->width * patch->height + 4) & ~3;
columnsDataSize = sizeof(rcolumn_t) * patch->width;
// count the number of posts in each column
numPostsInColumn = (int*)malloc(sizeof(int) * patch->width);
numPostsTotal = 0;
for (x=0; x<patch->width; x++) {
oldColumn = (const column_t *)((const byte *)oldPatch + LONG(oldPatch->columnofs[x]));
numPostsInColumn[x] = 0;
while (oldColumn->topdelta != 0xff) {
numPostsInColumn[x]++;
numPostsTotal++;
oldColumn = (const column_t *)((const byte *)oldColumn + oldColumn->length + 4);
}
}
postsDataSize = numPostsTotal * sizeof(rpost_t);
// allocate our data chunk
dataSize = pixelDataSize + columnsDataSize + postsDataSize;
patch->data = (unsigned char*)Z_Malloc(dataSize, PU_CACHE, (void **)&patch->data);
memset(patch->data, 0, dataSize);
// set out pixel, column, and post pointers into our data array
patch->pixels = patch->data;
patch->columns = (rcolumn_t*)((unsigned char*)patch->pixels + pixelDataSize);
patch->posts = (rpost_t*)((unsigned char*)patch->columns + columnsDataSize);
// sanity check that we've got all the memory allocated we need
/*
assert((((byte*)patch->posts + numPostsTotal*sizeof(rpost_t)) - (byte*)patch->data) == dataSize);
*/
memset(patch->pixels, 0xff, (patch->width*patch->height));
// fill in the pixels, posts, and columns
numPostsUsedSoFar = 0;
for (x=0; x<patch->width; x++) {
oldColumn = (const column_t *)((const byte *)oldPatch + LONG(oldPatch->columnofs[x]));
if (patch->isNotTileable) {
// non-tiling
if (x == 0) oldPrevColumn = 0;
else oldPrevColumn = (const column_t *)((const byte *)oldPatch + LONG(oldPatch->columnofs[x-1]));
if (x == patch->width-1) oldNextColumn = 0;
else oldNextColumn = (const column_t *)((const byte *)oldPatch + LONG(oldPatch->columnofs[x+1]));
}
else {
// tiling
int prevColumnIndex = x-1;
int nextColumnIndex = x+1;
while (prevColumnIndex < 0) prevColumnIndex += patch->width;
while (nextColumnIndex >= patch->width) nextColumnIndex -= patch->width;
oldPrevColumn = (const column_t *)((const byte *)oldPatch + LONG(oldPatch->columnofs[prevColumnIndex]));
oldNextColumn = (const column_t *)((const byte *)oldPatch + LONG(oldPatch->columnofs[nextColumnIndex]));
}
// setup the column's data
patch->columns[x].pixels = patch->pixels + (x*patch->height) + 0;
patch->columns[x].numPosts = numPostsInColumn[x];
patch->columns[x].posts = patch->posts + numPostsUsedSoFar;
while (oldColumn->topdelta != 0xff) {
// set up the post's data
patch->posts[numPostsUsedSoFar].topdelta = oldColumn->topdelta;
patch->posts[numPostsUsedSoFar].length = oldColumn->length;
patch->posts[numPostsUsedSoFar].slope = 0;
edgeSlope = getColumnEdgeSlope(oldPrevColumn, oldNextColumn, oldColumn->topdelta);
if (edgeSlope == 1) patch->posts[numPostsUsedSoFar].slope |= RDRAW_EDGESLOPE_TOP_UP;
else if (edgeSlope == -1) patch->posts[numPostsUsedSoFar].slope |= RDRAW_EDGESLOPE_TOP_DOWN;
edgeSlope = getColumnEdgeSlope(oldPrevColumn, oldNextColumn, oldColumn->topdelta+oldColumn->length);
if (edgeSlope == 1) patch->posts[numPostsUsedSoFar].slope |= RDRAW_EDGESLOPE_BOT_UP;
else if (edgeSlope == -1) patch->posts[numPostsUsedSoFar].slope |= RDRAW_EDGESLOPE_BOT_DOWN;
// fill in the post's pixels
oldColumnPixelData = (const byte *)oldColumn + 3;
for (y=0; y<oldColumn->length; y++) {
patch->pixels[x * patch->height + oldColumn->topdelta + y] = oldColumnPixelData[y];
}
oldColumn = (const column_t *)((const byte *)oldColumn + oldColumn->length + 4);
numPostsUsedSoFar++;
}
}
if (1 || patch->isNotTileable) {
const rcolumn_t *column, *prevColumn;
// copy the patch image down and to the right where there are
// holes to eliminate the black halo from bilinear filtering
for (x=0; x<patch->width; x++) {
//oldColumn = (const column_t *)((const byte *)oldPatch + oldPatch->columnofs[x]);
column = R_GetPatchColumnClamped(patch, x);
prevColumn = R_GetPatchColumnClamped(patch, x-1);
if (column->pixels[0] == 0xff) {
// force the first pixel (which is a hole), to use
// the color from the next solid spot in the column
for (y=0; y<patch->height; y++) {
if (column->pixels[y] != 0xff) {
column->pixels[0] = column->pixels[y];
break;
}
}
}
// copy from above or to the left
for (y=1; y<patch->height; y++) {
//if (getIsSolidAtSpot(oldColumn, y)) continue;
if (column->pixels[y] != 0xff) continue;
// this pixel is a hole
if (x && prevColumn->pixels[y-1] != 0xff) {
// copy the color from the left
column->pixels[y] = prevColumn->pixels[y];
}
else {
// copy the color from above
column->pixels[y] = column->pixels[y-1];
}
}
}
// verify that the patch truly is non-rectangular since
// this determines tiling later on
}
W_UnlockLumpNum(patchNum);
free(numPostsInColumn);
}
typedef struct {
unsigned short patches;
unsigned short posts;
unsigned short posts_used;
} count_t;
static void switchPosts(rpost_t *post1, rpost_t *post2) {
rpost_t dummy;
dummy.topdelta = post1->topdelta;
dummy.length = post1->length;
dummy.slope = post1->slope;
post1->topdelta = post2->topdelta;
post1->length = post2->length;
post1->slope = post2->slope;
post2->topdelta = dummy.topdelta;
post2->length = dummy.length;
post2->slope = dummy.slope;
}
static void removePostFromColumn(rcolumn_t *column, int post) {
int i;
#ifdef RANGECHECK
if (post >= column->numPosts)
I_Error("removePostFromColumn: invalid post index");
#endif
if (post < column->numPosts)
for (i=post; i<(column->numPosts-1); i++) {
rpost_t *post1 = &column->posts[i];
rpost_t *post2 = &column->posts[i+1];
post1->topdelta = post2->topdelta;
post1->length = post2->length;
post1->slope = post2->slope;
}
column->numPosts--;
}
//---------------------------------------------------------------------------
static void createTextureCompositePatch(int id) {
rpatch_t *composite_patch;
texture_t *texture;
texpatch_t *texpatch;
int patchNum;
const patch_t *oldPatch;
const column_t *oldColumn, *oldPrevColumn, *oldNextColumn;
int i, x, y;
int oy, count;
int pixelDataSize;
int columnsDataSize;
int postsDataSize;
int dataSize;
int numPostsTotal;
const unsigned char *oldColumnPixelData;
int numPostsUsedSoFar;
int edgeSlope;
count_t *countsInColumn;
#ifdef RANGECHECK
if (id >= numtextures)
I_Error("createTextureCompositePatch: %i >= numtextures", id);
#endif
composite_patch = &texture_composites[id];
texture = textures[id];
composite_patch->width = texture->width;
composite_patch->height = texture->height;
composite_patch->widthmask = texture->widthmask;
composite_patch->leftoffset = 0;
composite_patch->topoffset = 0;
composite_patch->isNotTileable = 0;
// work out how much memory we need to allocate for this patch's data
pixelDataSize = (composite_patch->width * composite_patch->height + 4) & ~3;
columnsDataSize = sizeof(rcolumn_t) * composite_patch->width;
// count the number of posts in each column
countsInColumn = (count_t *)calloc(sizeof(count_t), composite_patch->width);
numPostsTotal = 0;
for (i=0; i<texture->patchcount; i++) {
texpatch = &texture->patches[i];
patchNum = texpatch->patch;
oldPatch = (const patch_t*)W_CacheLumpNum(patchNum);
for (x=0; x<SHORT(oldPatch->width); x++) {
int tx = texpatch->originx + x;
if (tx < 0)
continue;
if (tx >= composite_patch->width)
break;
countsInColumn[tx].patches++;
oldColumn = (const column_t *)((const byte *)oldPatch + LONG(oldPatch->columnofs[x]));
while (oldColumn->topdelta != 0xff) {
countsInColumn[tx].posts++;
numPostsTotal++;
oldColumn = (const column_t *)((const byte *)oldColumn + oldColumn->length + 4);
}
}
W_UnlockLumpNum(patchNum);
}
postsDataSize = numPostsTotal * sizeof(rpost_t);
// allocate our data chunk
dataSize = pixelDataSize + columnsDataSize + postsDataSize;
composite_patch->data = (unsigned char*)Z_Malloc(dataSize, PU_STATIC, (void **)&composite_patch->data);
memset(composite_patch->data, 0, dataSize);
// set out pixel, column, and post pointers into our data array
composite_patch->pixels = composite_patch->data;
composite_patch->columns = (rcolumn_t*)((unsigned char*)composite_patch->pixels + pixelDataSize);
composite_patch->posts = (rpost_t*)((unsigned char*)composite_patch->columns + columnsDataSize);
// sanity check that we've got all the memory allocated we need
/*
assert((((byte*)composite_patch->posts + numPostsTotal*sizeof(rpost_t)) - (byte*)composite_patch->data) == dataSize);
*/
memset(composite_patch->pixels, 0xff, (composite_patch->width*composite_patch->height));
numPostsUsedSoFar = 0;
for (x=0; x<texture->width; x++) {
// setup the column's data
composite_patch->columns[x].pixels = composite_patch->pixels + (x*composite_patch->height);
composite_patch->columns[x].numPosts = countsInColumn[x].posts;
composite_patch->columns[x].posts = composite_patch->posts + numPostsUsedSoFar;
numPostsUsedSoFar += countsInColumn[x].posts;
}
// fill in the pixels, posts, and columns
for (i=0; i<texture->patchcount; i++) {
texpatch = &texture->patches[i];
patchNum = texpatch->patch;
oldPatch = (const patch_t*)W_CacheLumpNum(patchNum);
for (x=0; x<SHORT(oldPatch->width); x++) {
int tx = texpatch->originx + x;
if (tx < 0)
continue;
if (tx >= composite_patch->width)
break;
oldColumn = (const column_t *)((const byte *)oldPatch + LONG(oldPatch->columnofs[x]));
{
// tiling
int prevColumnIndex = x-1;
int nextColumnIndex = x+1;
while (prevColumnIndex < 0) prevColumnIndex += SHORT(oldPatch->width);
while (nextColumnIndex >= SHORT(oldPatch->width)) nextColumnIndex -= SHORT(oldPatch->width);
oldPrevColumn = (const column_t *)((const byte *)oldPatch + LONG(oldPatch->columnofs[prevColumnIndex]));
oldNextColumn = (const column_t *)((const byte *)oldPatch + LONG(oldPatch->columnofs[nextColumnIndex]));
}
while (oldColumn->topdelta != 0xff) {
rpost_t *post = &composite_patch->columns[tx].posts[countsInColumn[tx].posts_used];
oldColumnPixelData = (const byte *)oldColumn + 3;
oy = texpatch->originy;
count = oldColumn->length;
// the original renderer had several bugs which we reproduce here
if (countsInColumn[tx].patches > 1) {
// when there are multiple patches, then we need to handle the
// column differently
if (i == 0) {
// draw first patch at original position, it will be partly
// overdrawn below
for (y=0; y<count; y++) {
int ty = oy + oldColumn->topdelta + y;
if (ty < 0)
continue;
if (ty >= composite_patch->height)
break;
composite_patch->pixels[tx * composite_patch->height + ty] = oldColumnPixelData[y];
}
}
// do the buggy clipping
if ((oy + oldColumn->topdelta) < 0) {
count += oy;
oy = 0;
}
} else {
// with a single patch only negative y origins are wrong
oy = 0;
}
// set up the post's data
post->topdelta = oldColumn->topdelta + oy;
post->length = count;
if ((post->topdelta + post->length) > composite_patch->height) {
if (post->topdelta > composite_patch->height)
post->length = 0;
else
post->length = composite_patch->height - post->topdelta;
}
if (post->topdelta < 0) {
if ((post->topdelta + post->length) <= 0)
post->length = 0;
else
post->length -= post->topdelta;
post->topdelta = 0;
}
post->slope = 0;
edgeSlope = getColumnEdgeSlope(oldPrevColumn, oldNextColumn, oldColumn->topdelta);
if (edgeSlope == 1) post->slope |= RDRAW_EDGESLOPE_TOP_UP;
else if (edgeSlope == -1) post->slope |= RDRAW_EDGESLOPE_TOP_DOWN;
edgeSlope = getColumnEdgeSlope(oldPrevColumn, oldNextColumn, oldColumn->topdelta+count);
if (edgeSlope == 1) post->slope |= RDRAW_EDGESLOPE_BOT_UP;
else if (edgeSlope == -1) post->slope |= RDRAW_EDGESLOPE_BOT_DOWN;
// fill in the post's pixels
for (y=0; y<count; y++) {
int ty = oy + oldColumn->topdelta + y;
if (ty < 0)
continue;
if (ty >= composite_patch->height)
break;
composite_patch->pixels[tx * composite_patch->height + ty] = oldColumnPixelData[y];
}
oldColumn = (const column_t *)((const byte *)oldColumn + oldColumn->length + 4);
countsInColumn[tx].posts_used++;
//assert(countsInColumn[tx].posts_used <= countsInColumn[tx].posts);
}
}
W_UnlockLumpNum(patchNum);
}
for (x=0; x<texture->width; x++) {
rcolumn_t *column;
if (countsInColumn[x].patches <= 1)
continue;
// cleanup posts on multipatch columns
column = &composite_patch->columns[x];
i = 0;
while (i<(column->numPosts-1)) {
rpost_t *post1 = &column->posts[i];
rpost_t *post2 = &column->posts[i+1];
int length;
if ((post2->topdelta - post1->topdelta) < 0)
switchPosts(post1, post2);
if ((post1->topdelta + post1->length) >= post2->topdelta) {
length = (post1->length + post2->length) - ((post1->topdelta + post1->length) - post2->topdelta);
if (post1->length < length) {
post1->slope = post2->slope;
post1->length = length;
}
removePostFromColumn(column, i+1);
i = 0;
continue;
}
i++;
}
}
if (1 || composite_patch->isNotTileable) {
const rcolumn_t *column, *prevColumn;
// copy the patch image down and to the right where there are
// holes to eliminate the black halo from bilinear filtering
for (x=0; x<composite_patch->width; x++) {
//oldColumn = (const column_t *)((const byte *)oldPatch + oldPatch->columnofs[x]);
column = R_GetPatchColumnClamped(composite_patch, x);
prevColumn = R_GetPatchColumnClamped(composite_patch, x-1);
if (column->pixels[0] == 0xff) {
// force the first pixel (which is a hole), to use
// the color from the next solid spot in the column
for (y=0; y<composite_patch->height; y++) {
if (column->pixels[y] != 0xff) {
column->pixels[0] = column->pixels[y];
break;
}
}
}
// copy from above or to the left
for (y=1; y<composite_patch->height; y++) {
//if (getIsSolidAtSpot(oldColumn, y)) continue;
if (column->pixels[y] != 0xff) continue;
// this pixel is a hole
if (x && prevColumn->pixels[y-1] != 0xff) {
// copy the color from the left
column->pixels[y] = prevColumn->pixels[y];
}
else {
// copy the color from above
column->pixels[y] = column->pixels[y-1];
}
}
}
// verify that the patch truly is non-rectangular since
// this determines tiling later on
}
free(countsInColumn);
}
//---------------------------------------------------------------------------
const rpatch_t *R_CachePatchNum(int id) {
const int locks = 1;
if (!patches)
I_Error("R_CachePatchNum: Patches not initialized");
#ifdef RANGECHECK
if (id >= numlumps)
I_Error("createPatch: %i >= numlumps", id);
#endif
if (!patches[id].data)
createPatch(id);
/* cph - if wasn't locked but now is, tell z_zone to hold it */
if (!patches[id].locks && locks) {
Z_ChangeTag(patches[id].data,PU_STATIC);
#ifdef TIMEDIAG
patches[id].locktic = gametic;
#endif
}
patches[id].locks += locks;
#ifdef SIMPLECHECKS
if (!((patches[id].locks+1) & 0xf))
lprintf(LO_DEBUG, "R_CachePatchNum: High lock on %8s (%d)\n",
lumpinfo[id].name, patches[id].locks);
#endif
return &patches[id];
}
void R_UnlockPatchNum(int id)
{
const int unlocks = 1;
#ifdef SIMPLECHECKS
if ((signed short)patches[id].locks < unlocks)
lprintf(LO_DEBUG, "R_UnlockPatchNum: Excess unlocks on %8s (%d-%d)\n",
lumpinfo[id].name, patches[id].locks, unlocks);
#endif
patches[id].locks -= unlocks;
/* cph - Note: must only tell z_zone to make purgeable if currently locked,
* else it might already have been purged
*/
if (unlocks && !patches[id].locks)
Z_ChangeTag(patches[id].data, PU_CACHE);
}
//---------------------------------------------------------------------------
const rpatch_t *R_CacheTextureCompositePatchNum(int id) {
const int locks = 1;
if (!texture_composites)
I_Error("R_CacheTextureCompositePatchNum: Composite patches not initialized");
#ifdef RANGECHECK
if (id >= numtextures)
I_Error("createTextureCompositePatch: %i >= numtextures", id);
#endif
if (!texture_composites[id].data)
createTextureCompositePatch(id);
/* cph - if wasn't locked but now is, tell z_zone to hold it */
if (!texture_composites[id].locks && locks) {
Z_ChangeTag(texture_composites[id].data,PU_STATIC);
#ifdef TIMEDIAG
texture_composites[id].locktic = gametic;
#endif
}
texture_composites[id].locks += locks;
#ifdef SIMPLECHECKS
if (!((texture_composites[id].locks+1) & 0xf))
lprintf(LO_DEBUG, "R_CacheTextureCompositePatchNum: High lock on %8s (%d)\n",
textures[id]->name, texture_composites[id].locks);
#endif
return &texture_composites[id];
}
void R_UnlockTextureCompositePatchNum(int id)
{
const int unlocks = 1;
#ifdef SIMPLECHECKS
if ((signed short)texture_composites[id].locks < unlocks)
lprintf(LO_DEBUG, "R_UnlockTextureCompositePatchNum: Excess unlocks on %8s (%d-%d)\n",
textures[id]->name, texture_composites[id].locks, unlocks);
#endif
texture_composites[id].locks -= unlocks;
/* cph - Note: must only tell z_zone to make purgeable if currently locked,
* else it might already have been purged
*/
if (unlocks && !texture_composites[id].locks)
Z_ChangeTag(texture_composites[id].data, PU_CACHE);
}
//---------------------------------------------------------------------------
const rcolumn_t *R_GetPatchColumnWrapped(const rpatch_t *patch, int columnIndex) {
while (columnIndex < 0) columnIndex += patch->width;
columnIndex %= patch->width;
return &patch->columns[columnIndex];
}
//---------------------------------------------------------------------------
const rcolumn_t *R_GetPatchColumnClamped(const rpatch_t *patch, int columnIndex) {
if (columnIndex < 0) columnIndex = 0;
if (columnIndex >= patch->width) columnIndex = patch->width-1;
return &patch->columns[columnIndex];
}
//---------------------------------------------------------------------------
const rcolumn_t *R_GetPatchColumn(const rpatch_t *patch, int columnIndex) {
if (patch->isNotTileable) return R_GetPatchColumnClamped(patch, columnIndex);
else return R_GetPatchColumnWrapped(patch, columnIndex);
}