mirror of
https://git.do.srb2.org/STJr/UltimateZoneBuilder.git
synced 2025-01-27 19:01:09 +00:00
146 lines
3.8 KiB
C++
146 lines
3.8 KiB
C++
/*
|
|
** fastsin.h
|
|
** a table/linear interpolation-based sine function that is both
|
|
** precise and fast enough for most purposes.
|
|
**
|
|
**---------------------------------------------------------------------------
|
|
** Copyright 2015 Christoph Oelckers
|
|
** All rights reserved.
|
|
**
|
|
** Redistribution and use in source and binary forms, with or without
|
|
** modification, are permitted provided that the following conditions
|
|
** are met:
|
|
**
|
|
** 1. Redistributions of source code must retain the above copyright
|
|
** notice, this list of conditions and the following disclaimer.
|
|
** 2. Redistributions in binary form must reproduce the above copyright
|
|
** notice, this list of conditions and the following disclaimer in the
|
|
** documentation and/or other materials provided with the distribution.
|
|
** 3. The name of the author may not be used to endorse or promote products
|
|
** derived from this software without specific prior written permission.
|
|
**
|
|
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
**---------------------------------------------------------------------------
|
|
**
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
#ifdef WIN32
|
|
#define FORCEINLINE __forceinline
|
|
#else
|
|
#define FORCEINLINE
|
|
#endif
|
|
|
|
// This uses a sine table with linear interpolation
|
|
// For in-game calculations this is precise enough
|
|
// and this code is more than 10x faster than the
|
|
// Cephes sin and cos function.
|
|
|
|
struct FFastTrig
|
|
{
|
|
static const int TBLPERIOD = 8192;
|
|
static const int BITSHIFT = 19;
|
|
static const int REMAINDER = (1 << BITSHIFT) - 1;
|
|
float sinetable[2049];
|
|
|
|
FORCEINLINE double sinq1(uint32_t bangle)
|
|
{
|
|
unsigned int index = bangle >> BITSHIFT;
|
|
|
|
if ((bangle &= (REMAINDER)) == 0) // This is to avoid precision problems at 180 degrees
|
|
{
|
|
return double(sinetable[index]);
|
|
}
|
|
else
|
|
{
|
|
return (double(sinetable[index]) * (REMAINDER - bangle) + double(sinetable[index + 1]) * bangle) * (1. / REMAINDER);
|
|
}
|
|
}
|
|
|
|
public:
|
|
FFastTrig()
|
|
{
|
|
const double pimul = M_PI * 2 / TBLPERIOD;
|
|
|
|
for (int i = 0; i < 2049; i++)
|
|
{
|
|
sinetable[i] = (float)std::sin(i * pimul);
|
|
}
|
|
}
|
|
|
|
double sin(uint32_t bangle)
|
|
{
|
|
switch (bangle & 0xc0000000)
|
|
{
|
|
default:
|
|
return sinq1(bangle);
|
|
|
|
case 0x40000000:
|
|
return sinq1(0x80000000 - bangle);
|
|
|
|
case 0x80000000:
|
|
return -sinq1(bangle - 0x80000000);
|
|
|
|
case 0xc0000000:
|
|
return -sinq1(0 - bangle);
|
|
}
|
|
}
|
|
|
|
double cos(uint32_t bangle)
|
|
{
|
|
switch (bangle & 0xc0000000)
|
|
{
|
|
default:
|
|
return sinq1(0x40000000 - bangle);
|
|
|
|
case 0x40000000:
|
|
return -sinq1(bangle - 0x40000000);
|
|
|
|
case 0x80000000:
|
|
return -sinq1(0xc0000000 - bangle);
|
|
|
|
case 0xc0000000:
|
|
return sinq1(bangle - 0xc0000000);
|
|
}
|
|
}
|
|
};
|
|
|
|
static FFastTrig fasttrig;
|
|
|
|
// This must use xs_Float to guarantee proper integer wraparound.
|
|
#define DEG2BAM(f) ((uint32_t)std::round((f) * (0x40000000/90.)))
|
|
#define RAD2BAM(f) ((uint32_t)std::round((f) * (0x80000000/3.14159265358979323846)))
|
|
|
|
inline double fastcosdeg(double v)
|
|
{
|
|
return fasttrig.cos(DEG2BAM(v));
|
|
}
|
|
|
|
inline double fastsindeg(double v)
|
|
{
|
|
return fasttrig.sin(DEG2BAM(v));
|
|
}
|
|
|
|
inline double fastcos(double v)
|
|
{
|
|
return fasttrig.cos(RAD2BAM(v));
|
|
}
|
|
|
|
inline double fastsin(double v)
|
|
{
|
|
return fasttrig.sin(RAD2BAM(v));
|
|
}
|