UltimateZoneBuilder/Source/Core/Geometry/Tools.cs

1778 lines
60 KiB
C#

#region ================== Copyright (c) 2007 Pascal vd Heiden
/*
* Copyright (c) 2007 Pascal vd Heiden, www.codeimp.com
* This program is released under GNU General Public License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#endregion
#region ================== Namespaces
using System;
using System.Collections;
using System.Collections.Generic;
using System.Globalization;
using System.Text;
using CodeImp.DoomBuilder.Geometry;
using CodeImp.DoomBuilder.Rendering;
using SlimDX;
using SlimDX.Direct3D9;
using System.Drawing;
using CodeImp.DoomBuilder.Map;
using CodeImp.DoomBuilder.IO;
using CodeImp.DoomBuilder.Data;
using System.Threading;
using CodeImp.DoomBuilder.Config;
using CodeImp.DoomBuilder.Types;
#endregion
namespace CodeImp.DoomBuilder.Geometry
{
/// <summary>
/// Tools to work with geometry.
/// </summary>
public static class Tools
{
#region ================== Structures
private struct SidedefSettings
{
public string newtexhigh;
public string newtexmid;
public string newtexlow;
}
private struct SidedefAlignJob
{
public Sidedef sidedef;
public int offsetx;
// When this is true, the previous sidedef was on the left of
// this one and the texture X offset of this sidedef can be set
// directly. When this is false, the length of this sidedef
// must be subtracted from the X offset first.
public bool forward;
}
private struct SidedefFillJob
{
public Sidedef sidedef;
// Moving forward along the sidedef?
public bool forward;
}
#endregion
#region ================== Constants
#endregion
#region ================== Polygons and Triangles
// Point inside the polygon?
// See: http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/
public static bool PointInPolygon(ICollection<Vector2D> polygon, Vector2D point)
{
Vector2D v1 = General.GetByIndex(polygon, polygon.Count - 1);
uint c = 0;
// Go for all vertices
foreach(Vector2D v2 in polygon)
{
// Determine min/max values
float miny = Math.Min(v1.y, v2.y);
float maxy = Math.Max(v1.y, v2.y);
float maxx = Math.Max(v1.x, v2.x);
// Check for intersection
if((point.y > miny) && (point.y <= maxy))
{
if(point.x <= maxx)
{
if(v1.y != v2.y)
{
float xint = (point.y - v1.y) * (v2.x - v1.x) / (v2.y - v1.y) + v1.x;
if((v1.x == v2.x) || (point.x <= xint)) c++;
}
}
}
// Move to next
v1 = v2;
}
// Inside this polygon?
return (c & 0x00000001UL) != 0;
}
#endregion
#region ================== Pathfinding
/// <summary>
/// This finds a potential sector at the given coordinates,
/// or returns null when a sector is not possible there.
/// </summary>
public static List<LinedefSide> FindPotentialSectorAt(Vector2D pos)
{
// Find the nearest line and determine side, then use the other method to create the sector
Linedef l = General.Map.Map.NearestLinedef(pos);
return FindPotentialSectorAt(l, (l.SideOfLine(pos) <= 0));
}
/// <summary>
/// This finds a potential sector starting at the given line and side,
/// or returns null when sector is not possible.
/// </summary>
public static List<LinedefSide> FindPotentialSectorAt(Linedef line, bool front)
{
List<LinedefSide> alllines = new List<LinedefSide>();
// Find the outer lines
EarClipPolygon p = FindOuterLines(line, front, alllines);
if(p != null)
{
// Find the inner lines
FindInnerLines(p, alllines);
return alllines;
}
else
return null;
}
// This finds the inner lines of the sector and adds them to the sector polygon
private static void FindInnerLines(EarClipPolygon p, List<LinedefSide> alllines)
{
Vertex foundv;
bool vvalid, findmore;
Linedef foundline;
float foundangle = 0f;
bool foundlinefront;
RectangleF bbox = p.CreateBBox();
do
{
findmore = false;
// Go for all vertices to find the right-most vertex inside the polygon
foundv = null;
foreach(Vertex v in General.Map.Map.Vertices)
{
// Inside the polygon bounding box?
if((v.Position.x >= bbox.Left) && (v.Position.x <= bbox.Right) &&
(v.Position.y >= bbox.Top) && (v.Position.y <= bbox.Bottom))
{
// More to the right?
if((foundv == null) || (v.Position.x >= foundv.Position.x))
{
// Vertex is inside the polygon?
if(p.Intersect(v.Position))
{
// Vertex has lines attached?
if(v.Linedefs.Count > 0)
{
// Go for all lines to see if the vertex is not of the polygon itsself
vvalid = true;
foreach(LinedefSide ls in alllines)
{
if((ls.Line.Start == v) || (ls.Line.End == v))
{
vvalid = false;
break;
}
}
// Valid vertex?
if(vvalid) foundv = v;
}
}
}
}
}
// Found a vertex inside the polygon?
if(foundv != null)
{
// Find the attached linedef with the smallest angle to the right
float targetangle = Angle2D.PIHALF;
foundline = null;
foreach(Linedef l in foundv.Linedefs)
{
// We need an angle unrelated to line direction, so correct for that
float lineangle = l.Angle;
if(l.End == foundv) lineangle += Angle2D.PI;
// Better result?
float deltaangle = Angle2D.Difference(targetangle, lineangle);
if((foundline == null) || (deltaangle < foundangle))
{
foundline = l;
foundangle = deltaangle;
}
}
// We already know that each linedef will go from this vertex
// to the left, because this is the right-most vertex in this area.
// If the line would go to the right, that means the other vertex of
// that line must lie outside this area and the mapper made an error.
// Should I check for this error and fail to create a sector in
// that case or ignore it and create a malformed sector (possibly
// breaking another sector also)?
// Find the side at which to start pathfinding
Vector2D testpos = new Vector2D(100.0f, 0.0f);
foundlinefront = (foundline.SideOfLine(foundv.Position + testpos) < 0.0f);
// Find inner path
List<LinedefSide> innerlines = FindClosestPath(foundline, foundlinefront, true);
if(innerlines != null)
{
// Make polygon
LinedefTracePath tracepath = new LinedefTracePath(innerlines);
EarClipPolygon innerpoly = tracepath.MakePolygon(true);
// Check if the front of the line is outside the polygon
if(!innerpoly.Intersect(foundline.GetSidePoint(foundlinefront)))
{
// Valid hole found!
alllines.AddRange(innerlines);
p.InsertChild(innerpoly);
findmore = true;
}
}
}
}
// Continue until no more holes found
while(findmore);
}
// This finds the outer lines of the sector as a polygon
// Returns null when no valid outer polygon can be found
private static EarClipPolygon FindOuterLines(Linedef line, bool front, List<LinedefSide> alllines)
{
Linedef scanline = line;
bool scanfront = front;
do
{
// Find closest path
List<LinedefSide> pathlines = FindClosestPath(scanline, scanfront, true);
if(pathlines != null)
{
// Make polygon
LinedefTracePath tracepath = new LinedefTracePath(pathlines);
EarClipPolygon poly = tracepath.MakePolygon(true);
// Check if the front of the line is inside the polygon
if(poly.Intersect(line.GetSidePoint(front)))
{
// Outer lines found!
alllines.AddRange(pathlines);
return poly;
}
else
{
// Inner lines found. This is not what we need, we want the outer lines.
// Find the right-most vertex to start a scan from there towards the outer lines.
Vertex foundv = null;
foreach(LinedefSide ls in pathlines)
{
if((foundv == null) || (ls.Line.Start.Position.x > foundv.Position.x))
foundv = ls.Line.Start;
if((foundv == null) || (ls.Line.End.Position.x > foundv.Position.x))
foundv = ls.Line.End;
}
// If foundv is null then something is horribly wrong with the
// path we received from FindClosestPath!
if(foundv == null) throw new Exception("FAIL!");
// From the right-most vertex trace outward to the right to
// find the next closest linedef, this is based on the idea that
// all sectors are closed.
Vector2D lineoffset = new Vector2D(100.0f, 0.0f);
Line2D testline = new Line2D(foundv.Position, foundv.Position + lineoffset);
scanline = null;
float foundu = float.MaxValue;
foreach(Linedef ld in General.Map.Map.Linedefs)
{
// Line to the right of start point?
if((ld.Start.Position.x > foundv.Position.x) ||
(ld.End.Position.x > foundv.Position.x))
{
// Line intersecting the y axis?
if( !((ld.Start.Position.y > foundv.Position.y) &&
(ld.End.Position.y > foundv.Position.y)) &&
!((ld.Start.Position.y < foundv.Position.y) &&
(ld.End.Position.y < foundv.Position.y)))
{
// Check if this linedef intersects our test line at a closer range
float thisu;
ld.Line.GetIntersection(testline, out thisu);
if((thisu > 0.00001f) && (thisu < foundu) && !float.IsNaN(thisu))
{
scanline = ld;
foundu = thisu;
}
}
}
}
// Did we meet another line?
if(scanline != null)
{
// Determine on which side we should start the next pathfind
scanfront = (scanline.SideOfLine(foundv.Position) < 0.0f);
}
else
{
// Appearently we reached the end of the map, no sector possible here
return null;
}
}
}
else
{
// Can't find a path
return null;
}
}
while(true);
}
/// <summary>
/// This finds the closest path from one vertex to another.
/// When turnatends is true, the algorithm will continue at the other side of the
/// line when a dead end has been reached. Returns null when no path could be found.
/// </summary>
//public static List<LinedefSide> FindClosestPath(Vertex start, float startangle, Vertex end, bool turnatends)
//{
//}
/// <summary>
/// This finds the closest path from the beginning of a line to the end of the line.
/// When turnatends is true, the algorithm will continue at the other side of the
/// line when a dead end has been reached. Returns null when no path could be found.
/// </summary>
public static List<LinedefSide> FindClosestPath(Linedef startline, bool startfront, bool turnatends)
{
return FindClosestPath(startline, startfront, startline, startfront, turnatends);
}
/// <summary>
/// This finds the closest path from the beginning of a line to the end of the line.
/// When turnatends is true, the algorithm will continue at the other side of the
/// line when a dead end has been reached. Returns null when no path could be found.
/// </summary>
public static List<LinedefSide> FindClosestPath(Linedef startline, bool startfront, Linedef endline, bool endfront, bool turnatends)
{
List<LinedefSide> path = new List<LinedefSide>();
Dictionary<Linedef, int> tracecount = new Dictionary<Linedef, int>();
Linedef nextline = startline;
bool nextfront = startfront;
do
{
// Add line to path
path.Add(new LinedefSide(nextline, nextfront));
if(!tracecount.ContainsKey(nextline)) tracecount.Add(nextline, 1); else tracecount[nextline]++;
// Determine next vertex to use
Vertex v = nextfront ? nextline.End : nextline.Start;
// Get list of linedefs and sort by angle
List<Linedef> lines = new List<Linedef>(v.Linedefs);
LinedefAngleSorter sorter = new LinedefAngleSorter(nextline, nextfront, v);
lines.Sort(sorter);
// Source line is the only one?
if(lines.Count == 1)
{
// Are we allowed to trace along this line again?
if(turnatends && (!tracecount.ContainsKey(nextline) || (tracecount[nextline] < 3)))
{
// Turn around and go back along the other side of the line
nextfront = !nextfront;
}
else
{
// No more lines, trace ends here
path = null;
}
}
else
{
// Trace along the next line
Linedef prevline = nextline;
if(lines[0] == nextline) nextline = lines[1]; else nextline = lines[0];
// Are we allowed to trace this line again?
if(!tracecount.ContainsKey(nextline) || (tracecount[nextline] < 3))
{
// Check if front side changes
if((prevline.Start == nextline.Start) ||
(prevline.End == nextline.End)) nextfront = !nextfront;
}
else
{
// No more lines, trace ends here
path = null;
}
}
}
// Continue as long as we have not reached the start yet
// or we have no next line to trace
while((path != null) && ((nextline != endline) || (nextfront != endfront)));
// If start and front are not the same, add the end to the list also
if((path != null) && ((startline != endline) || (startfront != endfront)))
path.Add(new LinedefSide(endline, endfront));
// Return path (null when trace failed)
return path;
}
#endregion
#region ================== Sector Making
// This makes the sector from the given lines and sides
// If nearbylines is not null, then this method will find the default
// properties from the nearest line in this collection when the
// default properties can't be found in the alllines collection.
public static Sector MakeSector(List<LinedefSide> alllines, List<Linedef> nearbylines)
{
Sector newsector = General.Map.Map.CreateSector();
Sector sourcesector = null;
SidedefSettings sourceside = new SidedefSettings();
bool foundsidedefaults = false;
// Check if any of the sides already has a sidedef
// Then we use information from that sidedef to make the others
foreach(LinedefSide ls in alllines)
{
if(ls.Front)
{
if(ls.Line.Front != null)
{
// Copy sidedef information if not already found
if(sourcesector == null) sourcesector = ls.Line.Front.Sector;
TakeSidedefSettings(ref sourceside, ls.Line.Front);
foundsidedefaults = true;
break;
}
}
else
{
if(ls.Line.Back != null)
{
// Copy sidedef information if not already found
if(sourcesector == null) sourcesector = ls.Line.Back.Sector;
TakeSidedefSettings(ref sourceside, ls.Line.Back);
foundsidedefaults = true;
break;
}
}
}
// Now do the same for the other sides
// Note how information is only copied when not already found
// so this won't override information from the sides searched above
foreach(LinedefSide ls in alllines)
{
if(ls.Front)
{
if(ls.Line.Back != null)
{
// Copy sidedef information if not already found
if(sourcesector == null) sourcesector = ls.Line.Back.Sector;
TakeSidedefSettings(ref sourceside, ls.Line.Back);
foundsidedefaults = true;
break;
}
}
else
{
if(ls.Line.Front != null)
{
// Copy sidedef information if not already found
if(sourcesector == null) sourcesector = ls.Line.Front.Sector;
TakeSidedefSettings(ref sourceside, ls.Line.Front);
foundsidedefaults = true;
break;
}
}
}
// Use default settings from neares linedef, if settings have been found yet
if( (nearbylines != null) && (alllines.Count > 0) && (!foundsidedefaults || (sourcesector == null)) )
{
Vector2D testpoint = alllines[0].Line.GetSidePoint(alllines[0].Front);
Linedef nearest = MapSet.NearestLinedef(nearbylines, testpoint);
if(nearest != null)
{
Sidedef defaultside;
float side = nearest.SideOfLine(testpoint);
if(side < 0.0f)
defaultside = nearest.Front;
else
defaultside = nearest.Back;
if(defaultside != null)
{
if(sourcesector == null) sourcesector = defaultside.Sector;
TakeSidedefSettings(ref sourceside, defaultside);
}
}
}
// Use defaults where no settings could be found
TakeSidedefDefaults(ref sourceside);
// Found a source sector?
if(sourcesector != null)
{
// Copy properties from source to new sector
sourcesector.CopyPropertiesTo(newsector);
}
else
{
// No source sector, apply default sector properties
ApplyDefaultsToSector(newsector);
}
// Go for all sides to make sidedefs
foreach(LinedefSide ls in alllines)
{
// We may only remove a useless middle texture when
// the line was previously singlesided
bool wassinglesided = (ls.Line.Back == null) || (ls.Line.Front == null);
if(ls.Front)
{
// Create sidedef is needed and ensure it points to the new sector
if(ls.Line.Front == null) General.Map.Map.CreateSidedef(ls.Line, true, newsector);
if(ls.Line.Front.Sector != newsector) ls.Line.Front.SetSector(newsector);
ApplyDefaultsToSidedef(ls.Line.Front, sourceside);
}
else
{
// Create sidedef is needed and ensure it points to the new sector
if(ls.Line.Back == null) General.Map.Map.CreateSidedef(ls.Line, false, newsector);
if(ls.Line.Back.Sector != newsector) ls.Line.Back.SetSector(newsector);
ApplyDefaultsToSidedef(ls.Line.Back, sourceside);
}
// Update line
if(ls.Line.Front != null) ls.Line.Front.RemoveUnneededTextures(wassinglesided);
if(ls.Line.Back != null) ls.Line.Back.RemoveUnneededTextures(wassinglesided);
// Apply single/double sided flags if the double-sided-ness changed
if( (wassinglesided && ((ls.Line.Front != null) && (ls.Line.Back != null))) ||
(!wassinglesided && ((ls.Line.Front == null) || (ls.Line.Back == null))))
ls.Line.ApplySidedFlags();
}
// Return the new sector
return newsector;
}
// This joins a sector with the given lines and sides
public static Sector JoinSector(List<LinedefSide> alllines, Sidedef original)
{
SidedefSettings sourceside = new SidedefSettings();
// Take settings fro mthe original side
TakeSidedefSettings(ref sourceside, original);
// Use defaults where no settings could be found
TakeSidedefDefaults(ref sourceside);
// Go for all sides to make sidedefs
foreach(LinedefSide ls in alllines)
{
if(ls.Front)
{
// Create sidedef if needed
if(ls.Line.Front == null)
{
General.Map.Map.CreateSidedef(ls.Line, true, original.Sector);
ApplyDefaultsToSidedef(ls.Line.Front, sourceside);
ls.Line.ApplySidedFlags();
// We must remove the (now useless) middle texture on the other side
if(ls.Line.Back != null) ls.Line.Back.RemoveUnneededTextures(true, true);
}
// Added 23-9-08, can we do this or will it break things?
else
{
// Link to the new sector
ls.Line.Front.SetSector(original.Sector);
}
}
else
{
// Create sidedef if needed
if(ls.Line.Back == null)
{
General.Map.Map.CreateSidedef(ls.Line, false, original.Sector);
ApplyDefaultsToSidedef(ls.Line.Back, sourceside);
ls.Line.ApplySidedFlags();
// We must remove the (now useless) middle texture on the other side
if(ls.Line.Front != null) ls.Line.Front.RemoveUnneededTextures(true, true);
}
// Added 23-9-08, can we do this or will it break things?
else
{
// Link to the new sector
ls.Line.Back.SetSector(original.Sector);
}
}
}
// Return the new sector
return original.Sector;
}
// This takes default settings if not taken yet
private static void TakeSidedefDefaults(ref SidedefSettings settings)
{
// Use defaults where no settings could be found
if(settings.newtexhigh == null) settings.newtexhigh = General.Settings.DefaultTexture;
if(settings.newtexmid == null) settings.newtexmid = General.Settings.DefaultTexture;
if(settings.newtexlow == null) settings.newtexlow = General.Settings.DefaultTexture;
}
// This takes sidedef settings if not taken yet
private static void TakeSidedefSettings(ref SidedefSettings settings, Sidedef side)
{
if((side.LongHighTexture != MapSet.EmptyLongName) && (settings.newtexhigh == null))
settings.newtexhigh = side.HighTexture;
if((side.LongMiddleTexture != MapSet.EmptyLongName) && (settings.newtexmid == null))
settings.newtexmid = side.MiddleTexture;
if((side.LongLowTexture != MapSet.EmptyLongName) && (settings.newtexlow == null))
settings.newtexlow = side.LowTexture;
}
// This applies defaults to a sidedef
private static void ApplyDefaultsToSidedef(Sidedef sd, SidedefSettings defaults)
{
if(sd.HighRequired() && sd.HighTexture.StartsWith("-")) sd.SetTextureHigh(defaults.newtexhigh);
if(sd.MiddleRequired() && sd.MiddleTexture.StartsWith("-")) sd.SetTextureMid(defaults.newtexmid);
if(sd.LowRequired() && sd.LowTexture.StartsWith("-")) sd.SetTextureLow(defaults.newtexlow);
}
// This applies defaults to a sector
private static void ApplyDefaultsToSector(Sector s)
{
s.SetFloorTexture(General.Settings.DefaultFloorTexture);
s.SetCeilTexture(General.Settings.DefaultCeilingTexture);
s.FloorHeight = General.Settings.DefaultFloorHeight;
s.CeilHeight = General.Settings.DefaultCeilingHeight;
s.Brightness = General.Settings.DefaultBrightness;
}
#endregion
#region ================== Sector Labels
// This finds the ideal label positions for a sector
public static List<LabelPositionInfo> FindLabelPositions(Sector s)
{
List<LabelPositionInfo> positions = new List<LabelPositionInfo>(2);
int islandoffset = 0;
// Do we have a triangulation?
Triangulation triangles = s.Triangles;
if(triangles != null)
{
// Go for all islands
for(int i = 0; i < triangles.IslandVertices.Count; i++)
{
Dictionary<Sidedef, Linedef> sides = new Dictionary<Sidedef, Linedef>(triangles.IslandVertices[i] >> 1);
List<Vector2D> candidatepositions = new List<Vector2D>(triangles.IslandVertices[i] >> 1);
float founddistance = float.MinValue;
Vector2D foundposition = new Vector2D();
float minx = float.MaxValue;
float miny = float.MaxValue;
float maxx = float.MinValue;
float maxy = float.MinValue;
// Make candidate lines that are not along sidedefs
// We do this before testing the candidate against the sidedefs so that
// we can collect the relevant sidedefs first in the same run
for(int t = 0; t < triangles.IslandVertices[i]; t += 3)
{
int triangleoffset = islandoffset + t;
Vector2D v1 = triangles.Vertices[triangleoffset + 2];
Sidedef sd = triangles.Sidedefs[triangleoffset + 2];
for(int v = 0; v < 3; v++)
{
Vector2D v2 = triangles.Vertices[triangleoffset + v];
// Not along a sidedef? Then this line is across the sector
// and guaranteed to be inside the sector!
if(sd == null)
{
// Make the line
candidatepositions.Add(v1 + (v2 - v1) * 0.5f);
}
else
{
// This sidedefs is part of this island and must be checked
// so add it to the dictionary
sides[sd] = sd.Line;
}
// Make bbox of this island
minx = Math.Min(minx, v1.x);
miny = Math.Min(miny, v1.y);
maxx = Math.Max(maxx, v1.x);
maxy = Math.Max(maxy, v1.y);
// Next
sd = triangles.Sidedefs[triangleoffset + v];
v1 = v2;
}
}
// Any candidate lines found at all?
if(candidatepositions.Count > 0)
{
// Start with the first line
foreach(Vector2D candidatepos in candidatepositions)
{
// Check distance against other lines
float smallestdist = int.MaxValue;
foreach(KeyValuePair<Sidedef, Linedef> sd in sides)
{
// Check the distance
float distance = sd.Value.DistanceToSq(candidatepos, true);
smallestdist = Math.Min(smallestdist, distance);
}
// Keep this candidate if it is better than previous
if(smallestdist > founddistance)
{
foundposition = candidatepos;
founddistance = smallestdist;
}
}
// No cceptable line found, just use the first!
positions.Add(new LabelPositionInfo(foundposition, (float)Math.Sqrt(founddistance)));
}
else
{
// No candidate lines found.
// Check to see if the island is a triangle
if(triangles.IslandVertices[i] == 3)
{
// Use the center of the triangle
// TODO: Use the 'incenter' instead, see http://mathworld.wolfram.com/Incenter.html
Vector2D v = (triangles.Vertices[islandoffset] + triangles.Vertices[islandoffset + 1] + triangles.Vertices[islandoffset + 2]) / 3.0f;
float d = Line2D.GetDistanceToLineSq(triangles.Vertices[islandoffset], triangles.Vertices[islandoffset + 1], v, false);
d = Math.Min(d, Line2D.GetDistanceToLineSq(triangles.Vertices[islandoffset + 1], triangles.Vertices[islandoffset + 2], v, false));
d = Math.Min(d, Line2D.GetDistanceToLineSq(triangles.Vertices[islandoffset + 2], triangles.Vertices[islandoffset], v, false));
positions.Add(new LabelPositionInfo(v, (float)Math.Sqrt(d)));
}
else
{
// Use the center of this island.
float d = Math.Min((maxx - minx) * 0.5f, (maxy - miny) * 0.5f);
positions.Add(new LabelPositionInfo(new Vector2D(minx + (maxx - minx) * 0.5f, miny + (maxy - miny) * 0.5f), d));
}
}
// Done with this island
islandoffset += triangles.IslandVertices[i];
}
}
else
{
// No triangulation was made. FAIL!
General.Fail("No triangulation exists for sector " + s + " Triangulation is required to create label positions for a sector.");
}
// Done
return positions;
}
#endregion
#region ================== Drawing
/// <summary>
/// This draws lines with the given points. Note that this tool removes any existing geometry
/// marks and marks the new lines and vertices when done. Also marks the sectors that were added.
/// </summary>
public static void DrawLines(IList<DrawnVertex> points)
{
List<Vertex> newverts = new List<Vertex>();
List<Vertex> intersectverts = new List<Vertex>();
List<Linedef> newlines = new List<Linedef>();
List<bool> newlinescw = new List<bool>();
List<Linedef> oldlines = new List<Linedef>(General.Map.Map.Linedefs);
List<Sidedef> insidesides = new List<Sidedef>();
List<Vertex> mergeverts = new List<Vertex>();
List<Vertex> nonmergeverts = new List<Vertex>(General.Map.Map.Vertices);
MapSet map = General.Map.Map;
General.Map.Map.ClearAllMarks(false);
// Any points to do?
if(points.Count > 0)
{
/***************************************************\
Create the drawing
\***************************************************/
// Make first vertex
Vertex v1 = map.CreateVertex(points[0].pos);
v1.Marked = true;
// Keep references
newverts.Add(v1);
if(points[0].stitch) mergeverts.Add(v1); else nonmergeverts.Add(v1);
// Go for all other points
for(int i = 1; i < points.Count; i++)
{
// Create vertex for point
Vertex v2 = map.CreateVertex(points[i].pos);
v2.Marked = true;
// Keep references
newverts.Add(v2);
if(points[i].stitch) mergeverts.Add(v2); else nonmergeverts.Add(v2);
// Create line between point and previous
Linedef ld = map.CreateLinedef(v1, v2);
ld.Marked = true;
ld.ApplySidedFlags();
ld.UpdateCache();
newlines.Add(ld);
// Should we split this line to merge with intersecting lines?
if(points[i - 1].stitchline && points[i].stitchline)
{
// Check if any other lines intersect this line
List<float> intersections = new List<float>();
Line2D measureline = ld.Line;
foreach(Linedef ld2 in map.Linedefs)
{
// Intersecting?
// We only keep the unit length from the start of the line and
// do the real splitting later, when all intersections are known
float u;
if(ld2.Line.GetIntersection(measureline, out u))
{
if(!float.IsNaN(u) && (u > 0.0f) && (u < 1.0f) && (ld2 != ld))
intersections.Add(u);
}
}
// Sort the intersections
intersections.Sort();
// Go for all found intersections
Linedef splitline = ld;
foreach(float u in intersections)
{
// Calculate exact coordinates where to split
// We use measureline for this, because the original line
// may already have changed in length due to a previous split
Vector2D splitpoint = measureline.GetCoordinatesAt(u);
// Make the vertex
Vertex splitvertex = map.CreateVertex(splitpoint);
splitvertex.Marked = true;
newverts.Add(splitvertex);
mergeverts.Add(splitvertex); // <-- add to merge?
intersectverts.Add(splitvertex);
// The Split method ties the end of the original line to the given
// vertex and starts a new line at the given vertex, so continue
// splitting with the new line, because the intersections are sorted
// from low to high (beginning at the original line start)
splitline = splitline.Split(splitvertex);
splitline.ApplySidedFlags();
newlines.Add(splitline);
}
}
// Next
v1 = v2;
}
// Join merge vertices so that overlapping vertices in the draw become one.
map.BeginAddRemove();
MapSet.JoinVertices(mergeverts, mergeverts, false, MapSet.STITCH_DISTANCE);
map.EndAddRemove();
/***************************************************\
Find a way to close the drawing
\***************************************************/
// We prefer a closed polygon, because then we can determine the interior properly
// Check if the two ends of the polygon are closed
bool drawingclosed = false;
bool splittingonly = false;
if(newlines.Count > 0)
{
Linedef firstline = newlines[0];
Linedef lastline = newlines[newlines.Count - 1];
drawingclosed = (firstline.Start == lastline.End);
if(!drawingclosed)
{
// When not closed, we will try to find a path to close it.
// But first we check if any of our new lines are inside existing sectors, because
// if they are then we are splitting sectors and cannot accurately find a closed path
// to close our polygon. In that case, we want to do sector splits only.
foreach(Linedef ld in newlines)
{
Vector2D ldcp = ld.GetCenterPoint();
Linedef nld = MapSet.NearestLinedef(oldlines, ldcp);
if(nld != null)
{
float ldside = nld.SideOfLine(ldcp);
if(ldside < 0.0f)
{
if(nld.Front != null)
{
splittingonly = true;
break;
}
}
else if(ldside > 0.0f)
{
if(nld.Back != null)
{
splittingonly = true;
break;
}
}
else
{
// We can't tell, so lets ignore this for now.
}
}
}
// Not splitting only?
if(!splittingonly)
{
// First and last vertex stitch with geometry?
if(points[0].stitch && points[points.Count - 1].stitch)
{
List<LinedefSide> startpoints = new List<LinedefSide>();
List<LinedefSide> endpoints = new List<LinedefSide>();
// Find out where the start will stitch and create test points
Linedef l1 = MapSet.NearestLinedefRange(oldlines, firstline.Start.Position, MapSet.STITCH_DISTANCE);
Vertex vv1 = null;
if(l1 != null)
{
startpoints.Add(new LinedefSide(l1, true));
startpoints.Add(new LinedefSide(l1, false));
}
else
{
// Not stitched with a linedef, so check if it will stitch with a vertex
vv1 = MapSet.NearestVertexSquareRange(nonmergeverts, firstline.Start.Position, MapSet.STITCH_DISTANCE);
if((vv1 != null) && (vv1.Linedefs.Count > 0))
{
// Now we take the two linedefs with adjacent angles to the drawn line
List<Linedef> lines = new List<Linedef>(vv1.Linedefs);
lines.Sort(new LinedefAngleSorter(firstline, true, firstline.Start));
startpoints.Add(new LinedefSide(lines[0], true));
startpoints.Add(new LinedefSide(lines[0], false));
lines.Sort(new LinedefAngleSorter(firstline, false, firstline.Start));
startpoints.Add(new LinedefSide(lines[0], true));
startpoints.Add(new LinedefSide(lines[0], false));
}
}
// Find out where the end will stitch and create test points
Linedef l2 = MapSet.NearestLinedefRange(oldlines, lastline.End.Position, MapSet.STITCH_DISTANCE);
Vertex vv2 = null;
if(l2 != null)
{
endpoints.Add(new LinedefSide(l2, true));
endpoints.Add(new LinedefSide(l2, false));
}
else
{
// Not stitched with a linedef, so check if it will stitch with a vertex
vv2 = MapSet.NearestVertexSquareRange(nonmergeverts, lastline.End.Position, MapSet.STITCH_DISTANCE);
if((vv2 != null) && (vv2.Linedefs.Count > 0))
{
// Now we take the two linedefs with adjacent angles to the drawn line
List<Linedef> lines = new List<Linedef>(vv2.Linedefs);
lines.Sort(new LinedefAngleSorter(firstline, true, lastline.End));
endpoints.Add(new LinedefSide(lines[0], true));
endpoints.Add(new LinedefSide(lines[0], false));
lines.Sort(new LinedefAngleSorter(firstline, false, lastline.End));
endpoints.Add(new LinedefSide(lines[0], true));
endpoints.Add(new LinedefSide(lines[0], false));
}
}
// Found any start and end points?
if((startpoints.Count > 0) && (endpoints.Count > 0))
{
List<LinedefSide> shortestpath = null;
// Both stitched to the same line?
if((l1 == l2) && (l1 != null))
{
// Then just connect the two
shortestpath = new List<LinedefSide>();
shortestpath.Add(new LinedefSide(l1, true));
}
// One stitched to a line and the other to a vertex of that line?
else if((l1 != null) && (vv2 != null) && ((l1.Start == vv2) || (l1.End == vv2)))
{
// Then just connect the two
shortestpath = new List<LinedefSide>();
shortestpath.Add(new LinedefSide(l1, true));
}
// The other stitched to a line and the first to a vertex of that line?
else if((l2 != null) && (vv1 != null) && ((l2.Start == vv1) || (l2.End == vv1)))
{
// Then just connect the two
shortestpath = new List<LinedefSide>();
shortestpath.Add(new LinedefSide(l2, true));
}
else
{
// Find the shortest, closest path between start and end points
foreach(LinedefSide startp in startpoints)
{
foreach(LinedefSide endp in endpoints)
{
List<LinedefSide> p;
p = Tools.FindClosestPath(startp.Line, startp.Front, endp.Line, endp.Front, true);
if((p != null) && ((shortestpath == null) || (p.Count < shortestpath.Count))) shortestpath = p;
p = Tools.FindClosestPath(endp.Line, endp.Front, startp.Line, startp.Front, true);
if((p != null) && ((shortestpath == null) || (p.Count < shortestpath.Count))) shortestpath = p;
}
}
}
// Found a path?
if(shortestpath != null)
{
// Check which direction the path goes in
bool pathforward = false;
foreach(LinedefSide startp in startpoints)
{
if(shortestpath[0].Line == startp.Line)
{
pathforward = true;
break;
}
}
// TEST
/*
General.Map.Renderer2D.StartOverlay(true);
foreach(LinedefSide lsd in shortestpath)
{
General.Map.Renderer2D.RenderLine(lsd.Line.Start.Position, lsd.Line.End.Position, 2, new PixelColor(255, 0, 255, 0), true);
}
General.Map.Renderer2D.Finish();
General.Map.Renderer2D.Present();
Thread.Sleep(1000);
*/
// Begin at first vertex in path
if(pathforward)
v1 = firstline.Start;
else
v1 = lastline.End;
// Go for all vertices in the path to make additional lines
for(int i = 1; i < shortestpath.Count; i++)
{
// Get the next position
Vector2D v2pos = shortestpath[i].Front ? shortestpath[i].Line.Start.Position : shortestpath[i].Line.End.Position;
// Make the new vertex
Vertex v2 = map.CreateVertex(v2pos);
v2.Marked = true;
mergeverts.Add(v2);
// Make the line
Linedef ld = map.CreateLinedef(v1, v2);
ld.Marked = true;
ld.ApplySidedFlags();
ld.UpdateCache();
newlines.Add(ld);
// Next
v1 = v2;
}
// Make the final line
Linedef lld;
if(pathforward)
lld = map.CreateLinedef(v1, lastline.End);
else
lld = map.CreateLinedef(v1, firstline.Start);
// Setup line
lld.Marked = true;
lld.ApplySidedFlags();
lld.UpdateCache();
newlines.Add(lld);
// Drawing is now closed
drawingclosed = true;
// Join merge vertices so that overlapping vertices in the draw become one.
MapSet.JoinVertices(mergeverts, mergeverts, false, MapSet.STITCH_DISTANCE);
}
}
}
}
}
}
// Merge intersetion vertices with the new lines. This completes the
// self intersections for which splits were made above.
map.Update(true, false);
map.BeginAddRemove();
MapSet.SplitLinesByVertices(newlines, intersectverts, MapSet.STITCH_DISTANCE, null);
MapSet.SplitLinesByVertices(newlines, mergeverts, MapSet.STITCH_DISTANCE, null);
map.EndAddRemove();
/***************************************************\
Determine drawing interior
\***************************************************/
// In step 3 we will make sectors on the interior sides and join sectors on the
// exterior sides, but because the user could have drawn counterclockwise or just
// some weird polygon. The following code figures out the interior side of all
// new lines.
map.Update(true, false);
foreach(Linedef ld in newlines)
{
// Find closest path starting with the front of this linedef
List<LinedefSide> pathlines = Tools.FindClosestPath(ld, true, true);
if(pathlines != null)
{
// Make polygon
LinedefTracePath tracepath = new LinedefTracePath(pathlines);
EarClipPolygon pathpoly = tracepath.MakePolygon(true);
// Check if the front of the line is outside the polygon
if((pathpoly.CalculateArea() > 0.001f) && !pathpoly.Intersect(ld.GetSidePoint(true)))
{
// Now trace from the back side of the line to see if
// the back side lies in the interior. I don't want to
// flip the line if it is not helping.
// Find closest path starting with the back of this linedef
pathlines = Tools.FindClosestPath(ld, false, true);
if(pathlines != null)
{
// Make polygon
tracepath = new LinedefTracePath(pathlines);
pathpoly = tracepath.MakePolygon(true);
// Check if the front of the line is inside the polygon
ld.FrontInterior = (pathpoly.CalculateArea() < 0.001f) || pathpoly.Intersect(ld.GetSidePoint(true));
}
else
{
ld.FrontInterior = true;
}
}
else
{
ld.FrontInterior = true;
}
}
else
{
ld.FrontInterior = true;
}
}
/***************************************************\
Merge the new geometry
\***************************************************/
// Mark only the vertices that should be merged
map.ClearMarkedVertices(false);
foreach(Vertex v in mergeverts) v.Marked = true;
// Before this point, the new geometry is not linked with the existing geometry.
// Now perform standard geometry stitching to merge the new geometry with the rest
// of the map. The marked vertices indicate the new geometry.
map.StitchGeometry();
map.Update(true, false);
// Find our new lines again, because they have been merged with the other geometry
// but their Marked property is copied where they have joined.
newlines = map.GetMarkedLinedefs(true);
// Remove any disposed old lines
List<Linedef> prevoldlines = oldlines;
oldlines = new List<Linedef>(prevoldlines.Count);
foreach(Linedef ld in prevoldlines)
if(!ld.IsDisposed) oldlines.Add(ld);
/***************************************************\
Join and create new sectors
\***************************************************/
// The code below atempts to create sectors on the interior sides of the drawn
// geometry and joins sectors on the other sides of the drawn geometry.
// This code does not change any geometry, it only makes/updates sidedefs.
bool sidescreated = false;
bool[] frontsdone = new bool[newlines.Count];
bool[] backsdone = new bool[newlines.Count];
for(int i = 0; i < newlines.Count; i++)
{
Linedef ld = newlines[i];
// Interior not done yet?
if((ld.FrontInterior && !frontsdone[i]) || (!ld.FrontInterior && !backsdone[i]))
{
// Find a way to create a sector here
List<LinedefSide> sectorlines = Tools.FindPotentialSectorAt(ld, ld.FrontInterior);
if(sectorlines != null)
{
sidescreated = true;
// When none of the linedef sides exist yet, this is a true new
// sector that will be created out of the void!
bool istruenewsector = true;
foreach(LinedefSide ls in sectorlines)
{
if((ls.Front && (ls.Line.Front != null)) ||
(!ls.Front && (ls.Line.Back != null)))
{
istruenewsector = false;
break;
}
}
// But we don't want to create sectors out of the void when we
// decided that we only want to split sectors.
if(!istruenewsector || !splittingonly)
{
// Make the new sector
Sector newsector = Tools.MakeSector(sectorlines, oldlines);
if(istruenewsector) newsector.Marked = true;
// Go for all sidedefs in this new sector
foreach(Sidedef sd in newsector.Sidedefs)
{
// Keep list of sides inside created sectors
insidesides.Add(sd);
// Side matches with a side of our new lines?
int lineindex = newlines.IndexOf(sd.Line);
if(lineindex > -1)
{
// Mark this side as done
if(sd.IsFront)
frontsdone[lineindex] = true;
else
backsdone[lineindex] = true;
}
}
}
}
}
// Exterior not done yet?
if((ld.FrontInterior && !backsdone[i]) || (!ld.FrontInterior && !frontsdone[i]))
{
// Find a way to create a sector here
List<LinedefSide> sectorlines = Tools.FindPotentialSectorAt(ld, !ld.FrontInterior);
if(sectorlines != null)
{
// Check if any of the surrounding lines originally have sidedefs we can join
Sidedef joinsidedef = null;
foreach(LinedefSide ls in sectorlines)
{
if(ls.Front && (ls.Line.Front != null))
{
joinsidedef = ls.Line.Front;
break;
}
else if(!ls.Front && (ls.Line.Back != null))
{
joinsidedef = ls.Line.Back;
break;
}
}
// Join?
if(joinsidedef != null)
{
sidescreated = true;
// We only want to modify our new lines when joining a sector
// (or it may break nearby self-referencing sectors)
List<LinedefSide> newsectorlines = new List<LinedefSide>(sectorlines.Count);
foreach(LinedefSide sd in sectorlines)
{
// Side matches with a side of our new lines?
int lineindex = newlines.IndexOf(sd.Line);
if(lineindex > -1)
{
// Add to list
newsectorlines.Add(sd);
// Mark this side as done
if(sd.Front)
frontsdone[lineindex] = true;
else
backsdone[lineindex] = true;
}
}
// Have our new lines join the existing sector
Tools.JoinSector(newsectorlines, joinsidedef);
}
}
}
}
/***************************************************\
Corrections and clean up
\***************************************************/
// Make corrections for backward linedefs
MapSet.FlipBackwardLinedefs(newlines);
// Check if any of our new lines have sides
if(sidescreated)
{
// Then remove the lines which have no sides at all
for(int i = newlines.Count - 1; i >= 0; i--)
{
// Remove the line if it has no sides
if((newlines[i].Front == null) && (newlines[i].Back == null)) newlines[i].Dispose();
}
}
// Mark new geometry only
General.Map.Map.ClearMarkedLinedefs(false);
General.Map.Map.ClearMarkedVertices(false);
foreach(Vertex v in newverts) v.Marked = true;
foreach(Linedef l in newlines) l.Marked = true;
}
}
#endregion
#region ================== Flat Floodfill
// This performs flat floodfill over sector floors or ceilings that match with the same flat
// NOTE: This method uses the sectors marking to indicate which sides have been filled
// When resetsectormarks is set to true, all sectors will first be marked false (not aligned).
// Setting resetsectormarks to false is usefull to fill only within a specific selection
// (set the marked property to true for the sectors outside the selection)
public static void FloodfillFlats(Sector start, bool fillceilings, long originalflat, ImageData fillflat, bool resetsectormarks)
{
Stack<Sector> todo = new Stack<Sector>(50);
// Mark all sectors false (they will be marked true when the flat is modified)
if(resetsectormarks) General.Map.Map.ClearMarkedSectors(false);
// Begin with first sector
if(((start.LongFloorTexture == originalflat) && !fillceilings) ||
((start.LongCeilTexture == originalflat) && fillceilings))
{
todo.Push(start);
}
// Continue until nothing more to align
while(todo.Count > 0)
{
// Get the sector to do
Sector s = todo.Pop();
// Apply new flat
if(fillceilings)
s.SetCeilTexture(fillflat.Name);
else
s.SetFloorTexture(fillflat.Name);
s.Marked = true;
// Go for all sidedefs to add neighbouring sectors
foreach(Sidedef sd in s.Sidedefs)
{
// Sector on the other side of the line that we haven't checked yet?
if((sd.Other != null) && !sd.Other.Sector.Marked)
{
Sector os = sd.Other.Sector;
// Check if texture matches
if(((os.LongFloorTexture == originalflat) && !fillceilings) ||
((os.LongCeilTexture == originalflat) && fillceilings))
{
todo.Push(os);
}
}
}
}
}
#endregion
#region ================== Texture Floodfill
// This performs texture floodfill along all walls that match with the same texture
// NOTE: This method uses the sidedefs marking to indicate which sides have been filled
// When resetsidemarks is set to true, all sidedefs will first be marked false (not aligned).
// Setting resetsidemarks to false is usefull to fill only within a specific selection
// (set the marked property to true for the sidedefs outside the selection)
public static void FloodfillTextures(Sidedef start, long originaltexture, ImageData filltexture, bool resetsidemarks)
{
Stack<SidedefFillJob> todo = new Stack<SidedefFillJob>(50);
// Mark all sidedefs false (they will be marked true when the texture is aligned)
if(resetsidemarks) General.Map.Map.ClearMarkedSidedefs(false);
// Begin with first sidedef
if(SidedefTextureMatch(start, originaltexture))
{
SidedefFillJob first = new SidedefFillJob();
first.sidedef = start;
first.forward = true;
todo.Push(first);
}
// Continue until nothing more to align
while(todo.Count > 0)
{
// Get the align job to do
SidedefFillJob j = todo.Pop();
// Apply texturing
if(j.sidedef.LongHighTexture == originaltexture) j.sidedef.SetTextureHigh(filltexture.Name);
if((((j.sidedef.MiddleTexture.Length > 0) && (j.sidedef.MiddleTexture[0] != '-')) || j.sidedef.MiddleRequired()) &&
(j.sidedef.LongMiddleTexture == originaltexture)) j.sidedef.SetTextureMid(filltexture.Name);
if(j.sidedef.LongLowTexture == originaltexture) j.sidedef.SetTextureLow(filltexture.Name);
j.sidedef.Marked = true;
if(j.forward)
{
Vertex v;
// Add sidedefs forward (connected to the right vertex)
v = j.sidedef.IsFront ? j.sidedef.Line.End : j.sidedef.Line.Start;
AddSidedefsForFloodfill(todo, v, true, originaltexture);
// Add sidedefs backward (connected to the left vertex)
v = j.sidedef.IsFront ? j.sidedef.Line.Start : j.sidedef.Line.End;
AddSidedefsForFloodfill(todo, v, false, originaltexture);
}
else
{
Vertex v;
// Add sidedefs backward (connected to the left vertex)
v = j.sidedef.IsFront ? j.sidedef.Line.Start : j.sidedef.Line.End;
AddSidedefsForFloodfill(todo, v, false, originaltexture);
// Add sidedefs forward (connected to the right vertex)
v = j.sidedef.IsFront ? j.sidedef.Line.End : j.sidedef.Line.Start;
AddSidedefsForFloodfill(todo, v, true, originaltexture);
}
}
}
// This adds the matching, unmarked sidedefs from a vertex for texture alignment
private static void AddSidedefsForFloodfill(Stack<SidedefFillJob> stack, Vertex v, bool forward, long texturelongname)
{
foreach(Linedef ld in v.Linedefs)
{
Sidedef side1 = forward ? ld.Front : ld.Back;
Sidedef side2 = forward ? ld.Back : ld.Front;
if((ld.Start == v) && (side1 != null) && !side1.Marked)
{
if(SidedefTextureMatch(side1, texturelongname))
{
SidedefFillJob nj = new SidedefFillJob();
nj.forward = forward;
nj.sidedef = side1;
stack.Push(nj);
}
}
else if((ld.End == v) && (side2 != null) && !side2.Marked)
{
if(SidedefTextureMatch(side2, texturelongname))
{
SidedefFillJob nj = new SidedefFillJob();
nj.forward = forward;
nj.sidedef = side2;
stack.Push(nj);
}
}
}
}
#endregion
#region ================== Texture Alignment
// This performs texture alignment along all walls that match with the same texture
// NOTE: This method uses the sidedefs marking to indicate which sides have been aligned
// When resetsidemarks is set to true, all sidedefs will first be marked false (not aligned).
// Setting resetsidemarks to false is usefull to align only within a specific selection
// (set the marked property to true for the sidedefs outside the selection)
public static void AutoAlignTextures(Sidedef start, ImageData texture, bool alignx, bool aligny, bool resetsidemarks)
{
Stack<SidedefAlignJob> todo = new Stack<SidedefAlignJob>(50);
float scalex = General.Map.Config.ScaledTextureOffsets ? texture.Scale.x : 1.0f;
float scaley = General.Map.Config.ScaledTextureOffsets ? texture.Scale.y : 1.0f;
// Mark all sidedefs false (they will be marked true when the texture is aligned)
if(resetsidemarks) General.Map.Map.ClearMarkedSidedefs(false);
// Begin with first sidedef
SidedefAlignJob first = new SidedefAlignJob();
first.sidedef = start;
first.offsetx = start.OffsetX;
first.forward = true;
todo.Push(first);
// Continue until nothing more to align
while(todo.Count > 0)
{
// Get the align job to do
SidedefAlignJob j = todo.Pop();
if(j.forward)
{
Vertex v;
int forwardoffset;
int backwardoffset;
// Apply alignment
if (alignx) j.sidedef.OffsetX = j.offsetx;
if (aligny) j.sidedef.OffsetY = (int)Math.Round((start.Sector.CeilHeight - j.sidedef.Sector.CeilHeight) / scaley) + start.OffsetY;
forwardoffset = j.offsetx + (int)Math.Round(j.sidedef.Line.Length / scalex);
backwardoffset = j.offsetx;
j.sidedef.Marked = true;
// Wrap the value within the width of the texture (to prevent ridiculous values)
// NOTE: We don't use ScaledWidth here because the texture offset is in pixels, not mappixels
if (texture.IsImageLoaded)
{
if (alignx) j.sidedef.OffsetX %= texture.Width;
if (aligny) j.sidedef.OffsetY %= texture.Height;
}
// Add sidedefs forward (connected to the right vertex)
v = j.sidedef.IsFront ? j.sidedef.Line.End : j.sidedef.Line.Start;
AddSidedefsForAlignment(todo, v, true, forwardoffset, texture.LongName);
// Add sidedefs backward (connected to the left vertex)
v = j.sidedef.IsFront ? j.sidedef.Line.Start : j.sidedef.Line.End;
AddSidedefsForAlignment(todo, v, false, backwardoffset, texture.LongName);
}
else
{
Vertex v;
int forwardoffset;
int backwardoffset;
// Apply alignment
if (alignx) j.sidedef.OffsetX = j.offsetx - (int)Math.Round(j.sidedef.Line.Length / scalex);
if (aligny) j.sidedef.OffsetY = (int)Math.Round((start.Sector.CeilHeight - j.sidedef.Sector.CeilHeight) / scaley) + start.OffsetY;
forwardoffset = j.offsetx;
backwardoffset = j.offsetx - (int)Math.Round(j.sidedef.Line.Length / scalex);
j.sidedef.Marked = true;
// Wrap the value within the width of the texture (to prevent ridiculous values)
// NOTE: We don't use ScaledWidth here because the texture offset is in pixels, not mappixels
if(texture.IsImageLoaded)
{
if(alignx) j.sidedef.OffsetX %= texture.Width;
if(aligny) j.sidedef.OffsetY %= texture.Height;
}
// Add sidedefs backward (connected to the left vertex)
v = j.sidedef.IsFront ? j.sidedef.Line.Start : j.sidedef.Line.End;
AddSidedefsForAlignment(todo, v, false, backwardoffset, texture.LongName);
// Add sidedefs forward (connected to the right vertex)
v = j.sidedef.IsFront ? j.sidedef.Line.End : j.sidedef.Line.Start;
AddSidedefsForAlignment(todo, v, true, forwardoffset, texture.LongName);
}
}
}
// This adds the matching, unmarked sidedefs from a vertex for texture alignment
private static void AddSidedefsForAlignment(Stack<SidedefAlignJob> stack, Vertex v, bool forward, int offsetx, long texturelongname)
{
foreach(Linedef ld in v.Linedefs)
{
Sidedef side1 = forward ? ld.Front : ld.Back;
Sidedef side2 = forward ? ld.Back : ld.Front;
if((ld.Start == v) && (side1 != null) && !side1.Marked)
{
if(SidedefTextureMatch(side1, texturelongname))
{
SidedefAlignJob nj = new SidedefAlignJob();
nj.forward = forward;
nj.offsetx = offsetx;
nj.sidedef = side1;
stack.Push(nj);
}
}
else if((ld.End == v) && (side2 != null) && !side2.Marked)
{
if(SidedefTextureMatch(side2, texturelongname))
{
SidedefAlignJob nj = new SidedefAlignJob();
nj.forward = forward;
nj.offsetx = offsetx;
nj.sidedef = side2;
stack.Push(nj);
}
}
}
}
// This checks if any of the sidedef texture match the given texture
private static bool SidedefTextureMatch(Sidedef sd, long texturelongname)
{
return ((sd.LongHighTexture == texturelongname) && sd.HighRequired()) ||
((sd.LongLowTexture == texturelongname) && sd.LowRequired()) ||
((sd.LongMiddleTexture == texturelongname) && (sd.MiddleRequired() || ((sd.MiddleTexture.Length > 0) && (sd.MiddleTexture[0] != '-')))) ;
}
#endregion
#region ================== Tags and Actions
/// <summary>
/// This removes all tags on the marked geometry.
/// </summary>
public static void RemoveMarkedTags()
{
General.Map.Map.ForAllTags<object>(RemoveTagHandler, true, null);
}
// This removes tags
private static void RemoveTagHandler(MapElement element, bool actionargument, UniversalType type, ref int value, object obj)
{
value = 0;
}
/// <summary>
/// This renumbers all tags on the marked geometry.
/// </summary>
public static void RenumberMarkedTags()
{
Dictionary<int, int> tagsmap = new Dictionary<int, int>();
// Collect the tag numbers used in the marked geometry
General.Map.Map.ForAllTags(CollectTagNumbersHandler, true, tagsmap);
// Get new tags that are unique within unmarked geometry
List<int> newtags = General.Map.Map.GetMultipleNewTags(tagsmap.Count, false);
// Map the old tags with the new tags
int index = 0;
List<int> oldkeys = new List<int>(tagsmap.Keys);
foreach(int ot in oldkeys) tagsmap[ot] = newtags[index++];
// Now renumber the old tags with the new ones
General.Map.Map.ForAllTags(RenumberTagsHandler, true, tagsmap);
}
// This collects tags in a dictionary
private static void CollectTagNumbersHandler(MapElement element, bool actionargument, UniversalType type, ref int value, Dictionary<int, int> tagsmap)
{
if(value != 0)
tagsmap[value] = value;
}
// This remaps tags from a dictionary
private static void RenumberTagsHandler(MapElement element, bool actionargument, UniversalType type, ref int value, Dictionary<int, int> tagsmap)
{
if(value != 0)
value = tagsmap[value];
}
/// <summary>
/// This removes all actions on the marked geometry.
/// </summary>
public static void RemoveMarkedActions()
{
// Remove actions from things
foreach(Thing t in General.Map.Map.Things)
{
if(t.Marked)
{
t.Action = 0;
for(int i = 0; i < Thing.NUM_ARGS; i++) t.Args[i] = 0;
}
}
// Remove actions from linedefs
foreach(Linedef l in General.Map.Map.Linedefs)
{
if(l.Marked)
{
l.Action = 0;
for(int i = 0; i < Linedef.NUM_ARGS; i++) l.Args[i] = 0;
}
}
}
#endregion
#region ================== Misc Exported Functions
/// <summary>
/// This performs a Hermite spline interpolation and returns the result position.
/// Where u (0 - 1) is the wanted position on the curve between p1 (using tangent t1) and p2 (using tangent t2).
/// </summary>
public static Vector2D HermiteSpline(Vector2D p1, Vector2D t1, Vector2D p2, Vector2D t2, float u)
{
return D3DDevice.V2D(Vector2.Hermite(D3DDevice.V2(p1), D3DDevice.V2(t1), D3DDevice.V2(p2), D3DDevice.V2(t2), u));
}
/// <summary>
/// This performs a Hermite spline interpolation and returns the result position.
/// Where u (0 - 1) is the wanted position on the curve between p1 (using tangent t1) and p2 (using tangent t2).
/// </summary>
public static Vector3D HermiteSpline(Vector3D p1, Vector3D t1, Vector3D p2, Vector3D t2, float u)
{
return D3DDevice.V3D(Vector3.Hermite(D3DDevice.V3(p1), D3DDevice.V3(t1), D3DDevice.V3(p2), D3DDevice.V3(t2), u));
}
#endregion
}
}