mirror of
https://git.do.srb2.org/STJr/SRB2.git
synced 2024-11-28 15:11:55 +00:00
1480 lines
37 KiB
C
1480 lines
37 KiB
C
// SONIC ROBO BLAST 2
|
|
//-----------------------------------------------------------------------------
|
|
// Copyright (C) 1993-1996 by id Software, Inc.
|
|
// Copyright (C) 2005-2009 by Andrey "entryway" Budko.
|
|
// Copyright (C) 2018-2020 by Jaime "Lactozilla" Passos.
|
|
// Copyright (C) 2019-2020 by Sonic Team Junior.
|
|
//
|
|
// This program is free software distributed under the
|
|
// terms of the GNU General Public License, version 2.
|
|
// See the 'LICENSE' file for more details.
|
|
//-----------------------------------------------------------------------------
|
|
/// \file r_patch.c
|
|
/// \brief Patch generation.
|
|
|
|
#include "byteptr.h"
|
|
#include "dehacked.h"
|
|
#include "i_video.h"
|
|
#include "r_data.h"
|
|
#include "r_draw.h"
|
|
#include "r_patch.h"
|
|
#include "r_things.h"
|
|
#include "z_zone.h"
|
|
#include "w_wad.h"
|
|
|
|
#ifdef HWRENDER
|
|
#include "hardware/hw_glob.h"
|
|
#endif
|
|
|
|
#ifdef HAVE_PNG
|
|
|
|
#ifndef _MSC_VER
|
|
#ifndef _LARGEFILE64_SOURCE
|
|
#define _LARGEFILE64_SOURCE
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef _LFS64_LARGEFILE
|
|
#define _LFS64_LARGEFILE
|
|
#endif
|
|
|
|
#ifndef _FILE_OFFSET_BITS
|
|
#define _FILE_OFFSET_BITS 0
|
|
#endif
|
|
|
|
#include "png.h"
|
|
#ifndef PNG_READ_SUPPORTED
|
|
#undef HAVE_PNG
|
|
#endif
|
|
#endif
|
|
|
|
static unsigned char imgbuf[1<<26];
|
|
|
|
//
|
|
// R_CheckIfPatch
|
|
//
|
|
// Returns true if the lump is a valid patch.
|
|
//
|
|
boolean R_CheckIfPatch(lumpnum_t lump)
|
|
{
|
|
size_t size;
|
|
INT16 width, height;
|
|
patch_t *patch;
|
|
boolean result;
|
|
|
|
size = W_LumpLength(lump);
|
|
|
|
// minimum length of a valid Doom patch
|
|
if (size < 13)
|
|
return false;
|
|
|
|
patch = (patch_t *)W_CacheLumpNum(lump, PU_STATIC);
|
|
|
|
width = SHORT(patch->width);
|
|
height = SHORT(patch->height);
|
|
|
|
result = (height > 0 && height <= 16384 && width > 0 && width <= 16384 && width < (INT16)(size / 4));
|
|
|
|
if (result)
|
|
{
|
|
// The dimensions seem like they might be valid for a patch, so
|
|
// check the column directory for extra security. All columns
|
|
// must begin after the column directory, and none of them must
|
|
// point past the end of the patch.
|
|
INT16 x;
|
|
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
UINT32 ofs = LONG(patch->columnofs[x]);
|
|
|
|
// Need one byte for an empty column (but there's patches that don't know that!)
|
|
if (ofs < (UINT32)width * 4 + 8 || ofs >= (UINT32)size)
|
|
{
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
//
|
|
// R_TextureToFlat
|
|
//
|
|
// Convert a texture to a flat.
|
|
//
|
|
void R_TextureToFlat(size_t tex, UINT8 *flat)
|
|
{
|
|
texture_t *texture = textures[tex];
|
|
|
|
fixed_t col, ofs;
|
|
column_t *column;
|
|
UINT8 *desttop, *dest, *deststop;
|
|
UINT8 *source;
|
|
|
|
// yea
|
|
R_CheckTextureCache(tex);
|
|
|
|
desttop = flat;
|
|
deststop = desttop + (texture->width * texture->height);
|
|
|
|
for (col = 0; col < texture->width; col++, desttop++)
|
|
{
|
|
// no post_t info
|
|
if (!texture->holes)
|
|
{
|
|
column = (column_t *)(R_GetColumn(tex, col));
|
|
source = (UINT8 *)(column);
|
|
dest = desttop;
|
|
for (ofs = 0; dest < deststop && ofs < texture->height; ofs++)
|
|
{
|
|
if (source[ofs] != TRANSPARENTPIXEL)
|
|
*dest = source[ofs];
|
|
dest += texture->width;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
INT32 topdelta, prevdelta = -1;
|
|
column = (column_t *)((UINT8 *)R_GetColumn(tex, col) - 3);
|
|
while (column->topdelta != 0xff)
|
|
{
|
|
topdelta = column->topdelta;
|
|
if (topdelta <= prevdelta)
|
|
topdelta += prevdelta;
|
|
prevdelta = topdelta;
|
|
|
|
dest = desttop + (topdelta * texture->width);
|
|
source = (UINT8 *)column + 3;
|
|
for (ofs = 0; dest < deststop && ofs < column->length; ofs++)
|
|
{
|
|
if (source[ofs] != TRANSPARENTPIXEL)
|
|
*dest = source[ofs];
|
|
dest += texture->width;
|
|
}
|
|
column = (column_t *)((UINT8 *)column + column->length + 4);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// R_PatchToFlat
|
|
//
|
|
// Convert a patch to a flat.
|
|
//
|
|
void R_PatchToFlat(patch_t *patch, UINT8 *flat)
|
|
{
|
|
fixed_t col, ofs;
|
|
column_t *column;
|
|
UINT8 *desttop, *dest, *deststop;
|
|
UINT8 *source;
|
|
|
|
desttop = flat;
|
|
deststop = desttop + (SHORT(patch->width) * SHORT(patch->height));
|
|
|
|
for (col = 0; col < SHORT(patch->width); col++, desttop++)
|
|
{
|
|
INT32 topdelta, prevdelta = -1;
|
|
column = (column_t *)((UINT8 *)patch + LONG(patch->columnofs[col]));
|
|
|
|
while (column->topdelta != 0xff)
|
|
{
|
|
topdelta = column->topdelta;
|
|
if (topdelta <= prevdelta)
|
|
topdelta += prevdelta;
|
|
prevdelta = topdelta;
|
|
|
|
dest = desttop + (topdelta * SHORT(patch->width));
|
|
source = (UINT8 *)(column) + 3;
|
|
for (ofs = 0; dest < deststop && ofs < column->length; ofs++)
|
|
{
|
|
*dest = source[ofs];
|
|
dest += SHORT(patch->width);
|
|
}
|
|
column = (column_t *)((UINT8 *)column + column->length + 4);
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// R_PatchToMaskedFlat
|
|
//
|
|
// Convert a patch to a masked flat.
|
|
// Now, what is a "masked" flat anyway?
|
|
// It means the flat uses two bytes to store image data.
|
|
// The upper byte is used to store the transparent pixel,
|
|
// and the lower byte stores a palette index.
|
|
//
|
|
void R_PatchToMaskedFlat(patch_t *patch, UINT16 *raw, boolean flip)
|
|
{
|
|
fixed_t col, ofs;
|
|
column_t *column;
|
|
UINT16 *desttop, *dest, *deststop;
|
|
UINT8 *source;
|
|
|
|
desttop = raw;
|
|
deststop = desttop + (SHORT(patch->width) * SHORT(patch->height));
|
|
|
|
for (col = 0; col < SHORT(patch->width); col++, desttop++)
|
|
{
|
|
INT32 topdelta, prevdelta = -1;
|
|
column = (column_t *)((UINT8 *)patch + LONG(patch->columnofs[flip ? (patch->width-1-col) : col]));
|
|
while (column->topdelta != 0xff)
|
|
{
|
|
topdelta = column->topdelta;
|
|
if (topdelta <= prevdelta)
|
|
topdelta += prevdelta;
|
|
prevdelta = topdelta;
|
|
dest = desttop + (topdelta * SHORT(patch->width));
|
|
source = (UINT8 *)(column) + 3;
|
|
for (ofs = 0; dest < deststop && ofs < column->length; ofs++)
|
|
{
|
|
*dest = source[ofs];
|
|
dest += SHORT(patch->width);
|
|
}
|
|
column = (column_t *)((UINT8 *)column + column->length + 4);
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// R_FlatToPatch
|
|
//
|
|
// Convert a flat to a patch.
|
|
//
|
|
patch_t *R_FlatToPatch(UINT8 *raw, UINT16 width, UINT16 height, UINT16 leftoffset, UINT16 topoffset, size_t *destsize, boolean transparency)
|
|
{
|
|
UINT32 x, y;
|
|
UINT8 *img;
|
|
UINT8 *imgptr = imgbuf;
|
|
UINT8 *colpointers, *startofspan;
|
|
size_t size = 0;
|
|
|
|
if (!raw)
|
|
return NULL;
|
|
|
|
// Write image size and offset
|
|
WRITEINT16(imgptr, width);
|
|
WRITEINT16(imgptr, height);
|
|
WRITEINT16(imgptr, leftoffset);
|
|
WRITEINT16(imgptr, topoffset);
|
|
|
|
// Leave placeholder to column pointers
|
|
colpointers = imgptr;
|
|
imgptr += width*4;
|
|
|
|
// Write columns
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
int lastStartY = 0;
|
|
int spanSize = 0;
|
|
startofspan = NULL;
|
|
|
|
// Write column pointer
|
|
WRITEINT32(colpointers, imgptr - imgbuf);
|
|
|
|
// Write pixels
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
UINT8 paletteIndex = raw[((y * width) + x)];
|
|
boolean opaque = transparency ? (paletteIndex != TRANSPARENTPIXEL) : true;
|
|
|
|
// End span if we have a transparent pixel
|
|
if (!opaque)
|
|
{
|
|
if (startofspan)
|
|
WRITEUINT8(imgptr, 0);
|
|
startofspan = NULL;
|
|
continue;
|
|
}
|
|
|
|
// Start new column if we need to
|
|
if (!startofspan || spanSize == 255)
|
|
{
|
|
int writeY = y;
|
|
|
|
// If we reached the span size limit, finish the previous span
|
|
if (startofspan)
|
|
WRITEUINT8(imgptr, 0);
|
|
|
|
if (y > 254)
|
|
{
|
|
// Make sure we're aligned to 254
|
|
if (lastStartY < 254)
|
|
{
|
|
WRITEUINT8(imgptr, 254);
|
|
WRITEUINT8(imgptr, 0);
|
|
imgptr += 2;
|
|
lastStartY = 254;
|
|
}
|
|
|
|
// Write stopgap empty spans if needed
|
|
writeY = y - lastStartY;
|
|
|
|
while (writeY > 254)
|
|
{
|
|
WRITEUINT8(imgptr, 254);
|
|
WRITEUINT8(imgptr, 0);
|
|
imgptr += 2;
|
|
writeY -= 254;
|
|
}
|
|
}
|
|
|
|
startofspan = imgptr;
|
|
WRITEUINT8(imgptr, writeY);
|
|
imgptr += 2;
|
|
spanSize = 0;
|
|
|
|
lastStartY = y;
|
|
}
|
|
|
|
// Write the pixel
|
|
WRITEUINT8(imgptr, paletteIndex);
|
|
spanSize++;
|
|
startofspan[1] = spanSize;
|
|
}
|
|
|
|
if (startofspan)
|
|
WRITEUINT8(imgptr, 0);
|
|
|
|
WRITEUINT8(imgptr, 0xFF);
|
|
}
|
|
|
|
size = imgptr-imgbuf;
|
|
img = Z_Malloc(size, PU_STATIC, NULL);
|
|
memcpy(img, imgbuf, size);
|
|
|
|
Z_Free(raw);
|
|
|
|
if (destsize != NULL)
|
|
*destsize = size;
|
|
return (patch_t *)img;
|
|
}
|
|
|
|
//
|
|
// R_MaskedFlatToPatch
|
|
//
|
|
// Convert a masked flat to a patch.
|
|
// Explanation of "masked" flats in R_PatchToMaskedFlat.
|
|
//
|
|
patch_t *R_MaskedFlatToPatch(UINT16 *raw, UINT16 width, UINT16 height, UINT16 leftoffset, UINT16 topoffset, size_t *destsize)
|
|
{
|
|
UINT32 x, y;
|
|
UINT8 *img;
|
|
UINT8 *imgptr = imgbuf;
|
|
UINT8 *colpointers, *startofspan;
|
|
size_t size = 0;
|
|
|
|
if (!raw)
|
|
return NULL;
|
|
|
|
// Write image size and offset
|
|
WRITEINT16(imgptr, width);
|
|
WRITEINT16(imgptr, height);
|
|
WRITEINT16(imgptr, leftoffset);
|
|
WRITEINT16(imgptr, topoffset);
|
|
|
|
// Leave placeholder to column pointers
|
|
colpointers = imgptr;
|
|
imgptr += width*4;
|
|
|
|
// Write columns
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
int lastStartY = 0;
|
|
int spanSize = 0;
|
|
startofspan = NULL;
|
|
|
|
// Write column pointer
|
|
WRITEINT32(colpointers, imgptr - imgbuf);
|
|
|
|
// Write pixels
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
UINT16 pixel = raw[((y * width) + x)];
|
|
UINT8 paletteIndex = (pixel & 0xFF);
|
|
UINT8 opaque = (pixel != 0xFF00); // If 1, we have a pixel
|
|
|
|
// End span if we have a transparent pixel
|
|
if (!opaque)
|
|
{
|
|
if (startofspan)
|
|
WRITEUINT8(imgptr, 0);
|
|
startofspan = NULL;
|
|
continue;
|
|
}
|
|
|
|
// Start new column if we need to
|
|
if (!startofspan || spanSize == 255)
|
|
{
|
|
int writeY = y;
|
|
|
|
// If we reached the span size limit, finish the previous span
|
|
if (startofspan)
|
|
WRITEUINT8(imgptr, 0);
|
|
|
|
if (y > 254)
|
|
{
|
|
// Make sure we're aligned to 254
|
|
if (lastStartY < 254)
|
|
{
|
|
WRITEUINT8(imgptr, 254);
|
|
WRITEUINT8(imgptr, 0);
|
|
imgptr += 2;
|
|
lastStartY = 254;
|
|
}
|
|
|
|
// Write stopgap empty spans if needed
|
|
writeY = y - lastStartY;
|
|
|
|
while (writeY > 254)
|
|
{
|
|
WRITEUINT8(imgptr, 254);
|
|
WRITEUINT8(imgptr, 0);
|
|
imgptr += 2;
|
|
writeY -= 254;
|
|
}
|
|
}
|
|
|
|
startofspan = imgptr;
|
|
WRITEUINT8(imgptr, writeY);
|
|
imgptr += 2;
|
|
spanSize = 0;
|
|
|
|
lastStartY = y;
|
|
}
|
|
|
|
// Write the pixel
|
|
WRITEUINT8(imgptr, paletteIndex);
|
|
spanSize++;
|
|
startofspan[1] = spanSize;
|
|
}
|
|
|
|
if (startofspan)
|
|
WRITEUINT8(imgptr, 0);
|
|
|
|
WRITEUINT8(imgptr, 0xFF);
|
|
}
|
|
|
|
size = imgptr-imgbuf;
|
|
img = Z_Malloc(size, PU_STATIC, NULL);
|
|
memcpy(img, imgbuf, size);
|
|
|
|
if (destsize != NULL)
|
|
*destsize = size;
|
|
return (patch_t *)img;
|
|
}
|
|
|
|
//
|
|
// R_IsLumpPNG
|
|
//
|
|
// Returns true if the lump is a valid PNG.
|
|
//
|
|
boolean R_IsLumpPNG(const UINT8 *d, size_t s)
|
|
{
|
|
if (s < 67) // http://garethrees.org/2007/11/14/pngcrush/
|
|
return false;
|
|
// Check for PNG file signature using memcmp
|
|
// As it may be faster on CPUs with slow unaligned memory access
|
|
// Ref: http://www.libpng.org/pub/png/spec/1.2/PNG-Rationale.html#R.PNG-file-signature
|
|
return (memcmp(&d[0], "\x89\x50\x4e\x47\x0d\x0a\x1a\x0a", 8) == 0);
|
|
}
|
|
|
|
#ifndef NO_PNG_LUMPS
|
|
#ifdef HAVE_PNG
|
|
|
|
/*#if PNG_LIBPNG_VER_DLLNUM < 14
|
|
typedef PNG_CONST png_byte *png_const_bytep;
|
|
#endif*/
|
|
typedef struct
|
|
{
|
|
const UINT8 *buffer;
|
|
UINT32 size;
|
|
UINT32 position;
|
|
} png_io_t;
|
|
|
|
static void PNG_IOReader(png_structp png_ptr, png_bytep data, png_size_t length)
|
|
{
|
|
png_io_t *f = png_get_io_ptr(png_ptr);
|
|
if (length > (f->size - f->position))
|
|
png_error(png_ptr, "PNG_IOReader: buffer overrun");
|
|
memcpy(data, f->buffer + f->position, length);
|
|
f->position += length;
|
|
}
|
|
|
|
typedef struct
|
|
{
|
|
char name[4];
|
|
void *data;
|
|
size_t size;
|
|
} png_chunk_t;
|
|
|
|
static png_byte *chunkname = NULL;
|
|
static png_chunk_t chunk;
|
|
|
|
static int PNG_ChunkReader(png_structp png_ptr, png_unknown_chunkp chonk)
|
|
{
|
|
(void)png_ptr;
|
|
if (!memcmp(chonk->name, chunkname, 4))
|
|
{
|
|
memcpy(chunk.name, chonk->name, 4);
|
|
chunk.size = chonk->size;
|
|
chunk.data = Z_Malloc(chunk.size, PU_STATIC, NULL);
|
|
memcpy(chunk.data, chonk->data, chunk.size);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void PNG_error(png_structp PNG, png_const_charp pngtext)
|
|
{
|
|
CONS_Debug(DBG_RENDER, "libpng error at %p: %s", PNG, pngtext);
|
|
//I_Error("libpng error at %p: %s", PNG, pngtext);
|
|
}
|
|
|
|
static void PNG_warn(png_structp PNG, png_const_charp pngtext)
|
|
{
|
|
CONS_Debug(DBG_RENDER, "libpng warning at %p: %s", PNG, pngtext);
|
|
}
|
|
|
|
static png_bytep *PNG_Read(const UINT8 *png, UINT16 *w, UINT16 *h, INT16 *topoffset, INT16 *leftoffset, size_t size)
|
|
{
|
|
png_structp png_ptr;
|
|
png_infop png_info_ptr;
|
|
png_uint_32 width, height;
|
|
int bit_depth, color_type;
|
|
png_uint_32 y;
|
|
#ifdef PNG_SETJMP_SUPPORTED
|
|
#ifdef USE_FAR_KEYWORD
|
|
jmp_buf jmpbuf;
|
|
#endif
|
|
#endif
|
|
|
|
png_io_t png_io;
|
|
png_bytep *row_pointers;
|
|
|
|
png_byte grAb_chunk[5] = {'g', 'r', 'A', 'b', (png_byte)'\0'};
|
|
png_voidp *user_chunk_ptr;
|
|
|
|
png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, PNG_error, PNG_warn);
|
|
if (!png_ptr)
|
|
{
|
|
CONS_Debug(DBG_RENDER, "PNG_Load: Error on initialize libpng\n");
|
|
return NULL;
|
|
}
|
|
|
|
png_info_ptr = png_create_info_struct(png_ptr);
|
|
if (!png_info_ptr)
|
|
{
|
|
CONS_Debug(DBG_RENDER, "PNG_Load: Error on allocate for libpng\n");
|
|
png_destroy_read_struct(&png_ptr, NULL, NULL);
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef USE_FAR_KEYWORD
|
|
if (setjmp(jmpbuf))
|
|
#else
|
|
if (setjmp(png_jmpbuf(png_ptr)))
|
|
#endif
|
|
{
|
|
//CONS_Debug(DBG_RENDER, "libpng load error on %s\n", filename);
|
|
png_destroy_read_struct(&png_ptr, &png_info_ptr, NULL);
|
|
return NULL;
|
|
}
|
|
#ifdef USE_FAR_KEYWORD
|
|
png_memcpy(png_jmpbuf(png_ptr), jmpbuf, sizeof jmp_buf);
|
|
#endif
|
|
|
|
// set our own read function
|
|
png_io.buffer = png;
|
|
png_io.size = size;
|
|
png_io.position = 0;
|
|
png_set_read_fn(png_ptr, &png_io, PNG_IOReader);
|
|
|
|
memset(&chunk, 0x00, sizeof(png_chunk_t));
|
|
chunkname = grAb_chunk; // I want to read a grAb chunk
|
|
|
|
user_chunk_ptr = png_get_user_chunk_ptr(png_ptr);
|
|
png_set_read_user_chunk_fn(png_ptr, user_chunk_ptr, PNG_ChunkReader);
|
|
png_set_keep_unknown_chunks(png_ptr, 2, chunkname, 1);
|
|
|
|
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
|
|
png_set_user_limits(png_ptr, 2048, 2048);
|
|
#endif
|
|
|
|
png_read_info(png_ptr, png_info_ptr);
|
|
png_get_IHDR(png_ptr, png_info_ptr, &width, &height, &bit_depth, &color_type, NULL, NULL, NULL);
|
|
|
|
if (bit_depth == 16)
|
|
png_set_strip_16(png_ptr);
|
|
|
|
if (color_type == PNG_COLOR_TYPE_GRAY || color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
|
|
png_set_gray_to_rgb(png_ptr);
|
|
else if (color_type == PNG_COLOR_TYPE_PALETTE)
|
|
png_set_palette_to_rgb(png_ptr);
|
|
|
|
if (png_get_valid(png_ptr, png_info_ptr, PNG_INFO_tRNS))
|
|
png_set_tRNS_to_alpha(png_ptr);
|
|
else if (color_type != PNG_COLOR_TYPE_RGB_ALPHA && color_type != PNG_COLOR_TYPE_GRAY_ALPHA)
|
|
{
|
|
#if PNG_LIBPNG_VER < 10207
|
|
png_set_filler(png_ptr, 0xFF, PNG_FILLER_AFTER);
|
|
#else
|
|
png_set_add_alpha(png_ptr, 0xFF, PNG_FILLER_AFTER);
|
|
#endif
|
|
}
|
|
|
|
png_read_update_info(png_ptr, png_info_ptr);
|
|
|
|
// Read the image
|
|
row_pointers = (png_bytep*)malloc(sizeof(png_bytep) * height);
|
|
for (y = 0; y < height; y++)
|
|
row_pointers[y] = (png_byte*)malloc(png_get_rowbytes(png_ptr, png_info_ptr));
|
|
png_read_image(png_ptr, row_pointers);
|
|
|
|
// Read grAB chunk
|
|
if ((topoffset || leftoffset) && (chunk.data != NULL))
|
|
{
|
|
INT32 *offsets = (INT32 *)chunk.data;
|
|
// read left offset
|
|
if (leftoffset != NULL)
|
|
*leftoffset = (INT16)BIGENDIAN_LONG(*offsets);
|
|
offsets++;
|
|
// read top offset
|
|
if (topoffset != NULL)
|
|
*topoffset = (INT16)BIGENDIAN_LONG(*offsets);
|
|
}
|
|
|
|
// bye
|
|
png_destroy_read_struct(&png_ptr, &png_info_ptr, NULL);
|
|
if (chunk.data)
|
|
Z_Free(chunk.data);
|
|
|
|
*w = (INT32)width;
|
|
*h = (INT32)height;
|
|
return row_pointers;
|
|
}
|
|
|
|
// Convert a PNG to a raw image.
|
|
static UINT8 *PNG_RawConvert(const UINT8 *png, UINT16 *w, UINT16 *h, INT16 *topoffset, INT16 *leftoffset, size_t size)
|
|
{
|
|
UINT8 *flat;
|
|
png_uint_32 x, y;
|
|
png_bytep *row_pointers = PNG_Read(png, w, h, topoffset, leftoffset, size);
|
|
png_uint_32 width = *w, height = *h;
|
|
|
|
if (!row_pointers)
|
|
I_Error("PNG_RawConvert: conversion failed");
|
|
|
|
// Convert the image to 8bpp
|
|
flat = Z_Malloc(width * height, PU_LEVEL, NULL);
|
|
memset(flat, TRANSPARENTPIXEL, width * height);
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
png_bytep row = row_pointers[y];
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
png_bytep px = &(row[x * 4]);
|
|
if ((UINT8)px[3])
|
|
flat[((y * width) + x)] = NearestColor((UINT8)px[0], (UINT8)px[1], (UINT8)px[2]);
|
|
}
|
|
}
|
|
free(row_pointers);
|
|
|
|
return flat;
|
|
}
|
|
|
|
// Convert a PNG with transparency to a raw image.
|
|
static UINT16 *PNG_MaskedRawConvert(const UINT8 *png, UINT16 *w, UINT16 *h, INT16 *topoffset, INT16 *leftoffset, size_t size)
|
|
{
|
|
UINT16 *flat;
|
|
png_uint_32 x, y;
|
|
png_bytep *row_pointers = PNG_Read(png, w, h, topoffset, leftoffset, size);
|
|
png_uint_32 width = *w, height = *h;
|
|
size_t flatsize, i;
|
|
|
|
if (!row_pointers)
|
|
I_Error("PNG_MaskedRawConvert: conversion failed");
|
|
|
|
// Convert the image to 16bpp
|
|
flatsize = (width * height);
|
|
flat = Z_Malloc(flatsize * sizeof(UINT16), PU_LEVEL, NULL);
|
|
|
|
// can't memset here
|
|
for (i = 0; i < flatsize; i++)
|
|
flat[i] = 0xFF00;
|
|
|
|
for (y = 0; y < height; y++)
|
|
{
|
|
png_bytep row = row_pointers[y];
|
|
for (x = 0; x < width; x++)
|
|
{
|
|
png_bytep px = &(row[x * 4]);
|
|
if ((UINT8)px[3])
|
|
flat[((y * width) + x)] = NearestColor((UINT8)px[0], (UINT8)px[1], (UINT8)px[2]);
|
|
}
|
|
}
|
|
free(row_pointers);
|
|
|
|
return flat;
|
|
}
|
|
|
|
//
|
|
// R_PNGToFlat
|
|
//
|
|
// Convert a PNG to a flat.
|
|
//
|
|
UINT8 *R_PNGToFlat(UINT16 *width, UINT16 *height, UINT8 *png, size_t size)
|
|
{
|
|
return PNG_RawConvert(png, width, height, NULL, NULL, size);
|
|
}
|
|
|
|
//
|
|
// R_PNGToPatch
|
|
//
|
|
// Convert a PNG to a patch.
|
|
//
|
|
patch_t *R_PNGToPatch(const UINT8 *png, size_t size, size_t *destsize)
|
|
{
|
|
UINT16 width, height;
|
|
INT16 topoffset = 0, leftoffset = 0;
|
|
UINT16 *raw = PNG_MaskedRawConvert(png, &width, &height, &topoffset, &leftoffset, size);
|
|
|
|
if (!raw)
|
|
I_Error("R_PNGToPatch: conversion failed");
|
|
|
|
return R_MaskedFlatToPatch(raw, width, height, leftoffset, topoffset, destsize);
|
|
}
|
|
|
|
//
|
|
// R_PNGDimensions
|
|
//
|
|
// Get the dimensions of a PNG file.
|
|
//
|
|
boolean R_PNGDimensions(UINT8 *png, INT16 *width, INT16 *height, size_t size)
|
|
{
|
|
png_structp png_ptr;
|
|
png_infop png_info_ptr;
|
|
png_uint_32 w, h;
|
|
int bit_depth, color_type;
|
|
#ifdef PNG_SETJMP_SUPPORTED
|
|
#ifdef USE_FAR_KEYWORD
|
|
jmp_buf jmpbuf;
|
|
#endif
|
|
#endif
|
|
|
|
png_io_t png_io;
|
|
|
|
png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL,
|
|
PNG_error, PNG_warn);
|
|
if (!png_ptr)
|
|
{
|
|
CONS_Debug(DBG_RENDER, "PNG_Load: Error on initialize libpng\n");
|
|
return false;
|
|
}
|
|
|
|
png_info_ptr = png_create_info_struct(png_ptr);
|
|
if (!png_info_ptr)
|
|
{
|
|
CONS_Debug(DBG_RENDER, "PNG_Load: Error on allocate for libpng\n");
|
|
png_destroy_read_struct(&png_ptr, NULL, NULL);
|
|
return false;
|
|
}
|
|
|
|
#ifdef USE_FAR_KEYWORD
|
|
if (setjmp(jmpbuf))
|
|
#else
|
|
if (setjmp(png_jmpbuf(png_ptr)))
|
|
#endif
|
|
{
|
|
//CONS_Debug(DBG_RENDER, "libpng load error on %s\n", filename);
|
|
png_destroy_read_struct(&png_ptr, &png_info_ptr, NULL);
|
|
return false;
|
|
}
|
|
#ifdef USE_FAR_KEYWORD
|
|
png_memcpy(png_jmpbuf(png_ptr), jmpbuf, sizeof jmp_buf);
|
|
#endif
|
|
|
|
// set our own read function
|
|
png_io.buffer = png;
|
|
png_io.size = size;
|
|
png_io.position = 0;
|
|
png_set_read_fn(png_ptr, &png_io, PNG_IOReader);
|
|
|
|
#ifdef PNG_SET_USER_LIMITS_SUPPORTED
|
|
png_set_user_limits(png_ptr, 2048, 2048);
|
|
#endif
|
|
|
|
png_read_info(png_ptr, png_info_ptr);
|
|
|
|
png_get_IHDR(png_ptr, png_info_ptr, &w, &h, &bit_depth, &color_type,
|
|
NULL, NULL, NULL);
|
|
|
|
// okay done. stop.
|
|
png_destroy_read_struct(&png_ptr, &png_info_ptr, NULL);
|
|
|
|
*width = (INT32)w;
|
|
*height = (INT32)h;
|
|
return true;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
//
|
|
// R_ParseSpriteInfoFrame
|
|
//
|
|
// Parse a SPRTINFO frame.
|
|
//
|
|
static void R_ParseSpriteInfoFrame(spriteinfo_t *info)
|
|
{
|
|
char *sprinfoToken;
|
|
size_t sprinfoTokenLength;
|
|
char *frameChar = NULL;
|
|
UINT8 frameFrame = 0xFF;
|
|
INT16 frameXPivot = 0;
|
|
INT16 frameYPivot = 0;
|
|
rotaxis_t frameRotAxis = 0;
|
|
|
|
// Sprite identifier
|
|
sprinfoToken = M_GetToken(NULL);
|
|
if (sprinfoToken == NULL)
|
|
{
|
|
I_Error("Error parsing SPRTINFO lump: Unexpected end of file where sprite frame should be");
|
|
}
|
|
sprinfoTokenLength = strlen(sprinfoToken);
|
|
if (sprinfoTokenLength != 1)
|
|
{
|
|
I_Error("Error parsing SPRTINFO lump: Invalid frame \"%s\"",sprinfoToken);
|
|
}
|
|
else
|
|
frameChar = sprinfoToken;
|
|
|
|
frameFrame = R_Char2Frame(frameChar[0]);
|
|
Z_Free(sprinfoToken);
|
|
|
|
// Left Curly Brace
|
|
sprinfoToken = M_GetToken(NULL);
|
|
if (sprinfoToken == NULL)
|
|
I_Error("Error parsing SPRTINFO lump: Missing sprite info");
|
|
else
|
|
{
|
|
if (strcmp(sprinfoToken,"{")==0)
|
|
{
|
|
Z_Free(sprinfoToken);
|
|
sprinfoToken = M_GetToken(NULL);
|
|
if (sprinfoToken == NULL)
|
|
{
|
|
I_Error("Error parsing SPRTINFO lump: Unexpected end of file where sprite info should be");
|
|
}
|
|
while (strcmp(sprinfoToken,"}")!=0)
|
|
{
|
|
if (stricmp(sprinfoToken, "XPIVOT")==0)
|
|
{
|
|
Z_Free(sprinfoToken);
|
|
sprinfoToken = M_GetToken(NULL);
|
|
frameXPivot = atoi(sprinfoToken);
|
|
}
|
|
else if (stricmp(sprinfoToken, "YPIVOT")==0)
|
|
{
|
|
Z_Free(sprinfoToken);
|
|
sprinfoToken = M_GetToken(NULL);
|
|
frameYPivot = atoi(sprinfoToken);
|
|
}
|
|
else if (stricmp(sprinfoToken, "ROTAXIS")==0)
|
|
{
|
|
Z_Free(sprinfoToken);
|
|
sprinfoToken = M_GetToken(NULL);
|
|
if ((stricmp(sprinfoToken, "X")==0) || (stricmp(sprinfoToken, "XAXIS")==0) || (stricmp(sprinfoToken, "ROLL")==0))
|
|
frameRotAxis = ROTAXIS_X;
|
|
else if ((stricmp(sprinfoToken, "Y")==0) || (stricmp(sprinfoToken, "YAXIS")==0) || (stricmp(sprinfoToken, "PITCH")==0))
|
|
frameRotAxis = ROTAXIS_Y;
|
|
else if ((stricmp(sprinfoToken, "Z")==0) || (stricmp(sprinfoToken, "ZAXIS")==0) || (stricmp(sprinfoToken, "YAW")==0))
|
|
frameRotAxis = ROTAXIS_Z;
|
|
}
|
|
Z_Free(sprinfoToken);
|
|
|
|
sprinfoToken = M_GetToken(NULL);
|
|
if (sprinfoToken == NULL)
|
|
{
|
|
I_Error("Error parsing SPRTINFO lump: Unexpected end of file where sprite info or right curly brace should be");
|
|
}
|
|
}
|
|
}
|
|
Z_Free(sprinfoToken);
|
|
}
|
|
|
|
// set fields
|
|
info->pivot[frameFrame].x = frameXPivot;
|
|
info->pivot[frameFrame].y = frameYPivot;
|
|
info->pivot[frameFrame].rotaxis = frameRotAxis;
|
|
}
|
|
|
|
//
|
|
// R_ParseSpriteInfo
|
|
//
|
|
// Parse a SPRTINFO lump.
|
|
//
|
|
static void R_ParseSpriteInfo(boolean spr2)
|
|
{
|
|
spriteinfo_t *info;
|
|
char *sprinfoToken;
|
|
size_t sprinfoTokenLength;
|
|
char newSpriteName[5]; // no longer dynamically allocated
|
|
spritenum_t sprnum = NUMSPRITES;
|
|
playersprite_t spr2num = NUMPLAYERSPRITES;
|
|
INT32 i;
|
|
INT32 skinnumbers[MAXSKINS];
|
|
INT32 foundskins = 0;
|
|
|
|
// Sprite name
|
|
sprinfoToken = M_GetToken(NULL);
|
|
if (sprinfoToken == NULL)
|
|
{
|
|
I_Error("Error parsing SPRTINFO lump: Unexpected end of file where sprite name should be");
|
|
}
|
|
sprinfoTokenLength = strlen(sprinfoToken);
|
|
if (sprinfoTokenLength != 4)
|
|
{
|
|
I_Error("Error parsing SPRTINFO lump: Sprite name \"%s\" isn't 4 characters long",sprinfoToken);
|
|
}
|
|
else
|
|
{
|
|
memset(&newSpriteName, 0, 5);
|
|
M_Memcpy(newSpriteName, sprinfoToken, sprinfoTokenLength);
|
|
// ^^ we've confirmed that the token is == 4 characters so it will never overflow a 5 byte char buffer
|
|
strupr(newSpriteName); // Just do this now so we don't have to worry about it
|
|
}
|
|
Z_Free(sprinfoToken);
|
|
|
|
if (!spr2)
|
|
{
|
|
for (i = 0; i <= NUMSPRITES; i++)
|
|
{
|
|
if (i == NUMSPRITES)
|
|
I_Error("Error parsing SPRTINFO lump: Unknown sprite name \"%s\"", newSpriteName);
|
|
if (!memcmp(newSpriteName,sprnames[i],4))
|
|
{
|
|
sprnum = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (i = 0; i <= NUMPLAYERSPRITES; i++)
|
|
{
|
|
if (i == NUMPLAYERSPRITES)
|
|
I_Error("Error parsing SPRTINFO lump: Unknown sprite2 name \"%s\"", newSpriteName);
|
|
if (!memcmp(newSpriteName,spr2names[i],4))
|
|
{
|
|
spr2num = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// allocate a spriteinfo
|
|
info = Z_Calloc(sizeof(spriteinfo_t), PU_STATIC, NULL);
|
|
info->available = true;
|
|
|
|
#ifdef ROTSPRITE
|
|
if ((sprites != NULL) && (!spr2))
|
|
R_FreeSingleRotSprite(&sprites[sprnum]);
|
|
#endif
|
|
|
|
// Left Curly Brace
|
|
sprinfoToken = M_GetToken(NULL);
|
|
if (sprinfoToken == NULL)
|
|
{
|
|
I_Error("Error parsing SPRTINFO lump: Unexpected end of file where open curly brace for sprite \"%s\" should be",newSpriteName);
|
|
}
|
|
if (strcmp(sprinfoToken,"{")==0)
|
|
{
|
|
Z_Free(sprinfoToken);
|
|
sprinfoToken = M_GetToken(NULL);
|
|
if (sprinfoToken == NULL)
|
|
{
|
|
I_Error("Error parsing SPRTINFO lump: Unexpected end of file where definition for sprite \"%s\" should be",newSpriteName);
|
|
}
|
|
while (strcmp(sprinfoToken,"}")!=0)
|
|
{
|
|
if (stricmp(sprinfoToken, "SKIN")==0)
|
|
{
|
|
INT32 skinnum;
|
|
char *skinName = NULL;
|
|
if (!spr2)
|
|
I_Error("Error parsing SPRTINFO lump: \"SKIN\" token found outside of a sprite2 definition");
|
|
|
|
Z_Free(sprinfoToken);
|
|
|
|
// Skin name
|
|
sprinfoToken = M_GetToken(NULL);
|
|
if (sprinfoToken == NULL)
|
|
{
|
|
I_Error("Error parsing SPRTINFO lump: Unexpected end of file where skin frame should be");
|
|
}
|
|
|
|
// copy skin name yada yada
|
|
sprinfoTokenLength = strlen(sprinfoToken);
|
|
skinName = (char *)Z_Malloc((sprinfoTokenLength+1)*sizeof(char),PU_STATIC,NULL);
|
|
M_Memcpy(skinName,sprinfoToken,sprinfoTokenLength*sizeof(char));
|
|
skinName[sprinfoTokenLength] = '\0';
|
|
strlwr(skinName);
|
|
Z_Free(sprinfoToken);
|
|
|
|
skinnum = R_SkinAvailable(skinName);
|
|
if (skinnum == -1)
|
|
I_Error("Error parsing SPRTINFO lump: Unknown skin \"%s\"", skinName);
|
|
|
|
skinnumbers[foundskins] = skinnum;
|
|
foundskins++;
|
|
}
|
|
else if (stricmp(sprinfoToken, "FRAME")==0)
|
|
{
|
|
R_ParseSpriteInfoFrame(info);
|
|
Z_Free(sprinfoToken);
|
|
if (spr2)
|
|
{
|
|
if (!foundskins)
|
|
I_Error("Error parsing SPRTINFO lump: No skins specified in this sprite2 definition");
|
|
for (i = 0; i < foundskins; i++)
|
|
{
|
|
size_t skinnum = skinnumbers[i];
|
|
skin_t *skin = &skins[skinnum];
|
|
spriteinfo_t *sprinfo = skin->sprinfo;
|
|
#ifdef ROTSPRITE
|
|
R_FreeSkinRotSprite(skinnum);
|
|
#endif
|
|
M_Memcpy(&sprinfo[spr2num], info, sizeof(spriteinfo_t));
|
|
}
|
|
}
|
|
else
|
|
M_Memcpy(&spriteinfo[sprnum], info, sizeof(spriteinfo_t));
|
|
}
|
|
else
|
|
{
|
|
I_Error("Error parsing SPRTINFO lump: Unknown keyword \"%s\" in sprite %s",sprinfoToken,newSpriteName);
|
|
}
|
|
|
|
sprinfoToken = M_GetToken(NULL);
|
|
if (sprinfoToken == NULL)
|
|
{
|
|
I_Error("Error parsing SPRTINFO lump: Unexpected end of file where sprite info or right curly brace for sprite \"%s\" should be",newSpriteName);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
I_Error("Error parsing SPRTINFO lump: Expected \"{\" for sprite \"%s\", got \"%s\"",newSpriteName,sprinfoToken);
|
|
}
|
|
Z_Free(sprinfoToken);
|
|
Z_Free(info);
|
|
}
|
|
|
|
//
|
|
// R_ParseSPRTINFOLump
|
|
//
|
|
// Read a SPRTINFO lump.
|
|
//
|
|
void R_ParseSPRTINFOLump(UINT16 wadNum, UINT16 lumpNum)
|
|
{
|
|
char *sprinfoLump;
|
|
size_t sprinfoLumpLength;
|
|
char *sprinfoText;
|
|
char *sprinfoToken;
|
|
|
|
// Since lumps AREN'T \0-terminated like I'd assumed they should be, I'll
|
|
// need to make a space of memory where I can ensure that it will terminate
|
|
// correctly. Start by loading the relevant data from the WAD.
|
|
sprinfoLump = (char *)W_CacheLumpNumPwad(wadNum, lumpNum, PU_STATIC);
|
|
// If that didn't exist, we have nothing to do here.
|
|
if (sprinfoLump == NULL) return;
|
|
// If we're still here, then it DOES exist; figure out how long it is, and allot memory accordingly.
|
|
sprinfoLumpLength = W_LumpLengthPwad(wadNum, lumpNum);
|
|
sprinfoText = (char *)Z_Malloc((sprinfoLumpLength+1)*sizeof(char),PU_STATIC,NULL);
|
|
// Now move the contents of the lump into this new location.
|
|
memmove(sprinfoText,sprinfoLump,sprinfoLumpLength);
|
|
// Make damn well sure the last character in our new memory location is \0.
|
|
sprinfoText[sprinfoLumpLength] = '\0';
|
|
// Finally, free up the memory from the first data load, because we really
|
|
// don't need it.
|
|
Z_Free(sprinfoLump);
|
|
|
|
sprinfoToken = M_GetToken(sprinfoText);
|
|
while (sprinfoToken != NULL)
|
|
{
|
|
if (!stricmp(sprinfoToken, "SPRITE"))
|
|
R_ParseSpriteInfo(false);
|
|
else if (!stricmp(sprinfoToken, "SPRITE2"))
|
|
R_ParseSpriteInfo(true);
|
|
else
|
|
I_Error("Error parsing SPRTINFO lump: Unknown keyword \"%s\"", sprinfoToken);
|
|
Z_Free(sprinfoToken);
|
|
sprinfoToken = M_GetToken(NULL);
|
|
}
|
|
Z_Free((void *)sprinfoText);
|
|
}
|
|
|
|
//
|
|
// R_LoadSpriteInfoLumps
|
|
//
|
|
// Load and read every SPRTINFO lump from the specified file.
|
|
//
|
|
void R_LoadSpriteInfoLumps(UINT16 wadnum, UINT16 numlumps)
|
|
{
|
|
lumpinfo_t *lumpinfo = wadfiles[wadnum]->lumpinfo;
|
|
UINT16 i;
|
|
char *name;
|
|
|
|
for (i = 0; i < numlumps; i++, lumpinfo++)
|
|
{
|
|
name = lumpinfo->name;
|
|
// Load SPRTINFO and SPR_ lumps as SpriteInfo
|
|
if (!memcmp(name, "SPRTINFO", 8) || !memcmp(name, "SPR_", 4))
|
|
R_ParseSPRTINFOLump(wadnum, i);
|
|
}
|
|
}
|
|
|
|
static UINT16 GetPatchPixel(patch_t *patch, INT32 x, INT32 y, boolean flip)
|
|
{
|
|
fixed_t ofs;
|
|
column_t *column;
|
|
UINT8 *source;
|
|
|
|
if (x >= 0 && x < SHORT(patch->width))
|
|
{
|
|
INT32 topdelta, prevdelta = -1;
|
|
column = (column_t *)((UINT8 *)patch + LONG(patch->columnofs[flip ? (patch->width-1-x) : x]));
|
|
while (column->topdelta != 0xff)
|
|
{
|
|
topdelta = column->topdelta;
|
|
if (topdelta <= prevdelta)
|
|
topdelta += prevdelta;
|
|
prevdelta = topdelta;
|
|
source = (UINT8 *)(column) + 3;
|
|
for (ofs = 0; ofs < column->length; ofs++)
|
|
{
|
|
if ((topdelta + ofs) == y)
|
|
return source[ofs];
|
|
}
|
|
column = (column_t *)((UINT8 *)column + column->length + 4);
|
|
}
|
|
}
|
|
|
|
return 0xFF00;
|
|
}
|
|
|
|
#ifdef ROTSPRITE
|
|
//
|
|
// R_GetRollAngle
|
|
//
|
|
// Angles precalculated in R_InitSprites.
|
|
//
|
|
fixed_t rollcosang[ROTANGLES];
|
|
fixed_t rollsinang[ROTANGLES];
|
|
INT32 R_GetRollAngle(angle_t rollangle)
|
|
{
|
|
INT32 ra = AngleFixed(rollangle)>>FRACBITS;
|
|
#if (ROTANGDIFF > 1)
|
|
ra += (ROTANGDIFF/2);
|
|
#endif
|
|
ra /= ROTANGDIFF;
|
|
ra %= ROTANGLES;
|
|
return ra;
|
|
}
|
|
|
|
//
|
|
// R_CacheRotSprite
|
|
//
|
|
// Create a rotated sprite.
|
|
//
|
|
void R_CacheRotSprite(spritenum_t sprnum, UINT8 frame, spriteinfo_t *sprinfo, spriteframe_t *sprframe, INT32 rot, UINT8 flip)
|
|
{
|
|
UINT32 i;
|
|
INT32 angle;
|
|
patch_t *patch;
|
|
patch_t *newpatch;
|
|
UINT16 *rawdst;
|
|
size_t size;
|
|
INT32 bflip = (flip != 0x00);
|
|
|
|
#define SPRITE_XCENTER (leftoffset)
|
|
#define SPRITE_YCENTER (height / 2)
|
|
#define ROTSPRITE_XCENTER (newwidth / 2)
|
|
#define ROTSPRITE_YCENTER (newheight / 2)
|
|
|
|
if (!(sprframe->rotsprite.cached & (1<<rot)))
|
|
{
|
|
INT32 dx, dy;
|
|
INT32 px, py;
|
|
INT32 width, height, leftoffset;
|
|
fixed_t ca, sa;
|
|
lumpnum_t lump = sprframe->lumppat[rot];
|
|
#ifndef NO_PNG_LUMPS
|
|
size_t lumplength;
|
|
#endif
|
|
|
|
if (lump == LUMPERROR)
|
|
return;
|
|
|
|
patch = (patch_t *)W_CacheLumpNum(lump, PU_STATIC);
|
|
#ifndef NO_PNG_LUMPS
|
|
lumplength = W_LumpLength(lump);
|
|
|
|
if (R_IsLumpPNG((UINT8 *)patch, lumplength))
|
|
patch = R_PNGToPatch((UINT8 *)patch, lumplength, NULL);
|
|
else
|
|
#endif
|
|
// Because there's something wrong with SPR_DFLM, I guess
|
|
if (!R_CheckIfPatch(lump))
|
|
return;
|
|
|
|
width = SHORT(patch->width);
|
|
height = SHORT(patch->height);
|
|
leftoffset = SHORT(patch->leftoffset);
|
|
|
|
// rotation pivot
|
|
px = SPRITE_XCENTER;
|
|
py = SPRITE_YCENTER;
|
|
|
|
// get correct sprite info for sprite
|
|
if (sprinfo == NULL)
|
|
sprinfo = &spriteinfo[sprnum];
|
|
if (sprinfo->available)
|
|
{
|
|
px = sprinfo->pivot[frame].x;
|
|
py = sprinfo->pivot[frame].y;
|
|
}
|
|
if (bflip)
|
|
{
|
|
px = width - px;
|
|
leftoffset = width - leftoffset;
|
|
}
|
|
|
|
// Don't cache angle = 0
|
|
for (angle = 1; angle < ROTANGLES; angle++)
|
|
{
|
|
INT32 newwidth, newheight;
|
|
|
|
ca = rollcosang[angle];
|
|
sa = rollsinang[angle];
|
|
|
|
// Find the dimensions of the rotated patch.
|
|
{
|
|
INT32 w1 = abs(FixedMul(width << FRACBITS, ca) - FixedMul(height << FRACBITS, sa));
|
|
INT32 w2 = abs(FixedMul(-(width << FRACBITS), ca) - FixedMul(height << FRACBITS, sa));
|
|
INT32 h1 = abs(FixedMul(width << FRACBITS, sa) + FixedMul(height << FRACBITS, ca));
|
|
INT32 h2 = abs(FixedMul(-(width << FRACBITS), sa) + FixedMul(height << FRACBITS, ca));
|
|
w1 = FixedInt(FixedCeil(w1 + (FRACUNIT/2)));
|
|
w2 = FixedInt(FixedCeil(w2 + (FRACUNIT/2)));
|
|
h1 = FixedInt(FixedCeil(h1 + (FRACUNIT/2)));
|
|
h2 = FixedInt(FixedCeil(h2 + (FRACUNIT/2)));
|
|
newwidth = max(width, max(w1, w2));
|
|
newheight = max(height, max(h1, h2));
|
|
}
|
|
|
|
// check boundaries
|
|
{
|
|
fixed_t top[2][2];
|
|
fixed_t bottom[2][2];
|
|
|
|
top[0][0] = FixedMul((-ROTSPRITE_XCENTER) << FRACBITS, ca) + FixedMul((-ROTSPRITE_YCENTER) << FRACBITS, sa) + (px << FRACBITS);
|
|
top[0][1] = FixedMul((-ROTSPRITE_XCENTER) << FRACBITS, sa) + FixedMul((-ROTSPRITE_YCENTER) << FRACBITS, ca) + (py << FRACBITS);
|
|
top[1][0] = FixedMul((newwidth-ROTSPRITE_XCENTER) << FRACBITS, ca) + FixedMul((-ROTSPRITE_YCENTER) << FRACBITS, sa) + (px << FRACBITS);
|
|
top[1][1] = FixedMul((newwidth-ROTSPRITE_XCENTER) << FRACBITS, sa) + FixedMul((-ROTSPRITE_YCENTER) << FRACBITS, ca) + (py << FRACBITS);
|
|
|
|
bottom[0][0] = FixedMul((-ROTSPRITE_XCENTER) << FRACBITS, ca) + FixedMul((newheight-ROTSPRITE_YCENTER) << FRACBITS, sa) + (px << FRACBITS);
|
|
bottom[0][1] = -FixedMul((-ROTSPRITE_XCENTER) << FRACBITS, sa) + FixedMul((newheight-ROTSPRITE_YCENTER) << FRACBITS, ca) + (py << FRACBITS);
|
|
bottom[1][0] = FixedMul((newwidth-ROTSPRITE_XCENTER) << FRACBITS, ca) + FixedMul((newheight-ROTSPRITE_YCENTER) << FRACBITS, sa) + (px << FRACBITS);
|
|
bottom[1][1] = -FixedMul((newwidth-ROTSPRITE_XCENTER) << FRACBITS, sa) + FixedMul((newheight-ROTSPRITE_YCENTER) << FRACBITS, ca) + (py << FRACBITS);
|
|
|
|
top[0][0] >>= FRACBITS;
|
|
top[0][1] >>= FRACBITS;
|
|
top[1][0] >>= FRACBITS;
|
|
top[1][1] >>= FRACBITS;
|
|
|
|
bottom[0][0] >>= FRACBITS;
|
|
bottom[0][1] >>= FRACBITS;
|
|
bottom[1][0] >>= FRACBITS;
|
|
bottom[1][1] >>= FRACBITS;
|
|
|
|
#define BOUNDARYWCHECK(b) (b[0] < 0 || b[0] >= width)
|
|
#define BOUNDARYHCHECK(b) (b[1] < 0 || b[1] >= height)
|
|
#define BOUNDARYADJUST(x) x *= 2
|
|
// top left/right
|
|
if (BOUNDARYWCHECK(top[0]) || BOUNDARYWCHECK(top[1]))
|
|
BOUNDARYADJUST(newwidth);
|
|
// bottom left/right
|
|
else if (BOUNDARYWCHECK(bottom[0]) || BOUNDARYWCHECK(bottom[1]))
|
|
BOUNDARYADJUST(newwidth);
|
|
// top left/right
|
|
if (BOUNDARYHCHECK(top[0]) || BOUNDARYHCHECK(top[1]))
|
|
BOUNDARYADJUST(newheight);
|
|
// bottom left/right
|
|
else if (BOUNDARYHCHECK(bottom[0]) || BOUNDARYHCHECK(bottom[1]))
|
|
BOUNDARYADJUST(newheight);
|
|
#undef BOUNDARYWCHECK
|
|
#undef BOUNDARYHCHECK
|
|
#undef BOUNDARYADJUST
|
|
}
|
|
|
|
// Draw the rotated sprite to a temporary buffer.
|
|
size = (newwidth * newheight);
|
|
if (!size)
|
|
size = (width * height);
|
|
|
|
rawdst = Z_Malloc(size * sizeof(UINT16), PU_STATIC, NULL);
|
|
for (i = 0; i < size; i++)
|
|
rawdst[i] = 0xFF00;
|
|
|
|
for (dy = 0; dy < newheight; dy++)
|
|
{
|
|
for (dx = 0; dx < newwidth; dx++)
|
|
{
|
|
INT32 x = (dx-ROTSPRITE_XCENTER) << FRACBITS;
|
|
INT32 y = (dy-ROTSPRITE_YCENTER) << FRACBITS;
|
|
INT32 sx = FixedMul(x, ca) + FixedMul(y, sa) + (px << FRACBITS);
|
|
INT32 sy = -FixedMul(x, sa) + FixedMul(y, ca) + (py << FRACBITS);
|
|
sx >>= FRACBITS;
|
|
sy >>= FRACBITS;
|
|
if (sx >= 0 && sy >= 0 && sx < width && sy < height)
|
|
rawdst[(dy*newwidth)+dx] = GetPatchPixel(patch, sx, sy, bflip);
|
|
}
|
|
}
|
|
|
|
// make patch
|
|
newpatch = R_MaskedFlatToPatch(rawdst, newwidth, newheight, 0, 0, &size);
|
|
{
|
|
newpatch->leftoffset = (newpatch->width / 2) + (leftoffset - px);
|
|
newpatch->topoffset = (newpatch->height / 2) + (SHORT(patch->topoffset) - py);
|
|
}
|
|
|
|
//BP: we cannot use special tric in hardware mode because feet in ground caused by z-buffer
|
|
if (rendermode != render_none) // not for psprite
|
|
newpatch->topoffset += FEETADJUST>>FRACBITS;
|
|
|
|
// P_PrecacheLevel
|
|
if (devparm) spritememory += size;
|
|
|
|
// convert everything to little-endian, for big-endian support
|
|
newpatch->width = SHORT(newpatch->width);
|
|
newpatch->height = SHORT(newpatch->height);
|
|
newpatch->leftoffset = SHORT(newpatch->leftoffset);
|
|
newpatch->topoffset = SHORT(newpatch->topoffset);
|
|
|
|
#ifdef HWRENDER
|
|
if (rendermode == render_opengl)
|
|
{
|
|
GLPatch_t *grPatch = Z_Calloc(sizeof(GLPatch_t), PU_HWRPATCHINFO, NULL);
|
|
grPatch->mipmap = Z_Calloc(sizeof(GLMipmap_t), PU_HWRPATCHINFO, NULL);
|
|
grPatch->rawpatch = newpatch;
|
|
sprframe->rotsprite.patch[rot][angle] = (patch_t *)grPatch;
|
|
HWR_MakePatch(newpatch, grPatch, grPatch->mipmap, false);
|
|
}
|
|
else
|
|
#endif // HWRENDER
|
|
sprframe->rotsprite.patch[rot][angle] = newpatch;
|
|
|
|
// free rotated image data
|
|
Z_Free(rawdst);
|
|
}
|
|
|
|
// This rotation is cached now
|
|
sprframe->rotsprite.cached |= (1<<rot);
|
|
|
|
// free image data
|
|
Z_Free(patch);
|
|
}
|
|
#undef SPRITE_XCENTER
|
|
#undef SPRITE_YCENTER
|
|
#undef ROTSPRITE_XCENTER
|
|
#undef ROTSPRITE_YCENTER
|
|
}
|
|
|
|
//
|
|
// R_FreeSingleRotSprite
|
|
//
|
|
// Free sprite rotation data from memory, for a single spritedef.
|
|
//
|
|
void R_FreeSingleRotSprite(spritedef_t *spritedef)
|
|
{
|
|
UINT8 frame;
|
|
INT32 rot, ang;
|
|
|
|
for (frame = 0; frame < spritedef->numframes; frame++)
|
|
{
|
|
spriteframe_t *sprframe = &spritedef->spriteframes[frame];
|
|
for (rot = 0; rot < 16; rot++)
|
|
{
|
|
if (sprframe->rotsprite.cached & (1<<rot))
|
|
{
|
|
for (ang = 0; ang < ROTANGLES; ang++)
|
|
{
|
|
patch_t *rotsprite = sprframe->rotsprite.patch[rot][ang];
|
|
if (rotsprite)
|
|
{
|
|
#ifdef HWRENDER
|
|
if (rendermode == render_opengl)
|
|
{
|
|
GLPatch_t *grPatch = (GLPatch_t *)rotsprite;
|
|
if (grPatch->rawpatch)
|
|
{
|
|
Z_Free(grPatch->rawpatch);
|
|
grPatch->rawpatch = NULL;
|
|
}
|
|
if (grPatch->mipmap)
|
|
{
|
|
if (grPatch->mipmap->grInfo.data)
|
|
{
|
|
Z_Free(grPatch->mipmap->grInfo.data);
|
|
grPatch->mipmap->grInfo.data = NULL;
|
|
}
|
|
Z_Free(grPatch->mipmap);
|
|
grPatch->mipmap = NULL;
|
|
}
|
|
}
|
|
#endif
|
|
Z_Free(rotsprite);
|
|
}
|
|
}
|
|
sprframe->rotsprite.cached &= ~(1<<rot);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// R_FreeSkinRotSprite
|
|
//
|
|
// Free sprite rotation data from memory, for a skin.
|
|
// Calls R_FreeSingleRotSprite.
|
|
//
|
|
void R_FreeSkinRotSprite(size_t skinnum)
|
|
{
|
|
size_t i;
|
|
skin_t *skin = &skins[skinnum];
|
|
spritedef_t *skinsprites = skin->sprites;
|
|
for (i = 0; i < NUMPLAYERSPRITES*2; i++)
|
|
{
|
|
R_FreeSingleRotSprite(skinsprites);
|
|
skinsprites++;
|
|
}
|
|
}
|
|
|
|
//
|
|
// R_FreeAllRotSprite
|
|
//
|
|
// Free ALL sprite rotation data from memory.
|
|
//
|
|
void R_FreeAllRotSprite(void)
|
|
{
|
|
INT32 i;
|
|
size_t s;
|
|
for (s = 0; s < numsprites; s++)
|
|
R_FreeSingleRotSprite(&sprites[s]);
|
|
for (i = 0; i < numskins; ++i)
|
|
R_FreeSkinRotSprite(i);
|
|
}
|
|
#endif
|