SRB2/src/r_main.c
2024-06-02 17:19:38 -03:00

1687 lines
42 KiB
C

// SONIC ROBO BLAST 2
//-----------------------------------------------------------------------------
// Copyright (C) 1993-1996 by id Software, Inc.
// Copyright (C) 1998-2000 by DooM Legacy Team.
// Copyright (C) 1999-2023 by Sonic Team Junior.
//
// This program is free software distributed under the
// terms of the GNU General Public License, version 2.
// See the 'LICENSE' file for more details.
//-----------------------------------------------------------------------------
/// \file r_main.c
/// \brief Rendering main loop and setup functions,
/// utility functions (BSP, geometry, trigonometry).
/// See tables.c, too.
#include "doomdef.h"
#include "g_game.h"
#include "g_input.h"
#include "r_local.h"
#include "r_splats.h" // faB(21jan): testing
#include "r_sky.h"
#include "hu_stuff.h"
#include "st_stuff.h"
#include "p_local.h"
#include "keys.h"
#include "i_video.h"
#include "m_menu.h"
#include "am_map.h"
#include "d_main.h"
#include "v_video.h"
#include "p_spec.h" // skyboxmo
#include "p_setup.h"
#include "z_zone.h"
#include "m_random.h" // quake camera shake
#include "r_portal.h"
#include "r_main.h"
#include "i_system.h" // I_GetPreciseTime
#include "r_fps.h" // Frame interpolation/uncapped
#ifdef HWRENDER
#include "hardware/hw_main.h"
#endif
// Fineangles in the SCREENWIDTH wide window.
#define FIELDOFVIEW 2048
// increment every time a check is made
size_t validcount = 1;
INT32 centerx, centery;
fixed_t centerxfrac, centeryfrac;
fixed_t projection;
fixed_t projectiony; // aspect ratio
fixed_t fovtan; // field of view
// just for profiling purposes
size_t framecount;
size_t loopcount;
fixed_t viewx, viewy, viewz;
angle_t viewangle, aimingangle;
fixed_t viewcos, viewsin;
sector_t *viewsector;
player_t *viewplayer;
mobj_t *r_viewmobj;
boolean r_renderwalls;
boolean r_renderfloors;
boolean r_renderthings;
fixed_t rendertimefrac;
fixed_t renderdeltatics;
boolean renderisnewtic;
//
// precalculated math tables
//
angle_t clipangle;
angle_t doubleclipangle;
// The viewangletox[viewangle + FINEANGLES/4] lookup
// maps the visible view angles to screen X coordinates,
// flattening the arc to a flat projection plane.
// There will be many angles mapped to the same X.
INT32 viewangletox[FINEANGLES/2];
// The xtoviewangleangle[] table maps a screen pixel
// to the lowest viewangle that maps back to x ranges
// from clipangle to -clipangle.
angle_t xtoviewangle[MAXVIDWIDTH+1];
lighttable_t *scalelight[LIGHTLEVELS][MAXLIGHTSCALE];
lighttable_t *scalelightfixed[MAXLIGHTSCALE];
lighttable_t *zlight[LIGHTLEVELS][MAXLIGHTZ];
// Hack to support extra boom colormaps.
extracolormap_t *extra_colormaps = NULL;
// Render stats
precise_t ps_prevframetime = 0;
ps_metric_t ps_rendercalltime = {0};
ps_metric_t ps_otherrendertime = {0};
ps_metric_t ps_uitime = {0};
ps_metric_t ps_swaptime = {0};
ps_metric_t ps_bsptime = {0};
ps_metric_t ps_sw_spritecliptime = {0};
ps_metric_t ps_sw_portaltime = {0};
ps_metric_t ps_sw_planetime = {0};
ps_metric_t ps_sw_maskedtime = {0};
ps_metric_t ps_numbspcalls = {0};
ps_metric_t ps_numsprites = {0};
ps_metric_t ps_numdrawnodes = {0};
ps_metric_t ps_numpolyobjects = {0};
static CV_PossibleValue_t drawdist_cons_t[] = {
{256, "256"}, {512, "512"}, {768, "768"},
{1024, "1024"}, {1536, "1536"}, {2048, "2048"},
{3072, "3072"}, {4096, "4096"}, {6144, "6144"},
{8192, "8192"}, {0, "Infinite"}, {0, NULL}};
//static CV_PossibleValue_t precipdensity_cons_t[] = {{0, "None"}, {1, "Light"}, {2, "Moderate"}, {4, "Heavy"}, {6, "Thick"}, {8, "V.Thick"}, {0, NULL}};
static CV_PossibleValue_t drawdist_precip_cons_t[] = {
{256, "256"}, {512, "512"}, {768, "768"},
{1024, "1024"}, {1536, "1536"}, {2048, "2048"},
{0, "None"}, {0, NULL}};
static CV_PossibleValue_t fov_cons_t[] = {{MINFOV*FRACUNIT, "MIN"}, {MAXFOV*FRACUNIT, "MAX"}, {0, NULL}};
static CV_PossibleValue_t translucenthud_cons_t[] = {{0, "MIN"}, {10, "MAX"}, {0, NULL}};
static CV_PossibleValue_t maxportals_cons_t[] = {{0, "MIN"}, {12, "MAX"}, {0, NULL}}; // lmao rendering 32 portals, you're a card
static CV_PossibleValue_t homremoval_cons_t[] = {{0, "No"}, {1, "Yes"}, {2, "Flash"}, {0, NULL}};
static void R_SetFov(fixed_t playerfov);
static void Fov_OnChange(void);
static void ChaseCam_OnChange(void);
static void ChaseCam2_OnChange(void);
static void FlipCam_OnChange(void);
static void FlipCam2_OnChange(void);
void SendWeaponPref(void);
void SendWeaponPref2(void);
consvar_t cv_tailspickup = CVAR_INIT ("tailspickup", "On", CV_NETVAR|CV_ALLOWLUA, CV_OnOff, NULL);
consvar_t cv_chasecam = CVAR_INIT ("chasecam", "On", CV_CALL, CV_OnOff, ChaseCam_OnChange);
consvar_t cv_chasecam2 = CVAR_INIT ("chasecam2", "On", CV_CALL, CV_OnOff, ChaseCam2_OnChange);
consvar_t cv_flipcam = CVAR_INIT ("flipcam", "No", CV_SAVE|CV_CALL|CV_NOINIT, CV_YesNo, FlipCam_OnChange);
consvar_t cv_flipcam2 = CVAR_INIT ("flipcam2", "No", CV_SAVE|CV_CALL|CV_NOINIT, CV_YesNo, FlipCam2_OnChange);
consvar_t cv_shadow = CVAR_INIT ("shadow", "On", CV_SAVE, CV_OnOff, NULL);
consvar_t cv_skybox = CVAR_INIT ("skybox", "On", CV_SAVE, CV_OnOff, NULL);
consvar_t cv_allowmlook = CVAR_INIT ("allowmlook", "Yes", CV_NETVAR|CV_ALLOWLUA, CV_YesNo, NULL);
consvar_t cv_showhud = CVAR_INIT ("showhud", "Yes", CV_CALL|CV_ALLOWLUA, CV_YesNo, R_SetViewSize);
consvar_t cv_translucenthud = CVAR_INIT ("translucenthud", "10", CV_SAVE, translucenthud_cons_t, NULL);
consvar_t cv_translucency = CVAR_INIT ("translucency", "On", CV_SAVE, CV_OnOff, NULL);
consvar_t cv_drawdist = CVAR_INIT ("drawdist", "Infinite", CV_SAVE, drawdist_cons_t, NULL);
consvar_t cv_drawdist_nights = CVAR_INIT ("drawdist_nights", "2048", CV_SAVE, drawdist_cons_t, NULL);
consvar_t cv_drawdist_precip = CVAR_INIT ("drawdist_precip", "1024", CV_SAVE, drawdist_precip_cons_t, NULL);
consvar_t cv_fov = CVAR_INIT ("fov", "90", CV_SAVE|CV_FLOAT|CV_CALL, fov_cons_t, Fov_OnChange);
consvar_t cv_fovchange = CVAR_INIT ("fovchange", "Off", CV_SAVE, CV_OnOff, NULL);
consvar_t cv_maxportals = CVAR_INIT ("maxportals", "2", CV_SAVE, maxportals_cons_t, NULL);
consvar_t cv_renderview = CVAR_INIT ("renderview", "On", 0, CV_OnOff, NULL);
consvar_t cv_renderwalls = CVAR_INIT ("r_renderwalls", "On", 0, CV_OnOff, NULL);
consvar_t cv_renderfloors = CVAR_INIT ("r_renderfloors", "On", 0, CV_OnOff, NULL);
consvar_t cv_renderthings = CVAR_INIT ("r_renderthings", "On", 0, CV_OnOff, NULL);
consvar_t cv_ffloorclip = CVAR_INIT ("r_ffloorclip", "On", 0, CV_OnOff, NULL);
consvar_t cv_spriteclip = CVAR_INIT ("r_spriteclip", "On", 0, CV_OnOff, NULL);
consvar_t cv_homremoval = CVAR_INIT ("homremoval", "No", CV_SAVE, homremoval_cons_t, NULL);
consvar_t cv_renderstats = CVAR_INIT ("renderstats", "Off", 0, CV_OnOff, NULL);
void SplitScreen_OnChange(void)
{
if (!cv_debug && netgame)
{
if (splitscreen)
{
CONS_Alert(CONS_NOTICE, M_GetText("Splitscreen not supported in netplay, sorry!\n"));
splitscreen = false;
}
return;
}
// recompute screen size
R_ExecuteSetViewSize();
if (!demoplayback && !botingame)
{
if (splitscreen)
CL_AddSplitscreenPlayer();
else
CL_RemoveSplitscreenPlayer();
if (server && !netgame)
multiplayer = splitscreen;
}
else
{
INT32 i;
secondarydisplayplayer = consoleplayer;
for (i = 0; i < MAXPLAYERS; i++)
if (playeringame[i] && i != consoleplayer)
{
secondarydisplayplayer = i;
break;
}
}
}
static void Fov_OnChange(void)
{
R_SetViewSize();
}
static void ChaseCam_OnChange(void)
{
if (!cv_chasecam.value || !cv_useranalog[0].value)
CV_SetValue(&cv_analog[0], 0);
else
CV_SetValue(&cv_analog[0], 1);
}
static void ChaseCam2_OnChange(void)
{
if (botingame)
return;
if (!cv_chasecam2.value || !cv_useranalog[1].value)
CV_SetValue(&cv_analog[1], 0);
else
CV_SetValue(&cv_analog[1], 1);
}
static void FlipCam_OnChange(void)
{
SendWeaponPref();
}
static void FlipCam2_OnChange(void)
{
SendWeaponPref2();
}
//
// R_PointOnSide
// Traverse BSP (sub) tree,
// check point against partition plane.
// Returns side 0 (front) or 1 (back).
//
// killough 5/2/98: reformatted
//
INT32 R_PointOnSide(fixed_t x, fixed_t y, node_t *restrict node)
{
if (!node->dx)
return x <= node->x ? node->dy > 0 : node->dy < 0;
if (!node->dy)
return y <= node->y ? node->dx < 0 : node->dx > 0;
fixed_t dx = (x >> 1) - (node->x >> 1);
fixed_t dy = (y >> 1) - (node->y >> 1);
// Try to quickly decide by looking at sign bits.
// also use a mask to avoid branch prediction
INT32 mask = (node->dy ^ node->dx ^ dx ^ dy) >> 31;
return (mask & ((node->dy ^ dx) < 0)) | // (left is negative)
(~mask & (FixedMul(dy, node->dx>>FRACBITS) >= FixedMul(node->dy>>FRACBITS, dx)));
}
// killough 5/2/98: reformatted
INT32 R_PointOnSegSide(fixed_t x, fixed_t y, seg_t *line)
{
fixed_t lx = line->v1->x;
fixed_t ly = line->v1->y;
fixed_t ldx = line->v2->x - lx;
fixed_t ldy = line->v2->y - ly;
if (!ldx)
return x <= lx ? ldy > 0 : ldy < 0;
if (!ldy)
return y <= ly ? ldx < 0 : ldx > 0;
fixed_t dx = (x >> 1) - (lx >> 1);
fixed_t dy = (y >> 1) - (ly >> 1);
// Try to quickly decide by looking at sign bits.
if ((ldy ^ ldx ^ dx ^ dy) < 0)
return (ldy ^ dx) < 0; // (left is negative)
return FixedMul(dy, ldx>>FRACBITS) >= FixedMul(ldy>>FRACBITS, dx);
}
//
// R_PointToAngle
// To get a global angle from cartesian coordinates,
// the coordinates are flipped until they are in
// the first octant of the coordinate system, then
// the y (<=x) is scaled and divided by x to get a
// tangent (slope) value which is looked up in the
// tantoangle[] table. The +1 size of tantoangle[]
// is to handle the case when x==y without additional
// checking.
//
// killough 5/2/98: reformatted, cleaned up
angle_t R_PointToAngle(fixed_t x, fixed_t y)
{
return (y -= viewy, (x -= viewx) || y) ?
x >= 0 ?
y >= 0 ?
(x > y) ? tantoangle[SlopeDiv(y,x)] : // octant 0
ANGLE_90-tantoangle[SlopeDiv(x,y)] : // octant 1
x > (y = -y) ? 0-tantoangle[SlopeDiv(y,x)] : // octant 8
ANGLE_270+tantoangle[SlopeDiv(x,y)] : // octant 7
y >= 0 ? (x = -x) > y ? ANGLE_180-tantoangle[SlopeDiv(y,x)] : // octant 3
ANGLE_90 + tantoangle[SlopeDiv(x,y)] : // octant 2
(x = -x) > (y = -y) ? ANGLE_180+tantoangle[SlopeDiv(y,x)] : // octant 4
ANGLE_270-tantoangle[SlopeDiv(x,y)] : // octant 5
0;
}
// This version uses 64-bit variables to avoid overflows with large values.
angle_t R_PointToAngle64(INT64 x, INT64 y)
{
return (y -= viewy, (x -= viewx) || y) ?
x >= 0 ?
y >= 0 ?
(x > y) ? tantoangle[SlopeDivEx(y,x)] : // octant 0
ANGLE_90-tantoangle[SlopeDivEx(x,y)] : // octant 1
x > (y = -y) ? 0-tantoangle[SlopeDivEx(y,x)] : // octant 8
ANGLE_270+tantoangle[SlopeDivEx(x,y)] : // octant 7
y >= 0 ? (x = -x) > y ? ANGLE_180-tantoangle[SlopeDivEx(y,x)] : // octant 3
ANGLE_90 + tantoangle[SlopeDivEx(x,y)] : // octant 2
(x = -x) > (y = -y) ? ANGLE_180+tantoangle[SlopeDivEx(y,x)] : // octant 4
ANGLE_270-tantoangle[SlopeDivEx(x,y)] : // octant 5
0;
}
angle_t R_PointToAngle2(fixed_t pviewx, fixed_t pviewy, fixed_t x, fixed_t y)
{
return (y -= pviewy, (x -= pviewx) || y) ?
x >= 0 ?
y >= 0 ?
(x > y) ? tantoangle[SlopeDiv(y,x)] : // octant 0
ANGLE_90-tantoangle[SlopeDiv(x,y)] : // octant 1
x > (y = -y) ? 0-tantoangle[SlopeDiv(y,x)] : // octant 8
ANGLE_270+tantoangle[SlopeDiv(x,y)] : // octant 7
y >= 0 ? (x = -x) > y ? ANGLE_180-tantoangle[SlopeDiv(y,x)] : // octant 3
ANGLE_90 + tantoangle[SlopeDiv(x,y)] : // octant 2
(x = -x) > (y = -y) ? ANGLE_180+tantoangle[SlopeDiv(y,x)] : // octant 4
ANGLE_270-tantoangle[SlopeDiv(x,y)] : // octant 5
0;
}
fixed_t R_PointToDist2(fixed_t px2, fixed_t py2, fixed_t px1, fixed_t py1)
{
angle_t angle;
ufixed_t dx, dy, dist;
dx = abs(px1 - px2);
dy = abs(py1 - py2);
if (dy > dx)
{
fixed_t temp;
temp = dx;
dx = dy;
dy = temp;
}
if (!dy)
return dx;
angle = (tantoangle[FixedDiv(dy, dx)>>DBITS] + ANGLE_90) >> ANGLETOFINESHIFT;
// use as cosine
dist = FixedDiv(dx, FINESINE(angle));
return dist;
}
// Little extra utility. Works in the same way as R_PointToAngle2
fixed_t R_PointToDist(fixed_t x, fixed_t y)
{
return R_PointToDist2(viewx, viewy, x, y);
}
line_t *R_GetFFloorLine(const line_t *line, const ffloor_t *pfloor, const sector_t *sector)
{
if (pfloor->master->flags & ML_TFERLINE)
{
size_t linenum = min((size_t)(line - sector->lines[0]), pfloor->master->frontsector->linecount);
return pfloor->master->frontsector->lines[0] + linenum;
}
else
return pfloor->master;
}
side_t *R_GetFFloorSide(const line_t *line, const ffloor_t *pfloor, const sector_t *sector)
{
if (pfloor->master->flags & ML_TFERLINE)
{
line_t *newline = R_GetFFloorLine(line, pfloor, sector);
return &sides[newline->sidenum[0]];
}
else
return &sides[pfloor->master->sidenum[0]];
}
//
// R_DoCulling
// Checks viewz and top/bottom heights of an item against culling planes
// Returns true if the item is to be culled, i.e it shouldn't be drawn!
// if args[1] is set, the camera view is required to be in the same area for culling to occur
boolean R_DoCulling(line_t *cullheight, line_t *viewcullheight, fixed_t vz, fixed_t bottomh, fixed_t toph)
{
fixed_t cullplane;
if (!cullheight)
return false;
cullplane = cullheight->frontsector->floorheight;
if (cullheight->args[1]) // Group culling
{
if (!viewcullheight)
return false;
// Make sure this is part of the same group
if (viewcullheight->frontsector == cullheight->frontsector)
{
// OK, we can cull
if (vz > cullplane && toph < cullplane) // Cull if below plane
return true;
if (bottomh > cullplane && vz <= cullplane) // Cull if above plane
return true;
}
}
else // Quick culling
{
if (vz > cullplane && toph < cullplane) // Cull if below plane
return true;
if (bottomh > cullplane && vz <= cullplane) // Cull if above plane
return true;
}
return false;
}
//
// R_InitTextureMapping
//
static void R_InitTextureMapping(void)
{
INT32 i;
INT32 x;
INT32 t;
fixed_t focallength;
// Use tangent table to generate viewangletox:
// viewangletox will give the next greatest x
// after the view angle.
//
// Calc focallength
// so FIELDOFVIEW angles covers SCREENWIDTH.
focallength = FixedDiv(projection,
FINETANGENT(FINEANGLES/4+FIELDOFVIEW/2));
focallengthf = FIXED_TO_FLOAT(focallength);
for (i = 0; i < FINEANGLES/2; i++)
{
if (FINETANGENT(i) > fovtan*2)
t = -1;
else if (FINETANGENT(i) < -fovtan*2)
t = viewwidth+1;
else
{
t = FixedMul(FINETANGENT(i), focallength);
t = (centerxfrac - t+FRACUNIT-1)>>FRACBITS;
if (t < -1)
t = -1;
else if (t > viewwidth+1)
t = viewwidth+1;
}
viewangletox[i] = t;
}
// Scan viewangletox[] to generate xtoviewangle[]:
// xtoviewangle will give the smallest view angle
// that maps to x.
for (x = 0; x <= viewwidth;x++)
{
i = 0;
while (viewangletox[i] > x)
i++;
xtoviewangle[x] = (i<<ANGLETOFINESHIFT) - ANGLE_90;
}
// Take out the fencepost cases from viewangletox.
for (i = 0; i < FINEANGLES/2; i++)
{
if (viewangletox[i] == -1)
viewangletox[i] = 0;
else if (viewangletox[i] == viewwidth+1)
viewangletox[i] = viewwidth;
}
clipangle = xtoviewangle[0];
doubleclipangle = clipangle*2;
}
//
// R_InitLightTables
// Only inits the zlight table,
// because the scalelight table changes with view size.
//
#define DISTMAP 2
static inline void R_InitLightTables(void)
{
INT32 i;
INT32 j;
INT32 level;
INT32 startmapl;
INT32 scale;
// Calculate the light levels to use
// for each level / distance combination.
for (i = 0; i < LIGHTLEVELS; i++)
{
startmapl = ((LIGHTLEVELS-1-i)*2)*NUMCOLORMAPS/LIGHTLEVELS;
for (j = 0; j < MAXLIGHTZ; j++)
{
//added : 02-02-98 : use BASEVIDWIDTH, vid.width is not set already,
// and it seems it needs to be calculated only once.
scale = FixedDiv((BASEVIDWIDTH/2*FRACUNIT), (j+1)<<LIGHTZSHIFT);
scale >>= LIGHTSCALESHIFT;
level = startmapl - scale/DISTMAP;
if (level < 0)
level = 0;
if (level >= NUMCOLORMAPS)
level = NUMCOLORMAPS-1;
zlight[i][j] = colormaps + level*256;
}
}
}
//#define WOUGHMP_WOUGHMP // I got a fish-eye lens - I'll make a rap video with a couple of friends
// it's kinda laggy sometimes
static struct {
angle_t rollangle; // pre-shifted by fineshift
#ifdef WOUGHMP_WOUGHMP
fixed_t fisheye;
#endif
fixed_t zoomneeded;
INT32 *scrmap;
INT32 scrmapsize;
INT32 x1; // clip rendering horizontally for efficiency
INT16 ceilingclip[MAXVIDWIDTH], floorclip[MAXVIDWIDTH];
boolean use;
} viewmorph = {
0,
#ifdef WOUGHMP_WOUGHMP
0,
#endif
FRACUNIT,
NULL,
0,
0,
{0}, {0},
false
};
void R_CheckViewMorph(void)
{
float zoomfactor, rollcos, rollsin;
float x1, y1, x2, y2;
fixed_t temp;
INT32 end, vx, vy, pos, usedpos;
INT32 usedx, usedy, halfwidth = vid.width/2, halfheight = vid.height/2;
#ifdef WOUGHMP_WOUGHMP
float fisheyemap[MAXVIDWIDTH/2 + 1];
#endif
angle_t rollangle = players[displayplayer].viewrollangle;
#ifdef WOUGHMP_WOUGHMP
fixed_t fisheye = cv_cam2_turnmultiplier.value; // temporary test value
#endif
rollangle >>= ANGLETOFINESHIFT;
rollangle = ((rollangle+2) & ~3) & FINEMASK; // Limit the distinct number of angles to reduce recalcs from angles changing a lot.
#ifdef WOUGHMP_WOUGHMP
fisheye &= ~0x7FF; // Same
#endif
if (rollangle == viewmorph.rollangle &&
#ifdef WOUGHMP_WOUGHMP
fisheye == viewmorph.fisheye &&
#endif
viewmorph.scrmapsize == vid.width*vid.height)
return; // No change
viewmorph.rollangle = rollangle;
#ifdef WOUGHMP_WOUGHMP
viewmorph.fisheye = fisheye;
#endif
if (viewmorph.rollangle == 0
#ifdef WOUGHMP_WOUGHMP
&& viewmorph.fisheye == 0
#endif
)
{
viewmorph.use = false;
viewmorph.x1 = 0;
if (viewmorph.zoomneeded != FRACUNIT)
R_SetViewSize();
viewmorph.zoomneeded = FRACUNIT;
return;
}
if (viewmorph.scrmapsize != vid.width*vid.height)
{
if (viewmorph.scrmap)
free(viewmorph.scrmap);
viewmorph.scrmap = malloc(vid.width*vid.height * sizeof(INT32));
viewmorph.scrmapsize = vid.width*vid.height;
}
temp = FINECOSINE(rollangle);
rollcos = FIXED_TO_FLOAT(temp);
temp = FINESINE(rollangle);
rollsin = FIXED_TO_FLOAT(temp);
// Calculate maximum zoom needed
x1 = (vid.width*fabsf(rollcos) + vid.height*fabsf(rollsin)) / vid.width;
y1 = (vid.height*fabsf(rollcos) + vid.width*fabsf(rollsin)) / vid.height;
#ifdef WOUGHMP_WOUGHMP
if (fisheye)
{
float f = FIXED_TO_FLOAT(fisheye);
for (vx = 0; vx <= halfwidth; vx++)
fisheyemap[vx] = 1.0f / cos(atan(vx * f / halfwidth));
f = cos(atan(f));
if (f < 1.0f)
{
x1 /= f;
y1 /= f;
}
}
#endif
temp = max(x1, y1)*FRACUNIT;
if (temp < FRACUNIT)
temp = FRACUNIT;
else
temp |= 0x3FFF; // Limit how many times the viewport needs to be recalculated
//CONS_Printf("Setting zoom to %f\n", FIXED_TO_FLOAT(temp));
if (temp != viewmorph.zoomneeded)
{
viewmorph.zoomneeded = temp;
R_SetViewSize();
}
zoomfactor = FIXED_TO_FLOAT(viewmorph.zoomneeded);
end = vid.width * vid.height - 1;
pos = 0;
// Pre-multiply rollcos and rollsin to use for positional stuff
rollcos /= zoomfactor;
rollsin /= zoomfactor;
x1 = -(halfwidth * rollcos - halfheight * rollsin);
y1 = -(halfheight * rollcos + halfwidth * rollsin);
#ifdef WOUGHMP_WOUGHMP
if (fisheye)
viewmorph.x1 = (INT32)(halfwidth - (halfwidth * fabsf(rollcos) + halfheight * fabsf(rollsin)) * fisheyemap[halfwidth]);
else
#endif
viewmorph.x1 = (INT32)(halfwidth - (halfwidth * fabsf(rollcos) + halfheight * fabsf(rollsin)));
//CONS_Printf("saving %d cols\n", viewmorph.x1);
// Set ceilingclip and floorclip
for (vx = 0; vx < vid.width; vx++)
{
viewmorph.ceilingclip[vx] = vid.height;
viewmorph.floorclip[vx] = -1;
}
x2 = x1;
y2 = y1;
for (vx = 0; vx < vid.width; vx++)
{
INT16 xa, ya, xb, yb;
xa = x2+halfwidth;
ya = y2+halfheight-1;
xb = vid.width-1-xa;
yb = vid.height-1-ya;
viewmorph.ceilingclip[xa] = min(viewmorph.ceilingclip[xa], ya);
viewmorph.floorclip[xa] = max(viewmorph.floorclip[xa], ya);
viewmorph.ceilingclip[xb] = min(viewmorph.ceilingclip[xb], yb);
viewmorph.floorclip[xb] = max(viewmorph.floorclip[xb], yb);
x2 += rollcos;
y2 += rollsin;
}
x2 = x1;
y2 = y1;
for (vy = 0; vy < vid.height; vy++)
{
INT16 xa, ya, xb, yb;
xa = x2+halfwidth;
ya = y2+halfheight;
xb = vid.width-1-xa;
yb = vid.height-1-ya;
viewmorph.ceilingclip[xa] = min(viewmorph.ceilingclip[xa], ya);
viewmorph.floorclip[xa] = max(viewmorph.floorclip[xa], ya);
viewmorph.ceilingclip[xb] = min(viewmorph.ceilingclip[xb], yb);
viewmorph.floorclip[xb] = max(viewmorph.floorclip[xb], yb);
x2 -= rollsin;
y2 += rollcos;
}
//CONS_Printf("Top left corner is %f %f\n", x1, y1);
#ifdef WOUGHMP_WOUGHMP
if (fisheye)
{
for (vy = 0; vy < halfheight; vy++)
{
x2 = x1;
y2 = y1;
x1 -= rollsin;
y1 += rollcos;
for (vx = 0; vx < vid.width; vx++)
{
usedx = halfwidth + x2*fisheyemap[(int) floorf(fabsf(y2*zoomfactor))];
usedy = halfheight + y2*fisheyemap[(int) floorf(fabsf(x2*zoomfactor))];
usedpos = usedx + usedy*vid.width;
viewmorph.scrmap[pos] = usedpos;
viewmorph.scrmap[end-pos] = end-usedpos;
x2 += rollcos;
y2 += rollsin;
pos++;
}
}
}
else
{
#endif
x1 += halfwidth;
y1 += halfheight;
for (vy = 0; vy < halfheight; vy++)
{
x2 = x1;
y2 = y1;
x1 -= rollsin;
y1 += rollcos;
for (vx = 0; vx < vid.width; vx++)
{
usedx = x2;
usedy = y2;
usedpos = usedx + usedy*vid.width;
viewmorph.scrmap[pos] = usedpos;
viewmorph.scrmap[end-pos] = end-usedpos;
x2 += rollcos;
y2 += rollsin;
pos++;
}
}
#ifdef WOUGHMP_WOUGHMP
}
#endif
viewmorph.use = true;
}
void R_ApplyViewMorph(void)
{
UINT8 *tmpscr = screens[4];
UINT8 *srcscr = screens[0];
INT32 p, end = vid.width * vid.height;
if (!viewmorph.use)
return;
if (cv_debug & DBG_VIEWMORPH)
{
UINT8 border = 32;
UINT8 grid = 160;
INT32 ws = vid.width / 4;
INT32 hs = vid.width * (vid.height / 4);
memcpy(tmpscr, srcscr, vid.width*vid.height);
for (p = 0; p < vid.width; p++)
{
tmpscr[viewmorph.scrmap[p]] = border;
tmpscr[viewmorph.scrmap[p + hs]] = grid;
tmpscr[viewmorph.scrmap[p + hs*2]] = grid;
tmpscr[viewmorph.scrmap[p + hs*3]] = grid;
tmpscr[viewmorph.scrmap[end - 1 - p]] = border;
}
for (p = vid.width; p < end; p += vid.width)
{
tmpscr[viewmorph.scrmap[p]] = border;
tmpscr[viewmorph.scrmap[p + ws]] = grid;
tmpscr[viewmorph.scrmap[p + ws*2]] = grid;
tmpscr[viewmorph.scrmap[p + ws*3]] = grid;
tmpscr[viewmorph.scrmap[end - 1 - p]] = border;
}
}
else
for (p = 0; p < end; p++)
tmpscr[p] = srcscr[viewmorph.scrmap[p]];
VID_BlitLinearScreen(tmpscr, screens[0],
vid.width*vid.bpp, vid.height, vid.width*vid.bpp, vid.width);
}
//
// R_SetViewSize
// Do not really change anything here,
// because it might be in the middle of a refresh.
// The change will take effect next refresh.
//
boolean setsizeneeded;
void R_SetViewSize(void)
{
setsizeneeded = true;
}
//
// R_ExecuteSetViewSize
//
void R_ExecuteSetViewSize(void)
{
INT32 i;
INT32 j;
INT32 level;
INT32 startmapl;
setsizeneeded = false;
if (rendermode == render_none)
return;
// status bar overlay
st_overlay = cv_showhud.value;
scaledviewwidth = vid.width;
viewheight = vid.height;
if (splitscreen)
viewheight >>= 1;
viewwidth = scaledviewwidth;
centerx = viewwidth/2;
centery = viewheight/2;
centerxfrac = centerx<<FRACBITS;
centeryfrac = centery<<FRACBITS;
R_SetFov(cv_fov.value);
R_InitViewBuffer(scaledviewwidth, viewheight);
// thing clipping
for (i = 0; i < viewwidth; i++)
screenheightarray[i] = (INT16)viewheight;
memset(scalelight, 0xFF, sizeof(scalelight));
// Calculate the light levels to use for each level/scale combination.
for (i = 0; i< LIGHTLEVELS; i++)
{
startmapl = ((LIGHTLEVELS - 1 - i)*2)*NUMCOLORMAPS/LIGHTLEVELS;
for (j = 0; j < MAXLIGHTSCALE; j++)
{
level = startmapl - j*vid.width/(viewwidth)/DISTMAP;
if (level < 0)
level = 0;
if (level >= NUMCOLORMAPS)
level = NUMCOLORMAPS - 1;
scalelight[i][j] = colormaps + level*256;
}
}
// continue to do the software setviewsize as long as we use the reference software view
#ifdef HWRENDER
if (rendermode != render_soft)
HWR_SetViewSize();
#endif
am_recalc = true;
}
fixed_t R_GetPlayerFov(player_t *player)
{
fixed_t fov = cv_fov.value + player->fovadd;
return max(MINFOV*FRACUNIT, min(fov, MAXFOV*FRACUNIT));
}
static void R_SetFov(fixed_t playerfov)
{
angle_t fov = FixedAngle(playerfov/2) + ANGLE_90;
fovtan = FixedMul(FINETANGENT(fov >> ANGLETOFINESHIFT), viewmorph.zoomneeded);
if (splitscreen == 1) // Splitscreen FOV should be adjusted to maintain expected vertical view
fovtan = 17*fovtan/10;
// this is only used for planes rendering in software mode
INT32 j = viewheight*16;
for (INT32 i = 0; i < j; i++)
{
fixed_t dy = (i - viewheight*8)<<FRACBITS;
dy = FixedMul(abs(dy), fovtan);
yslopetab[i] = FixedDiv(centerx*FRACUNIT, dy);
}
projection = projectiony = FixedDiv(centerxfrac, fovtan);
R_InitTextureMapping();
// setup sky scaling
R_SetSkyScale();
}
//
// R_Init
//
void R_Init(void)
{
// screensize independent
//I_OutputMsg("\nR_InitData");
R_InitData();
R_SetViewSize(); // setsizeneeded is set true
// this is now done by SCR_Recalc() at the first mode set
//I_OutputMsg("\nR_InitLightTables");
R_InitLightTables();
//I_OutputMsg("\nR_InitTranslucencyTables\n");
R_InitTranslucencyTables();
R_InitDrawNodes();
framecount = 0;
}
//
// R_IsPointInSector
//
boolean R_IsPointInSector(sector_t *sector, fixed_t x, fixed_t y)
{
size_t i;
size_t passes = 0;
for (i = 0; i < sector->linecount; i++)
{
line_t *line = sector->lines[i];
vertex_t *v1, *v2;
if (line->frontsector == line->backsector)
continue;
v1 = line->v1;
v2 = line->v2;
// make sure v1 is below v2
if (v1->y > v2->y)
{
vertex_t *tmp = v1;
v1 = v2;
v2 = tmp;
}
else if (v1->y == v2->y)
// horizontal line, we can't match this
continue;
if (v1->y < y && y <= v2->y)
{
// if the y axis in inside the line, find the point where we intersect on the x axis...
fixed_t vx = v1->x + (INT64)(v2->x - v1->x) * (y - v1->y) / (v2->y - v1->y);
// ...and if that point is to the left of the point, count it as inside.
if (vx < x)
passes++;
}
}
// and odd number of passes means we're inside the polygon.
return passes % 2;
}
//
// R_PointInSubsector
//
subsector_t *R_PointInSubsector(fixed_t x, fixed_t y)
{
size_t nodenum = numnodes-1;
while (!(nodenum & NF_SUBSECTOR))
nodenum = nodes[nodenum].children[R_PointOnSide(x, y, nodes+nodenum)];
return &subsectors[nodenum & ~NF_SUBSECTOR];
}
//
// R_PointInSubsectorOrNull, same as above but returns 0 if not in subsector
//
subsector_t *R_PointInSubsectorOrNull(fixed_t x, fixed_t y)
{
node_t *node;
INT32 side, i;
size_t nodenum;
subsector_t *ret;
seg_t *seg;
// single subsector is a special case
if (numnodes == 0)
return subsectors;
nodenum = numnodes - 1;
while (!(nodenum & NF_SUBSECTOR))
{
node = &nodes[nodenum];
side = R_PointOnSide(x, y, node);
nodenum = node->children[side];
}
ret = &subsectors[nodenum & ~NF_SUBSECTOR];
for (i = 0, seg = &segs[ret->firstline]; i < ret->numlines; i++, seg++)
{
if (seg->glseg)
continue;
//if (R_PointOnSegSide(x, y, seg)) -- breaks in ogl because polyvertex_t cast over vertex pointers
if (P_PointOnLineSide(x, y, seg->linedef) != seg->side)
return 0;
}
return ret;
}
//
// R_SetupFrame
//
void R_SetupFrame(player_t *player)
{
camera_t *thiscam;
boolean chasecam = R_ViewpointHasChasecam(player);
boolean ispaused = paused || P_AutoPause();
if (splitscreen && player == &players[secondarydisplayplayer] && player != &players[consoleplayer])
thiscam = &camera2;
else
thiscam = &camera;
newview->sky = false;
if (player->awayviewtics)
{
// cut-away view stuff
r_viewmobj = player->awayviewmobj; // should be a MT_ALTVIEWMAN
I_Assert(r_viewmobj != NULL);
newview->z = r_viewmobj->z + 20*FRACUNIT;
newview->aim = player->awayviewaiming;
newview->angle = r_viewmobj->angle;
}
else if (!player->spectator && chasecam)
// use outside cam view
{
r_viewmobj = NULL;
newview->z = thiscam->z + (thiscam->height>>1);
newview->aim = thiscam->aiming;
newview->angle = thiscam->angle;
}
else
// use the player's eyes view
{
newview->z = player->viewz;
r_viewmobj = player->mo;
I_Assert(r_viewmobj != NULL);
newview->aim = player->aiming;
newview->angle = r_viewmobj->angle;
if (!demoplayback && player->playerstate != PST_DEAD)
{
if (player == &players[consoleplayer])
{
newview->angle = localangle; // WARNING: camera uses this
newview->aim = localaiming;
}
else if (player == &players[secondarydisplayplayer])
{
newview->angle = localangle2;
newview->aim = localaiming2;
}
}
}
if (quake.time && !ispaused)
{
fixed_t ir = quake.intensity>>1;
if (quake.epicenter) {
// Calculate 3D distance from epicenter, using the camera.
fixed_t xydist = R_PointToDist2(thiscam->x, thiscam->y, quake.epicenter->x, quake.epicenter->y);
fixed_t dist = R_PointToDist2(0, thiscam->z, xydist, quake.epicenter->z);
// More effect closer to epicenter, outside of radius = no effect
if (!quake.radius || dist > quake.radius)
ir = 0;
else
ir = FixedMul(ir, FRACUNIT - FixedDiv(dist, quake.radius));
}
quake.x = M_RandomRange(-ir,ir);
quake.y = M_RandomRange(-ir,ir);
quake.z = M_RandomRange(-ir,ir);
}
else if (!ispaused)
quake.x = quake.y = quake.z = 0;
newview->z += quake.z;
newview->player = player;
if (chasecam && !player->awayviewtics && !player->spectator)
{
newview->x = thiscam->x;
newview->y = thiscam->y;
newview->x += quake.x;
newview->y += quake.y;
if (thiscam->subsector)
newview->sector = thiscam->subsector->sector;
else
newview->sector = R_PointInSubsector(newview->x, newview->y)->sector;
}
else
{
newview->x = r_viewmobj->x;
newview->y = r_viewmobj->y;
newview->x += quake.x;
newview->y += quake.y;
if (!P_MobjWasRemoved(r_viewmobj) && r_viewmobj->subsector)
newview->sector = r_viewmobj->subsector->sector;
else
newview->sector = R_PointInSubsector(newview->x, newview->y)->sector;
}
// newview->sin = FINESINE(viewangle>>ANGLETOFINESHIFT);
// newview->cos = FINECOSINE(viewangle>>ANGLETOFINESHIFT);
R_InterpolateView(R_UsingFrameInterpolation() ? rendertimefrac : FRACUNIT);
}
void R_SkyboxFrame(player_t *player)
{
camera_t *thiscam;
if (splitscreen && player == &players[secondarydisplayplayer]
&& player != &players[consoleplayer])
{
thiscam = &camera2;
R_SetViewContext(VIEWCONTEXT_SKY2);
}
else
{
thiscam = &camera;
R_SetViewContext(VIEWCONTEXT_SKY1);
}
// cut-away view stuff
newview->sky = true;
r_viewmobj = skyboxmo[0];
#ifdef PARANOIA
if (!r_viewmobj)
{
const size_t playeri = (size_t)(player - players);
I_Error("R_SkyboxFrame: r_viewmobj null (player %s)", sizeu1(playeri));
}
#endif
if (player->awayviewtics)
{
newview->aim = player->awayviewaiming;
newview->angle = player->awayviewmobj->angle;
}
else if (thiscam->chase)
{
newview->aim = thiscam->aiming;
newview->angle = thiscam->angle;
}
else
{
newview->aim = player->aiming;
newview->angle = player->mo->angle;
if (!demoplayback && player->playerstate != PST_DEAD)
{
if (player == &players[consoleplayer])
{
newview->angle = localangle; // WARNING: camera uses this
newview->aim = localaiming;
}
else if (player == &players[secondarydisplayplayer])
{
newview->angle = localangle2;
newview->aim = localaiming2;
}
}
}
newview->angle += r_viewmobj->angle;
newview->player = player;
newview->x = r_viewmobj->x;
newview->y = r_viewmobj->y;
newview->z = r_viewmobj->z; // 26/04/17: use actual Z position instead of spawnpoint angle!
if (mapheaderinfo[gamemap-1])
{
mapheader_t *mh = mapheaderinfo[gamemap-1];
vector3_t campos = {0,0,0}; // Position of player's actual view point
if (player->awayviewtics) {
campos.x = player->awayviewmobj->x;
campos.y = player->awayviewmobj->y;
campos.z = player->awayviewmobj->z + 20*FRACUNIT;
} else if (thiscam->chase) {
campos.x = thiscam->x;
campos.y = thiscam->y;
campos.z = thiscam->z + (thiscam->height>>1);
} else {
campos.x = player->mo->x;
campos.y = player->mo->y;
campos.z = player->viewz;
}
// Earthquake effects should be scaled in the skybox
// (if an axis isn't used, the skybox won't shake in that direction)
campos.x += quake.x;
campos.y += quake.y;
campos.z += quake.z;
if (skyboxmo[1]) // Is there a viewpoint?
{
fixed_t x = 0, y = 0;
if (mh->skybox_scalex > 0)
x = (campos.x - skyboxmo[1]->x) / mh->skybox_scalex;
else if (mh->skybox_scalex < 0)
x = (campos.x - skyboxmo[1]->x) * -mh->skybox_scalex;
if (mh->skybox_scaley > 0)
y = (campos.y - skyboxmo[1]->y) / mh->skybox_scaley;
else if (mh->skybox_scaley < 0)
y = (campos.y - skyboxmo[1]->y) * -mh->skybox_scaley;
if (r_viewmobj->angle == 0)
{
newview->x += x;
newview->y += y;
}
else if (r_viewmobj->angle == ANGLE_90)
{
newview->x -= y;
newview->y += x;
}
else if (r_viewmobj->angle == ANGLE_180)
{
newview->x -= x;
newview->y -= y;
}
else if (r_viewmobj->angle == ANGLE_270)
{
newview->x += y;
newview->y -= x;
}
else
{
angle_t ang = r_viewmobj->angle>>ANGLETOFINESHIFT;
newview->x += FixedMul(x,FINECOSINE(ang)) - FixedMul(y, FINESINE(ang));
newview->y += FixedMul(x, FINESINE(ang)) + FixedMul(y,FINECOSINE(ang));
}
}
if (mh->skybox_scalez > 0)
newview->z += campos.z / mh->skybox_scalez;
else if (mh->skybox_scalez < 0)
newview->z += campos.z * -mh->skybox_scalez;
}
if (!P_MobjWasRemoved(r_viewmobj) && r_viewmobj->subsector)
newview->sector = r_viewmobj->subsector->sector;
else
newview->sector = R_PointInSubsector(newview->x, newview->y)->sector;
// newview->sin = FINESINE(viewangle>>ANGLETOFINESHIFT);
// newview->cos = FINECOSINE(viewangle>>ANGLETOFINESHIFT);
R_InterpolateView(R_UsingFrameInterpolation() ? rendertimefrac : FRACUNIT);
}
boolean R_ViewpointHasChasecam(player_t *player)
{
camera_t *thiscam;
boolean chasecam = false;
boolean isplayer2 = (splitscreen && player == &players[secondarydisplayplayer] && player != &players[consoleplayer]);
if (isplayer2)
{
thiscam = &camera2;
chasecam = (cv_chasecam2.value != 0);
}
else
{
thiscam = &camera;
chasecam = (cv_chasecam.value != 0);
}
if (player->climbing || (player->powers[pw_carry] == CR_NIGHTSMODE) || player->playerstate == PST_DEAD || gamestate == GS_TITLESCREEN || tutorialmode)
chasecam = true; // force chasecam on
else if (player->spectator) // no spectator chasecam
chasecam = false; // force chasecam off
if (chasecam && !thiscam->chase)
{
P_ResetCamera(player, thiscam);
thiscam->chase = true;
}
else if (!chasecam && thiscam->chase)
{
P_ResetCamera(player, thiscam);
thiscam->chase = false;
}
if (isplayer2)
{
R_SetViewContext(VIEWCONTEXT_PLAYER2);
if (thiscam->reset)
{
R_ResetViewInterpolation(2);
thiscam->reset = false;
}
}
else
{
R_SetViewContext(VIEWCONTEXT_PLAYER1);
if (thiscam->reset)
{
R_ResetViewInterpolation(1);
thiscam->reset = false;
}
}
return chasecam;
}
boolean R_IsViewpointThirdPerson(player_t *player, boolean skybox)
{
boolean chasecam = R_ViewpointHasChasecam(player);
// cut-away view stuff
if (player->awayviewtics || skybox)
return chasecam;
// use outside cam view
else if (!player->spectator && chasecam)
return true;
// use the player's eyes view
return false;
}
static void R_PortalFrame(portal_t *portal)
{
viewx = portal->viewx;
viewy = portal->viewy;
viewz = portal->viewz;
viewangle = portal->viewangle;
viewsin = FINESINE(viewangle>>ANGLETOFINESHIFT);
viewcos = FINECOSINE(viewangle>>ANGLETOFINESHIFT);
portalclipstart = portal->start;
portalclipend = portal->end;
if (portal->clipline != -1)
{
portalclipline = &lines[portal->clipline];
portalcullsector = portalclipline->frontsector;
viewsector = portalclipline->frontsector;
}
else
{
portalclipline = NULL;
portalcullsector = NULL;
viewsector = R_PointInSubsector(viewx, viewy)->sector;
}
}
static void Mask_Pre (maskcount_t* m)
{
m->drawsegs[0] = ds_p - drawsegs;
m->vissprites[0] = visspritecount;
m->viewx = viewx;
m->viewy = viewy;
m->viewz = viewz;
m->viewsector = viewsector;
}
static void Mask_Post (maskcount_t* m)
{
m->drawsegs[1] = ds_p - drawsegs;
m->vissprites[1] = visspritecount;
}
// ================
// R_RenderView
// ================
// FAB NOTE FOR WIN32 PORT !! I'm not finished already,
// but I suspect network may have problems with the video buffer being locked
// for all duration of rendering, and being released only once at the end..
// I mean, there is a win16lock() or something that lasts all the rendering,
// so maybe we should release screen lock before each netupdate below..?
static fixed_t viewfov[2];
void R_RenderPlayerView(player_t *player)
{
INT32 nummasks = 1;
maskcount_t* masks = malloc(sizeof(maskcount_t));
if (cv_homremoval.value && player == &players[displayplayer]) // if this is display player 1
{
if (cv_homremoval.value == 1)
V_DrawFill(0, 0, BASEVIDWIDTH, BASEVIDHEIGHT, 31); // No HOM effect!
else //'development' HOM removal -- makes it blindingly obvious if HOM is spotted.
V_DrawFill(0, 0, BASEVIDWIDTH, BASEVIDHEIGHT, 32+(timeinmap&15));
}
fixed_t fov = R_GetPlayerFov(player);
if (player == &players[displayplayer] && viewfov[0] != fov)
{
viewfov[0] = fov;
R_SetFov(fov);
}
else if (player == &players[secondarydisplayplayer] && viewfov[1] != fov)
{
viewfov[1] = fov;
R_SetFov(fov);
}
R_SetupFrame(player);
framecount++;
validcount++;
// Clear buffers.
R_ClearPlanes();
if (viewmorph.use)
{
portalclipstart = viewmorph.x1;
portalclipend = viewwidth-viewmorph.x1-1;
R_PortalClearClipSegs(portalclipstart, portalclipend);
memcpy(ceilingclip, viewmorph.ceilingclip, sizeof(INT16)*vid.width);
memcpy(floorclip, viewmorph.floorclip, sizeof(INT16)*vid.width);
}
else
{
portalclipstart = 0;
portalclipend = viewwidth;
R_ClearClipSegs();
}
R_ClearDrawSegs();
R_ClearSegTables();
R_ClearSprites();
Portal_InitList();
// check for new console commands.
NetUpdate();
// The head node is the last node output.
Mask_Pre(&masks[nummasks - 1]);
curdrawsegs = ds_p;
ps_numbspcalls.value.i = ps_numpolyobjects.value.i = ps_numdrawnodes.value.i = 0;
PS_START_TIMING(ps_bsptime);
R_RenderBSPNode((INT32)numnodes - 1);
PS_STOP_TIMING(ps_bsptime);
Mask_Post(&masks[nummasks - 1]);
PS_START_TIMING(ps_sw_spritecliptime);
R_ClipSprites(drawsegs, NULL);
PS_STOP_TIMING(ps_sw_spritecliptime);
ps_numsprites.value.i = numvisiblesprites;
// Add portals caused by visplanes.
Portal_AddPlanePortals(cv_skybox.value);
// Portal rendering. Hijacks the BSP traversal.
PS_START_TIMING(ps_sw_portaltime);
if (portal_base)
{
portal_t *portal;
for(portal = portal_base; portal; portal = portal_base)
{
portalrender = portal->pass; // Recursiveness depth.
R_ClearFFloorClips();
// Apply the viewpoint stored for the portal.
R_PortalFrame(portal);
// Hack in the clipsegs to delimit the starting
// clipping for sprites and possibly other similar
// future items.
R_PortalClearClipSegs(portal->start, portal->end);
// Hack in the top/bottom clip values for the window
// that were previously stored.
Portal_ClipApply(portal);
validcount++;
masks = realloc(masks, (++nummasks)*sizeof(maskcount_t));
Mask_Pre(&masks[nummasks - 1]);
curdrawsegs = ds_p;
if (portal->is_horizon)
{
// If the portal is a plane or a horizon portal, then we just render a horizon line
R_RenderPortalHorizonLine(portal->horizon_sector);
}
else
{
// Render the BSP from the new viewpoint, and clip
// any sprites with the new clipsegs and window.
R_RenderBSPNode((INT32)numnodes - 1);
}
// Don't add skybox portals while already rendering a skybox view, because that'll cause an infinite loop
Portal_AddPlanePortals(cv_skybox.value && !portal->is_skybox);
Mask_Post(&masks[nummasks - 1]);
R_ClipSprites(ds_p - (masks[nummasks - 1].drawsegs[1] - masks[nummasks - 1].drawsegs[0]), portal);
Portal_Remove(portal);
}
}
PS_STOP_TIMING(ps_sw_portaltime);
PS_START_TIMING(ps_sw_planetime);
R_DrawPlanes();
PS_STOP_TIMING(ps_sw_planetime);
// draw mid texture and sprite
// And now 3D floors/sides!
PS_START_TIMING(ps_sw_maskedtime);
R_DrawMasked(masks, nummasks);
PS_STOP_TIMING(ps_sw_maskedtime);
free(masks);
}
// =========================================================================
// ENGINE COMMANDS & VARS
// =========================================================================
void R_RegisterEngineStuff(void)
{
// Do nothing for dedicated server
if (dedicated)
return;
CV_RegisterVar(&cv_homremoval);
CV_RegisterVar(&cv_translucency);
CV_RegisterVar(&cv_drawdist);
CV_RegisterVar(&cv_drawdist_nights);
CV_RegisterVar(&cv_drawdist_precip);
CV_RegisterVar(&cv_fovchange);
CV_RegisterVar(&cv_fov);
CV_RegisterVar(&cv_chasecam);
CV_RegisterVar(&cv_chasecam2);
CV_RegisterVar(&cv_shadow);
CV_RegisterVar(&cv_skybox);
CV_RegisterVar(&cv_renderview);
CV_RegisterVar(&cv_renderhitboxinterpolation);
CV_RegisterVar(&cv_renderhitboxgldepth);
CV_RegisterVar(&cv_renderhitbox);
CV_RegisterVar(&cv_renderwalls);
CV_RegisterVar(&cv_renderfloors);
CV_RegisterVar(&cv_renderthings);
CV_RegisterVar(&cv_ffloorclip);
CV_RegisterVar(&cv_spriteclip);
CV_RegisterVar(&cv_cam_dist);
CV_RegisterVar(&cv_cam_still);
CV_RegisterVar(&cv_cam_height);
CV_RegisterVar(&cv_cam_speed);
CV_RegisterVar(&cv_cam_rotate);
CV_RegisterVar(&cv_cam_rotspeed);
CV_RegisterVar(&cv_cam_turnmultiplier);
CV_RegisterVar(&cv_cam_orbit);
CV_RegisterVar(&cv_cam_adjust);
CV_RegisterVar(&cv_cam2_dist);
CV_RegisterVar(&cv_cam2_still);
CV_RegisterVar(&cv_cam2_height);
CV_RegisterVar(&cv_cam2_speed);
CV_RegisterVar(&cv_cam2_rotate);
CV_RegisterVar(&cv_cam2_rotspeed);
CV_RegisterVar(&cv_cam2_turnmultiplier);
CV_RegisterVar(&cv_cam2_orbit);
CV_RegisterVar(&cv_cam2_adjust);
CV_RegisterVar(&cv_cam_savedist[0][0]);
CV_RegisterVar(&cv_cam_savedist[0][1]);
CV_RegisterVar(&cv_cam_savedist[1][0]);
CV_RegisterVar(&cv_cam_savedist[1][1]);
CV_RegisterVar(&cv_cam_saveheight[0][0]);
CV_RegisterVar(&cv_cam_saveheight[0][1]);
CV_RegisterVar(&cv_cam_saveheight[1][0]);
CV_RegisterVar(&cv_cam_saveheight[1][1]);
CV_RegisterVar(&cv_showhud);
CV_RegisterVar(&cv_translucenthud);
CV_RegisterVar(&cv_maxportals);
// Frame interpolation/uncapped
CV_RegisterVar(&cv_fpscap);
}