mirror of
https://git.do.srb2.org/STJr/SRB2.git
synced 2025-01-25 02:31:29 +00:00
1154 lines
32 KiB
C
1154 lines
32 KiB
C
// SONIC ROBO BLAST 2
|
|
//-----------------------------------------------------------------------------
|
|
// Copyright (C) 2009 by Stephen McGranahan.
|
|
// Copyright (C) 2015-2024 by Sonic Team Junior.
|
|
//
|
|
// This program is free software distributed under the
|
|
// terms of the GNU General Public License, version 2.
|
|
// See the 'LICENSE' file for more details.
|
|
//-----------------------------------------------------------------------------
|
|
/// \file p_slopes.c
|
|
/// \brief ZDoom + Eternity Engine Slopes, ported and enhanced by Kalaron
|
|
|
|
#include "doomdef.h"
|
|
#include "r_defs.h"
|
|
#include "r_state.h"
|
|
#include "m_bbox.h"
|
|
#include "m_vector.h"
|
|
#include "z_zone.h"
|
|
#include "p_local.h"
|
|
#include "p_spec.h"
|
|
#include "p_slopes.h"
|
|
#include "p_setup.h"
|
|
#include "r_main.h"
|
|
#include "p_maputl.h"
|
|
#include "w_wad.h"
|
|
#include "r_fps.h"
|
|
|
|
pslope_t *slopelist = NULL;
|
|
UINT16 slopecount = 0;
|
|
|
|
static void P_UpdateMidtextureSlopesForSector(sector_t *sector);
|
|
|
|
// Calculate line normal
|
|
void P_CalculateSlopeNormal(pslope_t *slope)
|
|
{
|
|
slope->normal.z = FINECOSINE(slope->zangle>>ANGLETOFINESHIFT);
|
|
slope->normal.x = FixedMul(FINESINE(slope->zangle>>ANGLETOFINESHIFT), slope->d.x);
|
|
slope->normal.y = FixedMul(FINESINE(slope->zangle>>ANGLETOFINESHIFT), slope->d.y);
|
|
}
|
|
|
|
static void CalculateNormalDir(pslope_t *slope, dvector3_t *dnormal)
|
|
{
|
|
double hyp = hypot(dnormal->x, dnormal->y);
|
|
|
|
if (fpclassify(hyp) == FP_NORMAL)
|
|
{
|
|
slope->dnormdir.x = -dnormal->x / hyp;
|
|
slope->dnormdir.y = -dnormal->y / hyp;
|
|
slope->dzdelta = hyp / dnormal->z;
|
|
}
|
|
else
|
|
{
|
|
slope->dnormdir.x = slope->dnormdir.y = 0.0;
|
|
slope->dzdelta = 0.0;
|
|
}
|
|
}
|
|
|
|
void P_CalculateSlopeVectors(pslope_t *slope)
|
|
{
|
|
dvector3_t dnormal;
|
|
|
|
DVector3_Load(&dnormal, FixedToDouble(slope->normal.x), FixedToDouble(slope->normal.y), FixedToDouble(slope->normal.z));
|
|
DVector3_Load(&slope->dorigin, FixedToDouble(slope->o.x), FixedToDouble(slope->o.y), FixedToDouble(slope->o.z));
|
|
|
|
CalculateNormalDir(slope, &dnormal);
|
|
}
|
|
|
|
/// Setup slope via 3 vertexes.
|
|
static void ReconfigureViaVertexes (pslope_t *slope, const vector3_t v1, const vector3_t v2, const vector3_t v3)
|
|
{
|
|
vector3_t vec1, vec2;
|
|
|
|
// Set origin.
|
|
FV3_Copy(&slope->o, &v1);
|
|
|
|
// Get slope's normal.
|
|
FV3_SubEx(&v2, &v1, &vec1);
|
|
FV3_SubEx(&v3, &v1, &vec2);
|
|
|
|
// Set some defaults for a non-sloped "slope"
|
|
if (vec1.z == 0 && vec2.z == 0)
|
|
{
|
|
slope->zangle = slope->xydirection = 0;
|
|
slope->zdelta = slope->d.x = slope->d.y = 0;
|
|
slope->normal.x = slope->normal.y = 0;
|
|
slope->normal.z = FRACUNIT;
|
|
}
|
|
else
|
|
{
|
|
/// \note Using fixed point for vectorial products easily leads to overflows so we work around by downscaling them.
|
|
fixed_t m = max(
|
|
max(max(abs(vec1.x), abs(vec1.y)), abs(vec1.z)),
|
|
max(max(abs(vec2.x), abs(vec2.y)), abs(vec2.z))
|
|
) >> 5; // shifting right by 5 is good enough.
|
|
|
|
FV3_Cross(
|
|
FV3_Divide(&vec1, m),
|
|
FV3_Divide(&vec2, m),
|
|
&slope->normal
|
|
);
|
|
|
|
// NOTE: FV3_Magnitude() doesn't work properly in some cases, and chaining FixedHypot() seems to give worse results.
|
|
m = R_PointToDist2(0, 0, R_PointToDist2(0, 0, slope->normal.x, slope->normal.y), slope->normal.z);
|
|
|
|
// Invert normal if it's facing down.
|
|
if (slope->normal.z < 0)
|
|
m = -m;
|
|
|
|
FV3_Divide(&slope->normal, m);
|
|
|
|
// Get direction vector
|
|
m = FixedHypot(slope->normal.x, slope->normal.y);
|
|
slope->d.x = -FixedDiv(slope->normal.x, m);
|
|
slope->d.y = -FixedDiv(slope->normal.y, m);
|
|
|
|
// Z delta
|
|
slope->zdelta = FixedDiv(m, slope->normal.z);
|
|
|
|
// Get angles
|
|
slope->xydirection = R_PointToAngle2(0, 0, slope->d.x, slope->d.y)+ANGLE_180;
|
|
slope->zangle = InvAngle(R_PointToAngle2(0, 0, FRACUNIT, slope->zdelta));
|
|
}
|
|
|
|
P_CalculateSlopeVectors(slope);
|
|
}
|
|
|
|
/// Setup slope via constants.
|
|
static void ReconfigureViaConstants (pslope_t *slope, const double pa, const double pb, const double pc, const double pd)
|
|
{
|
|
fixed_t m;
|
|
fixed_t o = 0;
|
|
double d_o = 0.0;
|
|
|
|
fixed_t a = DoubleToFixed(pa), b = DoubleToFixed(pb), c = DoubleToFixed(pc), d = DoubleToFixed(pd);
|
|
|
|
if (c)
|
|
{
|
|
d_o = abs(c) <= FRACUNIT ? -(pd * (1.0 / pc)) : -(pd / pc);
|
|
o = abs(c) <= FRACUNIT ? -FixedMul(d, FixedDiv(FRACUNIT, c)) : -FixedDiv(d, c);
|
|
}
|
|
|
|
// Set origin.
|
|
FV3_Load(&slope->o, 0, 0, o);
|
|
|
|
// Get slope's normal.
|
|
vector3_t *normal = &slope->normal;
|
|
|
|
FV3_Load(normal, a, b, c);
|
|
FV3_Normalize(normal);
|
|
|
|
// Invert normal if it's facing down.
|
|
if (normal->z < 0)
|
|
FV3_Negate(normal);
|
|
|
|
// Get direction vector
|
|
m = FixedHypot(normal->x, normal->y);
|
|
slope->d.x = -FixedDiv(normal->x, m);
|
|
slope->d.y = -FixedDiv(normal->y, m);
|
|
|
|
// Z delta
|
|
slope->zdelta = FixedDiv(m, normal->z);
|
|
|
|
// Get angles
|
|
slope->xydirection = R_PointToAngle2(0, 0, slope->d.x, slope->d.y)+ANGLE_180;
|
|
slope->zangle = InvAngle(R_PointToAngle2(0, 0, FRACUNIT, slope->zdelta));
|
|
|
|
dvector3_t dnormal;
|
|
|
|
DVector3_Load(&dnormal, pa, pb, pc);
|
|
DVector3_Normalize(&dnormal);
|
|
if (dnormal.z < 0)
|
|
DVector3_Negate(&dnormal);
|
|
|
|
DVector3_Load(&slope->dorigin, 0, 0, d_o);
|
|
|
|
CalculateNormalDir(slope, &dnormal);
|
|
}
|
|
|
|
/// Recalculate dynamic slopes.
|
|
void T_DynamicSlopeLine (dynlineplanethink_t* th)
|
|
{
|
|
pslope_t* slope = th->slope;
|
|
line_t* srcline = th->sourceline;
|
|
|
|
fixed_t zdelta, oldoz = slope->o.z;
|
|
|
|
switch(th->type) {
|
|
case DP_FRONTFLOOR:
|
|
zdelta = srcline->backsector->floorheight - srcline->frontsector->floorheight;
|
|
slope->o.z = srcline->frontsector->floorheight;
|
|
break;
|
|
|
|
case DP_FRONTCEIL:
|
|
zdelta = srcline->backsector->ceilingheight - srcline->frontsector->ceilingheight;
|
|
slope->o.z = srcline->frontsector->ceilingheight;
|
|
break;
|
|
|
|
case DP_BACKFLOOR:
|
|
zdelta = srcline->frontsector->floorheight - srcline->backsector->floorheight;
|
|
slope->o.z = srcline->backsector->floorheight;
|
|
break;
|
|
|
|
case DP_BACKCEIL:
|
|
zdelta = srcline->frontsector->ceilingheight - srcline->backsector->ceilingheight;
|
|
slope->o.z = srcline->backsector->ceilingheight;
|
|
break;
|
|
|
|
default:
|
|
return;
|
|
}
|
|
|
|
if (slope->zdelta != FixedDiv(zdelta, th->extent) || oldoz != slope->o.z) {
|
|
slope->zdelta = FixedDiv(zdelta, th->extent);
|
|
slope->zangle = R_PointToAngle2(0, 0, th->extent, -zdelta);
|
|
slope->moved = true;
|
|
P_CalculateSlopeNormal(slope);
|
|
P_UpdateMidtextureSlopesForSector(srcline->frontsector);
|
|
if (srcline->backsector)
|
|
P_UpdateMidtextureSlopesForSector(srcline->backsector);
|
|
}
|
|
}
|
|
|
|
/// Mapthing-defined
|
|
void T_DynamicSlopeVert (dynvertexplanethink_t* th)
|
|
{
|
|
size_t i;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
if (!th->secs[i])
|
|
continue;
|
|
|
|
if (th->relative & (1 << i))
|
|
th->vex[i].z = th->origvecheights[i] + (th->secs[i]->floorheight - th->origsecheights[i]);
|
|
else
|
|
th->vex[i].z = th->secs[i]->floorheight;
|
|
}
|
|
|
|
ReconfigureViaVertexes(th->slope, th->vex[0], th->vex[1], th->vex[2]);
|
|
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
if (th->secs[i])
|
|
P_UpdateMidtextureSlopesForSector(th->secs[i]);
|
|
}
|
|
}
|
|
|
|
static inline void P_AddDynLineSlopeThinker (pslope_t* slope, dynplanetype_t type, line_t* sourceline, fixed_t extent)
|
|
{
|
|
dynlineplanethink_t* th = Z_Calloc(sizeof (*th), PU_LEVSPEC, NULL);
|
|
th->thinker.function.acp1 = (actionf_p1)T_DynamicSlopeLine;
|
|
th->slope = slope;
|
|
th->type = type;
|
|
th->sourceline = sourceline;
|
|
th->extent = extent;
|
|
P_AddThinker(THINK_DYNSLOPE, &th->thinker);
|
|
|
|
// interpolation
|
|
R_CreateInterpolator_DynSlope(&th->thinker, slope);
|
|
}
|
|
|
|
static inline void P_AddDynVertexSlopeThinker (pslope_t* slope, const INT16 tags[3], const vector3_t vx[3])
|
|
{
|
|
dynvertexplanethink_t* th = Z_Calloc(sizeof (*th), PU_LEVSPEC, NULL);
|
|
size_t i;
|
|
INT32 l;
|
|
th->thinker.function.acp1 = (actionf_p1)T_DynamicSlopeVert;
|
|
th->slope = slope;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
l = Tag_FindLineSpecial(799, tags[i]);
|
|
th->secs[i] = (l == -1) ? NULL : lines[l].frontsector;
|
|
th->vex[i] = vx[i];
|
|
th->origsecheights[i] = (l == -1) ? 0 : lines[l].frontsector->floorheight;
|
|
th->origvecheights[i] = vx[i].z;
|
|
if (l != -1 && lines[l].args[0])
|
|
th->relative |= 1<<i;
|
|
}
|
|
P_AddThinker(THINK_DYNSLOPE, &th->thinker);
|
|
}
|
|
|
|
/// Create a new slope and add it to the slope list.
|
|
static inline pslope_t* Slope_Add (const UINT8 flags)
|
|
{
|
|
pslope_t *ret = Z_Calloc(sizeof(pslope_t), PU_LEVEL, NULL);
|
|
ret->flags = flags;
|
|
|
|
ret->next = slopelist;
|
|
slopelist = ret;
|
|
|
|
slopecount++;
|
|
ret->id = slopecount;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/// Alocates and fill the contents of a slope structure.
|
|
static pslope_t *MakeViaVectors(const vector3_t *o, const vector2_t *d,
|
|
const fixed_t zdelta, UINT8 flags)
|
|
{
|
|
pslope_t *ret = Slope_Add(flags);
|
|
|
|
FV3_Copy(&ret->o, o);
|
|
FV2_Copy(&ret->d, d);
|
|
|
|
ret->zdelta = zdelta;
|
|
|
|
ret->flags = flags;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/// Get furthest perpendicular distance from all vertexes in a sector for a given line.
|
|
static fixed_t GetExtent(sector_t *sector, line_t *line)
|
|
{
|
|
// ZDoom code reference: v3float_t = vertex_t
|
|
fixed_t fardist = -FRACUNIT;
|
|
size_t i;
|
|
|
|
// Find furthest vertex from the reference line. It, along with the two ends
|
|
// of the line, will define the plane.
|
|
for(i = 0; i < sector->linecount; i++)
|
|
{
|
|
line_t *li = sector->lines[i];
|
|
vertex_t tempv;
|
|
fixed_t dist;
|
|
|
|
// Don't compare to the slope line.
|
|
if(li == line)
|
|
continue;
|
|
|
|
P_ClosestPointOnLine(li->v1->x, li->v1->y, line, &tempv);
|
|
dist = R_PointToDist2(tempv.x, tempv.y, li->v1->x, li->v1->y);
|
|
if(dist > fardist)
|
|
fardist = dist;
|
|
|
|
// Okay, maybe do it for v2 as well?
|
|
P_ClosestPointOnLine(li->v2->x, li->v2->y, line, &tempv);
|
|
dist = R_PointToDist2(tempv.x, tempv.y, li->v2->x, li->v2->y);
|
|
if(dist > fardist)
|
|
fardist = dist;
|
|
}
|
|
|
|
return fardist;
|
|
}
|
|
|
|
static boolean P_CopySlope(pslope_t** toslope, pslope_t* fromslope)
|
|
{
|
|
if (*toslope || !fromslope)
|
|
return true;
|
|
|
|
*toslope = fromslope;
|
|
return true;
|
|
}
|
|
|
|
static void P_UpdateHasSlope(sector_t *sec)
|
|
{
|
|
size_t i;
|
|
|
|
sec->hasslope = true;
|
|
|
|
// if this is an FOF control sector, make sure any target sectors also are marked as having slopes
|
|
if (sec->numattached)
|
|
for (i = 0; i < sec->numattached; i++)
|
|
sectors[sec->attached[i]].hasslope = true;
|
|
}
|
|
|
|
/// Creates one or more slopes based on the given line type and front/back sectors.
|
|
static void line_SpawnViaLine(const int linenum, const boolean spawnthinker)
|
|
{
|
|
// With dynamic slopes, it's fine to just leave this function as normal,
|
|
// because checking to see if a slope had changed will waste more memory than
|
|
// if the slope was just updated when called
|
|
line_t *line = lines + linenum;
|
|
pslope_t *fslope = NULL, *cslope = NULL;
|
|
vector3_t origin, point;
|
|
vector2_t direction;
|
|
fixed_t nx, ny, dz, extent;
|
|
|
|
boolean frontfloor = line->args[0] == TMS_FRONT;
|
|
boolean backfloor = line->args[0] == TMS_BACK;
|
|
boolean frontceil = line->args[1] == TMS_FRONT;
|
|
boolean backceil = line->args[1] == TMS_BACK;
|
|
UINT8 flags = 0; // Slope flags
|
|
if (line->args[2] & TMSL_NOPHYSICS)
|
|
flags |= SL_NOPHYSICS;
|
|
if (line->args[2] & TMSL_DYNAMIC)
|
|
flags |= SL_DYNAMIC;
|
|
|
|
if(!frontfloor && !backfloor && !frontceil && !backceil)
|
|
{
|
|
CONS_Printf("line_SpawnViaLine: Unused slope special with nothing to do on line number %i\n", linenum);
|
|
return;
|
|
}
|
|
|
|
if(!line->frontsector || !line->backsector)
|
|
{
|
|
CONS_Debug(DBG_SETUP, "line_SpawnViaLine: Slope special used on a line without two sides. (line number %i)\n", linenum);
|
|
return;
|
|
}
|
|
|
|
{
|
|
fixed_t len = R_PointToDist2(0, 0, line->dx, line->dy);
|
|
nx = FixedDiv(line->dy, len);
|
|
ny = -FixedDiv(line->dx, len);
|
|
}
|
|
|
|
// Set origin to line's center.
|
|
origin.x = line->v1->x + (line->v2->x - line->v1->x)/2;
|
|
origin.y = line->v1->y + (line->v2->y - line->v1->y)/2;
|
|
|
|
// For FOF slopes, make a special function to copy to the xy origin & direction relative to the position of the FOF on the map!
|
|
if(frontfloor || frontceil)
|
|
{
|
|
line->frontsector->hasslope = true; // Tell the software renderer that we're sloped
|
|
|
|
origin.z = line->backsector->floorheight;
|
|
direction.x = nx;
|
|
direction.y = ny;
|
|
|
|
extent = GetExtent(line->frontsector, line);
|
|
|
|
if(extent < 0)
|
|
{
|
|
CONS_Printf("line_SpawnViaLine failed to get frontsector extent on line number %i\n", linenum);
|
|
return;
|
|
}
|
|
|
|
// reposition the origin according to the extent
|
|
point.x = origin.x + FixedMul(direction.x, extent);
|
|
point.y = origin.y + FixedMul(direction.y, extent);
|
|
direction.x = -direction.x;
|
|
direction.y = -direction.y;
|
|
|
|
// TODO: We take origin and point 's xy values and translate them to the center of an FOF!
|
|
|
|
if(frontfloor)
|
|
{
|
|
point.z = line->frontsector->floorheight; // Startz
|
|
dz = FixedDiv(origin.z - point.z, extent); // Destinationz
|
|
|
|
// In P_SpawnSlopeLine the origin is the centerpoint of the sourcelinedef
|
|
|
|
fslope = line->frontsector->f_slope =
|
|
MakeViaVectors(&point, &direction, dz, flags);
|
|
|
|
// Now remember that f_slope IS a vector
|
|
// fslope->o = origin 3D point 1 of the vector
|
|
// fslope->d = destination 3D point 2 of the vector
|
|
// fslope->normal is a 3D line perpendicular to the 3D vector
|
|
|
|
fslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z);
|
|
fslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
|
|
|
|
P_CalculateSlopeNormal(fslope);
|
|
P_CalculateSlopeVectors(fslope);
|
|
|
|
if (spawnthinker && (flags & SL_DYNAMIC))
|
|
P_AddDynLineSlopeThinker(fslope, DP_FRONTFLOOR, line, extent);
|
|
}
|
|
if(frontceil)
|
|
{
|
|
origin.z = line->backsector->ceilingheight;
|
|
point.z = line->frontsector->ceilingheight;
|
|
dz = FixedDiv(origin.z - point.z, extent);
|
|
|
|
cslope = line->frontsector->c_slope =
|
|
MakeViaVectors(&point, &direction, dz, flags);
|
|
|
|
cslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z);
|
|
cslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
|
|
|
|
P_CalculateSlopeNormal(cslope);
|
|
P_CalculateSlopeVectors(cslope);
|
|
|
|
if (spawnthinker && (flags & SL_DYNAMIC))
|
|
P_AddDynLineSlopeThinker(cslope, DP_FRONTCEIL, line, extent);
|
|
}
|
|
}
|
|
if(backfloor || backceil)
|
|
{
|
|
line->backsector->hasslope = true; // Tell the software renderer that we're sloped
|
|
|
|
origin.z = line->frontsector->floorheight;
|
|
// Backsector
|
|
direction.x = -nx;
|
|
direction.y = -ny;
|
|
|
|
extent = GetExtent(line->backsector, line);
|
|
|
|
if(extent < 0)
|
|
{
|
|
CONS_Printf("line_SpawnViaLine failed to get backsector extent on line number %i\n", linenum);
|
|
return;
|
|
}
|
|
|
|
// reposition the origin according to the extent
|
|
point.x = origin.x + FixedMul(direction.x, extent);
|
|
point.y = origin.y + FixedMul(direction.y, extent);
|
|
direction.x = -direction.x;
|
|
direction.y = -direction.y;
|
|
|
|
if(backfloor)
|
|
{
|
|
point.z = line->backsector->floorheight;
|
|
dz = FixedDiv(origin.z - point.z, extent);
|
|
|
|
fslope = line->backsector->f_slope =
|
|
MakeViaVectors(&point, &direction, dz, flags);
|
|
|
|
fslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z);
|
|
fslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
|
|
|
|
P_CalculateSlopeNormal(fslope);
|
|
P_CalculateSlopeVectors(fslope);
|
|
|
|
if (spawnthinker && (flags & SL_DYNAMIC))
|
|
P_AddDynLineSlopeThinker(fslope, DP_BACKFLOOR, line, extent);
|
|
}
|
|
if(backceil)
|
|
{
|
|
origin.z = line->frontsector->ceilingheight;
|
|
point.z = line->backsector->ceilingheight;
|
|
dz = FixedDiv(origin.z - point.z, extent);
|
|
|
|
cslope = line->backsector->c_slope =
|
|
MakeViaVectors(&point, &direction, dz, flags);
|
|
|
|
cslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z);
|
|
cslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
|
|
|
|
P_CalculateSlopeNormal(cslope);
|
|
P_CalculateSlopeVectors(cslope);
|
|
|
|
if (spawnthinker && (flags & SL_DYNAMIC))
|
|
P_AddDynLineSlopeThinker(cslope, DP_BACKCEIL, line, extent);
|
|
}
|
|
}
|
|
|
|
if (line->args[2] & TMSL_COPY)
|
|
{
|
|
if (frontfloor)
|
|
P_CopySlope(&line->backsector->f_slope, line->frontsector->f_slope);
|
|
if (backfloor)
|
|
P_CopySlope(&line->frontsector->f_slope, line->backsector->f_slope);
|
|
if (frontceil)
|
|
P_CopySlope(&line->backsector->c_slope, line->frontsector->c_slope);
|
|
if (backceil)
|
|
P_CopySlope(&line->frontsector->c_slope, line->backsector->c_slope);
|
|
|
|
if (backfloor || backceil)
|
|
P_UpdateHasSlope(line->frontsector);
|
|
if (frontfloor || frontceil)
|
|
P_UpdateHasSlope(line->backsector);
|
|
}
|
|
}
|
|
|
|
/// Creates a new slope from three mapthings with the specified IDs
|
|
static pslope_t *MakeViaMapthings(INT16 tag1, INT16 tag2, INT16 tag3, UINT8 flags, const boolean spawnthinker)
|
|
{
|
|
size_t i;
|
|
mapthing_t* mt = mapthings;
|
|
mapthing_t* vertices[3] = {0};
|
|
INT16 tags[3] = {tag1, tag2, tag3};
|
|
|
|
vector3_t vx[3];
|
|
pslope_t* ret = Slope_Add(flags);
|
|
|
|
// And... look for the vertices in question.
|
|
for (i = 0; i < nummapthings; i++, mt++) {
|
|
if (mt->type != 750) // Haha, I'm hijacking the old Chaos Spawn thingtype for something!
|
|
continue;
|
|
|
|
if (!vertices[0] && Tag_Find(&mt->tags, tag1))
|
|
vertices[0] = mt;
|
|
else if (!vertices[1] && Tag_Find(&mt->tags, tag2))
|
|
vertices[1] = mt;
|
|
else if (!vertices[2] && Tag_Find(&mt->tags, tag3))
|
|
vertices[2] = mt;
|
|
}
|
|
|
|
// Now set heights for each vertex, because they haven't been set yet
|
|
for (i = 0; i < 3; i++) {
|
|
mt = vertices[i];
|
|
if (!mt) // If a vertex wasn't found, it's game over. There's nothing you can do to recover (except maybe try and kill the slope instead - TODO?)
|
|
I_Error("MakeViaMapthings: Slope vertex %s (for linedef tag %d) not found!", sizeu1(i), tag1);
|
|
vx[i].x = mt->x << FRACBITS;
|
|
vx[i].y = mt->y << FRACBITS;
|
|
vx[i].z = mt->z << FRACBITS;
|
|
if (!mt->args[0])
|
|
vx[i].z += R_PointInSubsector(vx[i].x, vx[i].y)->sector->floorheight;
|
|
}
|
|
|
|
ReconfigureViaVertexes(ret, vx[0], vx[1], vx[2]);
|
|
|
|
if (spawnthinker && (flags & SL_DYNAMIC))
|
|
P_AddDynVertexSlopeThinker(ret, tags, vx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/// Create vertex based slopes using tagged mapthings.
|
|
static void line_SpawnViaMapthingVertexes(const int linenum, const boolean spawnthinker)
|
|
{
|
|
line_t *line = lines + linenum;
|
|
side_t *side;
|
|
pslope_t **slopetoset;
|
|
UINT16 tag1 = line->args[1];
|
|
UINT16 tag2 = line->args[2];
|
|
UINT16 tag3 = line->args[3];
|
|
UINT8 flags = 0; // Slope flags
|
|
if (line->args[4] & TMSL_NOPHYSICS)
|
|
flags |= SL_NOPHYSICS;
|
|
if (line->args[4] & TMSL_DYNAMIC)
|
|
flags |= SL_DYNAMIC;
|
|
|
|
switch(line->args[0])
|
|
{
|
|
case TMSP_FRONTFLOOR:
|
|
slopetoset = &line->frontsector->f_slope;
|
|
side = &sides[line->sidenum[0]];
|
|
break;
|
|
case TMSP_FRONTCEILING:
|
|
slopetoset = &line->frontsector->c_slope;
|
|
side = &sides[line->sidenum[0]];
|
|
break;
|
|
case TMSP_BACKFLOOR:
|
|
slopetoset = &line->backsector->f_slope;
|
|
side = &sides[line->sidenum[1]];
|
|
break;
|
|
case TMSP_BACKCEILING:
|
|
slopetoset = &line->backsector->c_slope;
|
|
side = &sides[line->sidenum[1]];
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
*slopetoset = MakeViaMapthings(tag1, tag2, tag3, flags, spawnthinker);
|
|
|
|
side->sector->hasslope = true;
|
|
}
|
|
|
|
/// Spawn textmap vertex slopes.
|
|
static void SpawnVertexSlopes(void)
|
|
{
|
|
line_t *l1, *l2;
|
|
sector_t* sc;
|
|
vertex_t *v1, *v2, *v3;
|
|
size_t i;
|
|
for (i = 0, sc = sectors; i < numsectors; i++, sc++)
|
|
{
|
|
// The vertex slopes only work for 3-vertex sectors (and thus 3-sided sectors).
|
|
if (sc->linecount != 3)
|
|
continue;
|
|
|
|
l1 = sc->lines[0];
|
|
l2 = sc->lines[1];
|
|
|
|
// Determine the vertexes.
|
|
v1 = l1->v1;
|
|
v2 = l1->v2;
|
|
if ((l2->v1 != v1) && (l2->v1 != v2))
|
|
v3 = l2->v1;
|
|
else
|
|
v3 = l2->v2;
|
|
|
|
if (v1->floorzset || v2->floorzset || v3->floorzset)
|
|
{
|
|
vector3_t vtx[3] = {
|
|
{v1->x, v1->y, v1->floorzset ? v1->floorz : sc->floorheight},
|
|
{v2->x, v2->y, v2->floorzset ? v2->floorz : sc->floorheight},
|
|
{v3->x, v3->y, v3->floorzset ? v3->floorz : sc->floorheight}};
|
|
pslope_t *slop = Slope_Add(0);
|
|
sc->f_slope = slop;
|
|
sc->hasslope = true;
|
|
ReconfigureViaVertexes(slop, vtx[0], vtx[1], vtx[2]);
|
|
}
|
|
|
|
if (v1->ceilingzset || v2->ceilingzset || v3->ceilingzset)
|
|
{
|
|
vector3_t vtx[3] = {
|
|
{v1->x, v1->y, v1->ceilingzset ? v1->ceilingz : sc->ceilingheight},
|
|
{v2->x, v2->y, v2->ceilingzset ? v2->ceilingz : sc->ceilingheight},
|
|
{v3->x, v3->y, v3->ceilingzset ? v3->ceilingz : sc->ceilingheight}};
|
|
pslope_t *slop = Slope_Add(0);
|
|
sc->c_slope = slop;
|
|
sc->hasslope = true;
|
|
ReconfigureViaVertexes(slop, vtx[0], vtx[1], vtx[2]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static boolean P_SetSlopeFromTag(sector_t *sec, INT32 tag, boolean ceiling)
|
|
{
|
|
INT32 i;
|
|
pslope_t **secslope = ceiling ? &sec->c_slope : &sec->f_slope;
|
|
|
|
if (!tag || *secslope)
|
|
return false;
|
|
TAG_ITER_SECTORS(tag, i)
|
|
{
|
|
pslope_t *srcslope = ceiling ? sectors[i].c_slope : sectors[i].f_slope;
|
|
if (srcslope)
|
|
{
|
|
*secslope = srcslope;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// P_CopySectorSlope
|
|
//
|
|
// Searches through tagged sectors and copies
|
|
//
|
|
void P_CopySectorSlope(line_t *line)
|
|
{
|
|
sector_t *fsec = line->frontsector;
|
|
sector_t *bsec = line->backsector;
|
|
boolean setfront = false;
|
|
boolean setback = false;
|
|
|
|
setfront |= P_SetSlopeFromTag(fsec, line->args[0], false);
|
|
setfront |= P_SetSlopeFromTag(fsec, line->args[1], true);
|
|
if (bsec)
|
|
{
|
|
setback |= P_SetSlopeFromTag(bsec, line->args[2], false);
|
|
setback |= P_SetSlopeFromTag(bsec, line->args[3], true);
|
|
|
|
if (line->args[4] & TMSC_FRONTTOBACKFLOOR)
|
|
setback |= P_CopySlope(&bsec->f_slope, fsec->f_slope);
|
|
if (line->args[4] & TMSC_BACKTOFRONTFLOOR)
|
|
setfront |= P_CopySlope(&fsec->f_slope, bsec->f_slope);
|
|
if (line->args[4] & TMSC_FRONTTOBACKCEILING)
|
|
setback |= P_CopySlope(&bsec->c_slope, fsec->c_slope);
|
|
if (line->args[4] & TMSC_BACKTOFRONTCEILING)
|
|
setfront |= P_CopySlope(&fsec->c_slope, bsec->c_slope);
|
|
}
|
|
|
|
if (setfront)
|
|
P_UpdateHasSlope(fsec);
|
|
if (setback)
|
|
P_UpdateHasSlope(bsec);
|
|
|
|
line->special = 0; // Linedef was use to set slopes, it finished its job, so now make it a normal linedef
|
|
}
|
|
|
|
//
|
|
// P_SlopeById
|
|
//
|
|
// Looks in the slope list for a slope with a specified ID. Mostly useful for netgame sync
|
|
//
|
|
pslope_t *P_SlopeById(UINT16 id)
|
|
{
|
|
pslope_t *ret;
|
|
for (ret = slopelist; ret && ret->id != id; ret = ret->next);
|
|
return ret;
|
|
}
|
|
|
|
/// Creates a new slope from equation constants.
|
|
pslope_t *P_MakeSlopeViaEquationConstants(const double a, const double b, const double c, const double d)
|
|
{
|
|
pslope_t* ret = Slope_Add(0);
|
|
|
|
ReconfigureViaConstants(ret, a, b, c, d);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static pslope_t *P_GetReferenceSlopeForMidtexture(line_t *line)
|
|
{
|
|
if (line->flags & ML_MIDPEG)
|
|
{
|
|
// Line has ML_MIDPEG, so use the floor slope
|
|
fixed_t frontheight = P_GetSectorFloorZAt(line->frontsector, line->v1->x, line->v1->y);
|
|
fixed_t backheight = P_GetSectorFloorZAt(line->backsector, line->v1->x, line->v1->y);
|
|
|
|
if (frontheight > backheight)
|
|
{
|
|
return line->frontsector->f_slope;
|
|
}
|
|
else
|
|
{
|
|
return line->backsector->f_slope;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Line does not have ML_MIDPEG, so use the ceiling slope
|
|
fixed_t frontheight = P_GetSectorCeilingZAt(line->frontsector, line->v1->x, line->v1->y);
|
|
fixed_t backheight = P_GetSectorCeilingZAt(line->backsector, line->v1->x, line->v1->y);
|
|
|
|
if (frontheight < backheight)
|
|
{
|
|
return line->frontsector->c_slope;
|
|
}
|
|
else
|
|
{
|
|
return line->backsector->c_slope;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
// Updates a slope for a solid midtexture based on the slope of the sector it's in.
|
|
static void P_UpdateSolidMidtextureSlope(line_t *line, pslope_t *ref)
|
|
{
|
|
pslope_t *slope = line->midtexslope;
|
|
|
|
if (ref == NULL)
|
|
return;
|
|
|
|
// Set origin
|
|
vector3_t origin;
|
|
origin.x = line->v1->x;
|
|
origin.y = line->v1->y;
|
|
origin.z = P_GetSlopeZAt(ref, origin.x, origin.y);
|
|
FV3_Copy(&slope->o, &origin);
|
|
|
|
// Get where the line ends
|
|
vector3_t point;
|
|
point.x = line->v2->x;
|
|
point.y = line->v2->y;
|
|
point.z = P_GetSlopeZAt(ref, point.x, point.y);
|
|
|
|
// Get length of the line
|
|
fixed_t extent = R_PointToDist2(0, 0, line->dx, line->dy);
|
|
|
|
// Precalculate variables
|
|
slope->zdelta = FixedDiv(origin.z - point.z, extent);
|
|
slope->zangle = R_PointToAngle2(0, origin.z, extent, point.z);
|
|
slope->xydirection = line->angle;
|
|
|
|
// Precalculate the direction
|
|
vector2_t dir;
|
|
dir.x = FixedMul(FINECOSINE(slope->zangle >> ANGLETOFINESHIFT), FINECOSINE((slope->xydirection+ANGLE_180) >> ANGLETOFINESHIFT));
|
|
dir.y = FixedMul(FINECOSINE(slope->zangle >> ANGLETOFINESHIFT), FINESINE((slope->xydirection+ANGLE_180) >> ANGLETOFINESHIFT));
|
|
FV2_Copy(&slope->d, &dir);
|
|
|
|
P_CalculateSlopeNormal(slope);
|
|
|
|
// Calling P_CalculateSlopeVectors is not necessary.
|
|
slope->moved = true;
|
|
}
|
|
|
|
// Goes through every line in the sector and updates the midtexture slope if it is present
|
|
static void P_UpdateMidtextureSlopesForSector(sector_t *sector)
|
|
{
|
|
for (size_t i = 0; i < sector->linecount; i++)
|
|
{
|
|
if (sector->lines[i]->midtexslope != NULL)
|
|
P_UpdateSolidMidtextureSlope(sector->lines[i], P_GetReferenceSlopeForMidtexture(sector->lines[i]));
|
|
}
|
|
}
|
|
|
|
// Creates a solid midtexture slope for the line if possible
|
|
static void P_CreateSolidMidtextureSlope(line_t *line)
|
|
{
|
|
if (line->backsector == NULL) // Ignore single-sided lines (of course)
|
|
return;
|
|
|
|
if ((line->flags & ML_MIDSOLID) == 0) // Ignore if the midtexture is not solid
|
|
return;
|
|
|
|
pslope_t *ref = P_GetReferenceSlopeForMidtexture(line);
|
|
if (ref)
|
|
{
|
|
line->midtexslope = Slope_Add(ref->flags & SL_NOPHYSICS);
|
|
|
|
P_UpdateSolidMidtextureSlope(line, ref);
|
|
}
|
|
}
|
|
|
|
/// Initializes and reads the slopes from the map data.
|
|
void P_SpawnSlopes(const boolean fromsave) {
|
|
size_t i;
|
|
|
|
/// Generates vertex slopes.
|
|
SpawnVertexSlopes();
|
|
|
|
/// Generates line special-defined slopes.
|
|
for (i = 0; i < numlines; i++)
|
|
{
|
|
switch (lines[i].special)
|
|
{
|
|
case 700:
|
|
line_SpawnViaLine(i, !fromsave);
|
|
break;
|
|
|
|
case 704:
|
|
line_SpawnViaMapthingVertexes(i, !fromsave);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Copies slopes from tagged sectors via line specials.
|
|
/// \note Doesn't actually copy, but instead they share the same pointers.
|
|
// Also, creates midtexture slopes.
|
|
for (i = 0; i < numlines; i++)
|
|
{
|
|
line_t *line = &lines[i];
|
|
|
|
switch (line->special)
|
|
{
|
|
case 720:
|
|
P_CopySectorSlope(line);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
P_CreateSolidMidtextureSlope(line);
|
|
}
|
|
}
|
|
|
|
/// Initializes slopes.
|
|
void P_InitSlopes(void)
|
|
{
|
|
slopelist = NULL;
|
|
slopecount = 0;
|
|
}
|
|
|
|
// ============================================================================
|
|
//
|
|
// Various utilities related to slopes
|
|
//
|
|
|
|
// Returns the height of the sloped plane at (x, y) as a fixed_t
|
|
fixed_t P_GetSlopeZAt(const pslope_t *slope, fixed_t x, fixed_t y)
|
|
{
|
|
fixed_t dist = FixedMul(x - slope->o.x, slope->d.x) / 2 +
|
|
FixedMul(y - slope->o.y, slope->d.y) / 2;
|
|
|
|
return slope->o.z + FixedMul(dist, slope->zdelta) * 2;
|
|
}
|
|
|
|
// Like P_GetSlopeZAt but falls back to z if slope is NULL
|
|
fixed_t P_GetZAt(const pslope_t *slope, fixed_t x, fixed_t y, fixed_t z)
|
|
{
|
|
return slope ? P_GetSlopeZAt(slope, x, y) : z;
|
|
}
|
|
|
|
// Returns the height of the sector floor at (x, y)
|
|
fixed_t P_GetSectorFloorZAt(const sector_t *sector, fixed_t x, fixed_t y)
|
|
{
|
|
return sector->f_slope ? P_GetSlopeZAt(sector->f_slope, x, y) : sector->floorheight;
|
|
}
|
|
|
|
// Returns the height of the sector ceiling at (x, y)
|
|
fixed_t P_GetSectorCeilingZAt(const sector_t *sector, fixed_t x, fixed_t y)
|
|
{
|
|
return sector->c_slope ? P_GetSlopeZAt(sector->c_slope, x, y) : sector->ceilingheight;
|
|
}
|
|
|
|
// Returns the height of the FOF top at (x, y)
|
|
fixed_t P_GetFFloorTopZAt(const ffloor_t *ffloor, fixed_t x, fixed_t y)
|
|
{
|
|
return *ffloor->t_slope ? P_GetSlopeZAt(*ffloor->t_slope, x, y) : *ffloor->topheight;
|
|
}
|
|
|
|
// Returns the height of the FOF bottom at (x, y)
|
|
fixed_t P_GetFFloorBottomZAt(const ffloor_t *ffloor, fixed_t x, fixed_t y)
|
|
{
|
|
return *ffloor->b_slope ? P_GetSlopeZAt(*ffloor->b_slope, x, y) : *ffloor->bottomheight;
|
|
}
|
|
|
|
// Returns the height of the light list at (x, y)
|
|
fixed_t P_GetLightZAt(const lightlist_t *light, fixed_t x, fixed_t y)
|
|
{
|
|
return light->slope ? P_GetSlopeZAt(light->slope, x, y) : light->height;
|
|
}
|
|
|
|
|
|
//
|
|
// P_QuantizeMomentumToSlope
|
|
//
|
|
// When given a vector, rotates it and aligns it to a slope
|
|
void P_QuantizeMomentumToSlope(vector3_t *momentum, pslope_t *slope)
|
|
{
|
|
vector3_t axis; // Fuck you, C90.
|
|
|
|
if (slope->flags & SL_NOPHYSICS)
|
|
return; // No physics, no quantizing.
|
|
|
|
axis.x = -slope->d.y;
|
|
axis.y = slope->d.x;
|
|
axis.z = 0;
|
|
|
|
FV3_Rotate(momentum, &axis, slope->zangle >> ANGLETOFINESHIFT);
|
|
}
|
|
|
|
//
|
|
// P_ReverseQuantizeMomentumToSlope
|
|
//
|
|
// When given a vector, rotates and aligns it to a flat surface (from being relative to a given slope)
|
|
void P_ReverseQuantizeMomentumToSlope(vector3_t *momentum, pslope_t *slope)
|
|
{
|
|
slope->zangle = InvAngle(slope->zangle);
|
|
P_QuantizeMomentumToSlope(momentum, slope);
|
|
slope->zangle = InvAngle(slope->zangle);
|
|
}
|
|
|
|
//
|
|
// P_SlopeLaunch
|
|
//
|
|
// Handles slope ejection for objects
|
|
void P_SlopeLaunch(mobj_t *mo)
|
|
{
|
|
if (!(mo->standingslope->flags & SL_NOPHYSICS) // If there's physics, time for launching.
|
|
&& (mo->standingslope->normal.x != 0
|
|
|| mo->standingslope->normal.y != 0))
|
|
{
|
|
// Double the pre-rotation Z, then halve the post-rotation Z. This reduces the
|
|
// vertical launch given from slopes while increasing the horizontal launch
|
|
// given. Good for SRB2's gravity and horizontal speeds.
|
|
vector3_t slopemom;
|
|
slopemom.x = mo->momx;
|
|
slopemom.y = mo->momy;
|
|
slopemom.z = mo->momz*2;
|
|
P_QuantizeMomentumToSlope(&slopemom, mo->standingslope);
|
|
|
|
mo->momx = slopemom.x;
|
|
mo->momy = slopemom.y;
|
|
mo->momz = slopemom.z/2;
|
|
|
|
if (mo->player)
|
|
mo->player->powers[pw_justlaunched] = 1;
|
|
}
|
|
|
|
//CONS_Printf("Launched off of slope.\n");
|
|
mo->standingslope = NULL;
|
|
}
|
|
|
|
//
|
|
// P_GetWallTransferMomZ
|
|
//
|
|
// It would be nice to have a single function that does everything necessary for slope-to-wall transfer.
|
|
// However, it needs to be seperated out in P_XYMovement to take into account momentum before and after hitting the wall.
|
|
// This just performs the necessary calculations for getting the base vertical momentum; the horizontal is already reasonably calculated by P_SlideMove.
|
|
fixed_t P_GetWallTransferMomZ(mobj_t *mo, pslope_t *slope)
|
|
{
|
|
vector3_t slopemom, axis;
|
|
angle_t ang;
|
|
|
|
if (slope->flags & SL_NOPHYSICS)
|
|
return 0;
|
|
|
|
// If there's physics, time for launching.
|
|
// Doesn't kill the vertical momentum as much as P_SlopeLaunch does.
|
|
ang = slope->zangle + ANG15*((slope->zangle > 0) ? 1 : -1);
|
|
if (ang > ANGLE_90 && ang < ANGLE_180)
|
|
ang = ((slope->zangle > 0) ? ANGLE_90 : InvAngle(ANGLE_90)); // hard cap of directly upwards
|
|
|
|
slopemom.x = mo->momx;
|
|
slopemom.y = mo->momy;
|
|
slopemom.z = 3*(mo->momz/2);
|
|
|
|
axis.x = -slope->d.y;
|
|
axis.y = slope->d.x;
|
|
axis.z = 0;
|
|
|
|
FV3_Rotate(&slopemom, &axis, ang >> ANGLETOFINESHIFT);
|
|
|
|
return 2*(slopemom.z/3);
|
|
}
|
|
|
|
// Function to help handle landing on slopes
|
|
void P_HandleSlopeLanding(mobj_t *thing, pslope_t *slope)
|
|
{
|
|
vector3_t mom; // Ditto.
|
|
if (slope->flags & SL_NOPHYSICS || (slope->normal.x == 0 && slope->normal.y == 0)) { // No physics, no need to make anything complicated.
|
|
if (P_MobjFlip(thing)*(thing->momz) < 0) // falling, land on slope
|
|
{
|
|
thing->standingslope = slope;
|
|
P_SetPitchRollFromSlope(thing, slope);
|
|
|
|
if (!thing->player || !(thing->player->pflags & PF_BOUNCING))
|
|
thing->momz = -P_MobjFlip(thing);
|
|
}
|
|
return;
|
|
}
|
|
|
|
mom.x = thing->momx;
|
|
mom.y = thing->momy;
|
|
mom.z = thing->momz*2;
|
|
|
|
P_ReverseQuantizeMomentumToSlope(&mom, slope);
|
|
|
|
if (P_MobjFlip(thing)*mom.z < 0) { // falling, land on slope
|
|
thing->momx = mom.x;
|
|
thing->momy = mom.y;
|
|
thing->standingslope = slope;
|
|
P_SetPitchRollFromSlope(thing, slope);
|
|
if (!thing->player || !(thing->player->pflags & PF_BOUNCING))
|
|
thing->momz = -P_MobjFlip(thing);
|
|
}
|
|
}
|
|
|
|
// https://yourlogicalfallacyis.com/slippery-slope
|
|
// Handles sliding down slopes, like if they were made of butter :)
|
|
void P_ButteredSlope(mobj_t *mo)
|
|
{
|
|
fixed_t thrust;
|
|
|
|
if (!mo->standingslope)
|
|
return;
|
|
|
|
if (mo->standingslope->flags & SL_NOPHYSICS)
|
|
return; // No physics, no butter.
|
|
|
|
if (mo->flags & (MF_NOCLIPHEIGHT|MF_NOGRAVITY))
|
|
return; // don't slide down slopes if you can't touch them or you're not affected by gravity
|
|
|
|
if (mo->player) {
|
|
if (abs(mo->standingslope->zdelta) < FRACUNIT/4 && !(mo->player->pflags & PF_SPINNING))
|
|
return; // Don't slide on non-steep slopes unless spinning
|
|
|
|
if (abs(mo->standingslope->zdelta) < FRACUNIT/2 && !(mo->player->rmomx || mo->player->rmomy))
|
|
return; // Allow the player to stand still on slopes below a certain steepness
|
|
}
|
|
|
|
thrust = FINESINE(mo->standingslope->zangle>>ANGLETOFINESHIFT) * 3 / 2 * (mo->eflags & MFE_VERTICALFLIP ? 1 : -1);
|
|
|
|
if (mo->player && (mo->player->pflags & PF_SPINNING)) {
|
|
fixed_t mult = 0;
|
|
if (mo->momx || mo->momy) {
|
|
angle_t angle = R_PointToAngle2(0, 0, mo->momx, mo->momy) - mo->standingslope->xydirection;
|
|
|
|
if (P_MobjFlip(mo) * mo->standingslope->zdelta < 0)
|
|
angle ^= ANGLE_180;
|
|
|
|
mult = FINECOSINE(angle >> ANGLETOFINESHIFT);
|
|
}
|
|
|
|
thrust = FixedMul(thrust, FRACUNIT*2/3 + mult/8);
|
|
}
|
|
|
|
if (mo->momx || mo->momy) // Slightly increase thrust based on the object's speed
|
|
thrust = FixedMul(thrust, FRACUNIT+P_AproxDistance(mo->momx, mo->momy)/16);
|
|
// This makes it harder to zigzag up steep slopes, as well as allows greater top speed when rolling down
|
|
|
|
// Let's get the gravity strength for the object...
|
|
thrust = FixedMul(thrust, abs(P_GetMobjGravity(mo)));
|
|
|
|
// ... and its friction against the ground for good measure (divided by original friction to keep behaviour for normal slopes the same).
|
|
thrust = FixedMul(thrust, FixedDiv(mo->friction, ORIG_FRICTION));
|
|
|
|
P_Thrust(mo, mo->standingslope->xydirection, thrust);
|
|
}
|