SRB2/src/p_slopes.c
Nevur fc3e863fd3 asdf
Signed-off-by: Nevur <apophycens@gmail.com>
2018-03-29 20:12:19 +02:00

921 lines
26 KiB
C

// SONIC ROBO BLAST 2
//-----------------------------------------------------------------------------
// Copyright (C) 2004 by Stephen McGranahan
// Copyright (C) 2015-2016 by Sonic Team Junior.
//
// This program is free software distributed under the
// terms of the GNU General Public License, version 2.
// See the 'LICENSE' file for more details.
//-----------------------------------------------------------------------------
/// \file p_slopes.c
/// \brief ZDoom + Eternity Engine Slopes, ported and enhanced by Kalaron
#include "doomdef.h"
#include "r_defs.h"
#include "r_state.h"
#include "m_bbox.h"
#include "z_zone.h"
#include "p_local.h"
#include "p_spec.h"
#include "p_slopes.h"
#include "p_setup.h"
#include "r_main.h"
#include "p_maputl.h"
#include "w_wad.h"
#ifdef ESLOPE
static pslope_t *slopelist = NULL;
static UINT16 slopecount = 0;
// Calculate line normal
static void P_CalculateSlopeNormal(pslope_t *slope) {
slope->normal.z = FINECOSINE(slope->zangle>>ANGLETOFINESHIFT);
slope->normal.x = -FixedMul(FINESINE(slope->zangle>>ANGLETOFINESHIFT), slope->d.x);
slope->normal.y = -FixedMul(FINESINE(slope->zangle>>ANGLETOFINESHIFT), slope->d.y);
}
// With a vertex slope that has its vertices set, configure relevant slope info
static void P_ReconfigureVertexSlope(pslope_t *slope)
{
vector3_t vec1, vec2;
// Set slope normal
vec1.x = (slope->vertices[1]->x - slope->vertices[0]->x) << FRACBITS;
vec1.y = (slope->vertices[1]->y - slope->vertices[0]->y) << FRACBITS;
vec1.z = (slope->vertices[1]->z - slope->vertices[0]->z) << FRACBITS;
vec2.x = (slope->vertices[2]->x - slope->vertices[0]->x) << FRACBITS;
vec2.y = (slope->vertices[2]->y - slope->vertices[0]->y) << FRACBITS;
vec2.z = (slope->vertices[2]->z - slope->vertices[0]->z) << FRACBITS;
// ugggggggh fixed-point maaaaaaath
slope->extent = max(
max(max(abs(vec1.x), abs(vec1.y)), abs(vec1.z)),
max(max(abs(vec2.x), abs(vec2.y)), abs(vec2.z))
) >> (FRACBITS+5);
vec1.x /= slope->extent;
vec1.y /= slope->extent;
vec1.z /= slope->extent;
vec2.x /= slope->extent;
vec2.y /= slope->extent;
vec2.z /= slope->extent;
FV3_Cross(&vec1, &vec2, &slope->normal);
slope->extent = R_PointToDist2(0, 0, R_PointToDist2(0, 0, slope->normal.x, slope->normal.y), slope->normal.z);
if (slope->normal.z < 0)
slope->extent = -slope->extent;
slope->normal.x = FixedDiv(slope->normal.x, slope->extent);
slope->normal.y = FixedDiv(slope->normal.y, slope->extent);
slope->normal.z = FixedDiv(slope->normal.z, slope->extent);
// Set origin
slope->o.x = slope->vertices[0]->x << FRACBITS;
slope->o.y = slope->vertices[0]->y << FRACBITS;
slope->o.z = slope->vertices[0]->z << FRACBITS;
if (slope->normal.x == 0 && slope->normal.y == 0) { // Set some defaults for a non-sloped "slope"
slope->zangle = slope->xydirection = 0;
slope->zdelta = slope->d.x = slope->d.y = 0;
} else {
// Get direction vector
slope->extent = R_PointToDist2(0, 0, slope->normal.x, slope->normal.y);
slope->d.x = -FixedDiv(slope->normal.x, slope->extent);
slope->d.y = -FixedDiv(slope->normal.y, slope->extent);
// Z delta
slope->zdelta = FixedDiv(slope->extent, slope->normal.z);
// Get angles
slope->xydirection = R_PointToAngle2(0, 0, slope->d.x, slope->d.y)+ANGLE_180;
slope->zangle = InvAngle(R_PointToAngle2(0, 0, FRACUNIT, slope->zdelta));
}
}
// Recalculate dynamic slopes
void P_RunDynamicSlopes(void) {
pslope_t *slope;
for (slope = slopelist; slope; slope = slope->next) {
fixed_t zdelta;
if (slope->flags & SL_NODYNAMIC)
continue;
switch(slope->refpos) {
case 1: // front floor
zdelta = slope->sourceline->backsector->floorheight - slope->sourceline->frontsector->floorheight;
slope->o.z = slope->sourceline->frontsector->floorheight;
break;
case 2: // front ceiling
zdelta = slope->sourceline->backsector->ceilingheight - slope->sourceline->frontsector->ceilingheight;
slope->o.z = slope->sourceline->frontsector->ceilingheight;
break;
case 3: // back floor
zdelta = slope->sourceline->frontsector->floorheight - slope->sourceline->backsector->floorheight;
slope->o.z = slope->sourceline->backsector->floorheight;
break;
case 4: // back ceiling
zdelta = slope->sourceline->frontsector->ceilingheight - slope->sourceline->backsector->ceilingheight;
slope->o.z = slope->sourceline->backsector->ceilingheight;
break;
case 5: // vertices
{
mapthing_t *mt;
size_t i;
INT32 l;
line_t *line;
for (i = 0; i < 3; i++) {
mt = slope->vertices[i];
l = P_FindSpecialLineFromTag(799, mt->angle, -1);
if (l != -1) {
line = &lines[l];
mt->z = line->frontsector->floorheight >> FRACBITS;
}
}
P_ReconfigureVertexSlope(slope);
}
continue; // TODO
default:
I_Error("P_RunDynamicSlopes: slope has invalid type!");
}
if (slope->zdelta != FixedDiv(zdelta, slope->extent)) {
slope->zdelta = FixedDiv(zdelta, slope->extent);
slope->zangle = R_PointToAngle2(0, 0, slope->extent, -zdelta);
P_CalculateSlopeNormal(slope);
}
}
}
//
// P_MakeSlope
//
// Alocates and fill the contents of a slope structure.
//
static pslope_t *P_MakeSlope(const vector3_t *o, const vector2_t *d,
const fixed_t zdelta, UINT8 flags)
{
pslope_t *ret = Z_Malloc(sizeof(pslope_t), PU_LEVEL, NULL);
memset(ret, 0, sizeof(*ret));
ret->o.x = o->x;
ret->o.y = o->y;
ret->o.z = o->z;
ret->d.x = d->x;
ret->d.y = d->y;
ret->zdelta = zdelta;
ret->flags = flags;
// Add to the slope list
ret->next = slopelist;
slopelist = ret;
slopecount++;
ret->id = slopecount;
return ret;
}
//
// P_GetExtent
//
// Returns the distance to the first line within the sector that
// is intersected by a line parallel to the plane normal with the point (ox, oy)
//
static fixed_t P_GetExtent(sector_t *sector, line_t *line)
{
// ZDoom code reference: v3float_t = vertex_t
fixed_t fardist = -FRACUNIT;
size_t i;
// Find furthest vertex from the reference line. It, along with the two ends
// of the line, will define the plane.
for(i = 0; i < sector->linecount; i++)
{
line_t *li = sector->lines[i];
vertex_t tempv;
fixed_t dist;
// Don't compare to the slope line.
if(li == line)
continue;
P_ClosestPointOnLine(li->v1->x, li->v1->y, line, &tempv);
dist = R_PointToDist2(tempv.x, tempv.y, li->v1->x, li->v1->y);
if(dist > fardist)
fardist = dist;
// Okay, maybe do it for v2 as well?
P_ClosestPointOnLine(li->v2->x, li->v2->y, line, &tempv);
dist = R_PointToDist2(tempv.x, tempv.y, li->v2->x, li->v2->y);
if(dist > fardist)
fardist = dist;
}
return fardist;
}
//
// P_SpawnSlope_Line
//
// Creates one or more slopes based on the given line type and front/back
// sectors.
//
void P_SpawnSlope_Line(int linenum)
{
// With dynamic slopes, it's fine to just leave this function as normal,
// because checking to see if a slope had changed will waste more memory than
// if the slope was just updated when called
line_t *line = lines + linenum;
INT16 special = line->special;
pslope_t *fslope = NULL, *cslope = NULL;
vector3_t origin, point;
vector2_t direction;
fixed_t nx, ny, dz, extent;
boolean frontfloor = (special == 700 || special == 702 || special == 703);
boolean backfloor = (special == 710 || special == 712 || special == 713);
boolean frontceil = (special == 701 || special == 702 || special == 713);
boolean backceil = (special == 711 || special == 712 || special == 703);
UINT8 flags = 0; // Slope flags
if (line->flags & ML_NOSONIC)
flags |= SL_NOPHYSICS;
if (!(line->flags & ML_NOTAILS))
flags |= SL_NODYNAMIC;
if (line->flags & ML_NOKNUX)
flags |= SL_ANCHORVERTEX;
if(!frontfloor && !backfloor && !frontceil && !backceil)
{
CONS_Printf("P_SpawnSlope_Line called with non-slope line special.\n");
return;
}
if(!line->frontsector || !line->backsector)
{
CONS_Printf("P_SpawnSlope_Line used on a line without two sides.\n");
return;
}
{
fixed_t len = R_PointToDist2(0, 0, line->dx, line->dy);
nx = FixedDiv(line->dy, len);
ny = -FixedDiv(line->dx, len);
}
origin.x = line->v1->x + (line->v2->x - line->v1->x)/2;
origin.y = line->v1->y + (line->v2->y - line->v1->y)/2;
// For FOF slopes, make a special function to copy to the xy origin & direction relative to the position of the FOF on the map!
if(frontfloor || frontceil)
{
line->frontsector->hasslope = true; // Tell the software renderer that we're sloped
origin.z = line->backsector->floorheight;
direction.x = nx;
direction.y = ny;
extent = P_GetExtent(line->frontsector, line);
if(extent < 0)
{
CONS_Printf("P_SpawnSlope_Line failed to get frontsector extent on line number %i\n", linenum);
return;
}
// reposition the origin according to the extent
point.x = origin.x + FixedMul(direction.x, extent);
point.y = origin.y + FixedMul(direction.y, extent);
direction.x = -direction.x;
direction.y = -direction.y;
// TODO: We take origin and point 's xy values and translate them to the center of an FOF!
if(frontfloor)
{
fixed_t highest, lowest;
size_t l;
point.z = line->frontsector->floorheight; // Startz
dz = FixedDiv(origin.z - point.z, extent); // Destinationz
// In P_SpawnSlopeLine the origin is the centerpoint of the sourcelinedef
fslope = line->frontsector->f_slope =
P_MakeSlope(&point, &direction, dz, flags);
// Set up some shit
fslope->extent = extent;
fslope->refpos = 1;
// Now remember that f_slope IS a vector
// fslope->o = origin 3D point 1 of the vector
// fslope->d = destination 3D point 2 of the vector
// fslope->normal is a 3D line perpendicular to the 3D vector
// Sync the linedata of the line that started this slope
// TODO: Anything special for control sector based slopes later?
fslope->sourceline = line;
// To find the real highz/lowz of a slope, you need to check all the vertexes
// in the slope's sector with P_GetZAt to get the REAL lowz & highz
// Although these slopes are set by floorheights the ANGLE is what a slope is,
// so technically any slope can extend on forever (they are just bound by sectors)
// *You can use sourceline as a reference to see if two slopes really are the same
// Default points for high and low
highest = point.z > origin.z ? point.z : origin.z;
lowest = point.z < origin.z ? point.z : origin.z;
// Now check to see what the REAL high and low points of the slope inside the sector
// TODO: Is this really needed outside of FOFs? -Red
for (l = 0; l < line->frontsector->linecount; l++)
{
fixed_t height = P_GetZAt(line->frontsector->f_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y);
if (height > highest)
highest = height;
if (height < lowest)
lowest = height;
}
// Sets extra clipping data for the frontsector's slope
fslope->highz = highest;
fslope->lowz = lowest;
fslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z);
fslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
P_CalculateSlopeNormal(fslope);
}
if(frontceil)
{
fixed_t highest, lowest;
size_t l;
origin.z = line->backsector->ceilingheight;
point.z = line->frontsector->ceilingheight;
dz = FixedDiv(origin.z - point.z, extent);
cslope = line->frontsector->c_slope =
P_MakeSlope(&point, &direction, dz, flags);
// Set up some shit
cslope->extent = extent;
cslope->refpos = 2;
// Sync the linedata of the line that started this slope
// TODO: Anything special for control sector based slopes later?
cslope->sourceline = line;
// Remember the way the slope is formed
highest = point.z > origin.z ? point.z : origin.z;
lowest = point.z < origin.z ? point.z : origin.z;
for (l = 0; l < line->frontsector->linecount; l++)
{
fixed_t height = P_GetZAt(line->frontsector->c_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y);
if (height > highest)
highest = height;
if (height < lowest)
lowest = height;
}
// This line special sets extra clipping data for the frontsector's slope
cslope->highz = highest;
cslope->lowz = lowest;
cslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z);
cslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
P_CalculateSlopeNormal(cslope);
}
}
if(backfloor || backceil)
{
line->backsector->hasslope = true; // Tell the software renderer that we're sloped
origin.z = line->frontsector->floorheight;
// Backsector
direction.x = -nx;
direction.y = -ny;
extent = P_GetExtent(line->backsector, line);
if(extent < 0)
{
CONS_Printf("P_SpawnSlope_Line failed to get backsector extent on line number %i\n", linenum);
return;
}
// reposition the origin according to the extent
point.x = origin.x + FixedMul(direction.x, extent);
point.y = origin.y + FixedMul(direction.y, extent);
direction.x = -direction.x;
direction.y = -direction.y;
if(backfloor)
{
fixed_t highest, lowest;
size_t l;
point.z = line->backsector->floorheight;
dz = FixedDiv(origin.z - point.z, extent);
fslope = line->backsector->f_slope =
P_MakeSlope(&point, &direction, dz, flags);
// Set up some shit
fslope->extent = extent;
fslope->refpos = 3;
// Sync the linedata of the line that started this slope
// TODO: Anything special for control sector based slopes later?
fslope->sourceline = line;
// Remember the way the slope is formed
highest = point.z > origin.z ? point.z : origin.z;
lowest = point.z < origin.z ? point.z : origin.z;
for (l = 0; l < line->backsector->linecount; l++)
{
fixed_t height = P_GetZAt(line->backsector->f_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y);
if (height > highest)
highest = height;
if (height < lowest)
lowest = height;
}
// This line special sets extra clipping data for the frontsector's slope
fslope->highz = highest;
fslope->lowz = lowest;
fslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z);
fslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
P_CalculateSlopeNormal(fslope);
}
if(backceil)
{
fixed_t highest, lowest;
size_t l;
origin.z = line->frontsector->ceilingheight;
point.z = line->backsector->ceilingheight;
dz = FixedDiv(origin.z - point.z, extent);
cslope = line->backsector->c_slope =
P_MakeSlope(&point, &direction, dz, flags);
// Set up some shit
cslope->extent = extent;
cslope->refpos = 4;
// Sync the linedata of the line that started this slope
// TODO: Anything special for control sector based slopes later?
cslope->sourceline = line;
// Remember the way the slope is formed
highest = point.z > origin.z ? point.z : origin.z;
lowest = point.z < origin.z ? point.z : origin.z;
for (l = 0; l < line->backsector->linecount; l++)
{
fixed_t height = P_GetZAt(line->backsector->c_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y);
if (height > highest)
highest = height;
if (height < lowest)
lowest = height;
}
// This line special sets extra clipping data for the backsector's slope
cslope->highz = highest;
cslope->lowz = lowest;
cslope->zangle = R_PointToAngle2(0, origin.z, extent, point.z);
cslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
P_CalculateSlopeNormal(cslope);
}
}
if(!line->tag)
return;
}
//
// P_NewVertexSlope
//
// Creates a new slope from three vertices with the specified IDs
//
static pslope_t *P_NewVertexSlope(INT16 tag1, INT16 tag2, INT16 tag3, UINT8 flags)
{
size_t i;
mapthing_t *mt = mapthings;
pslope_t *ret = Z_Malloc(sizeof(pslope_t), PU_LEVEL, NULL);
memset(ret, 0, sizeof(*ret));
// Start by setting flags
ret->flags = flags;
// Now set up the vertex list
ret->vertices = Z_Malloc(3*sizeof(mapthing_t), PU_LEVEL, NULL);
memset(ret->vertices, 0, 3*sizeof(mapthing_t));
// And... look for the vertices in question.
for (i = 0; i < nummapthings; i++, mt++) {
if (mt->type != 750) // Haha, I'm hijacking the old Chaos Spawn thingtype for something!
continue;
if (!ret->vertices[0] && mt->angle == tag1)
ret->vertices[0] = mt;
else if (!ret->vertices[1] && mt->angle == tag2)
ret->vertices[1] = mt;
else if (!ret->vertices[2] && mt->angle == tag3)
ret->vertices[2] = mt;
}
// Now set heights for each vertex, because they haven't been set yet
for (i = 0; i < 3; i++) {
mt = ret->vertices[i];
if (!mt) // If a vertex wasn't found, it's game over. There's nothing you can do to recover (except maybe try and kill the slope instead - TODO?)
I_Error("P_NewVertexSlope: Slope vertex %s (for linedef tag %d) not found!", sizeu1(i), tag1);
if (mt->extrainfo)
mt->z = mt->options;
else
mt->z = (R_PointInSubsector(mt->x << FRACBITS, mt->y << FRACBITS)->sector->floorheight >> FRACBITS) + (mt->options >> ZSHIFT);
}
P_ReconfigureVertexSlope(ret);
ret->refpos = 5;
// Add to the slope list
ret->next = slopelist;
slopelist = ret;
slopecount++;
ret->id = slopecount;
return ret;
}
//
// P_CopySectorSlope
//
// Searches through tagged sectors and copies
//
void P_CopySectorSlope(line_t *line)
{
sector_t *fsec = line->frontsector;
int i, special = line->special;
// Check for copy linedefs
for(i = -1; (i = P_FindSectorFromLineTag(line, i)) >= 0;)
{
sector_t *srcsec = sectors + i;
if((special - 719) & 1 && !fsec->f_slope && srcsec->f_slope)
fsec->f_slope = srcsec->f_slope; //P_CopySlope(srcsec->f_slope);
if((special - 719) & 2 && !fsec->c_slope && srcsec->c_slope)
fsec->c_slope = srcsec->c_slope; //P_CopySlope(srcsec->c_slope);
}
fsec->hasslope = true;
line->special = 0; // Linedef was use to set slopes, it finished its job, so now make it a normal linedef
}
//
// P_SlopeById
//
// Looks in the slope list for a slope with a specified ID. Mostly useful for netgame sync
//
pslope_t *P_SlopeById(UINT16 id)
{
pslope_t *ret;
for (ret = slopelist; ret && ret->id != id; ret = ret->next);
return ret;
}
// Reset the dynamic slopes pointer, and read all of the fancy schmancy slopes
void P_ResetDynamicSlopes(void) {
size_t i;
#ifdef ESLOPE_TYPESHIM // Rewrite old specials to new ones, and give a console warning
boolean warned = false;
#endif
slopelist = NULL;
slopecount = 0;
// We'll handle copy slopes later, after all the tag lists have been made.
// Yes, this means copied slopes won't affect things' spawning heights. Too bad for you.
for (i = 0; i < numlines; i++)
{
switch (lines[i].special)
{
#ifdef ESLOPE_TYPESHIM // Rewrite old specials to new ones, and give a console warning
#define WARNME if (!warned) {warned = true; CONS_Alert(CONS_WARNING, "This level uses old slope specials.\nA conversion will be needed before 2.2's release.\n");}
case 386:
case 387:
case 388:
lines[i].special += 700-386;
WARNME
P_SpawnSlope_Line(i);
break;
case 389:
case 390:
case 391:
case 392:
lines[i].special += 710-389;
WARNME
P_SpawnSlope_Line(i);
break;
case 393:
lines[i].special = 703;
WARNME
P_SpawnSlope_Line(i);
break;
case 394:
case 395:
case 396:
lines[i].special += 720-394;
WARNME
break;
#endif
case 700:
case 701:
case 702:
case 703:
case 710:
case 711:
case 712:
case 713:
P_SpawnSlope_Line(i);
break;
case 704:
case 705:
case 714:
case 715:
{
pslope_t **slopetoset;
size_t which = lines[i].special;
UINT8 flags = SL_VERTEXSLOPE;
if (lines[i].flags & ML_NOSONIC)
flags |= SL_NOPHYSICS;
if (!(lines[i].flags & ML_NOTAILS))
flags |= SL_NODYNAMIC;
if (which == 704)
{
slopetoset = &lines[i].frontsector->f_slope;
which = 0;
}
else if (which == 705)
{
slopetoset = &lines[i].frontsector->c_slope;
which = 0;
}
else if (which == 714)
{
slopetoset = &lines[i].backsector->f_slope;
which = 1;
}
else // 715
{
slopetoset = &lines[i].backsector->c_slope;
which = 1;
}
if (lines[i].flags & ML_NOKNUX)
*slopetoset = P_NewVertexSlope(lines[i].tag, sides[lines[i].sidenum[which]].textureoffset >> FRACBITS,
sides[lines[i].sidenum[which]].rowoffset >> FRACBITS, flags);
else
*slopetoset = P_NewVertexSlope(lines[i].tag, lines[i].tag, lines[i].tag, flags);
sides[lines[i].sidenum[which]].sector->hasslope = true;
}
break;
default:
break;
}
}
}
// ============================================================================
//
// Various utilities related to slopes
//
//
// P_GetZAt
//
// Returns the height of the sloped plane at (x, y) as a fixed_t
//
fixed_t P_GetZAt(pslope_t *slope, fixed_t x, fixed_t y)
{
fixed_t dist = FixedMul(x - slope->o.x, slope->d.x) +
FixedMul(y - slope->o.y, slope->d.y);
return slope->o.z + FixedMul(dist, slope->zdelta);
}
//
// P_QuantizeMomentumToSlope
//
// When given a vector, rotates it and aligns it to a slope
void P_QuantizeMomentumToSlope(vector3_t *momentum, pslope_t *slope)
{
vector3_t axis; // Fuck you, C90.
if (slope->flags & SL_NOPHYSICS)
return; // No physics, no quantizing.
axis.x = -slope->d.y;
axis.y = slope->d.x;
axis.z = 0;
FV3_Rotate(momentum, &axis, slope->zangle >> ANGLETOFINESHIFT);
}
//
// P_ReverseQuantizeMomentumToSlope
//
// When given a vector, rotates and aligns it to a flat surface (from being relative to a given slope)
void P_ReverseQuantizeMomentumToSlope(vector3_t *momentum, pslope_t *slope)
{
slope->zangle = InvAngle(slope->zangle);
P_QuantizeMomentumToSlope(momentum, slope);
slope->zangle = InvAngle(slope->zangle);
}
//
// P_SlopeLaunch
//
// Handles slope ejection for objects
void P_SlopeLaunch(mobj_t *mo)
{
if (!(mo->standingslope->flags & SL_NOPHYSICS)) // If there's physics, time for launching.
{
// Double the pre-rotation Z, then halve the post-rotation Z. This reduces the
// vertical launch given from slopes while increasing the horizontal launch
// given. Good for SRB2's gravity and horizontal speeds.
vector3_t slopemom;
slopemom.x = mo->momx;
slopemom.y = mo->momy;
slopemom.z = mo->momz*2;
P_QuantizeMomentumToSlope(&slopemom, mo->standingslope);
mo->momx = slopemom.x;
mo->momy = slopemom.y;
mo->momz = slopemom.z/2;
}
//CONS_Printf("Launched off of slope.\n");
mo->standingslope = NULL;
}
//
// P_GetWallTransferMomZ
//
// It would be nice to have a single function that does everything necessary for slope-to-wall transfer.
// However, it needs to be seperated out in P_XYMovement to take into account momentum before and after hitting the wall.
// This just performs the necessary calculations for getting the base vertical momentum; the horizontal is already reasonably calculated by P_SlideMove.
fixed_t P_GetWallTransferMomZ(mobj_t *mo, pslope_t *slope)
{
vector3_t slopemom, axis;
angle_t ang;
if (mo->standingslope->flags & SL_NOPHYSICS)
return 0;
// If there's physics, time for launching.
// Doesn't kill the vertical momentum as much as P_SlopeLaunch does.
ang = slope->zangle + ANG15*((slope->zangle > 0) ? 1 : -1);
if (ang > ANGLE_90 && ang < ANGLE_180)
ang = ((slope->zangle > 0) ? ANGLE_90 : InvAngle(ANGLE_90)); // hard cap of directly upwards
slopemom.x = mo->momx;
slopemom.y = mo->momy;
slopemom.z = 3*(mo->momz/2);
axis.x = -slope->d.y;
axis.y = slope->d.x;
axis.z = 0;
FV3_Rotate(&slopemom, &axis, ang >> ANGLETOFINESHIFT);
return 2*(slopemom.z/3);
}
// Function to help handle landing on slopes
void P_HandleSlopeLanding(mobj_t *thing, pslope_t *slope)
{
vector3_t mom; // Ditto.
if (slope->flags & SL_NOPHYSICS) { // No physics, no need to make anything complicated.
if (P_MobjFlip(thing)*(thing->momz) < 0) { // falling, land on slope
thing->momz = -P_MobjFlip(thing);
thing->standingslope = slope;
}
return;
}
mom.x = thing->momx;
mom.y = thing->momy;
mom.z = thing->momz*2;
P_ReverseQuantizeMomentumToSlope(&mom, slope);
if (P_MobjFlip(thing)*mom.z < 0) { // falling, land on slope
thing->momx = mom.x;
thing->momy = mom.y;
thing->momz = -P_MobjFlip(thing);
thing->standingslope = slope;
}
}
// https://yourlogicalfallacyis.com/slippery-slope
// Handles sliding down slopes, like if they were made of butter :)
void P_ButteredSlope(mobj_t *mo)
{
fixed_t thrust;
if (!mo->standingslope)
return;
if (mo->standingslope->flags & SL_NOPHYSICS)
return; // No physics, no butter.
if (mo->flags & (MF_NOCLIPHEIGHT|MF_NOGRAVITY))
return; // don't slide down slopes if you can't touch them or you're not affected by gravity
if (mo->player) {
if (abs(mo->standingslope->zdelta) < FRACUNIT/4 && !(mo->player->pflags & PF_SPINNING))
return; // Don't slide on non-steep slopes unless spinning
if (abs(mo->standingslope->zdelta) < FRACUNIT/2 && !(mo->player->rmomx || mo->player->rmomy))
return; // Allow the player to stand still on slopes below a certain steepness
}
thrust = FINESINE(mo->standingslope->zangle>>ANGLETOFINESHIFT) * 3 / 2 * (mo->eflags & MFE_VERTICALFLIP ? 1 : -1);
if (mo->player && (mo->player->pflags & PF_SPINNING)) {
fixed_t mult = 0;
if (mo->momx || mo->momy) {
angle_t angle = R_PointToAngle2(0, 0, mo->momx, mo->momy) - mo->standingslope->xydirection;
if (P_MobjFlip(mo) * mo->standingslope->zdelta < 0)
angle ^= ANGLE_180;
mult = FINECOSINE(angle >> ANGLETOFINESHIFT);
}
thrust = FixedMul(thrust, FRACUNIT*2/3 + mult/8);
}
if (mo->momx || mo->momy) // Slightly increase thrust based on the object's speed
thrust = FixedMul(thrust, FRACUNIT+P_AproxDistance(mo->momx, mo->momy)/16);
// This makes it harder to zigzag up steep slopes, as well as allows greater top speed when rolling down
// Let's get the gravity strength for the object...
thrust = FixedMul(thrust, abs(P_GetMobjGravity(mo)));
// ... and its friction against the ground for good measure (divided by original friction to keep behaviour for normal slopes the same).
thrust = FixedMul(thrust, FixedDiv(mo->friction, ORIG_FRICTION));
P_Thrust(mo, mo->standingslope->xydirection, thrust);
}
// EOF
#endif // #ifdef ESLOPE