2014-03-15 16:59:03 +00:00
|
|
|
// SONIC ROBO BLAST 2
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Copyright (C) 1993-1996 by id Software, Inc.
|
|
|
|
// Copyright (C) 1998-2000 by DooM Legacy Team.
|
2024-09-22 00:35:01 +00:00
|
|
|
// Copyright (C) 1999-2024 by Sonic Team Junior.
|
2024-01-30 01:08:22 +00:00
|
|
|
// Copyright (C) 2009 by Stephen McGranahan.
|
2014-03-15 16:59:03 +00:00
|
|
|
//
|
|
|
|
// This program is free software distributed under the
|
|
|
|
// terms of the GNU General Public License, version 2.
|
|
|
|
// See the 'LICENSE' file for more details.
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
/// \file m_fixed.c
|
|
|
|
/// \brief Fixed point implementation
|
|
|
|
|
|
|
|
#if 0 //#ifndef NO_M
|
|
|
|
#include <math.h>
|
|
|
|
#define HAVE_SQRT
|
|
|
|
#if 0 //#ifndef _WIN32 // MSVCRT does not have *f() functions
|
|
|
|
#define HAVE_SQRTF
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#include "doomdef.h"
|
|
|
|
#include "m_fixed.h"
|
|
|
|
|
|
|
|
fixed_t FixedSqrt(fixed_t x)
|
|
|
|
{
|
|
|
|
#ifdef HAVE_SQRT
|
|
|
|
const float fx = FIXED_TO_FLOAT(x);
|
|
|
|
float fr;
|
|
|
|
#ifdef HAVE_SQRTF
|
|
|
|
fr = sqrtf(fx);
|
|
|
|
#else
|
|
|
|
fr = (float)sqrt(fx);
|
|
|
|
#endif
|
|
|
|
return FLOAT_TO_FIXED(fr);
|
|
|
|
#else
|
|
|
|
// The neglected art of Fixed Point arithmetic
|
|
|
|
// Jetro Lauha
|
|
|
|
// Seminar Presentation
|
|
|
|
// Assembly 2006, 3rd- 6th August 2006
|
|
|
|
// (Revised: September 13, 2006)
|
|
|
|
// URL: http://jet.ro/files/The_neglected_art_of_Fixed_Point_arithmetic_20060913.pdf
|
|
|
|
register UINT32 root, remHi, remLo, testDiv, count;
|
|
|
|
root = 0; /* Clear root */
|
|
|
|
remHi = 0; /* Clear high part of partial remainder */
|
|
|
|
remLo = x; /* Get argument into low part of partial remainder */
|
|
|
|
count = (15 + (FRACBITS >> 1)); /* Load loop counter */
|
|
|
|
do
|
|
|
|
{
|
|
|
|
remHi = (remHi << 2) | (remLo >> 30); remLo <<= 2; /* get 2 bits of arg */
|
|
|
|
root <<= 1; /* Get ready for the next bit in the root */
|
|
|
|
testDiv = (root << 1) + 1; /* Test radical */
|
|
|
|
if (remHi >= testDiv)
|
|
|
|
{
|
|
|
|
remHi -= testDiv;
|
|
|
|
root += 1;
|
|
|
|
}
|
|
|
|
} while (count-- != 0);
|
|
|
|
return root;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
fixed_t FixedHypot(fixed_t x, fixed_t y)
|
|
|
|
{
|
2021-02-13 16:45:54 +00:00
|
|
|
fixed_t ax, yx, yx2, yx1;
|
|
|
|
if (abs(y) > abs(x)) // |y|>|x|
|
2014-03-15 16:59:03 +00:00
|
|
|
{
|
2021-02-13 16:45:54 +00:00
|
|
|
ax = abs(y); // |y| => ax
|
|
|
|
yx = FixedDiv(x, y); // (x/y)
|
2014-03-15 16:59:03 +00:00
|
|
|
}
|
2021-02-13 16:45:54 +00:00
|
|
|
else // |x|>|y|
|
|
|
|
{
|
|
|
|
ax = abs(x); // |x| => ax
|
|
|
|
yx = FixedDiv(y, x); // (x/y)
|
|
|
|
}
|
|
|
|
yx2 = FixedMul(yx, yx); // (x/y)^2
|
|
|
|
yx1 = FixedSqrt(1 * FRACUNIT + yx2); // (1 + (x/y)^2)^1/2
|
|
|
|
return FixedMul(ax, yx1); // |x|*((1 + (x/y)^2)^1/2)
|
2014-03-15 16:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
vector2_t *FV2_Load(vector2_t *vec, fixed_t x, fixed_t y)
|
|
|
|
{
|
|
|
|
vec->x = x;
|
|
|
|
vec->y = y;
|
|
|
|
return vec;
|
|
|
|
}
|
|
|
|
|
|
|
|
vector2_t *FV2_UnLoad(vector2_t *vec, fixed_t *x, fixed_t *y)
|
|
|
|
{
|
|
|
|
*x = vec->x;
|
|
|
|
*y = vec->y;
|
|
|
|
return vec;
|
|
|
|
}
|
|
|
|
|
|
|
|
vector2_t *FV2_Copy(vector2_t *a_o, const vector2_t *a_i)
|
|
|
|
{
|
|
|
|
return M_Memcpy(a_o, a_i, sizeof(vector2_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
vector2_t *FV2_AddEx(const vector2_t *a_i, const vector2_t *a_c, vector2_t *a_o)
|
|
|
|
{
|
|
|
|
a_o->x = a_i->x + a_c->x;
|
|
|
|
a_o->y = a_i->y + a_c->y;
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
|
|
|
vector2_t *FV2_Add(vector2_t *a_i, const vector2_t *a_c)
|
|
|
|
{
|
|
|
|
return FV2_AddEx(a_i, a_c, a_i);
|
|
|
|
}
|
|
|
|
|
|
|
|
vector2_t *FV2_SubEx(const vector2_t *a_i, const vector2_t *a_c, vector2_t *a_o)
|
|
|
|
{
|
|
|
|
a_o->x = a_i->x - a_c->x;
|
|
|
|
a_o->y = a_i->y - a_c->y;
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
|
|
|
vector2_t *FV2_Sub(vector2_t *a_i, const vector2_t *a_c)
|
|
|
|
{
|
|
|
|
return FV2_SubEx(a_i, a_c, a_i);
|
|
|
|
}
|
|
|
|
|
|
|
|
vector2_t *FV2_MulEx(const vector2_t *a_i, fixed_t a_c, vector2_t *a_o)
|
|
|
|
{
|
|
|
|
a_o->x = FixedMul(a_i->x, a_c);
|
|
|
|
a_o->y = FixedMul(a_i->y, a_c);
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
|
|
|
vector2_t *FV2_Mul(vector2_t *a_i, fixed_t a_c)
|
|
|
|
{
|
|
|
|
return FV2_MulEx(a_i, a_c, a_i);
|
|
|
|
}
|
|
|
|
|
|
|
|
vector2_t *FV2_DivideEx(const vector2_t *a_i, fixed_t a_c, vector2_t *a_o)
|
|
|
|
{
|
|
|
|
a_o->x = FixedDiv(a_i->x, a_c);
|
|
|
|
a_o->y = FixedDiv(a_i->y, a_c);
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
|
|
|
vector2_t *FV2_Divide(vector2_t *a_i, fixed_t a_c)
|
|
|
|
{
|
|
|
|
return FV2_DivideEx(a_i, a_c, a_i);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Vector Complex Math
|
|
|
|
vector2_t *FV2_Midpoint(const vector2_t *a_1, const vector2_t *a_2, vector2_t *a_o)
|
|
|
|
{
|
2018-12-15 13:46:08 +00:00
|
|
|
a_o->x = FixedDiv(a_2->x - a_1->x, 2 * FRACUNIT);
|
|
|
|
a_o->y = FixedDiv(a_2->y - a_1->y, 2 * FRACUNIT);
|
2014-03-15 16:59:03 +00:00
|
|
|
a_o->x = a_1->x + a_o->x;
|
|
|
|
a_o->y = a_1->y + a_o->y;
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
|
|
|
fixed_t FV2_Distance(const vector2_t *p1, const vector2_t *p2)
|
|
|
|
{
|
2018-12-15 13:46:08 +00:00
|
|
|
fixed_t xs = FixedMul(p2->x - p1->x, p2->x - p1->x);
|
|
|
|
fixed_t ys = FixedMul(p2->y - p1->y, p2->y - p1->y);
|
|
|
|
return FixedSqrt(xs + ys);
|
2014-03-15 16:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
fixed_t FV2_Magnitude(const vector2_t *a_normal)
|
|
|
|
{
|
2018-12-15 13:46:08 +00:00
|
|
|
fixed_t xs = FixedMul(a_normal->x, a_normal->x);
|
|
|
|
fixed_t ys = FixedMul(a_normal->y, a_normal->y);
|
|
|
|
return FixedSqrt(xs + ys);
|
2014-03-15 16:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Also returns the magnitude
|
|
|
|
fixed_t FV2_NormalizeEx(const vector2_t *a_normal, vector2_t *a_o)
|
|
|
|
{
|
|
|
|
fixed_t magnitude = FV2_Magnitude(a_normal);
|
|
|
|
a_o->x = FixedDiv(a_normal->x, magnitude);
|
|
|
|
a_o->y = FixedDiv(a_normal->y, magnitude);
|
|
|
|
return magnitude;
|
|
|
|
}
|
|
|
|
|
|
|
|
fixed_t FV2_Normalize(vector2_t *a_normal)
|
|
|
|
{
|
|
|
|
return FV2_NormalizeEx(a_normal, a_normal);
|
|
|
|
}
|
|
|
|
|
|
|
|
vector2_t *FV2_NegateEx(const vector2_t *a_1, vector2_t *a_o)
|
|
|
|
{
|
|
|
|
a_o->x = -a_1->x;
|
|
|
|
a_o->y = -a_1->y;
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
|
|
|
vector2_t *FV2_Negate(vector2_t *a_1)
|
|
|
|
{
|
|
|
|
return FV2_NegateEx(a_1, a_1);
|
|
|
|
}
|
|
|
|
|
|
|
|
boolean FV2_Equal(const vector2_t *a_1, const vector2_t *a_2)
|
|
|
|
{
|
2018-12-15 13:46:08 +00:00
|
|
|
fixed_t Epsilon = FRACUNIT / FRACUNIT;
|
2014-03-15 16:59:03 +00:00
|
|
|
|
|
|
|
if ((abs(a_2->x - a_1->x) > Epsilon) ||
|
|
|
|
(abs(a_2->y - a_1->y) > Epsilon))
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
fixed_t FV2_Dot(const vector2_t *a_1, const vector2_t *a_2)
|
|
|
|
{
|
|
|
|
return (FixedMul(a_1->x, a_2->x) + FixedMul(a_1->y, a_2->y));
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Point2Vec
|
|
|
|
//
|
|
|
|
// Given two points, create a vector between them.
|
|
|
|
//
|
2018-12-15 13:46:08 +00:00
|
|
|
vector2_t *FV2_Point2Vec(const vector2_t *point1, const vector2_t *point2, vector2_t *a_o)
|
2014-03-15 16:59:03 +00:00
|
|
|
{
|
|
|
|
a_o->x = point1->x - point2->x;
|
|
|
|
a_o->y = point1->y - point2->y;
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
|
|
|
vector3_t *FV3_Load(vector3_t *vec, fixed_t x, fixed_t y, fixed_t z)
|
|
|
|
{
|
|
|
|
vec->x = x;
|
|
|
|
vec->y = y;
|
|
|
|
vec->z = z;
|
|
|
|
return vec;
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
vector4_t *FV4_Load(vector4_t *vec, fixed_t x, fixed_t y, fixed_t z, fixed_t a)
|
|
|
|
{
|
|
|
|
vec->x = x;
|
|
|
|
vec->y = y;
|
|
|
|
vec->z = z;
|
|
|
|
vec->a = a;
|
|
|
|
return vec;
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
vector3_t *FV3_UnLoad(vector3_t *vec, fixed_t *x, fixed_t *y, fixed_t *z)
|
|
|
|
{
|
|
|
|
*x = vec->x;
|
|
|
|
*y = vec->y;
|
|
|
|
*z = vec->z;
|
|
|
|
return vec;
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
vector4_t *FV4_UnLoad(vector4_t *vec, fixed_t *x, fixed_t *y, fixed_t *z, fixed_t *a)
|
|
|
|
{
|
|
|
|
*x = vec->x;
|
|
|
|
*y = vec->y;
|
|
|
|
*z = vec->z;
|
|
|
|
*a = vec->a;
|
|
|
|
return vec;
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
vector3_t *FV3_Copy(vector3_t *a_o, const vector3_t *a_i)
|
|
|
|
{
|
|
|
|
return M_Memcpy(a_o, a_i, sizeof(vector3_t));
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
vector4_t *FV4_Copy(vector4_t *a_o, const vector4_t *a_i)
|
|
|
|
{
|
|
|
|
return M_Memcpy(a_o, a_i, sizeof(vector4_t));
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
vector3_t *FV3_AddEx(const vector3_t *a_i, const vector3_t *a_c, vector3_t *a_o)
|
|
|
|
{
|
|
|
|
a_o->x = a_i->x + a_c->x;
|
|
|
|
a_o->y = a_i->y + a_c->y;
|
|
|
|
a_o->z = a_i->z + a_c->z;
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
vector4_t *FV4_AddEx(const vector4_t *a_i, const vector4_t *a_c, vector4_t *a_o)
|
|
|
|
{
|
|
|
|
a_o->x = a_i->x + a_c->x;
|
|
|
|
a_o->y = a_i->y + a_c->y;
|
|
|
|
a_o->z = a_i->z + a_c->z;
|
|
|
|
a_o->a = a_i->a + a_c->a;
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
vector3_t *FV3_Add(vector3_t *a_i, const vector3_t *a_c)
|
|
|
|
{
|
|
|
|
return FV3_AddEx(a_i, a_c, a_i);
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
vector4_t *FV4_Add(vector4_t *a_i, const vector4_t *a_c)
|
|
|
|
{
|
|
|
|
return FV4_AddEx(a_i, a_c, a_i);
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
vector3_t *FV3_SubEx(const vector3_t *a_i, const vector3_t *a_c, vector3_t *a_o)
|
|
|
|
{
|
|
|
|
a_o->x = a_i->x - a_c->x;
|
|
|
|
a_o->y = a_i->y - a_c->y;
|
|
|
|
a_o->z = a_i->z - a_c->z;
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
vector4_t *FV4_SubEx(const vector4_t *a_i, const vector4_t *a_c, vector4_t *a_o)
|
|
|
|
{
|
|
|
|
a_o->x = a_i->x - a_c->x;
|
|
|
|
a_o->y = a_i->y - a_c->y;
|
|
|
|
a_o->z = a_i->z - a_c->z;
|
|
|
|
a_o->a = a_i->a - a_c->a;
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
vector3_t *FV3_Sub(vector3_t *a_i, const vector3_t *a_c)
|
|
|
|
{
|
|
|
|
return FV3_SubEx(a_i, a_c, a_i);
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
vector4_t *FV4_Sub(vector4_t *a_i, const vector4_t *a_c)
|
|
|
|
{
|
|
|
|
return FV4_SubEx(a_i, a_c, a_i);
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
vector3_t *FV3_MulEx(const vector3_t *a_i, fixed_t a_c, vector3_t *a_o)
|
|
|
|
{
|
|
|
|
a_o->x = FixedMul(a_i->x, a_c);
|
|
|
|
a_o->y = FixedMul(a_i->y, a_c);
|
|
|
|
a_o->z = FixedMul(a_i->z, a_c);
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
vector4_t *FV4_MulEx(const vector4_t *a_i, fixed_t a_c, vector4_t *a_o)
|
|
|
|
{
|
|
|
|
a_o->x = FixedMul(a_i->x, a_c);
|
|
|
|
a_o->y = FixedMul(a_i->y, a_c);
|
|
|
|
a_o->z = FixedMul(a_i->z, a_c);
|
|
|
|
a_o->a = FixedMul(a_i->a, a_c);
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
vector3_t *FV3_Mul(vector3_t *a_i, fixed_t a_c)
|
|
|
|
{
|
|
|
|
return FV3_MulEx(a_i, a_c, a_i);
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
vector4_t *FV4_Mul(vector4_t *a_i, fixed_t a_c)
|
|
|
|
{
|
|
|
|
return FV4_MulEx(a_i, a_c, a_i);
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
vector3_t *FV3_DivideEx(const vector3_t *a_i, fixed_t a_c, vector3_t *a_o)
|
|
|
|
{
|
|
|
|
a_o->x = FixedDiv(a_i->x, a_c);
|
|
|
|
a_o->y = FixedDiv(a_i->y, a_c);
|
|
|
|
a_o->z = FixedDiv(a_i->z, a_c);
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
vector4_t *FV4_DivideEx(const vector4_t *a_i, fixed_t a_c, vector4_t *a_o)
|
|
|
|
{
|
|
|
|
a_o->x = FixedDiv(a_i->x, a_c);
|
|
|
|
a_o->y = FixedDiv(a_i->y, a_c);
|
|
|
|
a_o->z = FixedDiv(a_i->z, a_c);
|
|
|
|
a_o->a = FixedDiv(a_i->a, a_c);
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
vector3_t *FV3_Divide(vector3_t *a_i, fixed_t a_c)
|
|
|
|
{
|
|
|
|
return FV3_DivideEx(a_i, a_c, a_i);
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
vector4_t *FV4_Divide(vector4_t *a_i, fixed_t a_c)
|
|
|
|
{
|
|
|
|
return FV4_DivideEx(a_i, a_c, a_i);
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
// Vector Complex Math
|
|
|
|
vector3_t *FV3_Midpoint(const vector3_t *a_1, const vector3_t *a_2, vector3_t *a_o)
|
|
|
|
{
|
2018-12-15 13:46:08 +00:00
|
|
|
a_o->x = FixedDiv(a_2->x - a_1->x, 2 * FRACUNIT);
|
|
|
|
a_o->y = FixedDiv(a_2->y - a_1->y, 2 * FRACUNIT);
|
|
|
|
a_o->z = FixedDiv(a_2->z - a_1->z, 2 * FRACUNIT);
|
2014-03-15 16:59:03 +00:00
|
|
|
a_o->x = a_1->x + a_o->x;
|
|
|
|
a_o->y = a_1->y + a_o->y;
|
|
|
|
a_o->z = a_1->z + a_o->z;
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
vector4_t *FV4_Midpoint(const vector4_t *a_1, const vector4_t *a_2, vector4_t *a_o)
|
|
|
|
{
|
|
|
|
a_o->x = FixedDiv(a_2->x - a_1->x, 2 * FRACUNIT);
|
|
|
|
a_o->y = FixedDiv(a_2->y - a_1->y, 2 * FRACUNIT);
|
|
|
|
a_o->z = FixedDiv(a_2->z - a_1->z, 2 * FRACUNIT);
|
|
|
|
a_o->a = FixedDiv(a_2->a - a_1->a, 2 * FRACUNIT);
|
|
|
|
a_o->x = a_1->x + a_o->x;
|
|
|
|
a_o->y = a_1->y + a_o->y;
|
|
|
|
a_o->z = a_1->z + a_o->z;
|
|
|
|
a_o->a = a_1->z + a_o->a;
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
fixed_t FV3_Distance(const vector3_t *p1, const vector3_t *p2)
|
|
|
|
{
|
2018-12-15 13:46:08 +00:00
|
|
|
fixed_t xs = FixedMul(p2->x - p1->x, p2->x - p1->x);
|
|
|
|
fixed_t ys = FixedMul(p2->y - p1->y, p2->y - p1->y);
|
|
|
|
fixed_t zs = FixedMul(p2->z - p1->z, p2->z - p1->z);
|
|
|
|
return FixedSqrt(xs + ys + zs);
|
2014-03-15 16:59:03 +00:00
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
fixed_t FV4_Distance(const vector4_t *p1, const vector4_t *p2)
|
|
|
|
{
|
|
|
|
fixed_t xs = FixedMul(p2->x - p1->x, p2->x - p1->x);
|
|
|
|
fixed_t ys = FixedMul(p2->y - p1->y, p2->y - p1->y);
|
|
|
|
fixed_t zs = FixedMul(p2->z - p1->z, p2->z - p1->z);
|
|
|
|
fixed_t za = FixedMul(p2->a - p1->a, p2->a - p1->a);
|
|
|
|
return FixedSqrt(xs + ys + zs + za);
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
fixed_t FV3_Magnitude(const vector3_t *a_normal)
|
|
|
|
{
|
2018-12-15 13:46:08 +00:00
|
|
|
fixed_t xs = FixedMul(a_normal->x, a_normal->x);
|
|
|
|
fixed_t ys = FixedMul(a_normal->y, a_normal->y);
|
|
|
|
fixed_t zs = FixedMul(a_normal->z, a_normal->z);
|
|
|
|
return FixedSqrt(xs + ys + zs);
|
2014-03-15 16:59:03 +00:00
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
fixed_t FV4_Magnitude(const vector4_t *a_normal)
|
|
|
|
{
|
|
|
|
fixed_t xs = FixedMul(a_normal->x, a_normal->x);
|
|
|
|
fixed_t ys = FixedMul(a_normal->y, a_normal->y);
|
|
|
|
fixed_t zs = FixedMul(a_normal->z, a_normal->z);
|
|
|
|
fixed_t as = FixedMul(a_normal->a, a_normal->a);
|
|
|
|
return FixedSqrt(xs + ys + zs + as);
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
// Also returns the magnitude
|
|
|
|
fixed_t FV3_NormalizeEx(const vector3_t *a_normal, vector3_t *a_o)
|
|
|
|
{
|
|
|
|
fixed_t magnitude = FV3_Magnitude(a_normal);
|
|
|
|
a_o->x = FixedDiv(a_normal->x, magnitude);
|
|
|
|
a_o->y = FixedDiv(a_normal->y, magnitude);
|
|
|
|
a_o->z = FixedDiv(a_normal->z, magnitude);
|
|
|
|
return magnitude;
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
fixed_t FV4_NormalizeEx(const vector4_t *a_normal, vector4_t *a_o)
|
|
|
|
{
|
|
|
|
fixed_t magnitude = FV4_Magnitude(a_normal);
|
|
|
|
a_o->x = FixedDiv(a_normal->x, magnitude);
|
|
|
|
a_o->y = FixedDiv(a_normal->y, magnitude);
|
|
|
|
a_o->z = FixedDiv(a_normal->z, magnitude);
|
|
|
|
a_o->a = FixedDiv(a_normal->a, magnitude);
|
|
|
|
return magnitude;
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
fixed_t FV3_Normalize(vector3_t *a_normal)
|
|
|
|
{
|
|
|
|
return FV3_NormalizeEx(a_normal, a_normal);
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
fixed_t FV4_Normalize(vector4_t *a_normal)
|
|
|
|
{
|
|
|
|
return FV4_NormalizeEx(a_normal, a_normal);
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
vector3_t *FV3_NegateEx(const vector3_t *a_1, vector3_t *a_o)
|
|
|
|
{
|
|
|
|
a_o->x = -a_1->x;
|
|
|
|
a_o->y = -a_1->y;
|
|
|
|
a_o->z = -a_1->z;
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
vector4_t *FV4_NegateEx(const vector4_t *a_1, vector4_t *a_o)
|
|
|
|
{
|
|
|
|
a_o->x = -a_1->x;
|
|
|
|
a_o->y = -a_1->y;
|
|
|
|
a_o->z = -a_1->z;
|
|
|
|
a_o->a = -a_1->a;
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
vector3_t *FV3_Negate(vector3_t *a_1)
|
|
|
|
{
|
|
|
|
return FV3_NegateEx(a_1, a_1);
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
vector4_t *FV4_Negate(vector4_t *a_1)
|
|
|
|
{
|
|
|
|
return FV4_NegateEx(a_1, a_1);
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
boolean FV3_Equal(const vector3_t *a_1, const vector3_t *a_2)
|
|
|
|
{
|
2018-12-15 13:46:08 +00:00
|
|
|
fixed_t Epsilon = FRACUNIT / FRACUNIT;
|
2014-03-15 16:59:03 +00:00
|
|
|
|
|
|
|
if ((abs(a_2->x - a_1->x) > Epsilon) ||
|
|
|
|
(abs(a_2->y - a_1->y) > Epsilon) ||
|
|
|
|
(abs(a_2->z - a_1->z) > Epsilon))
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
boolean FV4_Equal(const vector4_t *a_1, const vector4_t *a_2)
|
|
|
|
{
|
|
|
|
fixed_t Epsilon = FRACUNIT / FRACUNIT;
|
|
|
|
|
|
|
|
if ((abs(a_2->x - a_1->x) > Epsilon) ||
|
|
|
|
(abs(a_2->y - a_1->y) > Epsilon) ||
|
|
|
|
(abs(a_2->z - a_1->z) > Epsilon) ||
|
|
|
|
(abs(a_2->a - a_1->a) > Epsilon))
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
fixed_t FV3_Dot(const vector3_t *a_1, const vector3_t *a_2)
|
|
|
|
{
|
|
|
|
return (FixedMul(a_1->x, a_2->x) + FixedMul(a_1->y, a_2->y) + FixedMul(a_1->z, a_2->z));
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
fixed_t FV4_Dot(const vector4_t *a_1, const vector4_t *a_2)
|
|
|
|
{
|
|
|
|
return (FixedMul(a_1->x, a_2->x) + FixedMul(a_1->y, a_2->y) + FixedMul(a_1->z, a_2->z) + FixedMul(a_1->a, a_2->a));
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
vector3_t *FV3_Cross(const vector3_t *a_1, const vector3_t *a_2, vector3_t *a_o)
|
|
|
|
{
|
|
|
|
a_o->x = FixedMul(a_1->y, a_2->z) - FixedMul(a_1->z, a_2->y);
|
|
|
|
a_o->y = FixedMul(a_1->z, a_2->x) - FixedMul(a_1->x, a_2->z);
|
|
|
|
a_o->z = FixedMul(a_1->x, a_2->y) - FixedMul(a_1->y, a_2->x);
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// ClosestPointOnLine
|
|
|
|
//
|
|
|
|
// Finds the point on a line closest
|
|
|
|
// to the specified point.
|
|
|
|
//
|
|
|
|
vector3_t *FV3_ClosestPointOnLine(const vector3_t *Line, const vector3_t *p, vector3_t *out)
|
|
|
|
{
|
2022-10-01 19:07:12 +00:00
|
|
|
// Determine t (the length of the vector from "Line[0]" to "p")
|
2014-03-15 16:59:03 +00:00
|
|
|
vector3_t c, V;
|
|
|
|
fixed_t t, d = 0;
|
|
|
|
FV3_SubEx(p, &Line[0], &c);
|
|
|
|
FV3_SubEx(&Line[1], &Line[0], &V);
|
|
|
|
FV3_NormalizeEx(&V, &V);
|
|
|
|
|
|
|
|
d = FV3_Distance(&Line[0], &Line[1]);
|
|
|
|
t = FV3_Dot(&V, &c);
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
// Check to see if "t" is beyond the extents of the line segment
|
2014-03-15 16:59:03 +00:00
|
|
|
if (t < 0)
|
|
|
|
{
|
|
|
|
return FV3_Copy(out, &Line[0]);
|
|
|
|
}
|
|
|
|
if (t > d)
|
|
|
|
{
|
|
|
|
return FV3_Copy(out, &Line[1]);
|
|
|
|
}
|
|
|
|
|
2022-10-01 19:07:12 +00:00
|
|
|
// Return the point between "Line[0]" and "Line[1]"
|
2014-03-15 16:59:03 +00:00
|
|
|
FV3_Mul(&V, t);
|
|
|
|
|
|
|
|
return FV3_AddEx(&Line[0], &V, out);
|
|
|
|
}
|
|
|
|
|
2018-12-15 13:46:08 +00:00
|
|
|
//
|
|
|
|
// ClosestPointOnVector
|
|
|
|
//
|
|
|
|
// Similar to ClosestPointOnLine, but uses a vector instead of two points.
|
|
|
|
//
|
|
|
|
void FV3_ClosestPointOnVector(const vector3_t *dir, const vector3_t *p, vector3_t *out)
|
|
|
|
{
|
|
|
|
fixed_t t = FV3_Dot(dir, p);
|
|
|
|
|
|
|
|
// Return the point on the line closest
|
|
|
|
FV3_MulEx(dir, t, out);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2014-03-15 16:59:03 +00:00
|
|
|
//
|
|
|
|
// ClosestPointOnTriangle
|
|
|
|
//
|
|
|
|
// Given a triangle and a point,
|
|
|
|
// the closest point on the edge of
|
|
|
|
// the triangle is returned.
|
|
|
|
//
|
2018-12-15 13:46:08 +00:00
|
|
|
void FV3_ClosestPointOnTriangle(const vector3_t *tri, const vector3_t *point, vector3_t *result)
|
2014-03-15 16:59:03 +00:00
|
|
|
{
|
|
|
|
UINT8 i;
|
|
|
|
fixed_t dist, closestdist;
|
|
|
|
vector3_t EdgePoints[3];
|
|
|
|
vector3_t Line[2];
|
|
|
|
|
|
|
|
FV3_Copy(&Line[0], &tri[0]);
|
|
|
|
FV3_Copy(&Line[1], &tri[1]);
|
|
|
|
FV3_ClosestPointOnLine(Line, point, &EdgePoints[0]);
|
|
|
|
|
|
|
|
FV3_Copy(&Line[0], &tri[1]);
|
|
|
|
FV3_Copy(&Line[1], &tri[2]);
|
|
|
|
FV3_ClosestPointOnLine(Line, point, &EdgePoints[1]);
|
|
|
|
|
|
|
|
FV3_Copy(&Line[0], &tri[2]);
|
|
|
|
FV3_Copy(&Line[1], &tri[0]);
|
|
|
|
FV3_ClosestPointOnLine(Line, point, &EdgePoints[2]);
|
|
|
|
|
|
|
|
// Find the closest one of the three
|
|
|
|
FV3_Copy(result, &EdgePoints[0]);
|
|
|
|
closestdist = FV3_Distance(point, &EdgePoints[0]);
|
|
|
|
for (i = 1; i < 3; i++)
|
|
|
|
{
|
|
|
|
dist = FV3_Distance(point, &EdgePoints[i]);
|
|
|
|
|
|
|
|
if (dist < closestdist)
|
|
|
|
{
|
|
|
|
closestdist = dist;
|
|
|
|
FV3_Copy(result, &EdgePoints[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// We now have the closest point! Whee!
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Point2Vec
|
|
|
|
//
|
|
|
|
// Given two points, create a vector between them.
|
|
|
|
//
|
2018-12-15 13:46:08 +00:00
|
|
|
vector3_t *FV3_Point2Vec(const vector3_t *point1, const vector3_t *point2, vector3_t *a_o)
|
2014-03-15 16:59:03 +00:00
|
|
|
{
|
|
|
|
a_o->x = point1->x - point2->x;
|
|
|
|
a_o->y = point1->y - point2->y;
|
|
|
|
a_o->z = point1->z - point2->z;
|
|
|
|
return a_o;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Normal
|
|
|
|
//
|
|
|
|
// Calculates the normal of a polygon.
|
|
|
|
//
|
2018-12-15 13:46:08 +00:00
|
|
|
fixed_t FV3_Normal(const vector3_t *a_triangle, vector3_t *a_normal)
|
2014-03-15 16:59:03 +00:00
|
|
|
{
|
|
|
|
vector3_t a_1;
|
|
|
|
vector3_t a_2;
|
|
|
|
|
|
|
|
FV3_Point2Vec(&a_triangle[2], &a_triangle[0], &a_1);
|
|
|
|
FV3_Point2Vec(&a_triangle[1], &a_triangle[0], &a_2);
|
|
|
|
|
|
|
|
FV3_Cross(&a_1, &a_2, a_normal);
|
|
|
|
|
2018-12-15 13:46:08 +00:00
|
|
|
return FV3_NormalizeEx(a_normal, a_normal);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Strength
|
|
|
|
//
|
|
|
|
// Measures the 'strength' of a vector in a particular direction.
|
|
|
|
//
|
|
|
|
fixed_t FV3_Strength(const vector3_t *a_1, const vector3_t *dir)
|
|
|
|
{
|
|
|
|
vector3_t normal;
|
|
|
|
fixed_t dist = FV3_NormalizeEx(a_1, &normal);
|
|
|
|
fixed_t dot = FV3_Dot(&normal, dir);
|
|
|
|
|
|
|
|
FV3_ClosestPointOnVector(dir, a_1, &normal);
|
|
|
|
|
|
|
|
dist = FV3_Magnitude(&normal);
|
|
|
|
|
|
|
|
if (dot < 0) // Not facing same direction, so negate result.
|
|
|
|
dist = -dist;
|
|
|
|
|
|
|
|
return dist;
|
2014-03-15 16:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// PlaneDistance
|
|
|
|
//
|
|
|
|
// Calculates distance between a plane and the origin.
|
|
|
|
//
|
|
|
|
fixed_t FV3_PlaneDistance(const vector3_t *a_normal, const vector3_t *a_point)
|
|
|
|
{
|
|
|
|
return -(FixedMul(a_normal->x, a_point->x) + FixedMul(a_normal->y, a_point->y) + FixedMul(a_normal->z, a_point->z));
|
|
|
|
}
|
|
|
|
|
|
|
|
boolean FV3_IntersectedPlane(const vector3_t *a_triangle, const vector3_t *a_line, vector3_t *a_normal, fixed_t *originDistance)
|
|
|
|
{
|
|
|
|
fixed_t distance1 = 0, distance2 = 0;
|
|
|
|
|
|
|
|
FV3_Normal(a_triangle, a_normal);
|
|
|
|
|
|
|
|
*originDistance = FV3_PlaneDistance(a_normal, &a_triangle[0]);
|
|
|
|
|
2018-12-15 13:46:08 +00:00
|
|
|
distance1 = (FixedMul(a_normal->x, a_line[0].x) + FixedMul(a_normal->y, a_line[0].y)
|
|
|
|
+ FixedMul(a_normal->z, a_line[0].z)) + *originDistance;
|
2014-03-15 16:59:03 +00:00
|
|
|
|
2018-12-15 13:46:08 +00:00
|
|
|
distance2 = (FixedMul(a_normal->x, a_line[1].x) + FixedMul(a_normal->y, a_line[1].y)
|
|
|
|
+ FixedMul(a_normal->z, a_line[1].z)) + *originDistance;
|
2014-03-15 16:59:03 +00:00
|
|
|
|
|
|
|
// Positive or zero number means no intersection
|
|
|
|
if (FixedMul(distance1, distance2) >= 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// PlaneIntersection
|
|
|
|
//
|
|
|
|
// Returns the distance from
|
|
|
|
// rOrigin to where the ray
|
|
|
|
// intersects the plane. Assumes
|
|
|
|
// you already know it intersects
|
|
|
|
// the plane.
|
|
|
|
//
|
|
|
|
fixed_t FV3_PlaneIntersection(const vector3_t *pOrigin, const vector3_t *pNormal, const vector3_t *rOrigin, const vector3_t *rVector)
|
|
|
|
{
|
|
|
|
fixed_t d = -(FV3_Dot(pNormal, pOrigin));
|
2018-12-15 13:46:08 +00:00
|
|
|
fixed_t number = FV3_Dot(pNormal, rOrigin) + d;
|
|
|
|
fixed_t denom = FV3_Dot(pNormal, rVector);
|
2014-03-15 16:59:03 +00:00
|
|
|
return -FixedDiv(number, denom);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// IntersectRaySphere
|
|
|
|
// Input : rO - origin of ray in world space
|
|
|
|
// rV - vector describing direction of ray in world space
|
|
|
|
// sO - Origin of sphere
|
|
|
|
// sR - radius of sphere
|
|
|
|
// Notes : Normalized directional vectors expected
|
|
|
|
// Return: distance to sphere in world units, -1 if no intersection.
|
|
|
|
//
|
|
|
|
fixed_t FV3_IntersectRaySphere(const vector3_t *rO, const vector3_t *rV, const vector3_t *sO, fixed_t sR)
|
|
|
|
{
|
|
|
|
vector3_t Q;
|
|
|
|
fixed_t c, v, d;
|
|
|
|
FV3_SubEx(sO, rO, &Q);
|
|
|
|
|
|
|
|
c = FV3_Magnitude(&Q);
|
|
|
|
v = FV3_Dot(&Q, rV);
|
2018-12-15 13:46:08 +00:00
|
|
|
d = FixedMul(sR, sR) - (FixedMul(c, c) - FixedMul(v, v));
|
2014-03-15 16:59:03 +00:00
|
|
|
|
|
|
|
// If there was no intersection, return -1
|
2018-12-15 13:46:08 +00:00
|
|
|
if (d < 0 * FRACUNIT)
|
|
|
|
return (-1 * FRACUNIT);
|
2014-03-15 16:59:03 +00:00
|
|
|
|
|
|
|
// Return the distance to the [first] intersecting point
|
|
|
|
return (v - FixedSqrt(d));
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// IntersectionPoint
|
|
|
|
//
|
|
|
|
// This returns the intersection point of the line that intersects the plane
|
|
|
|
//
|
|
|
|
vector3_t *FV3_IntersectionPoint(const vector3_t *vNormal, const vector3_t *vLine, fixed_t distance, vector3_t *ReturnVec)
|
|
|
|
{
|
|
|
|
vector3_t vLineDir; // Variables to hold the point and the line's direction
|
|
|
|
fixed_t Numerator = 0, Denominator = 0, dist = 0;
|
|
|
|
|
|
|
|
// Here comes the confusing part. We need to find the 3D point that is actually
|
|
|
|
// on the plane. Here are some steps to do that:
|
|
|
|
|
|
|
|
// 1) First we need to get the vector of our line, Then normalize it so it's a length of 1
|
|
|
|
FV3_Point2Vec(&vLine[1], &vLine[0], &vLineDir); // Get the Vector of the line
|
|
|
|
FV3_NormalizeEx(&vLineDir, &vLineDir); // Normalize the lines vector
|
|
|
|
|
|
|
|
|
|
|
|
// 2) Use the plane equation (distance = Ax + By + Cz + D) to find the distance from one of our points to the plane.
|
|
|
|
// Here I just chose a arbitrary point as the point to find that distance. You notice we negate that
|
|
|
|
// distance. We negate the distance because we want to eventually go BACKWARDS from our point to the plane.
|
|
|
|
// By doing this is will basically bring us back to the plane to find our intersection point.
|
2018-12-15 13:46:08 +00:00
|
|
|
Numerator = -(FixedMul(vNormal->x, vLine[0].x) + // Use the plane equation with the normal and the line
|
|
|
|
FixedMul(vNormal->y, vLine[0].y) +
|
|
|
|
FixedMul(vNormal->z, vLine[0].z) + distance);
|
2014-03-15 16:59:03 +00:00
|
|
|
|
|
|
|
// 3) If we take the dot product between our line vector and the normal of the polygon,
|
|
|
|
// this will give us the cosine of the angle between the 2 (since they are both normalized - length 1).
|
|
|
|
// We will then divide our Numerator by this value to find the offset towards the plane from our arbitrary point.
|
|
|
|
Denominator = FV3_Dot(vNormal, &vLineDir); // Get the dot product of the line's vector and the normal of the plane
|
|
|
|
|
|
|
|
// Since we are using division, we need to make sure we don't get a divide by zero error
|
|
|
|
// If we do get a 0, that means that there are INFINITE points because the the line is
|
|
|
|
// on the plane (the normal is perpendicular to the line - (Normal.Vector = 0)).
|
|
|
|
// In this case, we should just return any point on the line.
|
|
|
|
|
2018-12-15 13:46:08 +00:00
|
|
|
if (Denominator == 0 * FRACUNIT) // Check so we don't divide by zero
|
2014-03-15 16:59:03 +00:00
|
|
|
{
|
|
|
|
ReturnVec->x = vLine[0].x;
|
|
|
|
ReturnVec->y = vLine[0].y;
|
|
|
|
ReturnVec->z = vLine[0].z;
|
|
|
|
return ReturnVec; // Return an arbitrary point on the line
|
|
|
|
}
|
|
|
|
|
|
|
|
// We divide the (distance from the point to the plane) by (the dot product)
|
|
|
|
// to get the distance (dist) that we need to move from our arbitrary point. We need
|
|
|
|
// to then times this distance (dist) by our line's vector (direction). When you times
|
|
|
|
// a scalar (single number) by a vector you move along that vector. That is what we are
|
|
|
|
// doing. We are moving from our arbitrary point we chose from the line BACK to the plane
|
|
|
|
// along the lines vector. It seems logical to just get the numerator, which is the distance
|
|
|
|
// from the point to the line, and then just move back that much along the line's vector.
|
|
|
|
// Well, the distance from the plane means the SHORTEST distance. What about in the case that
|
|
|
|
// the line is almost parallel with the polygon, but doesn't actually intersect it until half
|
|
|
|
// way down the line's length. The distance from the plane is short, but the distance from
|
|
|
|
// the actual intersection point is pretty long. If we divide the distance by the dot product
|
|
|
|
// of our line vector and the normal of the plane, we get the correct length. Cool huh?
|
|
|
|
|
|
|
|
dist = FixedDiv(Numerator, Denominator); // Divide to get the multiplying (percentage) factor
|
|
|
|
|
|
|
|
// Now, like we said above, we times the dist by the vector, then add our arbitrary point.
|
|
|
|
// This essentially moves the point along the vector to a certain distance. This now gives
|
|
|
|
// us the intersection point. Yay!
|
|
|
|
|
|
|
|
// Return the intersection point
|
|
|
|
ReturnVec->x = vLine[0].x + FixedMul(vLineDir.x, dist);
|
|
|
|
ReturnVec->y = vLine[0].y + FixedMul(vLineDir.y, dist);
|
|
|
|
ReturnVec->z = vLine[0].z + FixedMul(vLineDir.z, dist);
|
|
|
|
return ReturnVec;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// PointOnLineSide
|
|
|
|
//
|
|
|
|
// If on the front side of the line, returns 1.
|
|
|
|
// If on the back side of the line, returns 0.
|
|
|
|
// 2D only.
|
|
|
|
//
|
|
|
|
UINT8 FV3_PointOnLineSide(const vector3_t *point, const vector3_t *line)
|
|
|
|
{
|
2018-12-15 13:46:08 +00:00
|
|
|
fixed_t s1 = FixedMul((point->y - line[0].y), (line[1].x - line[0].x));
|
|
|
|
fixed_t s2 = FixedMul((point->x - line[0].x), (line[1].y - line[0].y));
|
2014-03-15 16:59:03 +00:00
|
|
|
return (UINT8)(s1 - s2 < 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// PointInsideBox
|
|
|
|
//
|
|
|
|
// Given four points of a box,
|
|
|
|
// determines if the supplied point is
|
|
|
|
// inside the box or not.
|
|
|
|
//
|
|
|
|
boolean FV3_PointInsideBox(const vector3_t *point, const vector3_t *box)
|
|
|
|
{
|
|
|
|
vector3_t lastLine[2];
|
|
|
|
|
|
|
|
FV3_Load(&lastLine[0], box[3].x, box[3].y, box[3].z);
|
|
|
|
FV3_Load(&lastLine[1], box[0].x, box[0].y, box[0].z);
|
|
|
|
|
|
|
|
if (FV3_PointOnLineSide(point, &box[0])
|
|
|
|
|| FV3_PointOnLineSide(point, &box[1])
|
|
|
|
|| FV3_PointOnLineSide(point, &box[2])
|
|
|
|
|| FV3_PointOnLineSide(point, lastLine))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
//
|
|
|
|
// LoadIdentity
|
|
|
|
//
|
|
|
|
// Loads the identity matrix into a matrix
|
|
|
|
//
|
|
|
|
void FM_LoadIdentity(matrix_t* matrix)
|
|
|
|
{
|
|
|
|
#define M(row,col) matrix->m[col * 4 + row]
|
|
|
|
memset(matrix, 0x00, sizeof(matrix_t));
|
|
|
|
|
|
|
|
M(0, 0) = FRACUNIT;
|
|
|
|
M(1, 1) = FRACUNIT;
|
|
|
|
M(2, 2) = FRACUNIT;
|
|
|
|
M(3, 3) = FRACUNIT;
|
|
|
|
#undef M
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// CreateObjectMatrix
|
|
|
|
//
|
|
|
|
// Creates a matrix that can be used for
|
|
|
|
// adjusting the position of an object
|
|
|
|
//
|
|
|
|
void FM_CreateObjectMatrix(matrix_t *matrix, fixed_t x, fixed_t y, fixed_t z, fixed_t anglex, fixed_t angley, fixed_t anglez, fixed_t upx, fixed_t upy, fixed_t upz, fixed_t radius)
|
|
|
|
{
|
|
|
|
vector3_t upcross;
|
|
|
|
vector3_t upvec;
|
|
|
|
vector3_t basevec;
|
|
|
|
|
|
|
|
FV3_Load(&upvec, upx, upy, upz);
|
|
|
|
FV3_Load(&basevec, anglex, angley, anglez);
|
|
|
|
FV3_Cross(&upvec, &basevec, &upcross);
|
|
|
|
FV3_Normalize(&upcross);
|
|
|
|
|
|
|
|
FM_LoadIdentity(matrix);
|
|
|
|
|
|
|
|
matrix->m[0] = upcross.x;
|
|
|
|
matrix->m[1] = upcross.y;
|
|
|
|
matrix->m[2] = upcross.z;
|
2018-12-15 13:46:08 +00:00
|
|
|
matrix->m[3] = 0 * FRACUNIT;
|
2014-03-15 16:59:03 +00:00
|
|
|
|
|
|
|
matrix->m[4] = upx;
|
|
|
|
matrix->m[5] = upy;
|
|
|
|
matrix->m[6] = upz;
|
|
|
|
matrix->m[7] = 0;
|
|
|
|
|
|
|
|
matrix->m[8] = anglex;
|
|
|
|
matrix->m[9] = angley;
|
|
|
|
matrix->m[10] = anglez;
|
|
|
|
matrix->m[11] = 0;
|
|
|
|
|
2018-12-15 13:46:08 +00:00
|
|
|
matrix->m[12] = x - FixedMul(upx, radius);
|
|
|
|
matrix->m[13] = y - FixedMul(upy, radius);
|
|
|
|
matrix->m[14] = z - FixedMul(upz, radius);
|
2014-03-15 16:59:03 +00:00
|
|
|
matrix->m[15] = FRACUNIT;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// MultMatrixVec
|
|
|
|
//
|
|
|
|
// Multiplies a vector by the specified matrix
|
|
|
|
//
|
2022-10-01 19:07:12 +00:00
|
|
|
const vector3_t *FM_MultMatrixVec3(const matrix_t *matrix, const vector3_t *vec, vector3_t *out)
|
2014-03-15 16:59:03 +00:00
|
|
|
{
|
|
|
|
#define M(row,col) matrix->m[col * 4 + row]
|
2018-12-15 13:46:08 +00:00
|
|
|
out->x = FixedMul(vec->x, M(0, 0))
|
|
|
|
+ FixedMul(vec->y, M(0, 1))
|
|
|
|
+ FixedMul(vec->z, M(0, 2))
|
|
|
|
+ M(0, 3);
|
|
|
|
|
|
|
|
out->y = FixedMul(vec->x, M(1, 0))
|
|
|
|
+ FixedMul(vec->y, M(1, 1))
|
|
|
|
+ FixedMul(vec->z, M(1, 2))
|
|
|
|
+ M(1, 3);
|
|
|
|
|
|
|
|
out->z = FixedMul(vec->x, M(2, 0))
|
|
|
|
+ FixedMul(vec->y, M(2, 1))
|
|
|
|
+ FixedMul(vec->z, M(2, 2))
|
|
|
|
+ M(2, 3);
|
2014-03-15 16:59:03 +00:00
|
|
|
#undef M
|
2022-10-01 19:07:12 +00:00
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
const vector4_t *FM_MultMatrixVec4(const matrix_t *matrix, const vector4_t *vec, vector4_t *out)
|
|
|
|
{
|
|
|
|
#define M(row,col) matrix->m[col * 4 + row]
|
|
|
|
out->x = FixedMul(vec->x, M(0, 0))
|
|
|
|
+ FixedMul(vec->y, M(0, 1))
|
|
|
|
+ FixedMul(vec->z, M(0, 2))
|
|
|
|
+ FixedMul(vec->a, M(0, 3));
|
|
|
|
|
|
|
|
out->y = FixedMul(vec->x, M(1, 0))
|
|
|
|
+ FixedMul(vec->y, M(1, 1))
|
|
|
|
+ FixedMul(vec->z, M(1, 2))
|
|
|
|
+ FixedMul(vec->a, M(1, 3));
|
|
|
|
|
|
|
|
out->z = FixedMul(vec->x, M(2, 0))
|
|
|
|
+ FixedMul(vec->y, M(2, 1))
|
|
|
|
+ FixedMul(vec->z, M(2, 2))
|
|
|
|
+ FixedMul(vec->a, M(2, 3));
|
|
|
|
|
|
|
|
|
|
|
|
out->a = FixedMul(vec->x, M(3, 0))
|
|
|
|
+ FixedMul(vec->y, M(3, 1))
|
|
|
|
+ FixedMul(vec->z, M(3, 2))
|
|
|
|
+ FixedMul(vec->a, M(3, 3));
|
|
|
|
#undef M
|
|
|
|
return out;
|
2014-03-15 16:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// MultMatrix
|
|
|
|
//
|
|
|
|
// Multiples one matrix into another
|
|
|
|
//
|
|
|
|
void FM_MultMatrix(matrix_t *dest, const matrix_t *multme)
|
|
|
|
{
|
|
|
|
matrix_t result;
|
|
|
|
UINT8 i, j;
|
|
|
|
#define M(row,col) multme->m[col * 4 + row]
|
|
|
|
#define D(row,col) dest->m[col * 4 + row]
|
|
|
|
#define R(row,col) result.m[col * 4 + row]
|
|
|
|
|
|
|
|
for (i = 0; i < 4; i++)
|
|
|
|
{
|
|
|
|
for (j = 0; j < 4; j++)
|
2018-12-15 13:46:08 +00:00
|
|
|
R(i, j) = FixedMul(D(i, 0), M(0, j)) + FixedMul(D(i, 1), M(1, j)) + FixedMul(D(i, 2), M(2, j)) + FixedMul(D(i, 3), M(3, j));
|
2014-03-15 16:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
M_Memcpy(dest, &result, sizeof(matrix_t));
|
|
|
|
|
|
|
|
#undef R
|
|
|
|
#undef D
|
|
|
|
#undef M
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Translate
|
|
|
|
//
|
|
|
|
// Translates a matrix
|
|
|
|
//
|
|
|
|
void FM_Translate(matrix_t *dest, fixed_t x, fixed_t y, fixed_t z)
|
|
|
|
{
|
|
|
|
matrix_t trans;
|
|
|
|
#define M(row,col) trans.m[col * 4 + row]
|
|
|
|
|
|
|
|
memset(&trans, 0x00, sizeof(matrix_t));
|
|
|
|
|
|
|
|
M(0, 0) = M(1, 1) = M(2, 2) = M(3, 3) = FRACUNIT;
|
|
|
|
M(0, 3) = x;
|
|
|
|
M(1, 3) = y;
|
|
|
|
M(2, 3) = z;
|
|
|
|
|
|
|
|
FM_MultMatrix(dest, &trans);
|
|
|
|
#undef M
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Scale
|
|
|
|
//
|
|
|
|
// Scales a matrix
|
|
|
|
//
|
|
|
|
void FM_Scale(matrix_t *dest, fixed_t x, fixed_t y, fixed_t z)
|
|
|
|
{
|
|
|
|
matrix_t scale;
|
|
|
|
#define M(row,col) scale.m[col * 4 + row]
|
|
|
|
|
|
|
|
memset(&scale, 0x00, sizeof(matrix_t));
|
|
|
|
|
|
|
|
M(3, 3) = FRACUNIT;
|
|
|
|
M(0, 0) = x;
|
|
|
|
M(1, 1) = y;
|
|
|
|
M(2, 2) = z;
|
|
|
|
|
|
|
|
FM_MultMatrix(dest, &scale);
|
|
|
|
#undef M
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef M_TESTCASE
|
|
|
|
//#define MULDIV_TEST
|
|
|
|
#define SQRT_TEST
|
|
|
|
|
|
|
|
static inline void M_print(INT64 a)
|
|
|
|
{
|
2018-12-15 13:46:08 +00:00
|
|
|
const fixed_t w = (a >> FRACBITS);
|
|
|
|
fixed_t f = a % FRACUNIT;
|
2014-03-15 16:59:03 +00:00
|
|
|
fixed_t d = FRACUNIT;
|
|
|
|
|
|
|
|
if (f == 0)
|
|
|
|
{
|
|
|
|
printf("%d", (fixed_t)w);
|
|
|
|
return;
|
|
|
|
}
|
2018-12-15 13:46:08 +00:00
|
|
|
else while (f != 1 && f / 2 == f >> 1)
|
2014-03-15 16:59:03 +00:00
|
|
|
{
|
|
|
|
d /= 2;
|
|
|
|
f /= 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (w == 0)
|
|
|
|
printf("%d/%d", (fixed_t)f, d);
|
|
|
|
else
|
|
|
|
printf("%d+(%d/%d)", (fixed_t)w, (fixed_t)f, d);
|
|
|
|
}
|
|
|
|
|
|
|
|
FUNCMATH FUNCINLINE static inline fixed_t FixedMulC(fixed_t a, fixed_t b)
|
|
|
|
{
|
2018-12-15 13:46:08 +00:00
|
|
|
return (fixed_t)((((INT64)a * b)) / FRACUNIT);
|
2014-03-15 16:59:03 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
FUNCMATH FUNCINLINE static inline fixed_t FixedDivC2(fixed_t a, fixed_t b)
|
|
|
|
{
|
|
|
|
INT64 ret;
|
|
|
|
|
|
|
|
if (b == 0)
|
|
|
|
I_Error("FixedDiv: divide by zero");
|
|
|
|
|
2018-12-15 13:46:08 +00:00
|
|
|
ret = (((INT64)a * FRACUNIT)) / b;
|
2014-03-15 16:59:03 +00:00
|
|
|
|
|
|
|
if ((ret > INT32_MAX) || (ret < INT32_MIN))
|
|
|
|
I_Error("FixedDiv: divide by zero");
|
|
|
|
return (fixed_t)ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
FUNCMATH FUNCINLINE static inline fixed_t FixedDivC(fixed_t a, fixed_t b)
|
|
|
|
{
|
2018-12-15 13:46:08 +00:00
|
|
|
if ((abs(a) >> (FRACBITS - 2)) >= abs(b))
|
2014-03-15 16:59:03 +00:00
|
|
|
return (a^b) < 0 ? INT32_MIN : INT32_MAX;
|
|
|
|
|
|
|
|
return FixedDivC2(a, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
FUNCMATH FUNCINLINE static inline fixed_t FixedSqrtC(fixed_t x)
|
|
|
|
{
|
|
|
|
const float fx = FIXED_TO_FLOAT(x);
|
|
|
|
float fr;
|
|
|
|
#ifdef HAVE_SQRTF
|
|
|
|
fr = sqrtf(fx);
|
|
|
|
#else
|
|
|
|
fr = (float)sqrt(fx);
|
|
|
|
#endif
|
|
|
|
return FLOAT_TO_FIXED(fr);
|
|
|
|
}
|
|
|
|
int main(int argc, char** argv)
|
|
|
|
{
|
|
|
|
int n = 10;
|
|
|
|
INT64 a, b;
|
|
|
|
fixed_t c, d;
|
|
|
|
(void)argc;
|
|
|
|
(void)argv;
|
|
|
|
|
|
|
|
#ifdef MULDIV_TEST
|
|
|
|
for (a = 1; a <= INT32_MAX; a += FRACUNIT)
|
2018-12-15 13:46:08 +00:00
|
|
|
for (b = 0; b <= INT32_MAX; b += FRACUNIT)
|
2014-03-15 16:59:03 +00:00
|
|
|
{
|
2018-12-15 13:46:08 +00:00
|
|
|
c = FixedMul(a, b);
|
|
|
|
d = FixedMulC(a, b);
|
|
|
|
if (c != d)
|
|
|
|
{
|
|
|
|
printf("(");
|
|
|
|
M_print(a);
|
|
|
|
printf(") * (");
|
|
|
|
M_print(b);
|
|
|
|
printf(") = (");
|
|
|
|
M_print(c);
|
|
|
|
printf(") != (");
|
|
|
|
M_print(d);
|
|
|
|
printf(") \n");
|
|
|
|
n--;
|
|
|
|
printf("%d != %d\n", c, d);
|
|
|
|
}
|
|
|
|
c = FixedDiv(a, b);
|
|
|
|
d = FixedDivC(a, b);
|
|
|
|
if (c != d)
|
|
|
|
{
|
|
|
|
printf("(");
|
|
|
|
M_print(a);
|
|
|
|
printf(") / (");
|
|
|
|
M_print(b);
|
|
|
|
printf(") = (");
|
|
|
|
M_print(c);
|
|
|
|
printf(") != (");
|
|
|
|
M_print(d);
|
|
|
|
printf(")\n");
|
|
|
|
n--;
|
|
|
|
printf("%d != %d\n", c, d);
|
|
|
|
}
|
|
|
|
if (n <= 0)
|
|
|
|
exit(-1);
|
2014-03-15 16:59:03 +00:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef SQRT_TEST
|
|
|
|
for (a = 0; a <= INT32_MAX; a += 1)
|
|
|
|
{
|
|
|
|
c = FixedSqrt(a);
|
|
|
|
d = FixedSqrtC(a);
|
2018-12-15 13:46:08 +00:00
|
|
|
b = abs(c - d);
|
2014-03-15 16:59:03 +00:00
|
|
|
if (b > 1)
|
|
|
|
{
|
|
|
|
printf("sqrt(");
|
|
|
|
M_print(a);
|
|
|
|
printf(") = {(");
|
|
|
|
M_print(c);
|
|
|
|
printf(") != (");
|
|
|
|
M_print(d);
|
|
|
|
printf(")} \n");
|
|
|
|
//n--;
|
|
|
|
printf("%d != %d {", c, d);
|
|
|
|
M_print(b);
|
|
|
|
printf("}\n");
|
|
|
|
}
|
|
|
|
if (n <= 0)
|
|
|
|
exit(-1);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
exit(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void *cpu_cpy(void *dest, const void *src, size_t n)
|
|
|
|
{
|
|
|
|
return memcpy(dest, src, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
void *(*M_Memcpy)(void* dest, const void* src, size_t n) = cpu_cpy;
|
|
|
|
|
|
|
|
void I_Error(const char *error, ...)
|
|
|
|
{
|
|
|
|
(void)error;
|
|
|
|
exit(-1);
|
|
|
|
}
|
|
|
|
#endif
|