Kart-Public/src/p_maputl.c
RedEnchilada 3f8e7b1739 Revert/remove unused/broken junk from original slopes port
m_vector removal to come later. The little thing commented out in it
is so I could revert the weird tables.c change.
2015-05-22 20:57:58 -05:00

1425 lines
36 KiB
C
Raw Blame History

// SONIC ROBO BLAST 2
//-----------------------------------------------------------------------------
// Copyright (C) 1993-1996 by id Software, Inc.
// Copyright (C) 1998-2000 by DooM Legacy Team.
// Copyright (C) 1999-2014 by Sonic Team Junior.
//
// This program is free software distributed under the
// terms of the GNU General Public License, version 2.
// See the 'LICENSE' file for more details.
//-----------------------------------------------------------------------------
/// \file p_maputl.c
/// \brief Movement/collision utility functions, as used by functions in p_map.c
/// Blockmap iterator functions, and some PIT_* functions to use for iteration
#include "doomdef.h"
#include "doomstat.h"
#include "p_local.h"
#include "r_main.h"
#include "r_data.h"
#include "p_maputl.h"
#include "p_polyobj.h"
#include "z_zone.h"
//
// P_AproxDistance
// Gives an estimation of distance (not exact)
//
fixed_t P_AproxDistance(fixed_t dx, fixed_t dy)
{
dx = abs(dx);
dy = abs(dy);
if (dx < dy)
return dx + dy - (dx>>1);
return dx + dy - (dy>>1);
}
//
// P_PartialDistance
// Useful only for iterations finding the 'closest point'
//
FUNCMATH static inline fixed_t P_PartialDistance(fixed_t dx, fixed_t dy)
{
dx >>= FRACBITS;
dy >>= FRACBITS;
dx *= dx;
dy *= dy;
return dx + dy;
}
//
// P_ClosestPointOnLine
// Finds the closest point on a given line to the supplied point
//
void P_ClosestPointOnLine(fixed_t x, fixed_t y, line_t *line, vertex_t *result)
{
fixed_t startx = line->v1->x;
fixed_t starty = line->v1->y;
fixed_t dx = line->dx;
fixed_t dy = line->dy;
// Determine t (the length of the vector from <20>Line[0]<5D> to <20>p<EFBFBD>)
fixed_t cx, cy;
fixed_t vx, vy;
fixed_t magnitude;
fixed_t t;
//Sub (p, &Line[0], &c);
cx = x - startx;
cy = y - starty;
//Sub (&Line[1], &Line[0], &V);
vx = dx;
vy = dy;
//Normalize (&V, &V);
magnitude = R_PointToDist2(line->v2->x, line->v2->y, startx, starty);
vx = FixedDiv(vx, magnitude);
vy = FixedDiv(vy, magnitude);
t = (FixedMul(vx, cx) + FixedMul(vy, cy));
// Return the point between <20>Line[0]<5D> and <20>Line[1]<5D>
vx = FixedMul(vx, t);
vy = FixedMul(vy, t);
//Add (&Line[0], &V, out);
result->x = startx + vx;
result->y = starty + vy;
return;
}
//
// P_ClosestPointOnLine3D
// Finds the closest point on a given line to the supplied point IN 3D!!!
//
void P_ClosestPointOnLine3D(fixed_t x, fixed_t y, fixed_t z, line_t *line, vertex_t *result)
{
fixed_t startx = line->v1->x;
fixed_t starty = line->v1->y;
fixed_t startz = line->v1->z;
fixed_t dx = line->dx;
fixed_t dy = line->dy;
fixed_t dz = line->v2->z - line->v1->z;
// Determine t (the length of the vector from <20>Line[0]<5D> to <20>p<EFBFBD>)
fixed_t cx, cy, cz;
fixed_t vx, vy, vz;
fixed_t magnitude;
fixed_t t;
//Sub (p, &Line[0], &c);
cx = x - startx;
cy = y - starty;
cz = z - startz;
//Sub (&Line[1], &Line[0], &V);
vx = dx;
vy = dy;
vz = dz;
//Normalize (&V, &V);
magnitude = R_PointToDist2(0, line->v2->z, R_PointToDist2(line->v2->x, line->v2->y, startx, starty), startz);
vx = FixedDiv(vx, magnitude);
vy = FixedDiv(vy, magnitude);
vz = FixedDiv(vz, magnitude);
t = (FixedMul(vx, cx) + FixedMul(vy, cy) + FixedMul(vz, cz));
// Set closest point to the end if it extends past -Red
if (t <= 0)
{
result->x = line->v1->x;
result->y = line->v1->y;
result->z = line->v1->z;
return;
}
else if (t >= magnitude)
{
result->x = line->v2->x;
result->y = line->v2->y;
result->z = line->v2->z;
return;
}
// Return the point between <20>Line[0]<5D> and <20>Line[1]<5D>
vx = FixedMul(vx, t);
vy = FixedMul(vy, t);
vz = FixedMul(vz, t);
//Add (&Line[0], &V, out);
result->x = startx + vx;
result->y = starty + vy;
result->z = startz + vz;
return;
}
//
// P_PointOnLineSide
// Returns 0 or 1
//
INT32 P_PointOnLineSide(fixed_t x, fixed_t y, line_t *line)
{
const vertex_t *v1 = line->v1;
fixed_t dx, dy, left, right;
if (!line->dx)
{
if (x <= v1->x)
return (line->dy > 0);
return (line->dy < 0);
}
if (!line->dy)
{
if (y <= v1->y)
return (line->dx < 0);
return (line->dx > 0);
}
dx = (x - v1->x);
dy = (y - v1->y);
left = FixedMul(line->dy>>FRACBITS, dx);
right = FixedMul(dy, line->dx>>FRACBITS);
if (right < left)
return 0; // front side
return 1; // back side
}
//
// P_BoxOnLineSide
// Considers the line to be infinite
// Returns side 0 or 1, -1 if box crosses the line.
//
INT32 P_BoxOnLineSide(fixed_t *tmbox, line_t *ld)
{
INT32 p1, p2;
switch (ld->slopetype)
{
case ST_HORIZONTAL:
p1 = tmbox[BOXTOP] > ld->v1->y;
p2 = tmbox[BOXBOTTOM] > ld->v1->y;
if (ld->dx < 0)
{
p1 ^= 1;
p2 ^= 1;
}
break;
case ST_VERTICAL:
p1 = tmbox[BOXRIGHT] < ld->v1->x;
p2 = tmbox[BOXLEFT] < ld->v1->x;
if (ld->dy < 0)
{
p1 ^= 1;
p2 ^= 1;
}
break;
case ST_POSITIVE:
p1 = P_PointOnLineSide(tmbox[BOXLEFT], tmbox[BOXTOP], ld);
p2 = P_PointOnLineSide(tmbox[BOXRIGHT], tmbox[BOXBOTTOM], ld);
break;
case ST_NEGATIVE:
p1 = P_PointOnLineSide(tmbox[BOXRIGHT], tmbox[BOXTOP], ld);
p2 = P_PointOnLineSide(tmbox[BOXLEFT], tmbox[BOXBOTTOM], ld);
break;
default:
I_Error("P_BoxOnLineSide: unknown slopetype %d\n", ld->slopetype);
return -1;
}
if (p1 == p2)
return p1;
return -1;
}
//
// P_PointOnDivlineSide
// Returns 0 or 1.
//
static INT32 P_PointOnDivlineSide(fixed_t x, fixed_t y, divline_t *line)
{
fixed_t dx, dy, left, right;
if (!line->dx)
{
if (x <= line->x)
return line->dy > 0;
return line->dy < 0;
}
if (!line->dy)
{
if (y <= line->y)
return line->dx < 0;
return line->dx > 0;
}
dx = (x - line->x);
dy = (y - line->y);
// try to quickly decide by looking at sign bits
if ((line->dy ^ line->dx ^ dx ^ dy) & 0x80000000)
{
if ((line->dy ^ dx) & 0x80000000)
return 1; // left is negative
return 0;
}
left = FixedMul(line->dy>>8, dx>>8);
right = FixedMul(dy>>8, line->dx>>8);
if (right < left)
return 0; // front side
return 1; // back side
}
//
// P_MakeDivline
//
void P_MakeDivline(line_t *li, divline_t *dl)
{
dl->x = li->v1->x;
dl->y = li->v1->y;
dl->dx = li->dx;
dl->dy = li->dy;
}
//
// P_InterceptVector
// Returns the fractional intercept point along the first divline.
// This is only called by the addthings and addlines traversers.
//
fixed_t P_InterceptVector(divline_t *v2, divline_t *v1)
{
fixed_t frac, num, den;
den = FixedMul(v1->dy>>8, v2->dx) - FixedMul(v1->dx>>8, v2->dy);
if (!den)
return 0;
num = FixedMul((v1->x - v2->x)>>8, v1->dy) + FixedMul((v2->y - v1->y)>>8, v1->dx);
frac = FixedDiv(num, den);
return frac;
}
//
// P_LineOpening
// Sets opentop and openbottom to the window through a two sided line.
// OPTIMIZE: keep this precalculated
//
fixed_t opentop, openbottom, openrange, lowfloor, highceiling;
#ifdef ESLOPE
pslope_t *opentopslope, *openbottomslope;
#endif
// P_CameraLineOpening
// P_LineOpening, but for camera
// Tails 09-29-2002
void P_CameraLineOpening(line_t *linedef)
{
sector_t *front;
sector_t *back;
fixed_t frontfloor, frontceiling, backfloor, backceiling;
if (linedef->sidenum[1] == 0xffff)
{
// single sided line
openrange = 0;
return;
}
front = linedef->frontsector;
back = linedef->backsector;
// Cameras use the heightsec's heights rather then the actual sector heights.
// If you can see through it, why not move the camera through it too?
if (front->camsec >= 0)
{
frontfloor = sectors[front->camsec].floorheight;
frontceiling = sectors[front->camsec].ceilingheight;
#ifdef ESLOPE
if (sectors[front->camsec].f_slope) // SRB2CBTODO: ESLOPE (sectors[front->heightsec].f_slope)
frontfloor = P_GetZAt(sectors[front->camsec].f_slope, camera.x, camera.y);
if (sectors[front->camsec].c_slope)
frontceiling = P_GetZAt(sectors[front->camsec].c_slope, camera.x, camera.y);
#endif
}
else if (front->heightsec >= 0)
{
frontfloor = sectors[front->heightsec].floorheight;
frontceiling = sectors[front->heightsec].ceilingheight;
#ifdef ESLOPE
if (sectors[front->heightsec].f_slope) // SRB2CBTODO: ESLOPE (sectors[front->heightsec].f_slope)
frontfloor = P_GetZAt(sectors[front->heightsec].f_slope, camera.x, camera.y);
if (sectors[front->heightsec].c_slope)
frontceiling = P_GetZAt(sectors[front->heightsec].c_slope, camera.x, camera.y);
#endif
}
else
{
frontfloor = P_CameraGetFloorZ(mapcampointer, front, tmx, tmy, linedef);
frontceiling = P_CameraGetCeilingZ(mapcampointer, front, tmx, tmy, linedef);
}
if (back->camsec >= 0)
{
backfloor = sectors[back->camsec].floorheight;
backceiling = sectors[back->camsec].ceilingheight;
#ifdef ESLOPE
if (sectors[back->camsec].f_slope) // SRB2CBTODO: ESLOPE (sectors[front->heightsec].f_slope)
frontfloor = P_GetZAt(sectors[back->camsec].f_slope, camera.x, camera.y);
if (sectors[back->camsec].c_slope)
frontceiling = P_GetZAt(sectors[back->camsec].c_slope, camera.x, camera.y);
#endif
}
else if (back->heightsec >= 0)
{
backfloor = sectors[back->heightsec].floorheight;
backceiling = sectors[back->heightsec].ceilingheight;
#ifdef ESLOPE
if (sectors[back->heightsec].f_slope) // SRB2CBTODO: ESLOPE (sectors[front->heightsec].f_slope)
frontfloor = P_GetZAt(sectors[back->heightsec].f_slope, camera.x, camera.y);
if (sectors[back->heightsec].c_slope)
frontceiling = P_GetZAt(sectors[back->heightsec].c_slope, camera.x, camera.y);
#endif
}
else
{
backfloor = P_CameraGetFloorZ(mapcampointer, back, tmx, tmy, linedef);
backceiling = P_CameraGetCeilingZ(mapcampointer, back, tmx, tmy, linedef);
}
{
fixed_t thingtop = mapcampointer->z + mapcampointer->height;
if (frontceiling < backceiling)
{
opentop = frontceiling;
highceiling = backceiling;
}
else
{
opentop = backceiling;
highceiling = frontceiling;
}
if (frontfloor > backfloor)
{
openbottom = frontfloor;
lowfloor = backfloor;
}
else
{
openbottom = backfloor;
lowfloor = frontfloor;
}
// Check for fake floors in the sector.
if (front->ffloors || back->ffloors)
{
ffloor_t *rover;
fixed_t highestceiling = highceiling;
fixed_t lowestceiling = opentop;
fixed_t highestfloor = openbottom;
fixed_t lowestfloor = lowfloor;
fixed_t delta1, delta2;
// Check for frontsector's fake floors
if (front->ffloors)
for (rover = front->ffloors; rover; rover = rover->next)
{
if (!(rover->flags & FF_BLOCKOTHERS) || !(rover->flags & FF_RENDERALL) || !(rover->flags & FF_EXISTS) || GETSECSPECIAL(rover->master->frontsector->special, 4) == 12)
continue;
fixed_t topheight = P_CameraGetFOFTopZ(mapcampointer, front, rover, tmx, tmy, linedef);
fixed_t bottomheight = P_CameraGetFOFBottomZ(mapcampointer, front, rover, tmx, tmy, linedef);
delta1 = abs(mapcampointer->z - (bottomheight + ((topheight - bottomheight)/2)));
delta2 = abs(thingtop - (bottomheight + ((topheight - bottomheight)/2)));
if (bottomheight < lowestceiling && delta1 >= delta2)
lowestceiling = bottomheight;
else if (bottomheight < highestceiling && delta1 >= delta2)
highestceiling = bottomheight;
if (topheight > highestfloor && delta1 < delta2)
highestfloor = topheight;
else if (topheight > lowestfloor && delta1 < delta2)
lowestfloor = topheight;
}
// Check for backsectors fake floors
if (back->ffloors)
for (rover = back->ffloors; rover; rover = rover->next)
{
if (!(rover->flags & FF_BLOCKOTHERS) || !(rover->flags & FF_RENDERALL) || !(rover->flags & FF_EXISTS) || GETSECSPECIAL(rover->master->frontsector->special, 4) == 12)
continue;
fixed_t topheight = P_CameraGetFOFTopZ(mapcampointer, back, rover, tmx, tmy, linedef);
fixed_t bottomheight = P_CameraGetFOFBottomZ(mapcampointer, back, rover, tmx, tmy, linedef);
delta1 = abs(mapcampointer->z - (bottomheight + ((topheight - bottomheight)/2)));
delta2 = abs(thingtop - (bottomheight + ((topheight - bottomheight)/2)));
if (bottomheight < lowestceiling && delta1 >= delta2)
lowestceiling = bottomheight;
else if (bottomheight < highestceiling && delta1 >= delta2)
highestceiling = bottomheight;
if (topheight > highestfloor && delta1 < delta2)
highestfloor = topheight;
else if (topheight > lowestfloor && delta1 < delta2)
lowestfloor = topheight;
}
if (highestceiling < highceiling)
highceiling = highestceiling;
if (highestfloor > openbottom)
openbottom = highestfloor;
if (lowestceiling < opentop)
opentop = lowestceiling;
if (lowestfloor > lowfloor)
lowfloor = lowestfloor;
}
openrange = opentop - openbottom;
return;
}
}
void P_LineOpening(line_t *linedef)
{
sector_t *front, *back;
if (linedef->sidenum[1] == 0xffff)
{
// single sided line
openrange = 0;
return;
}
// Treat polyobjects kind of like 3D Floors
#ifdef POLYOBJECTS
if (linedef->polyobj && (linedef->polyobj->flags & POF_TESTHEIGHT))
{
front = linedef->frontsector;
back = linedef->frontsector;
}
else
#endif
{
front = linedef->frontsector;
back = linedef->backsector;
}
I_Assert(front != NULL);
I_Assert(back != NULL);
{ // Set open and high/low values here
fixed_t frontheight, backheight;
frontheight = P_GetCeilingZ(tmthing, front, tmx, tmy, linedef);
backheight = P_GetCeilingZ(tmthing, back, tmx, tmy, linedef);
if (frontheight < backheight)
{
opentop = frontheight;
highceiling = backheight;
opentopslope = front->c_slope;
}
else
{
opentop = backheight;
highceiling = frontheight;
opentopslope = back->c_slope;
}
frontheight = P_GetFloorZ(tmthing, front, tmx, tmy, linedef);
backheight = P_GetFloorZ(tmthing, back, tmx, tmy, linedef);
if (frontheight > backheight)
{
openbottom = frontheight;
lowfloor = backheight;
openbottomslope = front->f_slope;
}
else
{
openbottom = backheight;
lowfloor = frontheight;
openbottomslope = back->f_slope;
}
}
if (tmthing)
{
fixed_t thingtop = tmthing->z + tmthing->height;
// Check for collision with front side's midtexture if Effect 4 is set
if (linedef->flags & ML_EFFECT4) {
side_t *side = &sides[linedef->sidenum[0]];
fixed_t textop, texbottom, texheight;
fixed_t texmid, delta1, delta2;
// Get the midtexture's height
texheight = textures[texturetranslation[side->midtexture]]->height << FRACBITS;
// Set texbottom and textop to the Z coordinates of the texture's boundaries
#ifdef POLYOBJECTS
if (linedef->polyobj && (linedef->polyobj->flags & POF_TESTHEIGHT)) {
if (linedef->flags & ML_DONTPEGBOTTOM) {
texbottom = back->floorheight + side->rowoffset;
textop = texbottom + texheight*(side->repeatcnt+1);
} else {
textop = back->ceilingheight - side->rowoffset;
texbottom = textop - texheight*(side->repeatcnt+1);
}
} else
#endif
{
if (linedef->flags & ML_DONTPEGBOTTOM) {
texbottom = openbottom + side->rowoffset;
textop = texbottom + texheight*(side->repeatcnt+1);
} else {
textop = opentop - side->rowoffset;
texbottom = textop - texheight*(side->repeatcnt+1);
}
}
texmid = texbottom+(textop-texbottom)/2;
delta1 = abs(tmthing->z - texmid);
delta2 = abs(thingtop - texmid);
if (delta1 > delta2) { // Below
if (opentop > texbottom)
opentop = texbottom;
} else { // Above
if (openbottom < textop)
openbottom = textop;
}
}
// Check for fake floors in the sector.
if (front->ffloors || back->ffloors
#ifdef POLYOBJECTS
|| linedef->polyobj
#endif
)
{
ffloor_t *rover;
fixed_t highestceiling = highceiling;
fixed_t lowestceiling = opentop;
fixed_t highestfloor = openbottom;
fixed_t lowestfloor = lowfloor;
fixed_t delta1, delta2;
#ifdef ESLOPE
pslope_t *ceilingslope = opentopslope;
pslope_t *floorslope = openbottomslope;
#endif
// Check for frontsector's fake floors
for (rover = front->ffloors; rover; rover = rover->next)
{
if (!(rover->flags & FF_EXISTS))
continue;
if (tmthing->player && (P_CheckSolidLava(tmthing, rover) || P_CanRunOnWater(tmthing->player, rover)))
;
else if (!((rover->flags & FF_BLOCKPLAYER && tmthing->player)
|| (rover->flags & FF_BLOCKOTHERS && !tmthing->player)))
continue;
fixed_t topheight = P_GetFOFTopZ(tmthing, front, rover, tmx, tmy, linedef);
fixed_t bottomheight = P_GetFOFBottomZ(tmthing, front, rover, tmx, tmy, linedef);
delta1 = abs(tmthing->z - (bottomheight + ((topheight - bottomheight)/2)));
delta2 = abs(thingtop - (bottomheight + ((topheight - bottomheight)/2)));
if (delta1 >= delta2 && !(rover->flags & FF_PLATFORM)) // thing is below FOF
{
if (bottomheight < lowestceiling) {
lowestceiling = bottomheight;
#ifdef ESLOPE
ceilingslope = *rover->b_slope;
#endif
}
else if (bottomheight < highestceiling)
highestceiling = bottomheight;
}
if (delta1 < delta2 && !(rover->flags & FF_REVERSEPLATFORM)) // thing is above FOF
{
if (topheight > highestfloor) {
highestfloor = topheight;
#ifdef ESLOPE
floorslope = *rover->t_slope;
#endif
}
else if (topheight > lowestfloor)
lowestfloor = topheight;
}
}
// Check for backsectors fake floors
for (rover = back->ffloors; rover; rover = rover->next)
{
if (!(rover->flags & FF_EXISTS))
continue;
if (tmthing->player && (P_CheckSolidLava(tmthing, rover) || P_CanRunOnWater(tmthing->player, rover)))
;
else if (!((rover->flags & FF_BLOCKPLAYER && tmthing->player)
|| (rover->flags & FF_BLOCKOTHERS && !tmthing->player)))
continue;
fixed_t topheight = P_GetFOFTopZ(tmthing, back, rover, tmx, tmy, linedef);
fixed_t bottomheight = P_GetFOFBottomZ(tmthing, back, rover, tmx, tmy, linedef);
delta1 = abs(tmthing->z - (bottomheight + ((topheight - bottomheight)/2)));
delta2 = abs(thingtop - (bottomheight + ((topheight - bottomheight)/2)));
if (delta1 >= delta2 && !(rover->flags & FF_PLATFORM)) // thing is below FOF
{
if (bottomheight < lowestceiling) {
lowestceiling = bottomheight;
#ifdef ESLOPE
ceilingslope = *rover->b_slope;
#endif
}
else if (bottomheight < highestceiling)
highestceiling = bottomheight;
}
if (delta1 < delta2 && !(rover->flags & FF_REVERSEPLATFORM)) // thing is above FOF
{
if (topheight > highestfloor) {
highestfloor = topheight;
#ifdef ESLOPE
floorslope = *rover->t_slope;
#endif
}
else if (topheight > lowestfloor)
lowestfloor = topheight;
}
}
#ifdef POLYOBJECTS
// Treat polyobj's backsector like a 3D Floor
if (linedef->polyobj && (linedef->polyobj->flags & POF_TESTHEIGHT))
{
const sector_t *polysec = linedef->backsector;
delta1 = abs(tmthing->z - (polysec->floorheight + ((polysec->ceilingheight - polysec->floorheight)/2)));
delta2 = abs(thingtop - (polysec->floorheight + ((polysec->ceilingheight - polysec->floorheight)/2)));
if (polysec->floorheight < lowestceiling && delta1 >= delta2) {
lowestceiling = polysec->floorheight;
#ifdef ESLOPE
ceilingslope = NULL;
#endif
}
else if (polysec->floorheight < highestceiling && delta1 >= delta2)
highestceiling = polysec->floorheight;
if (polysec->ceilingheight > highestfloor && delta1 < delta2) {
highestfloor = polysec->ceilingheight;
#ifdef ESLOPE
floorslope = NULL;
#endif
}
else if (polysec->ceilingheight > lowestfloor && delta1 < delta2)
lowestfloor = polysec->ceilingheight;
}
#endif
if (highestceiling < highceiling)
highceiling = highestceiling;
if (highestfloor > openbottom) {
openbottom = highestfloor;
#ifdef ESLOPE
openbottomslope = floorslope;
#endif
}
if (lowestceiling < opentop) {
opentop = lowestceiling;
#ifdef ESLOPE
opentopslope = ceilingslope;
#endif
}
if (lowestfloor > lowfloor)
lowfloor = lowestfloor;
}
}
openrange = opentop - openbottom;
}
//
// THING POSITION SETTING
//
//
// P_UnsetThingPosition
// Unlinks a thing from block map and sectors.
// On each position change, BLOCKMAP and other
// lookups maintaining lists ot things inside
// these structures need to be updated.
//
void P_UnsetThingPosition(mobj_t *thing)
{
I_Assert(thing != NULL);
I_Assert(!P_MobjWasRemoved(thing));
if (!(thing->flags & MF_NOSECTOR))
{
/* invisible things don't need to be in sector list
* unlink from subsector
*
* killough 8/11/98: simpler scheme using pointers-to-pointers for prev
* pointers, allows head node pointers to be treated like everything else
*/
mobj_t **sprev = thing->sprev;
mobj_t *snext = thing->snext;
if ((*sprev = snext) != NULL) // unlink from sector list
snext->sprev = sprev;
// phares 3/14/98
//
// Save the sector list pointed to by touching_sectorlist.
// In P_SetThingPosition, we'll keep any nodes that represent
// sectors the Thing still touches. We'll add new ones then, and
// delete any nodes for sectors the Thing has vacated. Then we'll
// put it back into touching_sectorlist. It's done this way to
// avoid a lot of deleting/creating for nodes, when most of the
// time you just get back what you deleted anyway.
//
// If this Thing is being removed entirely, then the calling
// routine will clear out the nodes in sector_list.
sector_list = thing->touching_sectorlist;
thing->touching_sectorlist = NULL; //to be restored by P_SetThingPosition
}
if (!(thing->flags & MF_NOBLOCKMAP))
{
/* inert things don't need to be in blockmap
*
* killough 8/11/98: simpler scheme using pointers-to-pointers for prev
* pointers, allows head node pointers to be treated like everything else
*
* Also more robust, since it doesn't depend on current position for
* unlinking. Old method required computing head node based on position
* at time of unlinking, assuming it was the same position as during
* linking.
*/
mobj_t *bnext, **bprev = thing->bprev;
if (bprev && (*bprev = bnext = thing->bnext) != NULL) // unlink from block map
bnext->bprev = bprev;
}
}
void P_UnsetPrecipThingPosition(precipmobj_t *thing)
{
precipmobj_t **sprev = thing->sprev;
precipmobj_t *snext = thing->snext;
if ((*sprev = snext) != NULL) // unlink from sector list
snext->sprev = sprev;
precipsector_list = thing->touching_sectorlist;
thing->touching_sectorlist = NULL; //to be restored by P_SetPrecipThingPosition
}
//
// P_SetThingPosition
// Links a thing into both a block and a subsector
// based on it's x y.
// Sets thing->subsector properly
//
void P_SetThingPosition(mobj_t *thing)
{ // link into subsector
subsector_t *ss;
sector_t *oldsec = NULL;
fixed_t tfloorz, tceilz;
I_Assert(thing != NULL);
I_Assert(!P_MobjWasRemoved(thing));
if (thing->player && thing->z <= thing->floorz && thing->subsector)
oldsec = thing->subsector->sector;
ss = thing->subsector = R_PointInSubsector(thing->x, thing->y);
if (!(thing->flags & MF_NOSECTOR))
{
// invisible things don't go into the sector links
// killough 8/11/98: simpler scheme using pointer-to-pointer prev
// pointers, allows head nodes to be treated like everything else
mobj_t **link = &ss->sector->thinglist;
mobj_t *snext = *link;
if ((thing->snext = snext) != NULL)
snext->sprev = &thing->snext;
thing->sprev = link;
*link = thing;
// phares 3/16/98
//
// If sector_list isn't NULL, it has a collection of sector
// nodes that were just removed from this Thing.
// Collect the sectors the object will live in by looking at
// the existing sector_list and adding new nodes and deleting
// obsolete ones.
// When a node is deleted, its sector links (the links starting
// at sector_t->touching_thinglist) are broken. When a node is
// added, new sector links are created.
P_CreateSecNodeList(thing,thing->x,thing->y);
thing->touching_sectorlist = sector_list; // Attach to Thing's mobj_t
sector_list = NULL; // clear for next time
}
// link into blockmap
if (!(thing->flags & MF_NOBLOCKMAP))
{
// inert things don't need to be in blockmap
const INT32 blockx = (unsigned)(thing->x - bmaporgx)>>MAPBLOCKSHIFT;
const INT32 blocky = (unsigned)(thing->y - bmaporgy)>>MAPBLOCKSHIFT;
if (blockx >= 0 && blockx < bmapwidth
&& blocky >= 0 && blocky < bmapheight)
{
// killough 8/11/98: simpler scheme using
// pointer-to-pointer prev pointers --
// allows head nodes to be treated like everything else
mobj_t **link = &blocklinks[blocky*bmapwidth + blockx];
mobj_t *bnext = *link;
if ((thing->bnext = bnext) != NULL)
bnext->bprev = &thing->bnext;
thing->bprev = link;
*link = thing;
}
else // thing is off the map
thing->bnext = NULL, thing->bprev = NULL;
}
// Allows you to 'step' on a new linedef exec when the previous
// sector's floor is the same height.
if (thing->player && oldsec != NULL && thing->subsector && oldsec != thing->subsector->sector)
{
tfloorz = P_GetFloorZ(thing, ss->sector, thing->x, thing->y, NULL);
tceilz = P_GetCeilingZ(thing, ss->sector, thing->x, thing->y, NULL);
if (thing->eflags & MFE_VERTICALFLIP)
{
if (thing->z + thing->height >= tceilz)
thing->eflags |= MFE_JUSTSTEPPEDDOWN;
}
else if (thing->z <= tfloorz)
thing->eflags |= MFE_JUSTSTEPPEDDOWN;
}
}
//
// P_SetUnderlayPosition
// Links a thing into a subsector at the other end of the stack,
// so it appears behind all other sprites in that subsector.
// Sets thing->subsector properly
//
void P_SetUnderlayPosition(mobj_t *thing)
{ // link into subsector
subsector_t *ss;
mobj_t **link, *lend;
I_Assert(thing);
ss = thing->subsector = R_PointInSubsector(thing->x, thing->y);
link = &ss->sector->thinglist;
for (lend = *link; lend && lend->snext; lend = lend->snext)
;
thing->snext = NULL;
if (!lend)
{
thing->sprev = link;
*link = thing;
}
else
{
thing->sprev = &lend->snext;
lend->snext = thing;
}
P_CreateSecNodeList(thing,thing->x,thing->y);
thing->touching_sectorlist = sector_list; // Attach to Thing's mobj_t
sector_list = NULL; // clear for next time
}
void P_SetPrecipitationThingPosition(precipmobj_t *thing)
{
subsector_t *ss = thing->subsector = R_PointInSubsector(thing->x, thing->y);
precipmobj_t **link = &ss->sector->preciplist;
precipmobj_t *snext = *link;
if ((thing->snext = snext) != NULL)
snext->sprev = &thing->snext;
thing->sprev = link;
*link = thing;
P_CreatePrecipSecNodeList(thing, thing->x, thing->y);
thing->touching_sectorlist = precipsector_list; // Attach to Thing's precipmobj_t
precipsector_list = NULL; // clear for next time
}
//
// BLOCK MAP ITERATORS
// For each line/thing in the given mapblock,
// call the passed PIT_* function.
// If the function returns false,
// exit with false without checking anything else.
//
//
// P_BlockLinesIterator
// The validcount flags are used to avoid checking lines
// that are marked in multiple mapblocks,
// so increment validcount before the first call
// to P_BlockLinesIterator, then make one or more calls
// to it.
//
boolean P_BlockLinesIterator(INT32 x, INT32 y, boolean (*func)(line_t *))
{
INT32 offset;
const INT32 *list; // Big blockmap
#ifdef POLYOBJECTS
polymaplink_t *plink; // haleyjd 02/22/06
#endif
line_t *ld;
if (x < 0 || y < 0 || x >= bmapwidth || y >= bmapheight)
return true;
offset = y*bmapwidth + x;
#ifdef POLYOBJECTS
// haleyjd 02/22/06: consider polyobject lines
plink = polyblocklinks[offset];
while (plink)
{
polyobj_t *po = plink->po;
if (po->validcount != validcount) // if polyobj hasn't been checked
{
size_t i;
po->validcount = validcount;
for (i = 0; i < po->numLines; ++i)
{
if (po->lines[i]->validcount == validcount) // line has been checked
continue;
po->lines[i]->validcount = validcount;
if (!func(po->lines[i]))
return false;
}
}
plink = (polymaplink_t *)(plink->link.next);
}
#endif
offset = *(blockmap + offset); // offset = blockmap[y*bmapwidth+x];
// First index is really empty, so +1 it.
for (list = blockmaplump + offset + 1; *list != -1; list++)
{
ld = &lines[*list];
if (ld->validcount == validcount)
continue; // Line has already been checked.
ld->validcount = validcount;
if (!func(ld))
return false;
}
return true; // Everything was checked.
}
//
// P_BlockThingsIterator
//
boolean P_BlockThingsIterator(INT32 x, INT32 y, boolean (*func)(mobj_t *))
{
mobj_t *mobj, *bnext = NULL;
if (x < 0 || y < 0 || x >= bmapwidth || y >= bmapheight)
return true;
// Check interaction with the objects in the blockmap.
for (mobj = blocklinks[y*bmapwidth + x]; mobj; mobj = bnext)
{
P_SetTarget(&bnext, mobj->bnext); // We want to note our reference to bnext here incase it is MF_NOTHINK and gets removed!
if (!func(mobj))
return false;
if (P_MobjWasRemoved(tmthing) // func just popped our tmthing, cannot continue.
|| (bnext && P_MobjWasRemoved(bnext))) // func just broke blockmap chain, cannot continue.
{
P_SetTarget(&bnext, NULL);
return true;
}
}
return true;
}
//
// INTERCEPT ROUTINES
//
//SoM: 4/6/2000: Limit removal
static intercept_t *intercepts = NULL;
static intercept_t *intercept_p = NULL;
divline_t trace;
static boolean earlyout;
//SoM: 4/6/2000: Remove limit on intercepts.
static void P_CheckIntercepts(void)
{
static size_t max_intercepts = 0;
size_t count = intercept_p - intercepts;
if (max_intercepts <= count)
{
if (!max_intercepts)
max_intercepts = 128;
else
max_intercepts *= 2;
intercepts = Z_Realloc(intercepts, sizeof (*intercepts) * max_intercepts, PU_STATIC, NULL);
intercept_p = intercepts + count;
}
}
//
// PIT_AddLineIntercepts.
// Looks for lines in the given block
// that intercept the given trace
// to add to the intercepts list.
//
// A line is crossed if its endpoints
// are on opposite sides of the trace.
// Returns true if earlyout and a solid line hit.
//
static boolean PIT_AddLineIntercepts(line_t *ld)
{
INT32 s1, s2;
fixed_t frac;
divline_t dl;
// avoid precision problems with two routines
if (trace.dx > FRACUNIT*16 || trace.dy > FRACUNIT*16
|| trace.dx < -FRACUNIT*16 || trace.dy < -FRACUNIT*16)
{
// Hurdler: crash here with phobia when you shoot
// on the door next the stone bridge
// stack overflow???
s1 = P_PointOnDivlineSide(ld->v1->x, ld->v1->y, &trace);
s2 = P_PointOnDivlineSide(ld->v2->x, ld->v2->y, &trace);
}
else
{
s1 = P_PointOnLineSide(trace.x, trace.y, ld);
s2 = P_PointOnLineSide(trace.x+trace.dx, trace.y+trace.dy, ld);
}
if (s1 == s2)
return true; // Line isn't crossed.
// Hit the line.
P_MakeDivline(ld, &dl);
frac = P_InterceptVector(&trace, &dl);
if (frac < 0)
return true; // Behind source.
// Try to take an early out of the check.
if (earlyout && frac < FRACUNIT && !ld->backsector)
return false; // stop checking
P_CheckIntercepts();
intercept_p->frac = frac;
intercept_p->isaline = true;
intercept_p->d.line = ld;
intercept_p++;
return true; // continue
}
//
// PIT_AddThingIntercepts
//
static boolean PIT_AddThingIntercepts(mobj_t *thing)
{
fixed_t px1, py1, px2, py2, frac;
INT32 s1, s2;
boolean tracepositive;
divline_t dl;
tracepositive = (trace.dx ^ trace.dy) > 0;
// check a corner to corner crossection for hit
if (tracepositive)
{
px1 = thing->x - thing->radius;
py1 = thing->y + thing->radius;
px2 = thing->x + thing->radius;
py2 = thing->y - thing->radius;
}
else
{
px1 = thing->x - thing->radius;
py1 = thing->y - thing->radius;
px2 = thing->x + thing->radius;
py2 = thing->y + thing->radius;
}
s1 = P_PointOnDivlineSide(px1, py1, &trace);
s2 = P_PointOnDivlineSide(px2, py2, &trace);
if (s1 == s2)
return true; // Line isn't crossed.
dl.x = px1;
dl.y = py1;
dl.dx = px2 - px1;
dl.dy = py2 - py1;
frac = P_InterceptVector(&trace, &dl);
if (frac < 0)
return true; // Behind source.
P_CheckIntercepts();
intercept_p->frac = frac;
intercept_p->isaline = false;
intercept_p->d.thing = thing;
intercept_p++;
return true; // Keep going.
}
//
// P_TraverseIntercepts
// Returns true if the traverser function returns true
// for all lines.
//
static boolean P_TraverseIntercepts(traverser_t func, fixed_t maxfrac)
{
size_t count;
fixed_t dist;
intercept_t *scan, *in = NULL;
count = intercept_p - intercepts;
while (count--)
{
dist = INT32_MAX;
for (scan = intercepts; scan < intercept_p; scan++)
{
if (scan->frac < dist)
{
dist = scan->frac;
in = scan;
}
}
if (dist > maxfrac)
return true; // Checked everything in range.
if (!func(in))
return false; // Don't bother going farther.
in->frac = INT32_MAX;
}
return true; // Everything was traversed.
}
//
// P_PathTraverse
// Traces a line from x1, y1 to x2, y2,
// calling the traverser function for each.
// Returns true if the traverser function returns true
// for all lines.
//
boolean P_PathTraverse(fixed_t px1, fixed_t py1, fixed_t px2, fixed_t py2,
INT32 flags, traverser_t trav)
{
fixed_t xt1, yt1, xt2, yt2;
fixed_t xstep, ystep, partial, xintercept, yintercept;
INT32 mapx, mapy, mapxstep, mapystep, count;
earlyout = flags & PT_EARLYOUT;
validcount++;
intercept_p = intercepts;
if (((px1 - bmaporgx) & (MAPBLOCKSIZE-1)) == 0)
px1 += FRACUNIT; // Don't side exactly on a line.
if (((py1 - bmaporgy) & (MAPBLOCKSIZE-1)) == 0)
py1 += FRACUNIT; // Don't side exactly on a line.
trace.x = px1;
trace.y = py1;
trace.dx = px2 - px1;
trace.dy = py2 - py1;
px1 -= bmaporgx;
py1 -= bmaporgy;
xt1 = (unsigned)px1>>MAPBLOCKSHIFT;
yt1 = (unsigned)py1>>MAPBLOCKSHIFT;
px2 -= bmaporgx;
py2 -= bmaporgy;
xt2 = (unsigned)px2>>MAPBLOCKSHIFT;
yt2 = (unsigned)py2>>MAPBLOCKSHIFT;
if (xt2 > xt1)
{
mapxstep = 1;
partial = FRACUNIT - ((px1>>MAPBTOFRAC) & FRACMASK);
ystep = FixedDiv(py2 - py1, abs(px2 - px1));
}
else if (xt2 < xt1)
{
mapxstep = -1;
partial = (px1>>MAPBTOFRAC) & FRACMASK;
ystep = FixedDiv(py2 - py1, abs(px2 - px1));
}
else
{
mapxstep = 0;
partial = FRACUNIT;
ystep = 256*FRACUNIT;
}
yintercept = (py1>>MAPBTOFRAC) + FixedMul(partial, ystep);
if (yt2 > yt1)
{
mapystep = 1;
partial = FRACUNIT - ((py1>>MAPBTOFRAC) & FRACMASK);
xstep = FixedDiv(px2 - px1, abs(py2 - py1));
}
else if (yt2 < yt1)
{
mapystep = -1;
partial = (py1>>MAPBTOFRAC) & FRACMASK;
xstep = FixedDiv(px2 - px1, abs(py2 - py1));
}
else
{
mapystep = 0;
partial = FRACUNIT;
xstep = 256*FRACUNIT;
}
xintercept = (px1>>MAPBTOFRAC) + FixedMul(partial, xstep);
// Step through map blocks.
// Count is present to prevent a round off error
// from skipping the break.
mapx = xt1;
mapy = yt1;
for (count = 0; count < 64; count++)
{
if (flags & PT_ADDLINES)
if (!P_BlockLinesIterator(mapx, mapy, PIT_AddLineIntercepts))
return false; // early out
if (flags & PT_ADDTHINGS)
if (!P_BlockThingsIterator(mapx, mapy, PIT_AddThingIntercepts))
return false; // early out
if (mapx == xt2 && mapy == yt2)
break;
if ((yintercept >> FRACBITS) == mapy)
{
yintercept += ystep;
mapx += mapxstep;
}
else if ((xintercept >> FRACBITS) == mapx)
{
xintercept += xstep;
mapy += mapystep;
}
}
// Go through the sorted list
return P_TraverseIntercepts(trav, FRACUNIT);
}
// =========================================================================
// BLOCKMAP ITERATORS
// =========================================================================
// blockmap iterator for all sorts of use
// your routine must return FALSE to exit the loop earlier
// returns FALSE if the loop exited early after a false return
// value from your user function
//abandoned, maybe I'll need it someday..
/*
boolean P_RadiusLinesCheck(fixed_t radius, fixed_t x, fixed_t y,
boolean (*func)(line_t *))
{
INT32 xl, xh, yl, yh;
INT32 bx, by;
tmbbox[BOXTOP] = y + radius;
tmbbox[BOXBOTTOM] = y - radius;
tmbbox[BOXRIGHT] = x + radius;
tmbbox[BOXLEFT] = x - radius;
// check lines
xl = (unsigned)(tmbbox[BOXLEFT] - bmaporgx)>>MAPBLOCKSHIFT;
xh = (unsigned)(tmbbox[BOXRIGHT] - bmaporgx)>>MAPBLOCKSHIFT;
yl = (unsigned)(tmbbox[BOXBOTTOM] - bmaporgy)>>MAPBLOCKSHIFT;
yh = (unsigned)(tmbbox[BOXTOP] - bmaporgy)>>MAPBLOCKSHIFT;
for (bx = xl; bx <= xh; bx++)
for (by = yl; by <= yh; by++)
if (!P_BlockLinesIterator(bx, by, func))
return false;
return true;
}
*/