Kart-Public/src/am_map.c
2018-12-12 19:57:52 -02:00

1103 lines
25 KiB
C

// SONIC ROBO BLAST 2
//-----------------------------------------------------------------------------
// Copyright (C) 1993-1996 by id Software, Inc.
// Copyright (C) 1998-2000 by DooM Legacy Team.
// Copyright (C) 1999-2018 by Sonic Team Junior.
//
// This program is free software distributed under the
// terms of the GNU General Public License, version 2.
// See the 'LICENSE' file for more details.
//-----------------------------------------------------------------------------
/// \file am_map.c
/// \brief Code for the 'automap', former Doom feature used for DEVMODE testing
#include "am_map.h"
#include "g_game.h"
#include "g_input.h"
#include "p_local.h"
#include "p_slopes.h"
#include "v_video.h"
#include "i_video.h"
#include "r_state.h"
#include "r_draw.h"
#ifdef HWRENDER
#include "hardware/hw_main.h"
#endif
// For use if I do walls with outsides/insides
static const UINT8 REDS = (8*16);
static const UINT8 REDRANGE = 16;
static const UINT8 GRAYS = (1*16);
static const UINT8 GRAYSRANGE = 16;
static const UINT8 BROWNS = (3*16);
static const UINT8 YELLOWS = (7*16);
static const UINT8 GREENS = (10*16);
static const UINT8 DBLACK = 31;
static const UINT8 DWHITE = 0;
static const UINT8 NOCLIMBREDS = 248;
static const UINT8 NOCLIMBREDRANGE = 8;
static const UINT8 NOCLIMBGRAYS = 204;
static const UINT8 NOCLIMBBROWNS = (2*16);
static const UINT8 NOCLIMBYELLOWS = (11*16);
#ifdef _NDS
#undef BACKGROUND
#endif
// Automap colors
#define BACKGROUND DBLACK
#define WALLCOLORS (REDS + REDRANGE/2)
#define WALLRANGE (REDRANGE/2)
#define NOCLIMBWALLCOLORS (NOCLIMBREDS + NOCLIMBREDRANGE/2)
#define NOCLIMBWALLRANGE (NOCLIMBREDRANGE/2)
#define THOKWALLCOLORS REDS
#define THOKWALLRANGE REDRANGE
#define NOCLIMBTHOKWALLCOLORS NOCLIMBREDS
#define NOCLIMBTHOKWALLRANGE NOCLIMBREDRANGE
#define TSWALLCOLORS GRAYS
#define TSWALLRANGE GRAYSRANGE
#define NOCLIMBTSWALLCOLORS NOCLIMBGRAYS
#define FDWALLCOLORS BROWNS
#define NOCLIMBFDWALLCOLORS NOCLIMBBROWNS
#define CDWALLCOLORS YELLOWS
#define NOCLIMBCDWALLCOLORS NOCLIMBYELLOWS
#define THINGCOLORS GREENS
#define GRIDCOLORS (GRAYS + GRAYSRANGE/2)
#define XHAIRCOLORS GRAYS
// controls
#define AM_PANUPKEY KEY_UPARROW
#define AM_PANDOWNKEY KEY_DOWNARROW
#define AM_PANLEFTKEY KEY_LEFTARROW
#define AM_PANRIGHTKEY KEY_RIGHTARROW
#define AM_ZOOMINKEY '='
#define AM_ZOOMOUTKEY '-'
#define AM_GOBIGKEY '0'
#define AM_FOLLOWKEY 'f'
#define AM_GRIDKEY 'g'
#define AM_TOGGLEKEY KEY_TAB
// scale on entry
#define INITSCALEMTOF (FRACUNIT/5)
// how much the automap moves window per tic in frame-buffer coordinates
// moves 140 pixels in 1 second
#define F_PANINC 4
// how much zoom-in per tic
// goes to 2x in 1 second
#define M_ZOOMIN ((51*FRACUNIT)/50)
// how much zoom-out per tic
// pulls out to 0.5x in 1 second
#define M_ZOOMOUT ((50*FRACUNIT)/51)
// translates between frame-buffer and map distances
#define FTOM(x) FixedMul(((x)<<FRACBITS),scale_ftom)
#define MTOF(x) (FixedMul((x),scale_mtof)>>FRACBITS)
// translates between frame-buffer and map coordinates
#define CXMTOF(x) (f_x - (f_x/2) + MTOF((x)-m_x))
#define CYMTOF(y) (f_y - (f_y/2) + (f_h - MTOF((y)-m_y)))
#define MAPBITS (FRACBITS-4)
#define FRACTOMAPBITS (FRACBITS-MAPBITS)
typedef struct
{
fixed_t x, y;
} mpoint_t;
typedef struct
{
mpoint_t a, b;
} mline_t;
typedef struct
{
fixed_t slp, islp;
} islope_t;
//
// The vector graphics for the automap.
// A line drawing of the player pointing right,
// starting from the middle.
//
#define PLAYERRADIUS (16*(1<<MAPBITS))
#define R ((8*PLAYERRADIUS)/7)
static const mline_t player_arrow[] = {
{ { -R+R/8, 0 }, { R, 0 } }, // -----
{ { R, 0 }, { R-R/2, R/4 } }, // ----->
{ { R, 0 }, { R-R/2, -R/4 } },
{ { -R+R/8, 0 }, { -R-R/8, R/4 } }, // >---->
{ { -R+R/8, 0 }, { -R-R/8, -R/4 } },
{ { -R+3*R/8, 0 }, { -R+R/8, R/4 } }, // >>--->
{ { -R+3*R/8, 0 }, { -R+R/8, -R/4 } }
};
#undef R
#define NUMPLYRLINES (sizeof (player_arrow)/sizeof (mline_t))
#if 0
#define R (FRACUNIT)
static mline_t triangle_guy[] = {
{ { (fixed_t)-.867f*R, (fixed_t)-.5f*R }, { (fixed_t) .867f*R, (fixed_t)-.5f*R } },
{ { (fixed_t) .867f*R, (fixed_t)-.5f*R }, { (fixed_t) 0, (fixed_t) R } },
{ { (fixed_t) 0, (fixed_t) R }, { (fixed_t)-.867f*R, (fixed_t)-.5f*R } }
};
#undef R
#define NUMTRIANGLEGUYLINES (sizeof (triangle_guy)/sizeof (mline_t))
#endif
#define R (FRACUNIT)
static const mline_t thintriangle_guy[] = {
{ { (-1*R)/2, (-7*R)/10 }, { R, 0 } },
{ { R, 0 }, { (-1*R)/2, (7*R)/10 } },
{ { (-1*R)/2, (7*R)/10 }, { (-1*R)/2, (-7*R)/10 } }
};
#undef R
#define NUMTHINTRIANGLEGUYLINES (sizeof (thintriangle_guy)/sizeof (mline_t))
static boolean bigstate; // user view and large view (full map view)
static boolean draw_grid = false;
boolean automapactive = false;
boolean am_recalc = false; //added : 05-02-98 : true when screen size changes
static boolean am_stopped = true;
static INT32 f_x, f_y; // location of window on screen (always zero for both)
static INT32 f_w, f_h; // size of window on screen (always the screen width and height respectively)
static mpoint_t m_paninc; // how far the window pans each tic (map coords)
static fixed_t mtof_zoommul; // how far the window zooms in each tic (map coords)
static fixed_t ftom_zoommul; // how far the window zooms in each tic (fb coords)
static fixed_t m_x, m_y; // LL x,y where the window is on the map (map coords)
static fixed_t m_x2, m_y2; // UR x,y where the window is on the map (map coords)
//
// width/height of window on map (map coords)
//
static fixed_t m_w;
static fixed_t m_h;
// based on level size
static fixed_t min_x;
static fixed_t min_y;
static fixed_t max_x;
static fixed_t max_y;
static fixed_t max_w; // max_x-min_x,
static fixed_t max_h; // max_y-min_y
static fixed_t min_scale_mtof; // used to tell when to stop zooming out
static fixed_t max_scale_mtof; // used to tell when to stop zooming in
// old stuff for recovery later
static fixed_t old_m_w, old_m_h;
static fixed_t old_m_x, old_m_y;
// old location used by the Follower routine
static mpoint_t f_oldloc;
// used by MTOF to scale from map-to-frame-buffer coords
static fixed_t scale_mtof = (fixed_t)INITSCALEMTOF;
// used by FTOM to scale from frame-buffer-to-map coords (=1/scale_mtof)
static fixed_t scale_ftom;
static player_t *plr; // the player represented by an arrow
static INT32 followplayer = true; // specifies whether to follow the player around
// function for drawing lines, depends on rendermode
typedef void (*AMDRAWFLINEFUNC) (const fline_t *fl, INT32 color);
static AMDRAWFLINEFUNC AM_drawFline;
static void AM_drawFline_soft(const fline_t *fl, INT32 color);
static void AM_activateNewScale(void)
{
m_x += m_w/2;
m_y += m_h/2;
m_w = FTOM(f_w);
m_h = FTOM(f_h);
m_x -= m_w/2;
m_y -= m_h/2;
m_x2 = m_x + m_w;
m_y2 = m_y + m_h;
}
static inline void AM_saveScaleAndLoc(void)
{
old_m_x = m_x;
old_m_y = m_y;
old_m_w = m_w;
old_m_h = m_h;
}
static inline void AM_restoreScaleAndLoc(void)
{
m_w = old_m_w;
m_h = old_m_h;
if (!followplayer)
{
m_x = old_m_x;
m_y = old_m_y;
}
else
{
m_x = (plr->mo->x >> FRACTOMAPBITS) - m_w/2;
m_y = (plr->mo->y >> FRACTOMAPBITS) - m_h/2;
}
m_x2 = m_x + m_w;
m_y2 = m_y + m_h;
// Change the scaling multipliers
scale_mtof = FixedDiv(f_w<<FRACBITS, m_w);
scale_ftom = FixedDiv(FRACUNIT, scale_mtof);
}
/** Determines the bounding box around all vertices.
* This is used to set global variables controlling the zoom range.
*/
static void AM_findMinMaxBoundaries(void)
{
size_t i;
fixed_t a;
fixed_t b;
min_x = min_y = +INT32_MAX;
max_x = max_y = -INT32_MAX;
for (i = 0; i < numvertexes; i++)
{
if (vertexes[i].x < min_x)
min_x = vertexes[i].x;
else if (vertexes[i].x > max_x)
max_x = vertexes[i].x;
if (vertexes[i].y < min_y)
min_y = vertexes[i].y;
else if (vertexes[i].y > max_y)
max_y = vertexes[i].y;
}
max_w = (max_x >>= FRACTOMAPBITS) - (min_x >>= FRACTOMAPBITS);
max_h = (max_y >>= FRACTOMAPBITS) - (min_y >>= FRACTOMAPBITS);
a = FixedDiv(f_w<<FRACBITS, max_w);
b = FixedDiv(f_h<<FRACBITS, max_h);
min_scale_mtof = a < b ? a : b;
max_scale_mtof = FixedDiv(f_h<<FRACBITS, 2*PLAYERRADIUS);
}
static void AM_changeWindowLoc(void)
{
if (m_paninc.x || m_paninc.y)
{
followplayer = false;
f_oldloc.x = INT32_MAX;
}
m_x += m_paninc.x;
m_y += m_paninc.y;
if (m_x + m_w/2 > max_x)
m_x = max_x - m_w/2;
else if (m_x + m_w/2 < min_x)
m_x = min_x - m_w/2;
if (m_y + m_h/2 > max_y)
m_y = max_y - m_h/2;
else if (m_y + m_h/2 < min_y)
m_y = min_y - m_h/2;
m_x2 = m_x + m_w;
m_y2 = m_y + m_h;
}
static void AM_initVariables(void)
{
INT32 pnum;
automapactive = true;
f_oldloc.x = INT32_MAX;
m_paninc.x = m_paninc.y = 0;
ftom_zoommul = FRACUNIT;
mtof_zoommul = FRACUNIT;
m_w = FTOM(f_w);
m_h = FTOM(f_h);
// find player to center on initially
if (!playeringame[pnum = consoleplayer])
for (pnum = 0; pnum < MAXPLAYERS; pnum++)
if (playeringame[pnum])
break;
plr = &players[pnum];
if (plr != NULL && plr->mo != NULL)
{
m_x = (plr->mo->x >> FRACTOMAPBITS) - m_w/2;
m_y = (plr->mo->y >> FRACTOMAPBITS) - m_h/2;
}
AM_changeWindowLoc();
// for saving & restoring
old_m_x = m_x;
old_m_y = m_y;
old_m_w = m_w;
old_m_h = m_h;
}
//
// should be called at the start of every level
// right now, i figure it out myself
//
static void AM_LevelInit(void)
{
f_x = f_y = 0;
f_w = vid.width;
f_h = vid.height;
AM_drawFline = AM_drawFline_soft;
#ifdef HWRENDER
if (rendermode == render_opengl)
AM_drawFline = HWR_drawAMline;
#endif
AM_findMinMaxBoundaries();
scale_mtof = FixedDiv(min_scale_mtof*10, 7*FRACUNIT);
if (scale_mtof > max_scale_mtof)
scale_mtof = min_scale_mtof;
scale_ftom = FixedDiv(FRACUNIT, scale_mtof);
}
/** Disables automap.
*
* \sa AM_Start
*/
void AM_Stop(void)
{
automapactive = false;
am_stopped = true;
}
/** Enables automap.
*
* \sa AM_Stop
*/
static inline void AM_Start(void)
{
static INT32 lastlevel = -1;
if (!am_stopped)
AM_Stop();
am_stopped = false;
if (lastlevel != gamemap || am_recalc) // screen size changed
{
AM_LevelInit();
lastlevel = gamemap;
am_recalc = false;
}
AM_initVariables();
}
//
// set the window scale to the maximum size
//
static void AM_minOutWindowScale(void)
{
scale_mtof = min_scale_mtof;
scale_ftom = FixedDiv(FRACUNIT, scale_mtof);
AM_activateNewScale();
}
//
// set the window scale to the minimum size
//
static void AM_maxOutWindowScale(void)
{
scale_mtof = max_scale_mtof;
scale_ftom = FixedDiv(FRACUNIT, scale_mtof);
AM_activateNewScale();
}
/** Responds to user inputs in automap mode.
*
* \param ev Event to possibly respond to.
* \return True if the automap responder ate the event.
*/
boolean AM_Responder(event_t *ev)
{
INT32 rc = false;
if (devparm || cv_debug) // only automap in Debug Tails 01-19-2001
{
if (!automapactive)
{
if (ev->type == ev_keydown && ev->data1 == AM_TOGGLEKEY)
{
//faB: prevent alt-tab in win32 version to activate automap just before
// minimizing the app; doesn't do any harm to the DOS version
if (!gamekeydown[KEY_LALT] && !gamekeydown[KEY_RALT])
{
bigstate = 0; //added : 24-01-98 : toggle off large view
AM_Start();
rc = true;
}
}
}
else if (ev->type == ev_keydown)
{
rc = true;
switch (ev->data1)
{
case AM_PANRIGHTKEY: // pan right
if (!followplayer)
m_paninc.x = FTOM(F_PANINC);
else
rc = false;
break;
case AM_PANLEFTKEY: // pan left
if (!followplayer)
m_paninc.x = -FTOM(F_PANINC);
else
rc = false;
break;
case AM_PANUPKEY: // pan up
if (!followplayer)
m_paninc.y = FTOM(F_PANINC);
else
rc = false;
break;
case AM_PANDOWNKEY: // pan down
if (!followplayer)
m_paninc.y = -FTOM(F_PANINC);
else
rc = false;
break;
case AM_ZOOMOUTKEY: // zoom out
mtof_zoommul = M_ZOOMOUT;
ftom_zoommul = M_ZOOMIN;
break;
case AM_ZOOMINKEY: // zoom in
mtof_zoommul = M_ZOOMIN;
ftom_zoommul = M_ZOOMOUT;
break;
case AM_TOGGLEKEY:
AM_Stop();
break;
case AM_GOBIGKEY:
bigstate = !bigstate;
if (bigstate)
{
AM_saveScaleAndLoc();
AM_minOutWindowScale();
}
else
AM_restoreScaleAndLoc();
break;
case AM_FOLLOWKEY:
followplayer = !followplayer;
f_oldloc.x = INT32_MAX;
break;
case AM_GRIDKEY:
draw_grid = !draw_grid;
break;
default:
rc = false;
}
}
else if (ev->type == ev_keyup)
{
rc = false;
switch (ev->data1)
{
case AM_PANRIGHTKEY:
case AM_PANLEFTKEY:
if (!followplayer)
m_paninc.x = 0;
break;
case AM_PANUPKEY:
case AM_PANDOWNKEY:
if (!followplayer)
m_paninc.y = 0;
break;
case AM_ZOOMOUTKEY:
case AM_ZOOMINKEY:
mtof_zoommul = FRACUNIT;
ftom_zoommul = FRACUNIT;
break;
}
}
}
return rc;
}
/** Makes a zooming change take effect.
*/
static inline void AM_changeWindowScale(void)
{
// Change the scaling multipliers
scale_mtof = FixedMul(scale_mtof, mtof_zoommul);
scale_ftom = FixedDiv(FRACUNIT, scale_mtof);
if (scale_mtof < min_scale_mtof)
AM_minOutWindowScale();
else if (scale_mtof > max_scale_mtof)
AM_maxOutWindowScale();
else
AM_activateNewScale();
}
static inline void AM_doFollowPlayer(void)
{
if (f_oldloc.x != plr->mo->x || f_oldloc.y != plr->mo->y)
{
m_x = FTOM(MTOF(plr->mo->x >> FRACTOMAPBITS)) - m_w/2;
m_y = FTOM(MTOF(plr->mo->y >> FRACTOMAPBITS)) - m_h/2;
m_x2 = m_x + m_w;
m_y2 = m_y + m_h;
f_oldloc.x = plr->mo->x;
f_oldloc.y = plr->mo->y;
}
}
/** Updates automap on a game tic, while the automap is enabled.
*/
void AM_Ticker(void)
{
if (!cv_debug)
AM_Stop();
if (dedicated || !automapactive)
return;
if (followplayer)
AM_doFollowPlayer();
// Change the zoom if necessary
if (ftom_zoommul != FRACUNIT)
AM_changeWindowScale();
// Change x,y location
if (m_paninc.x || m_paninc.y)
AM_changeWindowLoc();
}
/** Clears the automap framebuffer.
*
* \param color Color to erase to.
*/
static void AM_clearFB(INT32 color)
{
V_DrawFill(f_x, f_y, f_w, f_h, color|V_NOSCALESTART);
}
/** Performs automap clipping of lines.
* Based on Cohen-Sutherland clipping algorithm but with a slightly
* faster reject and precalculated slopes. If the speed is needed,
* use a hash algorithm to handle the common cases.
*
* \param ml Line to clip.
* \param fl Resulting framebuffer coordinates?
* \return True if the line is inside the boundaries.
*/
static boolean AM_clipMline(const mline_t *ml, fline_t *fl)
{
enum
{
LEFT = 1,
RIGHT = 2,
BOTTOM = 4,
TOP = 8
};
register INT32 outcode1 = 0, outcode2 = 0, outside;
fpoint_t tmp ={0,0};
INT32 dx, dy;
#define DOOUTCODE(oc, mx, my) \
(oc) = 0; \
if ((my) < 0) (oc) |= TOP; \
else if ((my) >= f_h) (oc) |= BOTTOM; \
if ((mx) < 0) (oc) |= LEFT; \
else if ((mx) >= f_w) (oc) |= RIGHT;
// do trivial rejects and outcodes
if (ml->a.y > m_y2)
outcode1 = TOP;
else if (ml->a.y < m_y)
outcode1 = BOTTOM;
if (ml->b.y > m_y2)
outcode2 = TOP;
else if (ml->b.y < m_y)
outcode2 = BOTTOM;
if (outcode1 & outcode2)
return false; // trivially outside
if (ml->a.x < m_x)
outcode1 |= LEFT;
else if (ml->a.x > m_x2)
outcode1 |= RIGHT;
if (ml->b.x < m_x)
outcode2 |= LEFT;
else if (ml->b.x > m_x2)
outcode2 |= RIGHT;
if (outcode1 & outcode2)
return false; // trivially outside
// transform to frame-buffer coordinates.
fl->a.x = CXMTOF(ml->a.x);
fl->a.y = CYMTOF(ml->a.y);
fl->b.x = CXMTOF(ml->b.x);
fl->b.y = CYMTOF(ml->b.y);
DOOUTCODE(outcode1, fl->a.x, fl->a.y);
DOOUTCODE(outcode2, fl->b.x, fl->b.y);
if (outcode1 & outcode2)
return false;
while (outcode1 | outcode2)
{
// may be partially inside box
// find an outside point
if (outcode1)
outside = outcode1;
else
outside = outcode2;
// clip to each side
if (outside & TOP)
{
dy = fl->a.y - fl->b.y;
dx = fl->b.x - fl->a.x;
tmp.x = fl->a.x + (dx*(fl->a.y))/dy;
tmp.y = 0;
}
else if (outside & BOTTOM)
{
dy = fl->a.y - fl->b.y;
dx = fl->b.x - fl->a.x;
tmp.x = fl->a.x + (dx*(fl->a.y-f_h))/dy;
tmp.y = f_h-1;
}
else if (outside & RIGHT)
{
dy = fl->b.y - fl->a.y;
dx = fl->b.x - fl->a.x;
tmp.y = fl->a.y + (dy*(f_w-1 - fl->a.x))/dx;
tmp.x = f_w-1;
}
else if (outside & LEFT)
{
dy = fl->b.y - fl->a.y;
dx = fl->b.x - fl->a.x;
tmp.y = fl->a.y + (dy*(-fl->a.x))/dx;
tmp.x = 0;
}
if (outside == outcode1)
{
fl->a = tmp;
DOOUTCODE(outcode1, fl->a.x, fl->a.y);
}
else
{
fl->b = tmp;
DOOUTCODE(outcode2, fl->b.x, fl->b.y);
}
if (outcode1 & outcode2)
return false; // trivially outside
}
return true;
}
#undef DOOUTCODE
//
// Classic Bresenham w/ whatever optimizations needed for speed
//
static void AM_drawFline_soft(const fline_t *fl, INT32 color)
{
INT32 x, y, dx, dy, sx, sy, ax, ay, d;
#ifdef _DEBUG
static INT32 num = 0;
// For debugging only
if (fl->a.x < 0 || fl->a.x >= f_w
|| fl->a.y < 0 || fl->a.y >= f_h
|| fl->b.x < 0 || fl->b.x >= f_w
|| fl->b.y < 0 || fl->b.y >= f_h)
{
CONS_Debug(DBG_RENDER, "line clipping problem %d\n", num++);
return;
}
#endif
#define PUTDOT(xx,yy,cc) V_DrawFill(xx,yy,1,1,cc|V_NOSCALESTART);
dx = fl->b.x - fl->a.x;
ax = 2 * (dx < 0 ? -dx : dx);
sx = dx < 0 ? -1 : 1;
dy = fl->b.y - fl->a.y;
ay = 2 * (dy < 0 ? -dy : dy);
sy = dy < 0 ? -1 : 1;
x = fl->a.x;
y = fl->a.y;
if (ax > ay)
{
d = ay - ax/2;
for (;;)
{
PUTDOT(x, y, color)
if (x == fl->b.x)
return;
if (d >= 0)
{
y += sy;
d -= ax;
}
x += sx;
d += ay;
}
}
else
{
d = ax - ay/2;
for (;;)
{
PUTDOT(x, y, color)
if (y == fl->b.y)
return;
if (d >= 0)
{
x += sx;
d -= ay;
}
y += sy;
d += ax;
}
}
#undef PUTDOT
}
//
// Clip lines, draw visible parts of lines.
//
static void AM_drawMline(const mline_t *ml, INT32 color)
{
static fline_t fl;
if (AM_clipMline(ml, &fl))
AM_drawFline(&fl, color); // draws it on frame buffer using fb coords
}
//
// Draws flat (floor/ceiling tile) aligned grid lines.
//
static void AM_drawGrid(INT32 color)
{
fixed_t x, y;
fixed_t start, end;
mline_t ml;
// Figure out start of vertical gridlines
start = m_x;
if ((start - bmaporgx) % (MAPBLOCKUNITS<<FRACBITS))
start += (MAPBLOCKUNITS<<FRACBITS) - ((start - bmaporgx) % (MAPBLOCKUNITS<<FRACBITS));
end = m_x + m_w;
// draw vertical gridlines
ml.a.y = m_y;
ml.b.y = m_y + m_h;
for (x = start; x < end; x += (MAPBLOCKUNITS<<FRACBITS))
{
ml.a.x = x;
ml.b.x = x;
AM_drawMline(&ml, color);
}
// Figure out start of horizontal gridlines
start = m_y;
if ((start - bmaporgy) % (MAPBLOCKUNITS<<FRACBITS))
start += (MAPBLOCKUNITS<<FRACBITS) - ((start - bmaporgy) % (MAPBLOCKUNITS<<FRACBITS));
end = m_y + m_h;
// draw horizontal gridlines
ml.a.x = m_x;
ml.b.x = m_x + m_w;
for (y = start; y < end; y += (MAPBLOCKUNITS<<FRACBITS))
{
ml.a.y = y;
ml.b.y = y;
AM_drawMline(&ml, color);
}
}
//
// Determines visible lines, draws them.
// This is LineDef based, not LineSeg based.
//
static inline void AM_drawWalls(void)
{
size_t i;
static mline_t l;
#ifdef ESLOPE
fixed_t frontf1,frontf2, frontc1, frontc2; // front floor/ceiling ends
fixed_t backf1 = 0, backf2 = 0, backc1 = 0, backc2 = 0; // back floor ceiling ends
#endif
for (i = 0; i < numlines; i++)
{
l.a.x = lines[i].v1->x >> FRACTOMAPBITS;
l.a.y = lines[i].v1->y >> FRACTOMAPBITS;
l.b.x = lines[i].v2->x >> FRACTOMAPBITS;
l.b.y = lines[i].v2->y >> FRACTOMAPBITS;
#ifdef ESLOPE
#define SLOPEPARAMS(slope, end1, end2, normalheight) \
if (slope) { \
end1 = P_GetZAt(slope, lines[i].v1->x, lines[i].v1->y); \
end2 = P_GetZAt(slope, lines[i].v2->x, lines[i].v2->y); \
} else \
end1 = end2 = normalheight;
SLOPEPARAMS(lines[i].frontsector->f_slope, frontf1, frontf2, lines[i].frontsector->floorheight)
SLOPEPARAMS(lines[i].frontsector->c_slope, frontc1, frontc2, lines[i].frontsector->ceilingheight)
if (lines[i].backsector) {
SLOPEPARAMS(lines[i].backsector->f_slope, backf1, backf2, lines[i].backsector->floorheight)
SLOPEPARAMS(lines[i].backsector->c_slope, backc1, backc2, lines[i].backsector->ceilingheight)
}
#undef SLOPEPARAMS
#endif
if (!lines[i].backsector) // 1-sided
{
if (lines[i].flags & ML_NOCLIMB)
AM_drawMline(&l, NOCLIMBWALLCOLORS);
else
AM_drawMline(&l, WALLCOLORS);
}
#ifdef ESLOPE
else if ((backf1 == backc1 && backf2 == backc2) // Back is thok barrier
|| (frontf1 == frontc1 && frontf2 == frontc2)) // Front is thok barrier
{
if (backf1 == backc1 && backf2 == backc2
&& frontf1 == frontc1 && frontf2 == frontc2) // BOTH are thok barriers
#else
else if (lines[i].backsector->floorheight == lines[i].backsector->ceilingheight // Back is thok barrier
|| lines[i].frontsector->floorheight == lines[i].frontsector->ceilingheight) // Front is thok barrier
{
if (lines[i].backsector->floorheight == lines[i].backsector->ceilingheight
&& lines[i].frontsector->floorheight == lines[i].frontsector->ceilingheight) // BOTH are thok barriers
#endif
{
if (lines[i].flags & ML_NOCLIMB)
AM_drawMline(&l, NOCLIMBTSWALLCOLORS);
else
AM_drawMline(&l, TSWALLCOLORS);
}
else
{
if (lines[i].flags & ML_NOCLIMB)
AM_drawMline(&l, NOCLIMBTHOKWALLCOLORS);
else
AM_drawMline(&l, THOKWALLCOLORS);
}
}
else
{
if (lines[i].flags & ML_NOCLIMB) {
#ifdef ESLOPE
if (backf1 != frontf1 || backf2 != frontf2) {
#else
if (lines[i].backsector->floorheight
!= lines[i].frontsector->floorheight) {
#endif
AM_drawMline(&l, NOCLIMBFDWALLCOLORS); // floor level change
}
#ifdef ESLOPE
else if (backc1 != frontc1 || backc2 != frontc2) {
#else
else if (lines[i].backsector->ceilingheight
!= lines[i].frontsector->ceilingheight) {
#endif
AM_drawMline(&l, NOCLIMBCDWALLCOLORS); // ceiling level change
}
else
AM_drawMline(&l, NOCLIMBTSWALLCOLORS);
}
else
{
#ifdef ESLOPE
if (backf1 != frontf1 || backf2 != frontf2) {
#else
if (lines[i].backsector->floorheight
!= lines[i].frontsector->floorheight) {
#endif
AM_drawMline(&l, FDWALLCOLORS); // floor level change
}
#ifdef ESLOPE
else if (backc1 != frontc1 || backc2 != frontc2) {
#else
else if (lines[i].backsector->ceilingheight
!= lines[i].frontsector->ceilingheight) {
#endif
AM_drawMline(&l, CDWALLCOLORS); // ceiling level change
}
else
AM_drawMline(&l, TSWALLCOLORS);
}
}
}
}
//
// Rotation in 2D.
// Used to rotate player arrow line character.
//
static void AM_rotate(fixed_t *x, fixed_t *y, angle_t a)
{
fixed_t tmpx;
tmpx = FixedMul(*x, FINECOSINE(a>>ANGLETOFINESHIFT))
- FixedMul(*y, FINESINE(a>>ANGLETOFINESHIFT));
*y = FixedMul(*x, FINESINE(a>>ANGLETOFINESHIFT))
+ FixedMul(*y, FINECOSINE(a>>ANGLETOFINESHIFT));
*x = tmpx;
}
static void AM_drawLineCharacter(const mline_t *lineguy, size_t lineguylines, fixed_t scale, angle_t angle,
INT32 color, fixed_t x, fixed_t y)
{
size_t i;
mline_t l;
for (i = 0; i < lineguylines; i++)
{
l.a.x = lineguy[i].a.x;
l.a.y = lineguy[i].a.y;
if (scale)
{
l.a.x = FixedMul(scale, l.a.x);
l.a.y = FixedMul(scale, l.a.y);
}
if (angle)
AM_rotate(&l.a.x, &l.a.y, angle);
l.a.x += x;
l.a.y += y;
l.b.x = lineguy[i].b.x;
l.b.y = lineguy[i].b.y;
if (scale)
{
l.b.x = FixedMul(scale, l.b.x);
l.b.y = FixedMul(scale, l.b.y);
}
if (angle)
AM_rotate(&l.b.x, &l.b.y, angle);
l.b.x += x;
l.b.y += y;
l.a.x >>= FRACTOMAPBITS;
l.a.y >>= FRACTOMAPBITS;
l.b.x >>= FRACTOMAPBITS;
l.b.y >>= FRACTOMAPBITS;
AM_drawMline(&l, color);
}
}
static inline void AM_drawPlayers(void)
{
INT32 i;
player_t *p;
INT32 color = GREENS;
if (!multiplayer)
{
AM_drawLineCharacter(player_arrow, NUMPLYRLINES, 0, plr->mo->angle, DWHITE, plr->mo->x, plr->mo->y);
return;
}
// multiplayer (how??)
for (i = 0; i < MAXPLAYERS; i++)
{
if (!playeringame[i] || players[i].spectator)
continue;
p = &players[i];
if (p->skincolor > 0)
color = R_GetTranslationColormap(TC_DEFAULT, p->skincolor, GTC_CACHE)[GREENS + 8];
AM_drawLineCharacter(player_arrow, NUMPLYRLINES, 0, p->mo->angle, color, p->mo->x, p->mo->y);
}
}
static inline void AM_drawThings(UINT8 colors)
{
size_t i;
mobj_t *t;
for (i = 0; i < numsectors; i++)
{
t = sectors[i].thinglist;
while (t)
{
AM_drawLineCharacter(thintriangle_guy, NUMTHINTRIANGLEGUYLINES, 16<<FRACBITS, t->angle, colors, t->x, t->y);
t = t->snext;
}
}
}
/** Draws the crosshair, actually just a dot in software mode.
*
* \param color Color for the crosshair.
*/
static inline void AM_drawCrosshair(UINT8 color)
{
V_DrawFill(f_w/2 + f_x, f_h/2 + f_y, 1, 1, color|V_NOSCALESTART);
}
/** Draws the automap.
*/
void AM_Drawer(void)
{
if (!automapactive)
return;
AM_clearFB(BACKGROUND);
if (draw_grid) AM_drawGrid(GRIDCOLORS);
AM_drawWalls();
AM_drawPlayers();
AM_drawThings(THINGCOLORS);
AM_drawCrosshair(XHAIRCOLORS);
}