MakeSlope_Line cleanup/fixed-point conversion

This commit is contained in:
RedEnchilada 2015-04-26 13:06:23 -05:00
parent 5070a964b9
commit aeef23e816
3 changed files with 117 additions and 362 deletions

View file

@ -1170,10 +1170,6 @@ static void P_LoadLineDefs(lumpnum_t lumpnum)
#ifdef POLYOBJECTS #ifdef POLYOBJECTS
ld->polyobj = NULL; ld->polyobj = NULL;
#endif #endif
#ifdef ESLOPE
P_MakeLineNormal(ld);
#endif
} }
Z_Free(data); Z_Free(data);

View file

@ -45,91 +45,20 @@
// //
// Alocates and fill the contents of a slope structure. // Alocates and fill the contents of a slope structure.
// //
static pslope_t *P_MakeSlope(const v3float_t *o, const v2float_t *d, static pslope_t *P_MakeSlope(const v3fixed_t *o, const v2fixed_t *d,
const float zdelta, boolean isceiling) const fixed_t zdelta, boolean isceiling)
{ {
pslope_t *ret = Z_Malloc(sizeof(pslope_t), PU_LEVEL, NULL); pslope_t *ret = Z_Malloc(sizeof(pslope_t), PU_LEVEL, NULL);
memset(ret, 0, sizeof(*ret)); memset(ret, 0, sizeof(*ret));
ret->o.x = FLOAT_TO_FIXED(ret->of.x = o->x); ret->of.x = FIXED_TO_FLOAT(ret->o.x = o->x);
ret->o.y = FLOAT_TO_FIXED(ret->of.y = o->y); ret->of.y = FIXED_TO_FLOAT(ret->o.y = o->y);
ret->o.z = FLOAT_TO_FIXED(ret->of.z = o->z); ret->of.z = FIXED_TO_FLOAT(ret->o.z = o->z);
ret->d.x = FLOAT_TO_FIXED(ret->df.x = d->x); ret->df.x = FIXED_TO_FLOAT(ret->d.x = d->x);
ret->d.y = FLOAT_TO_FIXED(ret->df.y = d->y); ret->df.y = FIXED_TO_FLOAT(ret->d.y = d->y);
ret->zdelta = FLOAT_TO_FIXED(ret->zdeltaf = zdelta); ret->zdeltaf = FIXED_TO_FLOAT(ret->zdelta = zdelta);
// d = direction (v2float_t)
//
// direction.x = line->nx;
// direction.y = line->ny;
//
// o = origin (v3float_t)
// origin.x = (FIXED_TO_FLOAT(line->v2->x) + FIXED_TO_FLOAT(line->v1->x)) * 0.5f;
// origin.y = (FIXED_TO_FLOAT(line->v2->y) + FIXED_TO_FLOAT(line->v1->y)) * 0.5f;
{
// Now calculate the normal of the plane!
v3float_t v1, v2, v3, d1, d2;
float len;
v1.x = o->x;
v1.y = o->y;
v1.z = o->z;
v2.x = v1.x;
v2.y = v1.y + 10.0f;
v2.z = P_GetZAtf(ret, v2.x, v2.y);
v3.x = v1.x + 10.0f;
v3.y = v1.y;
v3.z = P_GetZAtf(ret, v3.x, v3.y);
if (isceiling)
{
M_SubVec3f(&d1, &v1, &v3);
M_SubVec3f(&d2, &v2, &v3);
}
else
{
M_SubVec3f(&d1, &v1, &v2);
M_SubVec3f(&d2, &v3, &v2);
}
M_CrossProduct3f(&ret->normalf, &d1, &d2);
// Cross product length
len = (float)sqrt(ret->normalf.x * ret->normalf.x +
ret->normalf.y * ret->normalf.y +
ret->normalf.z * ret->normalf.z);
#ifdef SLOPETHINGS
if (len == 0)
{
// Only happens when all vertices in this sector are on the same line.
// Let's just ignore this case.
CONS_Printf("Slope thing at (%d,%d) lies directly on its target line.\n", int(x>>16), int(y>>16));
return;
}
#endif
ret->normalf.x /= len;
ret->normalf.y /= len;
ret->normalf.z /= len;
// ZDoom
// cross = ret->normalf
// Fix backward normals
if ((ret->normalf.z < 0 && !isceiling) || (ret->normalf.z > 0 && isceiling))
{
ret->normalf.x = -ret->normalf.x;
ret->normalf.y = -ret->normalf.x;
ret->normalf.z = -ret->normalf.x;
}
}
return ret; return ret;
} }
@ -147,36 +76,16 @@ static pslope_t *P_CopySlope(const pslope_t *src)
return ret; return ret;
} }
//
// P_MakeLineNormal
//
// Calculates a 2D normal for the given line and stores it in the line
//
void P_MakeLineNormal(line_t *line)
{
float linedx, linedy, length;
// SRB2CBTODO: Give linedefs an fx+fy(float xy coords)?
// May cause slow downs since the float would always have to be converted/updated
linedx = FIXED_TO_FLOAT(line->v2->x) - FIXED_TO_FLOAT(line->v1->x);
linedy = FIXED_TO_FLOAT(line->v2->y) - FIXED_TO_FLOAT(line->v1->y);
length = (float)sqrt(linedx * linedx + linedy * linedy);
line->nx = linedy / length;
line->ny = -linedx / length;
line->len = length;
}
// //
// P_GetExtent // P_GetExtent
// //
// Returns the distance to the first line within the sector that // Returns the distance to the first line within the sector that
// is intersected by a line parallel to the plane normal with the point (ox, oy) // is intersected by a line parallel to the plane normal with the point (ox, oy)
// //
static float P_GetExtent(sector_t *sector, line_t *line, v3float_t *o, v2float_t *d) static fixed_t P_GetExtent(sector_t *sector, line_t *line)
{ {
// ZDoom code reference: v3float_t = vertex_t // ZDoom code reference: v3float_t = vertex_t
float fardist = -1.0f; fixed_t fardist = -FRACUNIT;
size_t i; size_t i;
// Find furthest vertex from the reference line. It, along with the two ends // Find furthest vertex from the reference line. It, along with the two ends
@ -186,23 +95,20 @@ static float P_GetExtent(sector_t *sector, line_t *line, v3float_t *o, v2float_t
{ {
line_t *li = sector->lines[i]; line_t *li = sector->lines[i];
vertex_t tempv; vertex_t tempv;
float dist; fixed_t dist;
// Don't compare to the slope line. // Don't compare to the slope line.
if(li == line) if(li == line)
continue; continue;
// ZDoom code in P_AlignPlane
// dist = fabs((double(line->v1->y) - vert->y) * line->dx - (double(line->v1->x) - vert->x) * line->dy);
//dist = (float)fabs((FIXED_TO_FLOAT(li->v1->x) - o->x) * d->x + (FIXED_TO_FLOAT(li->v1->y) - o->y) * d->y);
P_ClosestPointOnLine(li->v1->x, li->v1->y, line, &tempv); P_ClosestPointOnLine(li->v1->x, li->v1->y, line, &tempv);
dist = FIXED_TO_FLOAT(R_PointToDist2(tempv.x, tempv.y, li->v1->x, li->v1->y)); dist = R_PointToDist2(tempv.x, tempv.y, li->v1->x, li->v1->y);
if(dist > fardist) if(dist > fardist)
fardist = dist; fardist = dist;
// Okay, maybe do it for v2 as well? // Okay, maybe do it for v2 as well?
P_ClosestPointOnLine(li->v2->x, li->v2->y, line, &tempv); P_ClosestPointOnLine(li->v2->x, li->v2->y, line, &tempv);
dist = FIXED_TO_FLOAT(R_PointToDist2(tempv.x, tempv.y, li->v2->x, li->v2->y)); dist = R_PointToDist2(tempv.x, tempv.y, li->v2->x, li->v2->y);
if(dist > fardist) if(dist > fardist)
fardist = dist; fardist = dist;
} }
@ -224,11 +130,11 @@ void P_SpawnSlope_Line(int linenum)
// because checking to see if a slope had changed will waste more memory than // because checking to see if a slope had changed will waste more memory than
// if the slope was just updated when called // if the slope was just updated when called
line_t *line = lines + linenum; line_t *line = lines + linenum;
int special = line->special; INT16 special = line->special;
pslope_t *fslope = NULL, *cslope = NULL; pslope_t *fslope = NULL, *cslope = NULL;
v3float_t origin, point; v3fixed_t origin, point;
v2float_t direction; v2fixed_t direction;
float dz, extent; fixed_t nx, ny, dz, extent;
boolean frontfloor = (special == 386 || special == 388 || special == 393); boolean frontfloor = (special == 386 || special == 388 || special == 393);
boolean backfloor = (special == 389 || special == 391 || special == 392); boolean backfloor = (special == 389 || special == 391 || special == 392);
@ -247,28 +153,34 @@ void P_SpawnSlope_Line(int linenum)
return; return;
} }
{
fixed_t len = R_PointToDist2(0, 0, line->dx, line->dy);
nx = FixedDiv(line->dy, len);
ny = -FixedDiv(line->dx, len);
}
// SRB2CBTODO: Transform origin relative to the bounds of an individual FOF // SRB2CBTODO: Transform origin relative to the bounds of an individual FOF
origin.x = (FIXED_TO_FLOAT(line->v2->x) + FIXED_TO_FLOAT(line->v1->x)) * 0.5f; origin.x = line->v1->x + (line->v2->x - line->v1->x)/2;
origin.y = (FIXED_TO_FLOAT(line->v2->y) + FIXED_TO_FLOAT(line->v1->y)) * 0.5f; origin.y = line->v1->y + (line->v2->y - line->v1->y)/2;
// For FOF slopes, make a special function to copy to the xy origin & direction relative to the position of the FOF on the map! // For FOF slopes, make a special function to copy to the xy origin & direction relative to the position of the FOF on the map!
if(frontfloor || frontceil) if(frontfloor || frontceil)
{ {
origin.z = FIXED_TO_FLOAT(line->backsector->floorheight); origin.z = line->backsector->floorheight;
direction.x = line->nx; direction.x = nx;
direction.y = line->ny; direction.y = ny;
extent = P_GetExtent(line->frontsector, line, &origin, &direction); extent = P_GetExtent(line->frontsector, line);
if(extent < 0.0f) if(extent < 0)
{ {
CONS_Printf("P_SpawnSlope_Line failed to get frontsector extent on line number %i\n", linenum); CONS_Printf("P_SpawnSlope_Line failed to get frontsector extent on line number %i\n", linenum);
return; return;
} }
// reposition the origin according to the extent // reposition the origin according to the extent
point.x = origin.x + direction.x * extent; point.x = origin.x + FixedMul(direction.x, extent);
point.y = origin.y + direction.y * extent; point.y = origin.y + FixedMul(direction.y, extent);
direction.x = -direction.x; direction.x = -direction.x;
direction.y = -direction.y; direction.y = -direction.y;
@ -277,39 +189,11 @@ void P_SpawnSlope_Line(int linenum)
if(frontfloor) if(frontfloor)
{ {
point.z = FIXED_TO_FLOAT(line->frontsector->floorheight); // Startz point.z = line->frontsector->floorheight; // Startz
dz = (FIXED_TO_FLOAT(line->backsector->floorheight) - point.z) / extent; // Destinationz dz = FixedDiv(line->backsector->floorheight - point.z, extent); // Destinationz
// In P_SpawnSlopeLine the origin is the centerpoint of the sourcelinedef // In P_SpawnSlopeLine the origin is the centerpoint of the sourcelinedef
int slopeangle = 0; // All floors by default have no slope (an angle of 0, completely flat)
v3float_t A = origin; // = line source
v3float_t B = point; // destination's value
v3float_t C = origin; // Point used to make a right triangle from A & B
C.z = point.z;
// To find the "angle" of a slope, we make a right triangle out of the points we have,
// point A - is point 1 of the hypotenuse,
// point B - is point 2 of the hypotenuse
// point C - has the same Z value as point b, and the same XY value as A
//
// We want to find the angle accross from the right angle
// so we use some triginometry to find the angle(fun, right?)
// We want to find the tanjent of this angle, this is:
// Opposite
// ------- = tan(x)
// Adjecent
// But actually tan doesn't do want we really want, we have to use atan to find the actual angle of the triangle's corner
float triangopplength = abs(B.z - A.z);
float triangadjlength = sqrt((B.x-C.x)*(B.x-C.x) + (B.y - C.y)*(B.y - C.y));
//float trianghyplength = sqrt(triangopplength*triangopplength + triangadjlength*triangadjlength); // This is the hypotenuse
// So tanjent = opposite divided by adjecent
float tanrelat = triangopplength/ triangadjlength; // tanjent = opposite / adjecent
slopeangle = atan(tanrelat)* 180 / M_PI; // Now we use atan: *180 /M_PI is needed to convert the value into degrees
fslope = line->frontsector->f_slope = fslope = line->frontsector->f_slope =
P_MakeSlope(&point, &direction, dz, false); P_MakeSlope(&point, &direction, dz, false);
@ -320,7 +204,7 @@ void P_SpawnSlope_Line(int linenum)
// Sync the linedata of the line that started this slope // Sync the linedata of the line that started this slope
// SRB2CBTODO: Anything special for remote(control sector)-based slopes later? // SRB2CBTODO: Anything special for remote(control sector)-based slopes later?
line->frontsector->f_slope->sourceline = line; fslope->sourceline = line;
// To find the real highz/lowz of a slope, you need to check all the vertexes // To find the real highz/lowz of a slope, you need to check all the vertexes
// in the slope's sector with P_GetZAt to get the REAL lowz & highz // in the slope's sector with P_GetZAt to get the REAL lowz & highz
@ -331,276 +215,156 @@ void P_SpawnSlope_Line(int linenum)
// Default points for high and low // Default points for high and low
fixed_t highest = point.z > origin.z ? point.z : origin.z; fixed_t highest = point.z > origin.z ? point.z : origin.z;
fixed_t lowest = point.z < origin.z ? point.z : origin.z; fixed_t lowest = point.z < origin.z ? point.z : origin.z;
highest = FLOAT_TO_FIXED(highest);
lowest = FLOAT_TO_FIXED(lowest);
// Now check to see what the REAL high and low points of the slope inside the sector // Now check to see what the REAL high and low points of the slope inside the sector
// TODO: Is this really needed outside of FOFs? -Red
size_t l; size_t l;
for (l = 0; l < line->frontsector->linecount; l++) for (l = 0; l < line->frontsector->linecount; l++)
{ {
if (P_GetZAt(line->frontsector->f_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y) > highest) fixed_t height = P_GetZAt(line->frontsector->f_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y);
highest = P_GetZAt(line->frontsector->f_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y);
if (P_GetZAt(line->frontsector->f_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y) < lowest) if (height > highest)
lowest = P_GetZAt(line->frontsector->f_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y); highest = height;
if (height < lowest)
lowest = height;
} }
// Sets extra clipping data for the frontsector's slope // Sets extra clipping data for the frontsector's slope
fslope->highz = line->frontsector->f_slope->highz = highest; fslope->highz = highest;
fslope->lowz = line->frontsector->f_slope->lowz = lowest; fslope->lowz = lowest;
fslope->zangle = slopeangle;
fslope->xydirection = R_PointToAngle2(FLOAT_TO_FIXED(A.x), FLOAT_TO_FIXED(A.y), FLOAT_TO_FIXED(B.x), FLOAT_TO_FIXED(B.y))/(ANGLE_45/45);
secplane_t *srcplane = Z_Calloc(sizeof(*srcplane), PU_LEVEL, NULL);
// ZDoom secplane port! YAY
// ret = f_slope or c_slope
srcplane->a = FLOAT_TO_FIXED (fslope->normalf.x); // cross[0]
srcplane->b = FLOAT_TO_FIXED (fslope->normalf.y); // cross[1]
srcplane->c = FLOAT_TO_FIXED (fslope->normalf.z); // cross[2]
srcplane->ic = FixedDiv(FRACUNIT, srcplane->c); // (1 << 32/srcplane->c) or FLOAT_TO_FIXED(1.0f/cross[2]);
// destheight takes the destination height used in dz
srcplane->d = -TMulScale16 (srcplane->a, line->v1->x, // x
srcplane->b, line->v1->y, // y
srcplane->c, line->backsector->floorheight); // z
// Sync the secplane!
fslope->secplane = line->frontsector->f_slope->secplane = *srcplane;
fslope->zangle = R_PointToAngle2(0, origin.z, R_PointToDist2(origin.x, origin.y, point.x, point.y), point.z);
fslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
} }
if(frontceil) if(frontceil)
{ {
point.z = FIXED_TO_FLOAT(line->frontsector->ceilingheight); point.z = line->frontsector->ceilingheight;
dz = (FIXED_TO_FLOAT(line->backsector->ceilingheight) - point.z) / extent; dz = FixedDiv(line->backsector->ceilingheight - point.z, extent);
cslope = line->frontsector->c_slope = cslope = line->frontsector->c_slope =
P_MakeSlope(&point, &direction, dz, true); P_MakeSlope(&point, &direction, dz, true);
// Sync the linedata of the line that started this slope // Sync the linedata of the line that started this slope
// SRB2CBTODO: Anything special for remote(control sector)-based slopes later? // SRB2CBTODO: Anything special for remote(control sector)-based slopes later?
line->frontsector->c_slope->sourceline = line; cslope->sourceline = line;
// Remember the way the slope is formed // Remember the way the slope is formed
fixed_t highest = point.z > origin.z ? point.z : origin.z; fixed_t highest = point.z > origin.z ? point.z : origin.z;
fixed_t lowest = point.z < origin.z ? point.z : origin.z; fixed_t lowest = point.z < origin.z ? point.z : origin.z;
highest = FLOAT_TO_FIXED(highest);
lowest = FLOAT_TO_FIXED(lowest);
size_t l; size_t l;
for (l = 0; l < line->frontsector->linecount; l++) for (l = 0; l < line->frontsector->linecount; l++)
{ {
if (P_GetZAt(line->frontsector->c_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y) > highest) fixed_t height = P_GetZAt(line->frontsector->c_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y);
highest = P_GetZAt(line->frontsector->c_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y);
if (P_GetZAt(line->frontsector->c_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y) < lowest) if (height > highest)
lowest = P_GetZAt(line->frontsector->c_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y); highest = height;
if (height < lowest)
lowest = height;
} }
// This line special sets extra clipping data for the frontsector's slope // This line special sets extra clipping data for the frontsector's slope
cslope->highz = line->frontsector->c_slope->highz = highest; cslope->highz = highest;
cslope->lowz = line->frontsector->c_slope->lowz = lowest; cslope->lowz = lowest;
// SRB2CBTODO: Get XY angle of a slope and then awesome physics! // ESLOPE: cslope->zangle = R_PointToAngle2(0, origin.z, R_PointToDist2(origin.x, origin.y, point.x, point.y), point.z);
//cslope->zangle = line->frontsector->c_slope->zangle = P_GetSlopezangle(line->frontsector, highvert, lowvert); cslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
//100*(ANG45/45);//R_PointToAngle2(direction.x, direction.y, origin.x, origin.y);
// Get slope XY angle with secplane_t
secplane_t *srcplane = Z_Calloc(sizeof(*srcplane), PU_LEVEL, NULL);
// ZDoom secplane port!
// secplane_t! woot!
// ret = f_slope or c_slope
srcplane->a = FLOAT_TO_FIXED (cslope->normalf.x); // cross[0]
srcplane->b = FLOAT_TO_FIXED (cslope->normalf.y); // cross[1]
srcplane->c = FLOAT_TO_FIXED (cslope->normalf.z); // cross[2]
//plane->ic = FLOAT_TO_FIXED (1.f/cross[2]);
srcplane->ic = FixedDiv(FRACUNIT, srcplane->c); // (1 << 32/srcplane->c)
#ifdef SLOPETHINGS // For setting thing-based slopes
srcplane->d = -TMulScale16 (plane->a, x,
plane->b, y,
plane->c, z);
#endif
//srcheight = isceiling ? sec->GetPlaneTexZ(sector_t::floor) : sec->GetPlaneTexZ(sector_t::ceiling);
//destheight = isceiling ? refsec->GetPlaneTexZ(sector_t::floor) : refsec->GetPlaneTexZ(sector_t::ceiling);
//P_GetZAtf(ret, v2.x, v2.y)
// destheight takes the destination height used in dz
srcplane->d = -TMulScale16 (srcplane->a, line->v1->x,
srcplane->b, line->v1->y,
srcplane->c, line->backsector->ceilingheight);
// Sync the secplane!
cslope->secplane = line->frontsector->c_slope->secplane = *srcplane;
} }
} }
if(backfloor || backceil) if(backfloor || backceil)
{ {
origin.z = FIXED_TO_FLOAT(line->frontsector->floorheight); origin.z = line->frontsector->floorheight;
// Backsector // Backsector
direction.x = -line->nx; direction.x = -nx;
direction.y = -line->ny; direction.y = -ny;
extent = P_GetExtent(line->backsector, line, &origin, &direction); extent = P_GetExtent(line->backsector, line);
if(extent < 0.0f) if(extent < 0)
{ {
CONS_Printf("P_SpawnSlope_Line failed to get backsector extent on line number %i\n", linenum); CONS_Printf("P_SpawnSlope_Line failed to get backsector extent on line number %i\n", linenum);
return; return;
} }
// reposition the origin according to the extent // reposition the origin according to the extent
point.x = origin.x + direction.x * extent; point.x = origin.x + FixedMul(direction.x, extent);
point.y = origin.y + direction.y * extent; point.y = origin.y + FixedMul(direction.y, extent);
direction.x = -direction.x; direction.x = -direction.x;
direction.y = -direction.y; direction.y = -direction.y;
if(backfloor) if(backfloor)
{ {
point.z = FIXED_TO_FLOAT(line->backsector->floorheight); point.z = line->backsector->floorheight;
dz = (FIXED_TO_FLOAT(line->frontsector->floorheight) - point.z) / extent; dz = FixedDiv(line->frontsector->floorheight - point.z, extent);
fslope = line->backsector->f_slope = fslope = line->backsector->f_slope =
P_MakeSlope(&point, &direction, dz, false); P_MakeSlope(&point, &direction, dz, false);
// Sync the linedata of the line that started this slope // Sync the linedata of the line that started this slope
// SRB2CBTODO: Anything special for remote(control sector)-based slopes later? // SRB2CBTODO: Anything special for remote(control sector)-based slopes later?
line->backsector->f_slope->sourceline = line; fslope->sourceline = line;
int slopeangle = 0; // All floors by default have no slope (an angle of 0)
v3float_t A = origin; // = line source
v3float_t B = point; // destination's value
v3float_t C = origin;
C.z = point.z;
// To find the "angle" of a slope, we make a right triangle out of the points we have,
// point A - is point 1 of the hypotenuse,
// point B - is point 2 of the hypotenuse
// point C - has the same Z value as point b, and the same XY value as A
//
// We want to find the angle accross from the right angle
// so we use some triginometry to find the angle(fun, right?)
// We want to find the tanjent of this angle, this is:
// Opposite
// ------- = tan(x)
// Adjecent
// But actually tan doesn't do want we really want, we have to use atan to find the actual angle of the triangle's corner
float triangopplength = abs(B.z - A.z);
float triangadjlength = sqrt((B.x-C.x)*(B.x-C.x) + (B.y - C.y)*(B.y - C.y));
//float trianghyplength = sqrt(triangopplength*triangopplength + triangadjlength*triangadjlength); // This is the hypotenuse
// So tanjent = opposite divided by adjecent
float tanrelat = triangopplength/ triangadjlength; // tanjent = opposite / adjecent
slopeangle = atan(tanrelat)* 180 / M_PI; // Now we use atan - *180 /M_PI is needed to convert the value into degrees
// Remember the way the slope is formed // Remember the way the slope is formed
fixed_t highest = point.z > origin.z ? point.z : origin.z; fixed_t highest = point.z > origin.z ? point.z : origin.z;
fixed_t lowest = point.z < origin.z ? point.z : origin.z; fixed_t lowest = point.z < origin.z ? point.z : origin.z;
highest = FLOAT_TO_FIXED(highest);
lowest = FLOAT_TO_FIXED(lowest);
size_t l; size_t l;
for (l = 0; l < line->backsector->linecount; l++) for (l = 0; l < line->backsector->linecount; l++)
{ {
if (P_GetZAt(line->backsector->f_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y) > highest) fixed_t height = P_GetZAt(line->backsector->f_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y);
highest = P_GetZAt(line->backsector->f_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y);
if (P_GetZAt(line->backsector->f_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y) < lowest) if (height > highest)
lowest = P_GetZAt(line->backsector->f_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y); highest = height;
if (height < lowest)
lowest = height;
} }
// This line special sets extra clipping data for the frontsector's slope // This line special sets extra clipping data for the frontsector's slope
fslope->highz = line->backsector->f_slope->highz = highest; fslope->highz = highest;
fslope->lowz = line->backsector->f_slope->lowz = lowest; fslope->lowz = lowest;
fslope->zangle = slopeangle; cslope->zangle = R_PointToAngle2(0, origin.z, R_PointToDist2(origin.x, origin.y, point.x, point.y), point.z);
// Get slope XY angle with secplane_t cslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
secplane_t *srcplane = Z_Calloc(sizeof(*srcplane), PU_LEVEL, NULL);
// ZDoom secplane port!
// secplane_t! woot!
// ret = f_slope or c_slope
srcplane->a = FLOAT_TO_FIXED (fslope->normalf.x); // cross[0]
srcplane->b = FLOAT_TO_FIXED (fslope->normalf.y); // cross[1]
srcplane->c = FLOAT_TO_FIXED (fslope->normalf.z); // cross[2]
//plane->ic = FLOAT_TO_FIXED (1.f/cross[2]);
srcplane->ic = FixedDiv(FRACUNIT, srcplane->c); // (1 << 32/srcplane->c)
#ifdef SLOPETHINGS // For setting thing-based slopes
srcplane->d = -TMulScale16 (plane->a, x,
plane->b, y,
plane->c, z);
#endif
//srcheight = isceiling ? sec->GetPlaneTexZ(sector_t::floor) : sec->GetPlaneTexZ(sector_t::ceiling);
//destheight = isceiling ? refsec->GetPlaneTexZ(sector_t::floor) : refsec->GetPlaneTexZ(sector_t::ceiling);
//P_GetZAtf(ret, v2.x, v2.y)
// destheight takes the destination height used in dz
srcplane->d = -TMulScale16 (srcplane->a, line->v1->x,
srcplane->b, line->v1->y,
srcplane->c, line->frontsector->floorheight);
// Sync the secplane!
fslope->secplane = line->backsector->f_slope->secplane = *srcplane;
} }
if(backceil) if(backceil)
{ {
point.z = FIXED_TO_FLOAT(line->backsector->ceilingheight); point.z = line->backsector->ceilingheight;
dz = (FIXED_TO_FLOAT(line->frontsector->ceilingheight) - point.z) / extent; dz = FixedDiv(line->frontsector->ceilingheight - point.z, extent);
cslope = line->backsector->c_slope = cslope = line->backsector->c_slope =
P_MakeSlope(&point, &direction, dz, true); P_MakeSlope(&point, &direction, dz, true);
// Sync the linedata of the line that started this slope // Sync the linedata of the line that started this slope
// SRB2CBTODO: Anything special for remote(control sector)-based slopes later? // SRB2CBTODO: Anything special for remote(control sector)-based slopes later?
line->backsector->c_slope->sourceline = line; cslope->sourceline = line;
// Remember the way the slope is formed // Remember the way the slope is formed
fixed_t highest = point.z > origin.z ? point.z : origin.z; fixed_t highest = point.z > origin.z ? point.z : origin.z;
fixed_t lowest = point.z < origin.z ? point.z : origin.z; fixed_t lowest = point.z < origin.z ? point.z : origin.z;
highest = FLOAT_TO_FIXED(highest);
lowest = FLOAT_TO_FIXED(lowest);
size_t l; size_t l;
for (l = 0; l < line->backsector->linecount; l++) for (l = 0; l < line->backsector->linecount; l++)
{ {
if (P_GetZAt(line->backsector->c_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y) > highest) fixed_t height = P_GetZAt(line->backsector->c_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y);
highest = P_GetZAt(line->backsector->c_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y);
if (P_GetZAt(line->backsector->c_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y) < lowest) if (height > highest)
lowest = P_GetZAt(line->backsector->c_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y); highest = height;
if (height < lowest)
lowest = height;
} }
// This line special sets extra clipping data for the backsector's slope // This line special sets extra clipping data for the backsector's slope
cslope->highz = line->backsector->c_slope->highz = highest; cslope->highz = highest;
cslope->lowz = line->backsector->c_slope->lowz = lowest; cslope->lowz = lowest;
// SRB2CBTODO: Get XY angle of a slope and then awesome physics! // ESLOPE: cslope->zangle = R_PointToAngle2(0, origin.z, R_PointToDist2(origin.x, origin.y, point.x, point.y), point.z);
//cslope->zangle = line->backsector->c_slope->zangle = P_GetSlopezangle(line->backsector, highvert, lowvert); cslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
//100*(ANG45/45);//R_PointToAngle2(direction.x, direction.y, origin.x, origin.y);
// Get slope XY angle with secplane_t
secplane_t *srcplane = Z_Calloc(sizeof(*srcplane), PU_LEVEL, NULL);
// ZDoom secplane port!
// secplane_t! woot!
// ret = f_slope or c_slope
srcplane->a = FLOAT_TO_FIXED (cslope->normalf.x); // cross[0]
srcplane->b = FLOAT_TO_FIXED (cslope->normalf.y); // cross[1]
srcplane->c = FLOAT_TO_FIXED (cslope->normalf.z); // cross[2]
//plane->ic = FLOAT_TO_FIXED (1.f/cross[2]);
srcplane->ic = FixedDiv(FRACUNIT, srcplane->c); // (1 << 32/srcplane->c)
#ifdef SLOPETHINGS // For setting thing-based slopes
srcplane->d = -TMulScale16 (plane->a, x,
plane->b, y,
plane->c, z);
#endif
//srcheight = isceiling ? sec->GetPlaneTexZ(sector_t::floor) : sec->GetPlaneTexZ(sector_t::ceiling);
//destheight = isceiling ? refsec->GetPlaneTexZ(sector_t::floor) : refsec->GetPlaneTexZ(sector_t::ceiling);
//P_GetZAtf(ret, v2.x, v2.y)
// destheight takes the destination height used in dz
srcplane->d = -TMulScale16 (srcplane->a, line->v1->x,
srcplane->b, line->v1->y,
srcplane->c, line->frontsector->ceilingheight);
// Sync the secplane!
cslope->secplane = line->backsector->c_slope->secplane = *srcplane;
} }
} }
@ -626,9 +390,9 @@ void P_CopySectorSlope(line_t *line)
sector_t *srcsec = sectors + i; sector_t *srcsec = sectors + i;
if((special - 393) & 1 && !fsec->f_slope && srcsec->f_slope) if((special - 393) & 1 && !fsec->f_slope && srcsec->f_slope)
fsec->f_slope = P_CopySlope(srcsec->f_slope); fsec->f_slope = srcsec->f_slope; //P_CopySlope(srcsec->f_slope);
if((special - 393) & 2 && !fsec->c_slope && srcsec->c_slope) if((special - 393) & 2 && !fsec->c_slope && srcsec->c_slope)
fsec->c_slope = P_CopySlope(srcsec->c_slope); fsec->c_slope = srcsec->c_slope; //P_CopySlope(srcsec->c_slope);
} }
//SRB2CBTODO: ESLOPE: Maybe we do need it for another to check for a plane slope? //SRB2CBTODO: ESLOPE: Maybe we do need it for another to check for a plane slope?

View file

@ -241,6 +241,7 @@ typedef struct
v3float_t of; v3float_t of;
// The normal of the 3d plane the slope creates. // The normal of the 3d plane the slope creates.
v3fixed_t normal;
v3float_t normalf; v3float_t normalf;
// 2-Dimentional vector (x, y) normalized. Used to determine distance from // 2-Dimentional vector (x, y) normalized. Used to determine distance from
@ -261,7 +262,7 @@ typedef struct
struct line_s *sourceline; struct line_s *sourceline;
// This values only check and must be updated if the slope itself is modified // This values only check and must be updated if the slope itself is modified
USHORT zangle; // Angle of the plane going up from the ground (not mesured in degrees) angle_t zangle; // Angle of the plane going up from the ground (not mesured in degrees)
angle_t xydirection; // The direction the slope is facing (north, west, south, etc.) angle_t xydirection; // The direction the slope is facing (north, west, south, etc.)
secplane_t secplane; // Extra data for collision and stuff secplane_t secplane; // Extra data for collision and stuff
} pslope_t; } pslope_t;
@ -444,12 +445,6 @@ typedef struct line_s
char *text; // a concatination of all front and back texture names, for linedef specials that require a string. char *text; // a concatination of all front and back texture names, for linedef specials that require a string.
INT16 callcount; // no. of calls left before triggering, for the "X calls" linedef specials, defaults to 0 INT16 callcount; // no. of calls left before triggering, for the "X calls" linedef specials, defaults to 0
#ifdef ESLOPE
// SoM 05/11/09: Pre-calculated 2D normal for the line
float nx, ny;
float len;
#endif
} line_t; } line_t;
// //