mirror of
https://git.do.srb2.org/KartKrew/Kart-Public.git
synced 2024-12-31 23:00:57 +00:00
MakeSlope_Line cleanup/fixed-point conversion
This commit is contained in:
parent
5070a964b9
commit
aeef23e816
3 changed files with 117 additions and 362 deletions
|
@ -1170,10 +1170,6 @@ static void P_LoadLineDefs(lumpnum_t lumpnum)
|
||||||
#ifdef POLYOBJECTS
|
#ifdef POLYOBJECTS
|
||||||
ld->polyobj = NULL;
|
ld->polyobj = NULL;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef ESLOPE
|
|
||||||
P_MakeLineNormal(ld);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
Z_Free(data);
|
Z_Free(data);
|
||||||
|
|
424
src/p_slopes.c
424
src/p_slopes.c
|
@ -45,91 +45,20 @@
|
||||||
//
|
//
|
||||||
// Alocates and fill the contents of a slope structure.
|
// Alocates and fill the contents of a slope structure.
|
||||||
//
|
//
|
||||||
static pslope_t *P_MakeSlope(const v3float_t *o, const v2float_t *d,
|
static pslope_t *P_MakeSlope(const v3fixed_t *o, const v2fixed_t *d,
|
||||||
const float zdelta, boolean isceiling)
|
const fixed_t zdelta, boolean isceiling)
|
||||||
{
|
{
|
||||||
pslope_t *ret = Z_Malloc(sizeof(pslope_t), PU_LEVEL, NULL);
|
pslope_t *ret = Z_Malloc(sizeof(pslope_t), PU_LEVEL, NULL);
|
||||||
memset(ret, 0, sizeof(*ret));
|
memset(ret, 0, sizeof(*ret));
|
||||||
|
|
||||||
ret->o.x = FLOAT_TO_FIXED(ret->of.x = o->x);
|
ret->of.x = FIXED_TO_FLOAT(ret->o.x = o->x);
|
||||||
ret->o.y = FLOAT_TO_FIXED(ret->of.y = o->y);
|
ret->of.y = FIXED_TO_FLOAT(ret->o.y = o->y);
|
||||||
ret->o.z = FLOAT_TO_FIXED(ret->of.z = o->z);
|
ret->of.z = FIXED_TO_FLOAT(ret->o.z = o->z);
|
||||||
|
|
||||||
ret->d.x = FLOAT_TO_FIXED(ret->df.x = d->x);
|
ret->df.x = FIXED_TO_FLOAT(ret->d.x = d->x);
|
||||||
ret->d.y = FLOAT_TO_FIXED(ret->df.y = d->y);
|
ret->df.y = FIXED_TO_FLOAT(ret->d.y = d->y);
|
||||||
|
|
||||||
ret->zdelta = FLOAT_TO_FIXED(ret->zdeltaf = zdelta);
|
ret->zdeltaf = FIXED_TO_FLOAT(ret->zdelta = zdelta);
|
||||||
|
|
||||||
// d = direction (v2float_t)
|
|
||||||
//
|
|
||||||
// direction.x = line->nx;
|
|
||||||
// direction.y = line->ny;
|
|
||||||
//
|
|
||||||
// o = origin (v3float_t)
|
|
||||||
// origin.x = (FIXED_TO_FLOAT(line->v2->x) + FIXED_TO_FLOAT(line->v1->x)) * 0.5f;
|
|
||||||
// origin.y = (FIXED_TO_FLOAT(line->v2->y) + FIXED_TO_FLOAT(line->v1->y)) * 0.5f;
|
|
||||||
|
|
||||||
{
|
|
||||||
// Now calculate the normal of the plane!
|
|
||||||
v3float_t v1, v2, v3, d1, d2;
|
|
||||||
float len;
|
|
||||||
|
|
||||||
v1.x = o->x;
|
|
||||||
v1.y = o->y;
|
|
||||||
v1.z = o->z;
|
|
||||||
|
|
||||||
v2.x = v1.x;
|
|
||||||
v2.y = v1.y + 10.0f;
|
|
||||||
v2.z = P_GetZAtf(ret, v2.x, v2.y);
|
|
||||||
|
|
||||||
v3.x = v1.x + 10.0f;
|
|
||||||
v3.y = v1.y;
|
|
||||||
v3.z = P_GetZAtf(ret, v3.x, v3.y);
|
|
||||||
|
|
||||||
if (isceiling)
|
|
||||||
{
|
|
||||||
M_SubVec3f(&d1, &v1, &v3);
|
|
||||||
M_SubVec3f(&d2, &v2, &v3);
|
|
||||||
}
|
|
||||||
else
|
|
||||||
{
|
|
||||||
M_SubVec3f(&d1, &v1, &v2);
|
|
||||||
M_SubVec3f(&d2, &v3, &v2);
|
|
||||||
}
|
|
||||||
|
|
||||||
M_CrossProduct3f(&ret->normalf, &d1, &d2);
|
|
||||||
|
|
||||||
// Cross product length
|
|
||||||
len = (float)sqrt(ret->normalf.x * ret->normalf.x +
|
|
||||||
ret->normalf.y * ret->normalf.y +
|
|
||||||
ret->normalf.z * ret->normalf.z);
|
|
||||||
|
|
||||||
#ifdef SLOPETHINGS
|
|
||||||
if (len == 0)
|
|
||||||
{
|
|
||||||
// Only happens when all vertices in this sector are on the same line.
|
|
||||||
// Let's just ignore this case.
|
|
||||||
CONS_Printf("Slope thing at (%d,%d) lies directly on its target line.\n", int(x>>16), int(y>>16));
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
ret->normalf.x /= len;
|
|
||||||
ret->normalf.y /= len;
|
|
||||||
ret->normalf.z /= len;
|
|
||||||
|
|
||||||
// ZDoom
|
|
||||||
// cross = ret->normalf
|
|
||||||
|
|
||||||
// Fix backward normals
|
|
||||||
if ((ret->normalf.z < 0 && !isceiling) || (ret->normalf.z > 0 && isceiling))
|
|
||||||
{
|
|
||||||
ret->normalf.x = -ret->normalf.x;
|
|
||||||
ret->normalf.y = -ret->normalf.x;
|
|
||||||
ret->normalf.z = -ret->normalf.x;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
@ -147,36 +76,16 @@ static pslope_t *P_CopySlope(const pslope_t *src)
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
//
|
|
||||||
// P_MakeLineNormal
|
|
||||||
//
|
|
||||||
// Calculates a 2D normal for the given line and stores it in the line
|
|
||||||
//
|
|
||||||
void P_MakeLineNormal(line_t *line)
|
|
||||||
{
|
|
||||||
float linedx, linedy, length;
|
|
||||||
|
|
||||||
// SRB2CBTODO: Give linedefs an fx+fy(float xy coords)?
|
|
||||||
// May cause slow downs since the float would always have to be converted/updated
|
|
||||||
linedx = FIXED_TO_FLOAT(line->v2->x) - FIXED_TO_FLOAT(line->v1->x);
|
|
||||||
linedy = FIXED_TO_FLOAT(line->v2->y) - FIXED_TO_FLOAT(line->v1->y);
|
|
||||||
|
|
||||||
length = (float)sqrt(linedx * linedx + linedy * linedy);
|
|
||||||
line->nx = linedy / length;
|
|
||||||
line->ny = -linedx / length;
|
|
||||||
line->len = length;
|
|
||||||
}
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// P_GetExtent
|
// P_GetExtent
|
||||||
//
|
//
|
||||||
// Returns the distance to the first line within the sector that
|
// Returns the distance to the first line within the sector that
|
||||||
// is intersected by a line parallel to the plane normal with the point (ox, oy)
|
// is intersected by a line parallel to the plane normal with the point (ox, oy)
|
||||||
//
|
//
|
||||||
static float P_GetExtent(sector_t *sector, line_t *line, v3float_t *o, v2float_t *d)
|
static fixed_t P_GetExtent(sector_t *sector, line_t *line)
|
||||||
{
|
{
|
||||||
// ZDoom code reference: v3float_t = vertex_t
|
// ZDoom code reference: v3float_t = vertex_t
|
||||||
float fardist = -1.0f;
|
fixed_t fardist = -FRACUNIT;
|
||||||
size_t i;
|
size_t i;
|
||||||
|
|
||||||
// Find furthest vertex from the reference line. It, along with the two ends
|
// Find furthest vertex from the reference line. It, along with the two ends
|
||||||
|
@ -186,23 +95,20 @@ static float P_GetExtent(sector_t *sector, line_t *line, v3float_t *o, v2float_t
|
||||||
{
|
{
|
||||||
line_t *li = sector->lines[i];
|
line_t *li = sector->lines[i];
|
||||||
vertex_t tempv;
|
vertex_t tempv;
|
||||||
float dist;
|
fixed_t dist;
|
||||||
|
|
||||||
// Don't compare to the slope line.
|
// Don't compare to the slope line.
|
||||||
if(li == line)
|
if(li == line)
|
||||||
continue;
|
continue;
|
||||||
|
|
||||||
// ZDoom code in P_AlignPlane
|
|
||||||
// dist = fabs((double(line->v1->y) - vert->y) * line->dx - (double(line->v1->x) - vert->x) * line->dy);
|
|
||||||
//dist = (float)fabs((FIXED_TO_FLOAT(li->v1->x) - o->x) * d->x + (FIXED_TO_FLOAT(li->v1->y) - o->y) * d->y);
|
|
||||||
P_ClosestPointOnLine(li->v1->x, li->v1->y, line, &tempv);
|
P_ClosestPointOnLine(li->v1->x, li->v1->y, line, &tempv);
|
||||||
dist = FIXED_TO_FLOAT(R_PointToDist2(tempv.x, tempv.y, li->v1->x, li->v1->y));
|
dist = R_PointToDist2(tempv.x, tempv.y, li->v1->x, li->v1->y);
|
||||||
if(dist > fardist)
|
if(dist > fardist)
|
||||||
fardist = dist;
|
fardist = dist;
|
||||||
|
|
||||||
// Okay, maybe do it for v2 as well?
|
// Okay, maybe do it for v2 as well?
|
||||||
P_ClosestPointOnLine(li->v2->x, li->v2->y, line, &tempv);
|
P_ClosestPointOnLine(li->v2->x, li->v2->y, line, &tempv);
|
||||||
dist = FIXED_TO_FLOAT(R_PointToDist2(tempv.x, tempv.y, li->v2->x, li->v2->y));
|
dist = R_PointToDist2(tempv.x, tempv.y, li->v2->x, li->v2->y);
|
||||||
if(dist > fardist)
|
if(dist > fardist)
|
||||||
fardist = dist;
|
fardist = dist;
|
||||||
}
|
}
|
||||||
|
@ -224,11 +130,11 @@ void P_SpawnSlope_Line(int linenum)
|
||||||
// because checking to see if a slope had changed will waste more memory than
|
// because checking to see if a slope had changed will waste more memory than
|
||||||
// if the slope was just updated when called
|
// if the slope was just updated when called
|
||||||
line_t *line = lines + linenum;
|
line_t *line = lines + linenum;
|
||||||
int special = line->special;
|
INT16 special = line->special;
|
||||||
pslope_t *fslope = NULL, *cslope = NULL;
|
pslope_t *fslope = NULL, *cslope = NULL;
|
||||||
v3float_t origin, point;
|
v3fixed_t origin, point;
|
||||||
v2float_t direction;
|
v2fixed_t direction;
|
||||||
float dz, extent;
|
fixed_t nx, ny, dz, extent;
|
||||||
|
|
||||||
boolean frontfloor = (special == 386 || special == 388 || special == 393);
|
boolean frontfloor = (special == 386 || special == 388 || special == 393);
|
||||||
boolean backfloor = (special == 389 || special == 391 || special == 392);
|
boolean backfloor = (special == 389 || special == 391 || special == 392);
|
||||||
|
@ -247,28 +153,34 @@ void P_SpawnSlope_Line(int linenum)
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
fixed_t len = R_PointToDist2(0, 0, line->dx, line->dy);
|
||||||
|
nx = FixedDiv(line->dy, len);
|
||||||
|
ny = -FixedDiv(line->dx, len);
|
||||||
|
}
|
||||||
|
|
||||||
// SRB2CBTODO: Transform origin relative to the bounds of an individual FOF
|
// SRB2CBTODO: Transform origin relative to the bounds of an individual FOF
|
||||||
origin.x = (FIXED_TO_FLOAT(line->v2->x) + FIXED_TO_FLOAT(line->v1->x)) * 0.5f;
|
origin.x = line->v1->x + (line->v2->x - line->v1->x)/2;
|
||||||
origin.y = (FIXED_TO_FLOAT(line->v2->y) + FIXED_TO_FLOAT(line->v1->y)) * 0.5f;
|
origin.y = line->v1->y + (line->v2->y - line->v1->y)/2;
|
||||||
|
|
||||||
// For FOF slopes, make a special function to copy to the xy origin & direction relative to the position of the FOF on the map!
|
// For FOF slopes, make a special function to copy to the xy origin & direction relative to the position of the FOF on the map!
|
||||||
if(frontfloor || frontceil)
|
if(frontfloor || frontceil)
|
||||||
{
|
{
|
||||||
origin.z = FIXED_TO_FLOAT(line->backsector->floorheight);
|
origin.z = line->backsector->floorheight;
|
||||||
direction.x = line->nx;
|
direction.x = nx;
|
||||||
direction.y = line->ny;
|
direction.y = ny;
|
||||||
|
|
||||||
extent = P_GetExtent(line->frontsector, line, &origin, &direction);
|
extent = P_GetExtent(line->frontsector, line);
|
||||||
|
|
||||||
if(extent < 0.0f)
|
if(extent < 0)
|
||||||
{
|
{
|
||||||
CONS_Printf("P_SpawnSlope_Line failed to get frontsector extent on line number %i\n", linenum);
|
CONS_Printf("P_SpawnSlope_Line failed to get frontsector extent on line number %i\n", linenum);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
// reposition the origin according to the extent
|
// reposition the origin according to the extent
|
||||||
point.x = origin.x + direction.x * extent;
|
point.x = origin.x + FixedMul(direction.x, extent);
|
||||||
point.y = origin.y + direction.y * extent;
|
point.y = origin.y + FixedMul(direction.y, extent);
|
||||||
direction.x = -direction.x;
|
direction.x = -direction.x;
|
||||||
direction.y = -direction.y;
|
direction.y = -direction.y;
|
||||||
|
|
||||||
|
@ -277,39 +189,11 @@ void P_SpawnSlope_Line(int linenum)
|
||||||
if(frontfloor)
|
if(frontfloor)
|
||||||
{
|
{
|
||||||
|
|
||||||
point.z = FIXED_TO_FLOAT(line->frontsector->floorheight); // Startz
|
point.z = line->frontsector->floorheight; // Startz
|
||||||
dz = (FIXED_TO_FLOAT(line->backsector->floorheight) - point.z) / extent; // Destinationz
|
dz = FixedDiv(line->backsector->floorheight - point.z, extent); // Destinationz
|
||||||
|
|
||||||
// In P_SpawnSlopeLine the origin is the centerpoint of the sourcelinedef
|
// In P_SpawnSlopeLine the origin is the centerpoint of the sourcelinedef
|
||||||
|
|
||||||
int slopeangle = 0; // All floors by default have no slope (an angle of 0, completely flat)
|
|
||||||
|
|
||||||
v3float_t A = origin; // = line source
|
|
||||||
v3float_t B = point; // destination's value
|
|
||||||
v3float_t C = origin; // Point used to make a right triangle from A & B
|
|
||||||
|
|
||||||
C.z = point.z;
|
|
||||||
|
|
||||||
// To find the "angle" of a slope, we make a right triangle out of the points we have,
|
|
||||||
// point A - is point 1 of the hypotenuse,
|
|
||||||
// point B - is point 2 of the hypotenuse
|
|
||||||
// point C - has the same Z value as point b, and the same XY value as A
|
|
||||||
//
|
|
||||||
// We want to find the angle accross from the right angle
|
|
||||||
// so we use some triginometry to find the angle(fun, right?)
|
|
||||||
// We want to find the tanjent of this angle, this is:
|
|
||||||
// Opposite
|
|
||||||
// ------- = tan(x)
|
|
||||||
// Adjecent
|
|
||||||
// But actually tan doesn't do want we really want, we have to use atan to find the actual angle of the triangle's corner
|
|
||||||
float triangopplength = abs(B.z - A.z);
|
|
||||||
float triangadjlength = sqrt((B.x-C.x)*(B.x-C.x) + (B.y - C.y)*(B.y - C.y));
|
|
||||||
//float trianghyplength = sqrt(triangopplength*triangopplength + triangadjlength*triangadjlength); // This is the hypotenuse
|
|
||||||
|
|
||||||
// So tanjent = opposite divided by adjecent
|
|
||||||
float tanrelat = triangopplength/ triangadjlength; // tanjent = opposite / adjecent
|
|
||||||
slopeangle = atan(tanrelat)* 180 / M_PI; // Now we use atan: *180 /M_PI is needed to convert the value into degrees
|
|
||||||
|
|
||||||
fslope = line->frontsector->f_slope =
|
fslope = line->frontsector->f_slope =
|
||||||
P_MakeSlope(&point, &direction, dz, false);
|
P_MakeSlope(&point, &direction, dz, false);
|
||||||
|
|
||||||
|
@ -320,7 +204,7 @@ void P_SpawnSlope_Line(int linenum)
|
||||||
|
|
||||||
// Sync the linedata of the line that started this slope
|
// Sync the linedata of the line that started this slope
|
||||||
// SRB2CBTODO: Anything special for remote(control sector)-based slopes later?
|
// SRB2CBTODO: Anything special for remote(control sector)-based slopes later?
|
||||||
line->frontsector->f_slope->sourceline = line;
|
fslope->sourceline = line;
|
||||||
|
|
||||||
// To find the real highz/lowz of a slope, you need to check all the vertexes
|
// To find the real highz/lowz of a slope, you need to check all the vertexes
|
||||||
// in the slope's sector with P_GetZAt to get the REAL lowz & highz
|
// in the slope's sector with P_GetZAt to get the REAL lowz & highz
|
||||||
|
@ -331,276 +215,156 @@ void P_SpawnSlope_Line(int linenum)
|
||||||
// Default points for high and low
|
// Default points for high and low
|
||||||
fixed_t highest = point.z > origin.z ? point.z : origin.z;
|
fixed_t highest = point.z > origin.z ? point.z : origin.z;
|
||||||
fixed_t lowest = point.z < origin.z ? point.z : origin.z;
|
fixed_t lowest = point.z < origin.z ? point.z : origin.z;
|
||||||
highest = FLOAT_TO_FIXED(highest);
|
|
||||||
lowest = FLOAT_TO_FIXED(lowest);
|
|
||||||
|
|
||||||
// Now check to see what the REAL high and low points of the slope inside the sector
|
// Now check to see what the REAL high and low points of the slope inside the sector
|
||||||
|
// TODO: Is this really needed outside of FOFs? -Red
|
||||||
size_t l;
|
size_t l;
|
||||||
|
|
||||||
for (l = 0; l < line->frontsector->linecount; l++)
|
for (l = 0; l < line->frontsector->linecount; l++)
|
||||||
{
|
{
|
||||||
if (P_GetZAt(line->frontsector->f_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y) > highest)
|
fixed_t height = P_GetZAt(line->frontsector->f_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y);
|
||||||
highest = P_GetZAt(line->frontsector->f_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y);
|
|
||||||
|
|
||||||
if (P_GetZAt(line->frontsector->f_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y) < lowest)
|
if (height > highest)
|
||||||
lowest = P_GetZAt(line->frontsector->f_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y);
|
highest = height;
|
||||||
|
|
||||||
|
if (height < lowest)
|
||||||
|
lowest = height;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Sets extra clipping data for the frontsector's slope
|
// Sets extra clipping data for the frontsector's slope
|
||||||
fslope->highz = line->frontsector->f_slope->highz = highest;
|
fslope->highz = highest;
|
||||||
fslope->lowz = line->frontsector->f_slope->lowz = lowest;
|
fslope->lowz = lowest;
|
||||||
|
|
||||||
fslope->zangle = slopeangle;
|
|
||||||
fslope->xydirection = R_PointToAngle2(FLOAT_TO_FIXED(A.x), FLOAT_TO_FIXED(A.y), FLOAT_TO_FIXED(B.x), FLOAT_TO_FIXED(B.y))/(ANGLE_45/45);
|
|
||||||
|
|
||||||
secplane_t *srcplane = Z_Calloc(sizeof(*srcplane), PU_LEVEL, NULL);
|
|
||||||
// ZDoom secplane port! YAY
|
|
||||||
// ret = f_slope or c_slope
|
|
||||||
srcplane->a = FLOAT_TO_FIXED (fslope->normalf.x); // cross[0]
|
|
||||||
srcplane->b = FLOAT_TO_FIXED (fslope->normalf.y); // cross[1]
|
|
||||||
srcplane->c = FLOAT_TO_FIXED (fslope->normalf.z); // cross[2]
|
|
||||||
srcplane->ic = FixedDiv(FRACUNIT, srcplane->c); // (1 << 32/srcplane->c) or FLOAT_TO_FIXED(1.0f/cross[2]);
|
|
||||||
|
|
||||||
// destheight takes the destination height used in dz
|
|
||||||
srcplane->d = -TMulScale16 (srcplane->a, line->v1->x, // x
|
|
||||||
srcplane->b, line->v1->y, // y
|
|
||||||
srcplane->c, line->backsector->floorheight); // z
|
|
||||||
|
|
||||||
// Sync the secplane!
|
|
||||||
fslope->secplane = line->frontsector->f_slope->secplane = *srcplane;
|
|
||||||
|
|
||||||
|
fslope->zangle = R_PointToAngle2(0, origin.z, R_PointToDist2(origin.x, origin.y, point.x, point.y), point.z);
|
||||||
|
fslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
|
||||||
}
|
}
|
||||||
if(frontceil)
|
if(frontceil)
|
||||||
{
|
{
|
||||||
point.z = FIXED_TO_FLOAT(line->frontsector->ceilingheight);
|
point.z = line->frontsector->ceilingheight;
|
||||||
dz = (FIXED_TO_FLOAT(line->backsector->ceilingheight) - point.z) / extent;
|
dz = FixedDiv(line->backsector->ceilingheight - point.z, extent);
|
||||||
|
|
||||||
cslope = line->frontsector->c_slope =
|
cslope = line->frontsector->c_slope =
|
||||||
P_MakeSlope(&point, &direction, dz, true);
|
P_MakeSlope(&point, &direction, dz, true);
|
||||||
|
|
||||||
// Sync the linedata of the line that started this slope
|
// Sync the linedata of the line that started this slope
|
||||||
// SRB2CBTODO: Anything special for remote(control sector)-based slopes later?
|
// SRB2CBTODO: Anything special for remote(control sector)-based slopes later?
|
||||||
line->frontsector->c_slope->sourceline = line;
|
cslope->sourceline = line;
|
||||||
|
|
||||||
// Remember the way the slope is formed
|
// Remember the way the slope is formed
|
||||||
fixed_t highest = point.z > origin.z ? point.z : origin.z;
|
fixed_t highest = point.z > origin.z ? point.z : origin.z;
|
||||||
fixed_t lowest = point.z < origin.z ? point.z : origin.z;
|
fixed_t lowest = point.z < origin.z ? point.z : origin.z;
|
||||||
highest = FLOAT_TO_FIXED(highest);
|
|
||||||
lowest = FLOAT_TO_FIXED(lowest);
|
|
||||||
size_t l;
|
size_t l;
|
||||||
|
|
||||||
for (l = 0; l < line->frontsector->linecount; l++)
|
for (l = 0; l < line->frontsector->linecount; l++)
|
||||||
{
|
{
|
||||||
if (P_GetZAt(line->frontsector->c_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y) > highest)
|
fixed_t height = P_GetZAt(line->frontsector->c_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y);
|
||||||
highest = P_GetZAt(line->frontsector->c_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y);
|
|
||||||
|
|
||||||
if (P_GetZAt(line->frontsector->c_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y) < lowest)
|
if (height > highest)
|
||||||
lowest = P_GetZAt(line->frontsector->c_slope, line->frontsector->lines[l]->v1->x, line->frontsector->lines[l]->v1->y);
|
highest = height;
|
||||||
|
|
||||||
|
if (height < lowest)
|
||||||
|
lowest = height;
|
||||||
}
|
}
|
||||||
|
|
||||||
// This line special sets extra clipping data for the frontsector's slope
|
// This line special sets extra clipping data for the frontsector's slope
|
||||||
cslope->highz = line->frontsector->c_slope->highz = highest;
|
cslope->highz = highest;
|
||||||
cslope->lowz = line->frontsector->c_slope->lowz = lowest;
|
cslope->lowz = lowest;
|
||||||
|
|
||||||
// SRB2CBTODO: Get XY angle of a slope and then awesome physics! // ESLOPE:
|
cslope->zangle = R_PointToAngle2(0, origin.z, R_PointToDist2(origin.x, origin.y, point.x, point.y), point.z);
|
||||||
//cslope->zangle = line->frontsector->c_slope->zangle = P_GetSlopezangle(line->frontsector, highvert, lowvert);
|
cslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
|
||||||
//100*(ANG45/45);//R_PointToAngle2(direction.x, direction.y, origin.x, origin.y);
|
|
||||||
// Get slope XY angle with secplane_t
|
|
||||||
secplane_t *srcplane = Z_Calloc(sizeof(*srcplane), PU_LEVEL, NULL);
|
|
||||||
// ZDoom secplane port!
|
|
||||||
// secplane_t! woot!
|
|
||||||
// ret = f_slope or c_slope
|
|
||||||
srcplane->a = FLOAT_TO_FIXED (cslope->normalf.x); // cross[0]
|
|
||||||
srcplane->b = FLOAT_TO_FIXED (cslope->normalf.y); // cross[1]
|
|
||||||
srcplane->c = FLOAT_TO_FIXED (cslope->normalf.z); // cross[2]
|
|
||||||
//plane->ic = FLOAT_TO_FIXED (1.f/cross[2]);
|
|
||||||
srcplane->ic = FixedDiv(FRACUNIT, srcplane->c); // (1 << 32/srcplane->c)
|
|
||||||
#ifdef SLOPETHINGS // For setting thing-based slopes
|
|
||||||
srcplane->d = -TMulScale16 (plane->a, x,
|
|
||||||
plane->b, y,
|
|
||||||
plane->c, z);
|
|
||||||
#endif
|
|
||||||
//srcheight = isceiling ? sec->GetPlaneTexZ(sector_t::floor) : sec->GetPlaneTexZ(sector_t::ceiling);
|
|
||||||
//destheight = isceiling ? refsec->GetPlaneTexZ(sector_t::floor) : refsec->GetPlaneTexZ(sector_t::ceiling);
|
|
||||||
//P_GetZAtf(ret, v2.x, v2.y)
|
|
||||||
// destheight takes the destination height used in dz
|
|
||||||
srcplane->d = -TMulScale16 (srcplane->a, line->v1->x,
|
|
||||||
srcplane->b, line->v1->y,
|
|
||||||
srcplane->c, line->backsector->ceilingheight);
|
|
||||||
|
|
||||||
// Sync the secplane!
|
|
||||||
cslope->secplane = line->frontsector->c_slope->secplane = *srcplane;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if(backfloor || backceil)
|
if(backfloor || backceil)
|
||||||
{
|
{
|
||||||
origin.z = FIXED_TO_FLOAT(line->frontsector->floorheight);
|
origin.z = line->frontsector->floorheight;
|
||||||
// Backsector
|
// Backsector
|
||||||
direction.x = -line->nx;
|
direction.x = -nx;
|
||||||
direction.y = -line->ny;
|
direction.y = -ny;
|
||||||
|
|
||||||
extent = P_GetExtent(line->backsector, line, &origin, &direction);
|
extent = P_GetExtent(line->backsector, line);
|
||||||
|
|
||||||
if(extent < 0.0f)
|
if(extent < 0)
|
||||||
{
|
{
|
||||||
CONS_Printf("P_SpawnSlope_Line failed to get backsector extent on line number %i\n", linenum);
|
CONS_Printf("P_SpawnSlope_Line failed to get backsector extent on line number %i\n", linenum);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
// reposition the origin according to the extent
|
// reposition the origin according to the extent
|
||||||
point.x = origin.x + direction.x * extent;
|
point.x = origin.x + FixedMul(direction.x, extent);
|
||||||
point.y = origin.y + direction.y * extent;
|
point.y = origin.y + FixedMul(direction.y, extent);
|
||||||
direction.x = -direction.x;
|
direction.x = -direction.x;
|
||||||
direction.y = -direction.y;
|
direction.y = -direction.y;
|
||||||
|
|
||||||
if(backfloor)
|
if(backfloor)
|
||||||
{
|
{
|
||||||
point.z = FIXED_TO_FLOAT(line->backsector->floorheight);
|
point.z = line->backsector->floorheight;
|
||||||
dz = (FIXED_TO_FLOAT(line->frontsector->floorheight) - point.z) / extent;
|
dz = FixedDiv(line->frontsector->floorheight - point.z, extent);
|
||||||
|
|
||||||
fslope = line->backsector->f_slope =
|
fslope = line->backsector->f_slope =
|
||||||
P_MakeSlope(&point, &direction, dz, false);
|
P_MakeSlope(&point, &direction, dz, false);
|
||||||
|
|
||||||
// Sync the linedata of the line that started this slope
|
// Sync the linedata of the line that started this slope
|
||||||
// SRB2CBTODO: Anything special for remote(control sector)-based slopes later?
|
// SRB2CBTODO: Anything special for remote(control sector)-based slopes later?
|
||||||
line->backsector->f_slope->sourceline = line;
|
fslope->sourceline = line;
|
||||||
|
|
||||||
int slopeangle = 0; // All floors by default have no slope (an angle of 0)
|
|
||||||
|
|
||||||
v3float_t A = origin; // = line source
|
|
||||||
v3float_t B = point; // destination's value
|
|
||||||
v3float_t C = origin;
|
|
||||||
|
|
||||||
C.z = point.z;
|
|
||||||
|
|
||||||
// To find the "angle" of a slope, we make a right triangle out of the points we have,
|
|
||||||
// point A - is point 1 of the hypotenuse,
|
|
||||||
// point B - is point 2 of the hypotenuse
|
|
||||||
// point C - has the same Z value as point b, and the same XY value as A
|
|
||||||
//
|
|
||||||
// We want to find the angle accross from the right angle
|
|
||||||
// so we use some triginometry to find the angle(fun, right?)
|
|
||||||
// We want to find the tanjent of this angle, this is:
|
|
||||||
// Opposite
|
|
||||||
// ------- = tan(x)
|
|
||||||
// Adjecent
|
|
||||||
// But actually tan doesn't do want we really want, we have to use atan to find the actual angle of the triangle's corner
|
|
||||||
float triangopplength = abs(B.z - A.z);
|
|
||||||
float triangadjlength = sqrt((B.x-C.x)*(B.x-C.x) + (B.y - C.y)*(B.y - C.y));
|
|
||||||
//float trianghyplength = sqrt(triangopplength*triangopplength + triangadjlength*triangadjlength); // This is the hypotenuse
|
|
||||||
|
|
||||||
// So tanjent = opposite divided by adjecent
|
|
||||||
float tanrelat = triangopplength/ triangadjlength; // tanjent = opposite / adjecent
|
|
||||||
slopeangle = atan(tanrelat)* 180 / M_PI; // Now we use atan - *180 /M_PI is needed to convert the value into degrees
|
|
||||||
|
|
||||||
// Remember the way the slope is formed
|
// Remember the way the slope is formed
|
||||||
fixed_t highest = point.z > origin.z ? point.z : origin.z;
|
fixed_t highest = point.z > origin.z ? point.z : origin.z;
|
||||||
fixed_t lowest = point.z < origin.z ? point.z : origin.z;
|
fixed_t lowest = point.z < origin.z ? point.z : origin.z;
|
||||||
highest = FLOAT_TO_FIXED(highest);
|
|
||||||
lowest = FLOAT_TO_FIXED(lowest);
|
|
||||||
size_t l;
|
size_t l;
|
||||||
|
|
||||||
for (l = 0; l < line->backsector->linecount; l++)
|
for (l = 0; l < line->backsector->linecount; l++)
|
||||||
{
|
{
|
||||||
if (P_GetZAt(line->backsector->f_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y) > highest)
|
fixed_t height = P_GetZAt(line->backsector->f_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y);
|
||||||
highest = P_GetZAt(line->backsector->f_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y);
|
|
||||||
|
|
||||||
if (P_GetZAt(line->backsector->f_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y) < lowest)
|
if (height > highest)
|
||||||
lowest = P_GetZAt(line->backsector->f_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y);
|
highest = height;
|
||||||
|
|
||||||
|
if (height < lowest)
|
||||||
|
lowest = height;
|
||||||
}
|
}
|
||||||
|
|
||||||
// This line special sets extra clipping data for the frontsector's slope
|
// This line special sets extra clipping data for the frontsector's slope
|
||||||
fslope->highz = line->backsector->f_slope->highz = highest;
|
fslope->highz = highest;
|
||||||
fslope->lowz = line->backsector->f_slope->lowz = lowest;
|
fslope->lowz = lowest;
|
||||||
|
|
||||||
fslope->zangle = slopeangle;
|
cslope->zangle = R_PointToAngle2(0, origin.z, R_PointToDist2(origin.x, origin.y, point.x, point.y), point.z);
|
||||||
// Get slope XY angle with secplane_t
|
cslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
|
||||||
secplane_t *srcplane = Z_Calloc(sizeof(*srcplane), PU_LEVEL, NULL);
|
|
||||||
// ZDoom secplane port!
|
|
||||||
// secplane_t! woot!
|
|
||||||
// ret = f_slope or c_slope
|
|
||||||
srcplane->a = FLOAT_TO_FIXED (fslope->normalf.x); // cross[0]
|
|
||||||
srcplane->b = FLOAT_TO_FIXED (fslope->normalf.y); // cross[1]
|
|
||||||
srcplane->c = FLOAT_TO_FIXED (fslope->normalf.z); // cross[2]
|
|
||||||
//plane->ic = FLOAT_TO_FIXED (1.f/cross[2]);
|
|
||||||
srcplane->ic = FixedDiv(FRACUNIT, srcplane->c); // (1 << 32/srcplane->c)
|
|
||||||
#ifdef SLOPETHINGS // For setting thing-based slopes
|
|
||||||
srcplane->d = -TMulScale16 (plane->a, x,
|
|
||||||
plane->b, y,
|
|
||||||
plane->c, z);
|
|
||||||
#endif
|
|
||||||
//srcheight = isceiling ? sec->GetPlaneTexZ(sector_t::floor) : sec->GetPlaneTexZ(sector_t::ceiling);
|
|
||||||
//destheight = isceiling ? refsec->GetPlaneTexZ(sector_t::floor) : refsec->GetPlaneTexZ(sector_t::ceiling);
|
|
||||||
//P_GetZAtf(ret, v2.x, v2.y)
|
|
||||||
// destheight takes the destination height used in dz
|
|
||||||
srcplane->d = -TMulScale16 (srcplane->a, line->v1->x,
|
|
||||||
srcplane->b, line->v1->y,
|
|
||||||
srcplane->c, line->frontsector->floorheight);
|
|
||||||
|
|
||||||
// Sync the secplane!
|
|
||||||
fslope->secplane = line->backsector->f_slope->secplane = *srcplane;
|
|
||||||
}
|
}
|
||||||
if(backceil)
|
if(backceil)
|
||||||
{
|
{
|
||||||
point.z = FIXED_TO_FLOAT(line->backsector->ceilingheight);
|
point.z = line->backsector->ceilingheight;
|
||||||
dz = (FIXED_TO_FLOAT(line->frontsector->ceilingheight) - point.z) / extent;
|
dz = FixedDiv(line->frontsector->ceilingheight - point.z, extent);
|
||||||
|
|
||||||
cslope = line->backsector->c_slope =
|
cslope = line->backsector->c_slope =
|
||||||
P_MakeSlope(&point, &direction, dz, true);
|
P_MakeSlope(&point, &direction, dz, true);
|
||||||
|
|
||||||
// Sync the linedata of the line that started this slope
|
// Sync the linedata of the line that started this slope
|
||||||
// SRB2CBTODO: Anything special for remote(control sector)-based slopes later?
|
// SRB2CBTODO: Anything special for remote(control sector)-based slopes later?
|
||||||
line->backsector->c_slope->sourceline = line;
|
cslope->sourceline = line;
|
||||||
|
|
||||||
// Remember the way the slope is formed
|
// Remember the way the slope is formed
|
||||||
fixed_t highest = point.z > origin.z ? point.z : origin.z;
|
fixed_t highest = point.z > origin.z ? point.z : origin.z;
|
||||||
fixed_t lowest = point.z < origin.z ? point.z : origin.z;
|
fixed_t lowest = point.z < origin.z ? point.z : origin.z;
|
||||||
highest = FLOAT_TO_FIXED(highest);
|
|
||||||
lowest = FLOAT_TO_FIXED(lowest);
|
|
||||||
|
|
||||||
size_t l;
|
size_t l;
|
||||||
|
|
||||||
for (l = 0; l < line->backsector->linecount; l++)
|
for (l = 0; l < line->backsector->linecount; l++)
|
||||||
{
|
{
|
||||||
if (P_GetZAt(line->backsector->c_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y) > highest)
|
fixed_t height = P_GetZAt(line->backsector->c_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y);
|
||||||
highest = P_GetZAt(line->backsector->c_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y);
|
|
||||||
|
|
||||||
if (P_GetZAt(line->backsector->c_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y) < lowest)
|
if (height > highest)
|
||||||
lowest = P_GetZAt(line->backsector->c_slope, line->backsector->lines[l]->v1->x, line->backsector->lines[l]->v1->y);
|
highest = height;
|
||||||
|
|
||||||
|
if (height < lowest)
|
||||||
|
lowest = height;
|
||||||
}
|
}
|
||||||
|
|
||||||
// This line special sets extra clipping data for the backsector's slope
|
// This line special sets extra clipping data for the backsector's slope
|
||||||
cslope->highz = line->backsector->c_slope->highz = highest;
|
cslope->highz = highest;
|
||||||
cslope->lowz = line->backsector->c_slope->lowz = lowest;
|
cslope->lowz = lowest;
|
||||||
|
|
||||||
// SRB2CBTODO: Get XY angle of a slope and then awesome physics! // ESLOPE:
|
cslope->zangle = R_PointToAngle2(0, origin.z, R_PointToDist2(origin.x, origin.y, point.x, point.y), point.z);
|
||||||
//cslope->zangle = line->backsector->c_slope->zangle = P_GetSlopezangle(line->backsector, highvert, lowvert);
|
cslope->xydirection = R_PointToAngle2(origin.x, origin.y, point.x, point.y);
|
||||||
//100*(ANG45/45);//R_PointToAngle2(direction.x, direction.y, origin.x, origin.y);
|
|
||||||
// Get slope XY angle with secplane_t
|
|
||||||
secplane_t *srcplane = Z_Calloc(sizeof(*srcplane), PU_LEVEL, NULL);
|
|
||||||
// ZDoom secplane port!
|
|
||||||
// secplane_t! woot!
|
|
||||||
// ret = f_slope or c_slope
|
|
||||||
srcplane->a = FLOAT_TO_FIXED (cslope->normalf.x); // cross[0]
|
|
||||||
srcplane->b = FLOAT_TO_FIXED (cslope->normalf.y); // cross[1]
|
|
||||||
srcplane->c = FLOAT_TO_FIXED (cslope->normalf.z); // cross[2]
|
|
||||||
//plane->ic = FLOAT_TO_FIXED (1.f/cross[2]);
|
|
||||||
srcplane->ic = FixedDiv(FRACUNIT, srcplane->c); // (1 << 32/srcplane->c)
|
|
||||||
#ifdef SLOPETHINGS // For setting thing-based slopes
|
|
||||||
srcplane->d = -TMulScale16 (plane->a, x,
|
|
||||||
plane->b, y,
|
|
||||||
plane->c, z);
|
|
||||||
#endif
|
|
||||||
//srcheight = isceiling ? sec->GetPlaneTexZ(sector_t::floor) : sec->GetPlaneTexZ(sector_t::ceiling);
|
|
||||||
//destheight = isceiling ? refsec->GetPlaneTexZ(sector_t::floor) : refsec->GetPlaneTexZ(sector_t::ceiling);
|
|
||||||
//P_GetZAtf(ret, v2.x, v2.y)
|
|
||||||
// destheight takes the destination height used in dz
|
|
||||||
srcplane->d = -TMulScale16 (srcplane->a, line->v1->x,
|
|
||||||
srcplane->b, line->v1->y,
|
|
||||||
srcplane->c, line->frontsector->ceilingheight);
|
|
||||||
|
|
||||||
// Sync the secplane!
|
|
||||||
cslope->secplane = line->backsector->c_slope->secplane = *srcplane;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -626,9 +390,9 @@ void P_CopySectorSlope(line_t *line)
|
||||||
sector_t *srcsec = sectors + i;
|
sector_t *srcsec = sectors + i;
|
||||||
|
|
||||||
if((special - 393) & 1 && !fsec->f_slope && srcsec->f_slope)
|
if((special - 393) & 1 && !fsec->f_slope && srcsec->f_slope)
|
||||||
fsec->f_slope = P_CopySlope(srcsec->f_slope);
|
fsec->f_slope = srcsec->f_slope; //P_CopySlope(srcsec->f_slope);
|
||||||
if((special - 393) & 2 && !fsec->c_slope && srcsec->c_slope)
|
if((special - 393) & 2 && !fsec->c_slope && srcsec->c_slope)
|
||||||
fsec->c_slope = P_CopySlope(srcsec->c_slope);
|
fsec->c_slope = srcsec->c_slope; //P_CopySlope(srcsec->c_slope);
|
||||||
}
|
}
|
||||||
|
|
||||||
//SRB2CBTODO: ESLOPE: Maybe we do need it for another to check for a plane slope?
|
//SRB2CBTODO: ESLOPE: Maybe we do need it for another to check for a plane slope?
|
||||||
|
|
|
@ -241,6 +241,7 @@ typedef struct
|
||||||
v3float_t of;
|
v3float_t of;
|
||||||
|
|
||||||
// The normal of the 3d plane the slope creates.
|
// The normal of the 3d plane the slope creates.
|
||||||
|
v3fixed_t normal;
|
||||||
v3float_t normalf;
|
v3float_t normalf;
|
||||||
|
|
||||||
// 2-Dimentional vector (x, y) normalized. Used to determine distance from
|
// 2-Dimentional vector (x, y) normalized. Used to determine distance from
|
||||||
|
@ -261,7 +262,7 @@ typedef struct
|
||||||
struct line_s *sourceline;
|
struct line_s *sourceline;
|
||||||
|
|
||||||
// This values only check and must be updated if the slope itself is modified
|
// This values only check and must be updated if the slope itself is modified
|
||||||
USHORT zangle; // Angle of the plane going up from the ground (not mesured in degrees)
|
angle_t zangle; // Angle of the plane going up from the ground (not mesured in degrees)
|
||||||
angle_t xydirection; // The direction the slope is facing (north, west, south, etc.)
|
angle_t xydirection; // The direction the slope is facing (north, west, south, etc.)
|
||||||
secplane_t secplane; // Extra data for collision and stuff
|
secplane_t secplane; // Extra data for collision and stuff
|
||||||
} pslope_t;
|
} pslope_t;
|
||||||
|
@ -444,12 +445,6 @@ typedef struct line_s
|
||||||
|
|
||||||
char *text; // a concatination of all front and back texture names, for linedef specials that require a string.
|
char *text; // a concatination of all front and back texture names, for linedef specials that require a string.
|
||||||
INT16 callcount; // no. of calls left before triggering, for the "X calls" linedef specials, defaults to 0
|
INT16 callcount; // no. of calls left before triggering, for the "X calls" linedef specials, defaults to 0
|
||||||
|
|
||||||
#ifdef ESLOPE
|
|
||||||
// SoM 05/11/09: Pre-calculated 2D normal for the line
|
|
||||||
float nx, ny;
|
|
||||||
float len;
|
|
||||||
#endif
|
|
||||||
} line_t;
|
} line_t;
|
||||||
|
|
||||||
//
|
//
|
||||||
|
|
Loading…
Reference in a new issue