Kart-Public/src/m_fixed.h

443 lines
13 KiB
C
Raw Normal View History

2014-03-15 16:59:03 +00:00
// SONIC ROBO BLAST 2
//-----------------------------------------------------------------------------
// Copyright (C) 1993-1996 by id Software, Inc.
// Copyright (C) 1998-2000 by DooM Legacy Team.
// Copyright (C) 1999-2014 by Sonic Team Junior.
//
// This program is free software distributed under the
// terms of the GNU General Public License, version 2.
// See the 'LICENSE' file for more details.
//-----------------------------------------------------------------------------
/// \file m_fixed.h
/// \brief Fixed point arithmetics implementation
/// Fixed point, 32bit as 16.16.
#ifndef __M_FIXED__
#define __M_FIXED__
#include "doomtype.h"
#ifdef __GNUC__
#include <stdlib.h>
#endif
#ifdef _WIN32_WCE
#include "sdl/SRB2CE/cehelp.h"
#endif
/*!
\brief bits of the fraction
*/
#define FRACBITS 16
/*!
\brief units of the fraction
*/
#define FRACUNIT (1<<FRACBITS)
#define FRACMASK (FRACUNIT -1)
/** \brief Redefinition of INT32 as fixed_t
unit used as fixed_t
*/
typedef INT32 fixed_t;
/*!
\brief convert fixed_t into floating number
*/
#define FIXED_TO_FLOAT(x) (((float)(x)) / ((float)FRACUNIT))
#define FLOAT_TO_FIXED(f) (fixed_t)((f) * ((float)FRACUNIT))
/** \brief The TMulScale16 function
\param a a parameter of type fixed_t
\param b a parameter of type fixed_t
\param c a parameter of type fixed_t
\param d a parameter of type fixed_t
\param e a parameter of type fixed_t
\param f a parameter of type fixed_t
\return fixed_t
*/
FUNCMATH FUNCINLINE static ATTRINLINE fixed_t TMulScale16(fixed_t a, fixed_t b, fixed_t c, fixed_t d, fixed_t e, fixed_t f) \
{ \
return (fixed_t)((((INT64)a * (INT64)b) + ((INT64)c * (INT64)d) \
+ ((INT64)e * (INT64)f)) >> 16); \
}
/** \brief The DMulScale16 function
\param a a parameter of type fixed_t
\param b a parameter of type fixed_t
\param c a parameter of type fixed_t
\param d a parameter of type fixed_t
\return fixed_t
*/
FUNCMATH FUNCINLINE static ATTRINLINE fixed_t DMulScale16(fixed_t a, fixed_t b, fixed_t c, fixed_t d) \
{ \
return (fixed_t)((((INT64)a * (INT64)b) + ((INT64)c * (INT64)d)) >> 16); \
}
#if defined (__WATCOMC__) && FRACBITS == 16
#pragma aux FixedMul = \
"imul ebx", \
"shrd eax,edx,16" \
parm [eax] [ebx] \
value [eax] \
modify exact [eax edx]
#pragma aux FixedDiv2 = \
"cdq", \
"shld edx,eax,16", \
"sal eax,16", \
"idiv ebx" \
parm [eax] [ebx] \
value [eax] \
modify exact [eax edx]
#elif defined (__GNUC__) && defined (__i386__) && !defined (NOASM)
// DJGPP, i386 linux, cygwin or mingw
FUNCMATH FUNCINLINE static inline fixed_t FixedMul(fixed_t a, fixed_t b) // asm
{
fixed_t ret;
asm
(
"imull %2;" // a*b
"shrdl %3,%%edx,%0;" // shift logical right FRACBITS bits
:"=a" (ret) // eax is always the result and the first operand (%0,%1)
:"0" (a), "r" (b) // and %2 is what we use imull on with what in %1
, "I" (FRACBITS) // %3 holds FRACBITS (normally 16)
:"%cc", "%edx" // edx and condition codes clobbered
);
return ret;
}
FUNCMATH FUNCINLINE static inline fixed_t FixedDiv2(fixed_t a, fixed_t b)
{
fixed_t ret;
asm
(
"movl %1,%%edx;" // these two instructions allow the next two to pair, on the Pentium processor.
"sarl $31,%%edx;" // shift arithmetic right 31 on EDX
"shldl %3,%1,%%edx;" // DP shift logical left FRACBITS on EDX
"sall %3,%0;" // shift arithmetic left FRACBITS on EAX
"idivl %2;" // EDX/b = EAX
: "=a" (ret)
: "0" (a), "r" (b)
, "I" (FRACBITS)
: "%edx"
);
return ret;
}
#elif defined (__GNUC__) && defined (__arm__) && !defined(__thumb__) && !defined(NOASM) //ARMv4 ASM
FUNCMATH FUNCINLINE static inline fixed_t FixedMul(fixed_t a, fixed_t b) // let abuse smull
{
fixed_t ret;
asm
(
"smull %[lo], r1, %[a], %[b];"
"mov %[lo], %[lo], lsr %3;"
"orr %[lo], %[lo], r1, lsl %3;"
: [lo] "=&r" (ret) // rhi, rlo and rm must be distinct registers
: [a] "r" (a), [b] "r" (b)
, "i" (FRACBITS)
: "r1"
);
return ret;
}
#define __USE_C_FIXEDDIV__ // no double or asm div in ARM land
#elif defined (__GNUC__) && defined (__ppc__) && !defined(NOASM) && 0 // WII: PPC CPU
FUNCMATH FUNCINLINE static inline fixed_t FixedMul(fixed_t a, fixed_t b) // asm
{
fixed_t ret, hi, lo;
asm
(
"mullw %0, %2, %3;"
"mulhw %1, %2, %3"
: "=r" (hi), "=r" (lo)
: "r" (a), "r" (b)
, "I" (FRACBITS)
);
ret = (INT64)((hi>>FRACBITS)+lo)<<FRACBITS;
return ret;
}
#define __USE_C_FIXEDDIV__// Alam: I am lazy
#elif defined (__GNUC__) && defined (__mips__) && !defined(NOASM) && 0 // PSP: MIPS CPU
FUNCMATH FUNCINLINE static inline fixed_t FixedMul(fixed_t a, fixed_t b) // asm
{
fixed_t ret;
asm
(
"mult %3, %4;" // a*b=h<32+l
: "=r" (ret), "=l" (a), "=h" (b) //todo: abuse shr opcode
: "0" (a), "r" (b)
, "I" (FRACBITS)
//: "+l", "+h"
);
ret = (INT64)((a>>FRACBITS)+b)<<FRACBITS;
return ret;
}
#define __USE_C_FIXEDDIV__ // no 64b asm div in MIPS land
#elif defined (__GNUC__) && defined (__sh__) && 0 // DC: SH4 CPU
#elif defined (__GNUC__) && defined (__m68k__) && 0 // DEAD: Motorola 6800 CPU
#elif defined (_MSC_VER) && defined(USEASM) && FRACBITS == 16
// Microsoft Visual C++ (no asm inline)
fixed_t __cdecl FixedMul(fixed_t a, fixed_t b);
fixed_t __cdecl FixedDiv2(fixed_t a, fixed_t b);
#else
#define __USE_C_FIXEDMUL__
#define __USE_C_FIXEDDIV__
#endif
#ifdef __USE_C_FIXEDMUL__
FUNCMATH fixed_t FixedMul(fixed_t a, fixed_t b);
#endif
#ifdef __USE_C_FIXEDDIV__
FUNCMATH fixed_t FixedDiv2(fixed_t a, fixed_t b);
#endif
/** \brief The FixedInt function
\param a fixed_t number
\return a/FRACUNIT
*/
FUNCMATH FUNCINLINE static ATTRINLINE fixed_t FixedInt(fixed_t a)
{
return FixedMul(a, 1);
}
/** \brief The FixedDiv function
\param a fixed_t number
\param b fixed_t number
\return a/b
*/
FUNCMATH FUNCINLINE static ATTRINLINE fixed_t FixedDiv(fixed_t a, fixed_t b)
{
if ((abs(a) >> (FRACBITS-2)) >= abs(b))
return (a^b) < 0 ? INT32_MIN : INT32_MAX;
return FixedDiv2(a, b);
}
/** \brief The FixedRem function
\param x fixed_t number
\param y fixed_t number
\return remainder of dividing x by y
*/
FUNCMATH FUNCINLINE static ATTRINLINE fixed_t FixedRem(fixed_t x, fixed_t y)
{
const boolean n = x < 0;
x = abs(x);
while (x >= y)
x -= y;
if (n)
return -x;
else
return x;
}
/** \brief The FixedSqrt function
\param x fixed_t number
\return sqrt(x)
*/
FUNCMATH fixed_t FixedSqrt(fixed_t x);
/** \brief The FixedHypot function
\param x fixed_t number
\param y fixed_t number
\return sqrt(x*x+y*y)
*/
FUNCMATH fixed_t FixedHypot(fixed_t x, fixed_t y);
/** \brief The FixedFloor function
\param x fixed_t number
\return floor(x)
*/
FUNCMATH FUNCINLINE static ATTRINLINE fixed_t FixedFloor(fixed_t x)
{
const fixed_t a = abs(x); //absolute of x
const fixed_t i = (a>>FRACBITS)<<FRACBITS; // cut out the fractional part
const fixed_t f = i-a; // cut out the integral part
if (x != INT32_MIN)
return x-f; // return largest integral value not greater than argument
return INT32_MIN;
}
/** \brief The FixedTrunc function
\param x fixed_t number
\return trunc(x)
*/
FUNCMATH FUNCINLINE static ATTRINLINE fixed_t FixedTrunc(fixed_t x)
{
const fixed_t a = abs(x); //absolute of x
const fixed_t i = (a>>FRACBITS)<<FRACBITS; // cut out the fractional part
const fixed_t f = i-a; // cut out the integral part
if (x != INT32_MIN)
{ // return rounded to nearest whole number, towards zero
if (x > 0)
return x-f;
else
return x+f;
}
return INT32_MIN;
}
/** \brief The FixedCeil function
\param x fixed_t number
\return ceil(x)
*/
FUNCMATH FUNCINLINE static ATTRINLINE fixed_t FixedCeil(fixed_t x)
{
const fixed_t a = abs(x); //absolute of x
const fixed_t i = (a>>FRACBITS)<<FRACBITS; // cut out the fractional part
const fixed_t f = i-a; // cut out the integral part
if (x == INT32_MIN)
return INT32_MIN;
else if (x < FixedFloor(INT32_MAX))
return x+(FRACUNIT-f); // return smallest integral value not less than argument
return INT32_MAX;
}
/** \brief The FixedRound function
\param x fixed_t number
\return round(x)
*/
FUNCMATH FUNCINLINE static ATTRINLINE fixed_t FixedRound(fixed_t x)
{
const fixed_t a = abs(x); //absolute of x
const fixed_t i = (a>>FRACBITS)<<FRACBITS; // cut out the fractional part
const fixed_t f = i-a; // cut out the integral part
if (x == INT32_MIN)
return INT32_MIN;
else if (x < FixedFloor(INT32_MAX))
{ // return rounded to nearest whole number, away from zero
if (x > 0)
return x+(FRACUNIT-f);
else
return x-(FRACUNIT-f);
}
return INT32_MAX;
}
#ifdef NEED_FIXED_VECTOR
typedef struct
{
fixed_t x;
fixed_t y;
} vector2_t;
vector2_t *FV2_Load(vector2_t *vec, fixed_t x, fixed_t y);
vector2_t *FV2_UnLoad(vector2_t *vec, fixed_t *x, fixed_t *y);
vector2_t *FV2_Copy(vector2_t *a_o, const vector2_t *a_i);
vector2_t *FV2_AddEx(const vector2_t *a_i, const vector2_t *a_c, vector2_t *a_o);
vector2_t *FV2_Add(vector2_t *a_i, const vector2_t *a_c);
vector2_t *FV2_SubEx(const vector2_t *a_i, const vector2_t *a_c, vector2_t *a_o);
vector2_t *FV2_Sub(vector2_t *a_i, const vector2_t *a_c);
vector2_t *FV2_MulEx(const vector2_t *a_i, fixed_t a_c, vector2_t *a_o);
vector2_t *FV2_Mul(vector2_t *a_i, fixed_t a_c);
vector2_t *FV2_DivideEx(const vector2_t *a_i, fixed_t a_c, vector2_t *a_o);
vector2_t *FV2_Divide(vector2_t *a_i, fixed_t a_c);
vector2_t *FV2_Midpoint(const vector2_t *a_1, const vector2_t *a_2, vector2_t *a_o);
fixed_t FV2_Distance(const vector2_t *p1, const vector2_t *p2);
fixed_t FV2_Magnitude(const vector2_t *a_normal);
fixed_t FV2_NormalizeEx(const vector2_t *a_normal, vector2_t *a_o);
fixed_t FV2_Normalize(vector2_t *a_normal);
vector2_t *FV2_NegateEx(const vector2_t *a_1, vector2_t *a_o);
vector2_t *FV2_Negate(vector2_t *a_1);
boolean FV2_Equal(const vector2_t *a_1, const vector2_t *a_2);
fixed_t FV2_Dot(const vector2_t *a_1, const vector2_t *a_2);
vector2_t *FV2_Point2Vec (const vector2_t *point1, const vector2_t *point2, vector2_t *a_o);
typedef struct
{
fixed_t x, y, z;
} vector3_t;
vector3_t *FV3_Load(vector3_t *vec, fixed_t x, fixed_t y, fixed_t z);
vector3_t *FV3_UnLoad(vector3_t *vec, fixed_t *x, fixed_t *y, fixed_t *z);
vector3_t *FV3_Copy(vector3_t *a_o, const vector3_t *a_i);
vector3_t *FV3_AddEx(const vector3_t *a_i, const vector3_t *a_c, vector3_t *a_o);
vector3_t *FV3_Add(vector3_t *a_i, const vector3_t *a_c);
vector3_t *FV3_SubEx(const vector3_t *a_i, const vector3_t *a_c, vector3_t *a_o);
vector3_t *FV3_Sub(vector3_t *a_i, const vector3_t *a_c);
vector3_t *FV3_MulEx(const vector3_t *a_i, fixed_t a_c, vector3_t *a_o);
vector3_t *FV3_Mul(vector3_t *a_i, fixed_t a_c);
vector3_t *FV3_DivideEx(const vector3_t *a_i, fixed_t a_c, vector3_t *a_o);
vector3_t *FV3_Divide(vector3_t *a_i, fixed_t a_c);
vector3_t *FV3_Midpoint(const vector3_t *a_1, const vector3_t *a_2, vector3_t *a_o);
fixed_t FV3_Distance(const vector3_t *p1, const vector3_t *p2);
fixed_t FV3_Magnitude(const vector3_t *a_normal);
fixed_t FV3_NormalizeEx(const vector3_t *a_normal, vector3_t *a_o);
fixed_t FV3_Normalize(vector3_t *a_normal);
vector3_t *FV3_NegateEx(const vector3_t *a_1, vector3_t *a_o);
vector3_t *FV3_Negate(vector3_t *a_1);
boolean FV3_Equal(const vector3_t *a_1, const vector3_t *a_2);
fixed_t FV3_Dot(const vector3_t *a_1, const vector3_t *a_2);
vector3_t *FV3_Cross(const vector3_t *a_1, const vector3_t *a_2, vector3_t *a_o);
vector3_t *FV3_ClosestPointOnLine(const vector3_t *Line, const vector3_t *p, vector3_t *out);
void FV3_ClosestPointOnTriangle(const vector3_t *tri, const vector3_t *point, vector3_t *result);
vector3_t *FV3_Point2Vec(const vector3_t *point1, const vector3_t *point2, vector3_t *a_o);
void FV3_Normal(const vector3_t *a_triangle, vector3_t *a_normal);
fixed_t FV3_PlaneDistance(const vector3_t *a_normal, const vector3_t *a_point);
boolean FV3_IntersectedPlane(const vector3_t *a_triangle, const vector3_t *a_line, vector3_t *a_normal, fixed_t *originDistance);
fixed_t FV3_PlaneIntersection(const vector3_t *pOrigin, const vector3_t *pNormal, const vector3_t *rOrigin, const vector3_t *rVector);
fixed_t FV3_IntersectRaySphere(const vector3_t *rO, const vector3_t *rV, const vector3_t *sO, fixed_t sR);
vector3_t *FV3_IntersectionPoint(const vector3_t *vNormal, const vector3_t *vLine, fixed_t distance, vector3_t *ReturnVec);
UINT8 FV3_PointOnLineSide(const vector3_t *point, const vector3_t *line);
boolean FV3_PointInsideBox(const vector3_t *point, const vector3_t *box);
typedef struct
{
fixed_t m[16];
} matrix_t;
void FM_LoadIdentity(matrix_t* matrix);
void FM_CreateObjectMatrix(matrix_t *matrix, fixed_t x, fixed_t y, fixed_t z, fixed_t anglex, fixed_t angley, fixed_t anglez, fixed_t upx, fixed_t upy, fixed_t upz, fixed_t radius);
void FM_MultMatrixVec3(const matrix_t *matrix, const vector3_t *vec, vector3_t *out);
void FM_MultMatrix(matrix_t *dest, const matrix_t *multme);
void FM_Translate(matrix_t *dest, fixed_t x, fixed_t y, fixed_t z);
void FM_Scale(matrix_t *dest, fixed_t x, fixed_t y, fixed_t z);
#endif // defined NEED_FIXED_VECTOR
#endif //m_fixed.h