etqw-sdk/source/idlib/bv/Bounds.cpp

487 lines
12 KiB
C++

// Copyright (C) 2007 Id Software, Inc.
//
#include "../precompiled.h"
#pragma hdrstop
idBounds bounds_zero( vec3_zero, vec3_zero );
/*
============
idBounds::GetRadius
============
*/
float idBounds::GetRadius( void ) const {
int i;
float total, b0, b1;
total = 0.0f;
for ( i = 0; i < 3; i++ ) {
b0 = (float)idMath::Fabs( b[0][i] );
b1 = (float)idMath::Fabs( b[1][i] );
if ( b0 > b1 ) {
total += b0 * b0;
} else {
total += b1 * b1;
}
}
return idMath::Sqrt( total );
}
/*
============
idBounds::GetRadius
============
*/
float idBounds::GetRadius( const idVec3 &center ) const {
int i;
float total, b0, b1;
total = 0.0f;
for ( i = 0; i < 3; i++ ) {
b0 = (float)idMath::Fabs( center[i] - b[0][i] );
b1 = (float)idMath::Fabs( b[1][i] - center[i] );
if ( b0 > b1 ) {
total += b0 * b0;
} else {
total += b1 * b1;
}
}
return idMath::Sqrt( total );
}
/*
================
idBounds::PlaneDistance
================
*/
float idBounds::PlaneDistance( const idPlane &plane ) const {
idVec3 center;
float d1, d2;
center = ( b[0] + b[1] ) * 0.5f;
d1 = plane.Distance( center );
d2 = idMath::Fabs( ( b[1][0] - center[0] ) * plane.Normal()[0] ) +
idMath::Fabs( ( b[1][1] - center[1] ) * plane.Normal()[1] ) +
idMath::Fabs( ( b[1][2] - center[2] ) * plane.Normal()[2] );
if ( d1 - d2 > 0.0f ) {
return d1 - d2;
}
if ( d1 + d2 < 0.0f ) {
return d1 + d2;
}
return 0.0f;
}
// RAVEN BEGIN
// jscott: for BSE attenuation
/*
================
idBounds::ShortestDistance
================
*/
float idBounds::ShortestDistance( const idVec3 &point ) const {
int i;
float delta, distance;
if( ContainsPoint( point ) ) {
return( 0.0f );
}
distance = 0.0f;
for( i = 0; i < 3; i++ ) {
if( point[i] < b[0][i] ) {
delta = b[0][i] - point[i];
distance += delta * delta;
} else if ( point[i] > b[1][i] ) {
delta = point[i] - b[1][i];
distance += delta * delta;
}
}
return( idMath::Sqrt( distance ) );
}
// RAVEN END
/*
================
idBounds::PlaneSide
================
*/
int idBounds::PlaneSide( const idPlane &plane, const float epsilon ) const {
idVec3 center;
float d1, d2;
center = ( b[0] + b[1] ) * 0.5f;
d1 = plane.Distance( center );
d2 = idMath::Fabs( ( b[1][0] - center[0] ) * plane.Normal()[0] ) +
idMath::Fabs( ( b[1][1] - center[1] ) * plane.Normal()[1] ) +
idMath::Fabs( ( b[1][2] - center[2] ) * plane.Normal()[2] );
if ( d1 - d2 > epsilon ) {
return PLANESIDE_FRONT;
}
if ( d1 + d2 < -epsilon ) {
return PLANESIDE_BACK;
}
return PLANESIDE_CROSS;
}
/*
============
idBounds::LineIntersection
Returns true if the line intersects the bounds between the start and end point.
============
*/
bool idBounds::LineIntersection( const idVec3 &start, const idVec3 &end ) const {
float ld[3];
idVec3 center = ( b[0] + b[1] ) * 0.5f;
idVec3 extents = b[1] - center;
idVec3 lineDir = 0.5f * ( end - start );
idVec3 lineCenter = start + lineDir;
idVec3 dir = lineCenter - center;
ld[0] = idMath::Fabs( lineDir[0] );
if ( idMath::Fabs( dir[0] ) > extents[0] + ld[0] ) {
return false;
}
ld[1] = idMath::Fabs( lineDir[1] );
if ( idMath::Fabs( dir[1] ) > extents[1] + ld[1] ) {
return false;
}
ld[2] = idMath::Fabs( lineDir[2] );
if ( idMath::Fabs( dir[2] ) > extents[2] + ld[2] ) {
return false;
}
idVec3 cross = lineDir.Cross( dir );
if ( idMath::Fabs( cross[0] ) > extents[1] * ld[2] + extents[2] * ld[1] ) {
return false;
}
if ( idMath::Fabs( cross[1] ) > extents[0] * ld[2] + extents[2] * ld[0] ) {
return false;
}
if ( idMath::Fabs( cross[2] ) > extents[0] * ld[1] + extents[1] * ld[0] ) {
return false;
}
return true;
}
/*
============
idBounds::RayIntersection
Returns true if the ray intersects the bounds.
The ray can intersect the bounds in both directions from the start point.
If start is inside the bounds it is considered an intersection with scale = 0
============
*/
bool idBounds::RayIntersection( const idVec3 &start, const idVec3 &dir, float &scale ) const {
int i, ax0, ax1, ax2, side, inside;
float f;
idVec3 hit;
ax0 = -1;
inside = 0;
for ( i = 0; i < 3; i++ ) {
if ( start[i] < b[0][i] ) {
side = 0;
}
else if ( start[i] > b[1][i] ) {
side = 1;
}
else {
inside++;
continue;
}
if ( dir[i] == 0.0f ) {
continue;
}
f = ( start[i] - b[side][i] );
if ( ax0 < 0 || idMath::Fabs( f ) > idMath::Fabs( scale * dir[i] ) ) {
scale = - ( f / dir[i] );
ax0 = i;
}
}
if ( ax0 < 0 ) {
scale = 0.0f;
// return true if the start point is inside the bounds
return ( inside == 3 );
}
ax1 = (ax0+1)%3;
ax2 = (ax0+2)%3;
hit[ax1] = start[ax1] + scale * dir[ax1];
hit[ax2] = start[ax2] + scale * dir[ax2];
return ( hit[ax1] >= b[0][ax1] && hit[ax1] <= b[1][ax1] &&
hit[ax2] >= b[0][ax2] && hit[ax2] <= b[1][ax2] );
}
/*
============
idBounds::FromTransformedBounds
============
*/
void idBounds::FromTransformedBounds( const idBounds &bounds, const idVec3 &origin, const idMat3 &axis ) {
idVec3 center, extents, rotatedExtents;
center = ( bounds[ 0 ] + bounds[ 1 ] ) * 0.5f;
extents = bounds[ 1 ] - center;
rotatedExtents[ 0 ] = idMath::Fabs( extents[ 0 ] * axis[ 0 ][ 0 ] ) + idMath::Fabs( extents[ 1 ] * axis[ 1 ][ 0 ] ) + idMath::Fabs( extents[ 2 ] * axis[ 2 ][ 0 ] );
rotatedExtents[ 1 ] = idMath::Fabs( extents[ 0 ] * axis[ 0 ][ 1 ] ) + idMath::Fabs( extents[ 1 ] * axis[ 1 ][ 1 ] ) + idMath::Fabs( extents[ 2 ] * axis[ 2 ][ 1 ] );
rotatedExtents[ 2 ] = idMath::Fabs( extents[ 0 ] * axis[ 0 ][ 2 ] ) + idMath::Fabs( extents[ 1 ] * axis[ 1 ][ 2 ] ) + idMath::Fabs( extents[ 2 ] * axis[ 2 ][ 2 ] );
center = origin + center * axis;
b[ 0 ] = center - rotatedExtents;
b[ 1 ] = center + rotatedExtents;
}
/*
============
idBounds::FromTransformedBounds
============
*/
void idBounds::FromTransformedBounds( const idBounds &bounds, const float matrix[16] ) {
idVec3 center, extents, rotatedExtents, rotatedCenter;
center = ( bounds[ 0 ] + bounds[ 1 ] ) * 0.5f;
extents = bounds[ 1 ] - center;
rotatedExtents[ 0 ] = idMath::Fabs( extents[ 0 ] * matrix[ 0 ] ) + idMath::Fabs( extents[ 1 ] * matrix[ 4 ] ) + idMath::Fabs( extents[ 2 ] * matrix[ 8 ] );
rotatedExtents[ 1 ] = idMath::Fabs( extents[ 0 ] * matrix[ 1 ] ) + idMath::Fabs( extents[ 1 ] * matrix[ 5 ] ) + idMath::Fabs( extents[ 2 ] * matrix[ 9 ] );
rotatedExtents[ 2 ] = idMath::Fabs( extents[ 0 ] * matrix[ 2 ] ) + idMath::Fabs( extents[ 1 ] * matrix[ 6 ] ) + idMath::Fabs( extents[ 2 ] * matrix[ 10 ] );
rotatedCenter[ 0 ] = center[ 0 ] * matrix[ 0 ] + center[ 1 ] * matrix[ 4 ] + center[ 2 ] * matrix[ 8 ];
rotatedCenter[ 1 ] = center[ 0 ] * matrix[ 1 ] + center[ 1 ] * matrix[ 5 ] + center[ 2 ] * matrix[ 9 ];
rotatedCenter[ 2 ] = center[ 0 ] * matrix[ 2 ] + center[ 1 ] * matrix[ 6 ] + center[ 2 ] * matrix[ 10 ];
idVec3 origin( matrix[12], matrix[13], matrix[14] );
center = origin + rotatedCenter;
b[ 0 ] = center - rotatedExtents;
b[ 1 ] = center + rotatedExtents;
}
/*
============
idBounds::FromPoints
Most tight bounds for a point set.
============
*/
void idBounds::FromPoints( const idVec3 *points, const int numPoints ) {
SIMDProcessor->MinMax( b[0], b[1], points, numPoints );
}
/*
============
idBounds::FromPointTranslation
Most tight bounds for the translational movement of the given point.
============
*/
void idBounds::FromPointTranslation( const idVec3 &point, const idVec3 &translation ) {
int i;
for ( i = 0; i < 3; i++ ) {
if ( translation[i] < 0.0f ) {
b[0][i] = point[i] + translation[i];
b[1][i] = point[i];
}
else {
b[0][i] = point[i];
b[1][i] = point[i] + translation[i];
}
}
}
/*
============
idBounds::FromBoundsTranslation
Most tight bounds for the translational movement of the given bounds.
============
*/
void idBounds::FromBoundsTranslation( const idBounds &bounds, const idVec3 &origin, const idMat3 &axis, const idVec3 &translation ) {
int i;
if ( axis.IsRotated() ) {
FromTransformedBounds( bounds, origin, axis );
}
else {
b[0] = bounds[0] + origin;
b[1] = bounds[1] + origin;
}
for ( i = 0; i < 3; i++ ) {
if ( translation[i] < 0.0f ) {
b[0][i] += translation[i];
}
else {
b[1][i] += translation[i];
}
}
}
/*
================
BoundsForPointRotation
only for rotations < 180 degrees
================
*/
idBounds BoundsForPointRotation( const idVec3 &start, const idRotation &rotation ) {
int i;
float radiusSqr;
idVec3 v1, v2;
idVec3 origin, axis, end;
idBounds bounds;
end = start * rotation;
axis = rotation.GetVec();
origin = rotation.GetOrigin() + axis * ( axis * ( start - rotation.GetOrigin() ) );
radiusSqr = ( start - origin ).LengthSqr();
v1 = ( start - origin ).Cross( axis );
v2 = ( end - origin ).Cross( axis );
for ( i = 0; i < 3; i++ ) {
// if the derivative changes sign along this axis during the rotation from start to end
if ( ( v1[i] > 0.0f && v2[i] < 0.0f ) || ( v1[i] < 0.0f && v2[i] > 0.0f ) ) {
if ( ( 0.5f * (start[i] + end[i]) - origin[i] ) > 0.0f ) {
bounds[0][i] = Min( start[i], end[i] );
bounds[1][i] = origin[i] + idMath::Sqrt( radiusSqr * ( 1.0f - axis[i] * axis[i] ) );
}
else {
bounds[0][i] = origin[i] - idMath::Sqrt( radiusSqr * ( 1.0f - axis[i] * axis[i] ) );
bounds[1][i] = Max( start[i], end[i] );
}
}
else if ( start[i] > end[i] ) {
bounds[0][i] = end[i];
bounds[1][i] = start[i];
}
else {
bounds[0][i] = start[i];
bounds[1][i] = end[i];
}
}
return bounds;
}
/*
============
idBounds::FromPointRotation
Most tight bounds for the rotational movement of the given point.
============
*/
void idBounds::FromPointRotation( const idVec3 &point, const idRotation &rotation ) {
float radius;
if ( idMath::Fabs( rotation.GetAngle() ) < 180.0f ) {
(*this) = BoundsForPointRotation( point, rotation );
} else {
radius = ( point - rotation.GetOrigin() ).Length();
// FIXME: these bounds are usually way larger
b[ 0 ] = rotation.GetOrigin() + idVec3( -radius, -radius, -radius );
b[ 1 ]= rotation.GetOrigin() + idVec3( radius, radius, radius );
}
}
/*
============
idBounds::FromBoundsRotation
Most tight bounds for the rotational movement of the given bounds.
============
*/
void idBounds::FromBoundsRotation( const idBounds &bounds, const idVec3 &origin, const idMat3 &axis, const idRotation &rotation ) {
int i;
float radius;
idVec3 point;
idBounds rBounds;
if ( idMath::Fabs( rotation.GetAngle() ) < 180.0f ) {
(*this) = BoundsForPointRotation( bounds[0] * axis + origin, rotation );
for ( i = 1; i < 8; i++ ) {
point[0] = bounds[(i^(i>>1))&1][0];
point[1] = bounds[(i>>1)&1][1];
point[2] = bounds[(i>>2)&1][2];
(*this) += BoundsForPointRotation( point * axis + origin, rotation );
}
}
else {
point = (bounds[1] - bounds[0]) * 0.5f;
radius = (bounds[1] - point).Length() + (origin + ( point * axis ) - rotation.GetOrigin()).Length();
// FIXME: these bounds are usually way larger
b[ 0 ] = rotation.GetOrigin() + idVec3( -radius, -radius, -radius );
b[ 1 ] = rotation.GetOrigin() + idVec3( radius, radius, radius );
}
}
/*
============
idBounds::ToPoints
============
*/
void idBounds::ToPoints( idVec3 points[8] ) const {
for ( int i = 0; i < 8; i++ ) {
points[i][0] = b[(i^(i>>1))&1][0];
points[i][1] = b[(i>>1)&1][1];
points[i][2] = b[(i>>2)&1][2];
}
}
/*
============
idBounds::ToString
============
*/
const char *idBounds::ToString( int precision ) const {
return idStr::FloatArrayToString( ToFloatPtr(), GetDimension(), precision );
}
/*
============
idBounds::ToPlanes
planes point outwards
============
*/
void idBounds::ToPlanes( idPlane planes[6] ) const {
planes[0].SetNormal( idVec3( 0.0f, 0.0f, 1.0f ) );
planes[0].FitThroughPoint( b[1] );
planes[1].SetNormal( idVec3( 0.0f, 0.0f, -1.0f ) );
planes[1].FitThroughPoint( b[0] );
planes[2].SetNormal( idVec3( 0.0f, 1.0f, 0.0f ) );
planes[2].FitThroughPoint( b[1] );
planes[3].SetNormal( idVec3( 0.0f, -1.0f, 0.0f ) );
planes[3].FitThroughPoint( b[0] );
planes[4].SetNormal( idVec3( 1.0f, 0.0f, 0.0f ) );
planes[4].FitThroughPoint( b[1] );
planes[5].SetNormal( idVec3( -1.0f, 0.0f, 0.0f ) );
planes[5].FitThroughPoint( b[0] );
}