etqw-sdk/source/idlib/math/Math.cpp

316 lines
9.7 KiB
C++
Raw Permalink Normal View History

2008-05-29 00:00:00 +00:00
// Copyright (C) 2007 Id Software, Inc.
//
#include "../precompiled.h"
#pragma hdrstop
const float idMath::PI = 3.14159265358979323846f;
const float idMath::TWO_PI = 2.0f * PI;
const float idMath::HALF_PI = 0.5f * PI;
const float idMath::ONEFOURTH_PI = 0.25f * PI;
const float idMath::THREEFOURTHS_PI = 0.75f * PI;
const float idMath::E = 2.71828182845904523536f;
const float idMath::SQRT_TWO = 1.41421356237309504880f;
const float idMath::SQRT_THREE = 1.73205080756887729352f;
const float idMath::SQRT_1OVER2 = 0.70710678118654752440f;
const float idMath::SQRT_1OVER3 = 0.57735026918962576450f;
const float idMath::M_DEG2RAD = PI / 180.0f;
const float idMath::M_RAD2DEG = 180.0f / PI;
const float idMath::M_SEC2MS = 1000.0f;
const float idMath::M_MS2SEC = 0.001f;
const float idMath::INFINITY = 1e30f;
const float idMath::FLT_EPSILON = 1.192092896e-07f;
bool idMath::initialized = false;
dword idMath::iSqrt[SQRT_TABLE_SIZE]; // inverse square root lookup table
#ifdef ID_WIN_X86_SSE
const float idMath::SSE_FLOAT_ZERO = 0.0f;
const float idMath::SSE_FLOAT_255 = 255.0f;
#endif
/*
===============
idMath::Init
===============
*/
void idMath::Init( void ) {
union _flint fi, fo;
for ( int i = 0; i < SQRT_TABLE_SIZE; i++ ) {
fi.i = ((EXP_BIAS-1) << EXP_POS) | (i << LOOKUP_POS);
fo.f = (float)( 1.0 / sqrt( fi.f ) );
iSqrt[i] = ((dword)(((fo.i + (1<<(SEED_POS-2))) >> SEED_POS) & 0xFF))<<SEED_POS;
}
iSqrt[SQRT_TABLE_SIZE / 2] = ((dword)(0xFF))<<(SEED_POS);
initialized = true;
}
/*
================
idMath::FloatToBits
================
*/
int idMath::FloatToBits( float f, int exponentBits, int mantissaBits ) {
int i, sign, exponent, mantissa, value;
assert( exponentBits >= 2 && exponentBits <= 8 );
assert( mantissaBits >= 2 && mantissaBits <= 23 );
int maxBits = ( 1 << ( exponentBits + mantissaBits ) ) - 1;
int minBits = 1;
float max = BitsToFloat( maxBits, exponentBits, mantissaBits );
float min = BitsToFloat( minBits, exponentBits, mantissaBits );
if ( f >= 0.0f ) {
if ( f >= max ) {
return maxBits;
} else if ( f == min ) {
return minBits;
} else if ( f < min ) {
return 0;
}
} else {
if ( f <= -max ) {
return ( maxBits | ( 1 << ( exponentBits + mantissaBits ) ) );
} else if ( f == -min ) {
return ( minBits | ( 1 << ( exponentBits + mantissaBits ) ) );
} else if ( f > -min ) {
return 0;
}
}
i = *reinterpret_cast<int *>(&f);
sign = ( i >> IEEE_FLT_SIGN_BIT ) & 1;
exponent = ( ( i >> IEEE_FLT_MANTISSA_BITS ) & ( ( 1 << IEEE_FLT_EXPONENT_BITS ) - 1 ) ) - IEEE_FLT_EXPONENT_BIAS;
mantissa = i & ( ( 1 << IEEE_FLT_MANTISSA_BITS ) - 1 );
value = sign << ( exponentBits + mantissaBits );
value |= ( exponent + ( ( 1 << ( exponentBits - 1 ) ) - 1 ) ) << mantissaBits;
value |= mantissa >> ( IEEE_FLT_MANTISSA_BITS - mantissaBits );
return value;
}
/*
================
idMath::BitsToFloat
================
*/
float idMath::BitsToFloat( int i, int exponentBits, int mantissaBits ) {
int sign, exponent, mantissa, value;
assert( exponentBits >= 2 && exponentBits <= 8 );
assert( mantissaBits >= 2 && mantissaBits <= 23 );
if ( ( i & ( ( 1 << ( exponentBits + mantissaBits ) ) - 1 ) ) == 0 ) {
// if exponent & mantissa are zero, value is plus or minus zero
return 0.0f;
}
sign = i >> ( exponentBits + mantissaBits );
exponent = ( ( i >> mantissaBits ) & ( ( 1 << exponentBits ) - 1 ) ) - ( ( 1 << ( exponentBits - 1 ) ) - 1 );
mantissa = ( i & ( ( 1 << mantissaBits ) - 1 ) ) << ( IEEE_FLT_MANTISSA_BITS - mantissaBits );
value = sign << IEEE_FLT_SIGN_BIT | ( exponent + IEEE_FLT_EXPONENT_BIAS ) << IEEE_FLT_MANTISSA_BITS | mantissa;
return *reinterpret_cast<float *>(&value);
}
/*
================
idMath::TestFloatBitConversions
================
*/
void idMath::TestFloatBitConversions() {
//
// test every value that can be represented within the valid ranges of bits
char testBuf[ 512 ];
int numFails = 0;
for ( int exponentBits = 2; exponentBits <= 8; exponentBits++ ) {
for ( int mantissaBits = 2; mantissaBits <= 23; mantissaBits++ ) {
sprintf( testBuf, "Float Testing: exp %i mant %i ...... ", exponentBits, mantissaBits );
#ifdef _WIN32
OutputDebugString( testBuf );
#else
printf( "%s", testBuf );
#endif
int maxBits = ( 1 << ( exponentBits + mantissaBits ) ) - 1;
int minBits = 1;
float max = idMath::BitsToFloat( maxBits, exponentBits, mantissaBits );
float min = idMath::BitsToFloat( minBits, exponentBits, mantissaBits );
bool failed = false;
// test that all representable values convert to & from a float & maintain value
unsigned int totalNumbersRepresentable = 1 << ( exponentBits + mantissaBits + 1 );
for ( unsigned int i = 0; i < totalNumbersRepresentable; i++ ) {
// skip anything with zero mantissa & exponent
float testFloat = idMath::BitsToFloat( *( ( int* )&i ), exponentBits, mantissaBits );
unsigned int testBits = idMath::FloatToBits( testFloat, exponentBits, mantissaBits );
#pragma warning( push )
#pragma warning( disable: 4389 )
if ( i == 1 << ( exponentBits + mantissaBits ) ) {
#pragma warning( pop )
// negative zero should be the same as positive zero (not IEEE-754, but simple)
if ( testBits != 0 ) {
failed = true;
break;
}
} else if ( testBits != i ) {
failed = true;
break;
}
}
for ( float i = -max * 2.0f; i < max * 2.0f; ) {
unsigned int testBits = idMath::FloatToBits( i, exponentBits, mantissaBits );
float testFloat = idMath::BitsToFloat( testBits, exponentBits, mantissaBits );
// it will have already passed the test of bit->float for this value, if
// FloatToBits has returned anything in the valid range
unsigned int minForThisExp = testBits - ( testBits & mantissaBits ) + 1;
float minError = idMath::Fabs( idMath::BitsToFloat( minForThisExp, exponentBits, mantissaBits ) );
if ( i < -max ) {
if ( testFloat != -max ) {
failed = true;
break;
}
} else if ( i > max ) {
if ( testFloat != max ) {
failed = true;
break;
}
} else if ( i > -min && i < min ) {
if ( testFloat != 0.0f ) {
failed = true;
break;
}
} else {
float error = idMath::Fabs( i - testFloat );
if ( error > minError ) {
failed = true;
break;
}
}
i += minError;
}
if ( failed ) {
numFails++;
sprintf( testBuf, "FAILED\n" );
} else {
sprintf( testBuf, "PASSED\n" );
}
#ifdef _WIN32
OutputDebugString( testBuf );
#else
printf( "%s", testBuf );
#endif
}
}
sprintf( testBuf, "%i tests failed\n", numFails );
#ifdef _WIN32
OutputDebugString( testBuf );
#else
printf( "%s", testBuf );
#endif
}
// ================================================================================================
// jscott: fast and reliable random routines
// ================================================================================================
unsigned long rvRandom::mSeed;
float rvRandom::flrand( float min, float max )
{
float result;
mSeed = ( mSeed * 214013L ) + 2531011;
// Note: the shift and divide cannot be combined as this breaks the routine
result = ( float )( mSeed >> 17 ); // 0 - 32767 range
result = ( ( result * ( max - min ) ) * ( 1.0f / 32768.0f ) ) + min;
return( result );
}
float rvRandom::flrand() {
return flrand( 0.0f, 1.0f );
}
float rvRandom::flrand( const idVec2& v ) {
return flrand( v[0], v[1] );
}
int rvRandom::irand( int min, int max )
{
int result;
max++;
mSeed = ( mSeed * 214013L ) + 2531011;
result = mSeed >> 17;
result = ( ( result * ( max - min ) ) >> 15 ) + min;
return( result );
}
// Try to get a seed independent of the random number system
int rvRandom::Init( void )
{
mSeed *= ( unsigned long )sys->Milliseconds();
return( mSeed );
}
// ================================================================================================
// Barycentric texture coordinate functions
// Get the *SIGNED* area of a triangle required for barycentric
// ================================================================================================
float idMath::BarycentricTriangleArea( const idVec3 &normal, const idVec3 &a, const idVec3 &b, const idVec3 &c )
{
idVec3 v1, v2;
idVec3 cross;
float area;
v1 = b - a;
v2 = c - a;
cross = v1.Cross( v2 );
area = 0.5f * ( cross * normal );
return( area );
}
void idMath::BarycentricEvaluate( idVec2 &result, const idVec3 &point, const idVec3 &normal, const float area, const idVec3 t[3], const idVec2 tc[3] )
{
float b1, b2, b3;
float scale = 1.f;
scale /= area;
b1 = idMath::BarycentricTriangleArea( normal, point, t[1], t[2] );
b2 = idMath::BarycentricTriangleArea( normal, t[0], point, t[2] );
b3 = idMath::BarycentricTriangleArea( normal, t[0], t[1], point );
result[0] = ( ( b1 * tc[0][0] ) + ( b2 * tc[1][0] ) + ( b3 * tc[2][0] ) ) * scale;
result[1] = ( ( b1 * tc[0][1] ) + ( b2 * tc[1][1] ) + ( b3 * tc[2][1] ) ) * scale;
}
void idMath::BarycentricEvaluate( idVec2 &result, const idVec3 &point, const idVec3 &normal, const float area, const idVec3 t[3], const short tc[ 3 ][ 2 ], float scale ) {
float b1, b2, b3;
scale /= area;
b1 = idMath::BarycentricTriangleArea( normal, point, t[1], t[2] );
b2 = idMath::BarycentricTriangleArea( normal, t[0], point, t[2] );
b3 = idMath::BarycentricTriangleArea( normal, t[0], t[1], point );
result[0] = ( ( b1 * tc[0][0] ) + ( b2 * tc[1][0] ) + ( b3 * tc[2][0] ) ) * scale;
result[1] = ( ( b1 * tc[0][1] ) + ( b2 * tc[1][1] ) + ( b3 * tc[2][1] ) ) * scale;
}