316 lines
9.7 KiB
C++
316 lines
9.7 KiB
C++
|
// Copyright (C) 2007 Id Software, Inc.
|
||
|
//
|
||
|
|
||
|
#include "../precompiled.h"
|
||
|
#pragma hdrstop
|
||
|
|
||
|
|
||
|
const float idMath::PI = 3.14159265358979323846f;
|
||
|
const float idMath::TWO_PI = 2.0f * PI;
|
||
|
const float idMath::HALF_PI = 0.5f * PI;
|
||
|
const float idMath::ONEFOURTH_PI = 0.25f * PI;
|
||
|
const float idMath::THREEFOURTHS_PI = 0.75f * PI;
|
||
|
const float idMath::E = 2.71828182845904523536f;
|
||
|
const float idMath::SQRT_TWO = 1.41421356237309504880f;
|
||
|
const float idMath::SQRT_THREE = 1.73205080756887729352f;
|
||
|
const float idMath::SQRT_1OVER2 = 0.70710678118654752440f;
|
||
|
const float idMath::SQRT_1OVER3 = 0.57735026918962576450f;
|
||
|
const float idMath::M_DEG2RAD = PI / 180.0f;
|
||
|
const float idMath::M_RAD2DEG = 180.0f / PI;
|
||
|
const float idMath::M_SEC2MS = 1000.0f;
|
||
|
const float idMath::M_MS2SEC = 0.001f;
|
||
|
const float idMath::INFINITY = 1e30f;
|
||
|
const float idMath::FLT_EPSILON = 1.192092896e-07f;
|
||
|
|
||
|
bool idMath::initialized = false;
|
||
|
dword idMath::iSqrt[SQRT_TABLE_SIZE]; // inverse square root lookup table
|
||
|
|
||
|
#ifdef ID_WIN_X86_SSE
|
||
|
const float idMath::SSE_FLOAT_ZERO = 0.0f;
|
||
|
const float idMath::SSE_FLOAT_255 = 255.0f;
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
===============
|
||
|
idMath::Init
|
||
|
===============
|
||
|
*/
|
||
|
void idMath::Init( void ) {
|
||
|
union _flint fi, fo;
|
||
|
|
||
|
for ( int i = 0; i < SQRT_TABLE_SIZE; i++ ) {
|
||
|
fi.i = ((EXP_BIAS-1) << EXP_POS) | (i << LOOKUP_POS);
|
||
|
fo.f = (float)( 1.0 / sqrt( fi.f ) );
|
||
|
iSqrt[i] = ((dword)(((fo.i + (1<<(SEED_POS-2))) >> SEED_POS) & 0xFF))<<SEED_POS;
|
||
|
}
|
||
|
|
||
|
iSqrt[SQRT_TABLE_SIZE / 2] = ((dword)(0xFF))<<(SEED_POS);
|
||
|
|
||
|
initialized = true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
================
|
||
|
idMath::FloatToBits
|
||
|
================
|
||
|
*/
|
||
|
int idMath::FloatToBits( float f, int exponentBits, int mantissaBits ) {
|
||
|
int i, sign, exponent, mantissa, value;
|
||
|
|
||
|
assert( exponentBits >= 2 && exponentBits <= 8 );
|
||
|
assert( mantissaBits >= 2 && mantissaBits <= 23 );
|
||
|
|
||
|
int maxBits = ( 1 << ( exponentBits + mantissaBits ) ) - 1;
|
||
|
int minBits = 1;
|
||
|
|
||
|
float max = BitsToFloat( maxBits, exponentBits, mantissaBits );
|
||
|
float min = BitsToFloat( minBits, exponentBits, mantissaBits );
|
||
|
|
||
|
if ( f >= 0.0f ) {
|
||
|
if ( f >= max ) {
|
||
|
return maxBits;
|
||
|
} else if ( f == min ) {
|
||
|
return minBits;
|
||
|
} else if ( f < min ) {
|
||
|
return 0;
|
||
|
}
|
||
|
} else {
|
||
|
if ( f <= -max ) {
|
||
|
return ( maxBits | ( 1 << ( exponentBits + mantissaBits ) ) );
|
||
|
} else if ( f == -min ) {
|
||
|
return ( minBits | ( 1 << ( exponentBits + mantissaBits ) ) );
|
||
|
} else if ( f > -min ) {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
i = *reinterpret_cast<int *>(&f);
|
||
|
sign = ( i >> IEEE_FLT_SIGN_BIT ) & 1;
|
||
|
exponent = ( ( i >> IEEE_FLT_MANTISSA_BITS ) & ( ( 1 << IEEE_FLT_EXPONENT_BITS ) - 1 ) ) - IEEE_FLT_EXPONENT_BIAS;
|
||
|
mantissa = i & ( ( 1 << IEEE_FLT_MANTISSA_BITS ) - 1 );
|
||
|
value = sign << ( exponentBits + mantissaBits );
|
||
|
value |= ( exponent + ( ( 1 << ( exponentBits - 1 ) ) - 1 ) ) << mantissaBits;
|
||
|
value |= mantissa >> ( IEEE_FLT_MANTISSA_BITS - mantissaBits );
|
||
|
return value;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
================
|
||
|
idMath::BitsToFloat
|
||
|
================
|
||
|
*/
|
||
|
float idMath::BitsToFloat( int i, int exponentBits, int mantissaBits ) {
|
||
|
int sign, exponent, mantissa, value;
|
||
|
|
||
|
assert( exponentBits >= 2 && exponentBits <= 8 );
|
||
|
assert( mantissaBits >= 2 && mantissaBits <= 23 );
|
||
|
|
||
|
if ( ( i & ( ( 1 << ( exponentBits + mantissaBits ) ) - 1 ) ) == 0 ) {
|
||
|
// if exponent & mantissa are zero, value is plus or minus zero
|
||
|
return 0.0f;
|
||
|
}
|
||
|
|
||
|
sign = i >> ( exponentBits + mantissaBits );
|
||
|
exponent = ( ( i >> mantissaBits ) & ( ( 1 << exponentBits ) - 1 ) ) - ( ( 1 << ( exponentBits - 1 ) ) - 1 );
|
||
|
mantissa = ( i & ( ( 1 << mantissaBits ) - 1 ) ) << ( IEEE_FLT_MANTISSA_BITS - mantissaBits );
|
||
|
value = sign << IEEE_FLT_SIGN_BIT | ( exponent + IEEE_FLT_EXPONENT_BIAS ) << IEEE_FLT_MANTISSA_BITS | mantissa;
|
||
|
return *reinterpret_cast<float *>(&value);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
================
|
||
|
idMath::TestFloatBitConversions
|
||
|
================
|
||
|
*/
|
||
|
void idMath::TestFloatBitConversions() {
|
||
|
//
|
||
|
// test every value that can be represented within the valid ranges of bits
|
||
|
char testBuf[ 512 ];
|
||
|
int numFails = 0;
|
||
|
for ( int exponentBits = 2; exponentBits <= 8; exponentBits++ ) {
|
||
|
for ( int mantissaBits = 2; mantissaBits <= 23; mantissaBits++ ) {
|
||
|
|
||
|
sprintf( testBuf, "Float Testing: exp %i mant %i ...... ", exponentBits, mantissaBits );
|
||
|
#ifdef _WIN32
|
||
|
OutputDebugString( testBuf );
|
||
|
#else
|
||
|
printf( "%s", testBuf );
|
||
|
#endif
|
||
|
|
||
|
int maxBits = ( 1 << ( exponentBits + mantissaBits ) ) - 1;
|
||
|
int minBits = 1;
|
||
|
float max = idMath::BitsToFloat( maxBits, exponentBits, mantissaBits );
|
||
|
float min = idMath::BitsToFloat( minBits, exponentBits, mantissaBits );
|
||
|
|
||
|
bool failed = false;
|
||
|
|
||
|
// test that all representable values convert to & from a float & maintain value
|
||
|
unsigned int totalNumbersRepresentable = 1 << ( exponentBits + mantissaBits + 1 );
|
||
|
for ( unsigned int i = 0; i < totalNumbersRepresentable; i++ ) {
|
||
|
// skip anything with zero mantissa & exponent
|
||
|
float testFloat = idMath::BitsToFloat( *( ( int* )&i ), exponentBits, mantissaBits );
|
||
|
unsigned int testBits = idMath::FloatToBits( testFloat, exponentBits, mantissaBits );
|
||
|
|
||
|
#pragma warning( push )
|
||
|
#pragma warning( disable: 4389 )
|
||
|
if ( i == 1 << ( exponentBits + mantissaBits ) ) {
|
||
|
#pragma warning( pop )
|
||
|
// negative zero should be the same as positive zero (not IEEE-754, but simple)
|
||
|
if ( testBits != 0 ) {
|
||
|
failed = true;
|
||
|
break;
|
||
|
}
|
||
|
} else if ( testBits != i ) {
|
||
|
failed = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for ( float i = -max * 2.0f; i < max * 2.0f; ) {
|
||
|
unsigned int testBits = idMath::FloatToBits( i, exponentBits, mantissaBits );
|
||
|
float testFloat = idMath::BitsToFloat( testBits, exponentBits, mantissaBits );
|
||
|
|
||
|
// it will have already passed the test of bit->float for this value, if
|
||
|
// FloatToBits has returned anything in the valid range
|
||
|
unsigned int minForThisExp = testBits - ( testBits & mantissaBits ) + 1;
|
||
|
float minError = idMath::Fabs( idMath::BitsToFloat( minForThisExp, exponentBits, mantissaBits ) );
|
||
|
|
||
|
if ( i < -max ) {
|
||
|
if ( testFloat != -max ) {
|
||
|
failed = true;
|
||
|
break;
|
||
|
}
|
||
|
} else if ( i > max ) {
|
||
|
if ( testFloat != max ) {
|
||
|
failed = true;
|
||
|
break;
|
||
|
}
|
||
|
} else if ( i > -min && i < min ) {
|
||
|
if ( testFloat != 0.0f ) {
|
||
|
failed = true;
|
||
|
break;
|
||
|
}
|
||
|
} else {
|
||
|
float error = idMath::Fabs( i - testFloat );
|
||
|
if ( error > minError ) {
|
||
|
failed = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
i += minError;
|
||
|
}
|
||
|
|
||
|
if ( failed ) {
|
||
|
numFails++;
|
||
|
sprintf( testBuf, "FAILED\n" );
|
||
|
} else {
|
||
|
sprintf( testBuf, "PASSED\n" );
|
||
|
}
|
||
|
#ifdef _WIN32
|
||
|
OutputDebugString( testBuf );
|
||
|
#else
|
||
|
printf( "%s", testBuf );
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
sprintf( testBuf, "%i tests failed\n", numFails );
|
||
|
#ifdef _WIN32
|
||
|
OutputDebugString( testBuf );
|
||
|
#else
|
||
|
printf( "%s", testBuf );
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// ================================================================================================
|
||
|
// jscott: fast and reliable random routines
|
||
|
// ================================================================================================
|
||
|
|
||
|
unsigned long rvRandom::mSeed;
|
||
|
|
||
|
float rvRandom::flrand( float min, float max )
|
||
|
{
|
||
|
float result;
|
||
|
|
||
|
mSeed = ( mSeed * 214013L ) + 2531011;
|
||
|
// Note: the shift and divide cannot be combined as this breaks the routine
|
||
|
result = ( float )( mSeed >> 17 ); // 0 - 32767 range
|
||
|
result = ( ( result * ( max - min ) ) * ( 1.0f / 32768.0f ) ) + min;
|
||
|
return( result );
|
||
|
}
|
||
|
|
||
|
float rvRandom::flrand() {
|
||
|
return flrand( 0.0f, 1.0f );
|
||
|
}
|
||
|
|
||
|
float rvRandom::flrand( const idVec2& v ) {
|
||
|
return flrand( v[0], v[1] );
|
||
|
}
|
||
|
|
||
|
int rvRandom::irand( int min, int max )
|
||
|
{
|
||
|
int result;
|
||
|
|
||
|
max++;
|
||
|
mSeed = ( mSeed * 214013L ) + 2531011;
|
||
|
result = mSeed >> 17;
|
||
|
result = ( ( result * ( max - min ) ) >> 15 ) + min;
|
||
|
return( result );
|
||
|
}
|
||
|
|
||
|
// Try to get a seed independent of the random number system
|
||
|
|
||
|
int rvRandom::Init( void )
|
||
|
{
|
||
|
mSeed *= ( unsigned long )sys->Milliseconds();
|
||
|
|
||
|
return( mSeed );
|
||
|
}
|
||
|
|
||
|
// ================================================================================================
|
||
|
// Barycentric texture coordinate functions
|
||
|
// Get the *SIGNED* area of a triangle required for barycentric
|
||
|
// ================================================================================================
|
||
|
float idMath::BarycentricTriangleArea( const idVec3 &normal, const idVec3 &a, const idVec3 &b, const idVec3 &c )
|
||
|
{
|
||
|
idVec3 v1, v2;
|
||
|
idVec3 cross;
|
||
|
float area;
|
||
|
|
||
|
v1 = b - a;
|
||
|
v2 = c - a;
|
||
|
cross = v1.Cross( v2 );
|
||
|
area = 0.5f * ( cross * normal );
|
||
|
|
||
|
return( area );
|
||
|
}
|
||
|
|
||
|
void idMath::BarycentricEvaluate( idVec2 &result, const idVec3 &point, const idVec3 &normal, const float area, const idVec3 t[3], const idVec2 tc[3] )
|
||
|
{
|
||
|
float b1, b2, b3;
|
||
|
|
||
|
float scale = 1.f;
|
||
|
|
||
|
scale /= area;
|
||
|
|
||
|
b1 = idMath::BarycentricTriangleArea( normal, point, t[1], t[2] );
|
||
|
b2 = idMath::BarycentricTriangleArea( normal, t[0], point, t[2] );
|
||
|
b3 = idMath::BarycentricTriangleArea( normal, t[0], t[1], point );
|
||
|
|
||
|
result[0] = ( ( b1 * tc[0][0] ) + ( b2 * tc[1][0] ) + ( b3 * tc[2][0] ) ) * scale;
|
||
|
result[1] = ( ( b1 * tc[0][1] ) + ( b2 * tc[1][1] ) + ( b3 * tc[2][1] ) ) * scale;
|
||
|
}
|
||
|
|
||
|
void idMath::BarycentricEvaluate( idVec2 &result, const idVec3 &point, const idVec3 &normal, const float area, const idVec3 t[3], const short tc[ 3 ][ 2 ], float scale ) {
|
||
|
float b1, b2, b3;
|
||
|
|
||
|
scale /= area;
|
||
|
|
||
|
b1 = idMath::BarycentricTriangleArea( normal, point, t[1], t[2] );
|
||
|
b2 = idMath::BarycentricTriangleArea( normal, t[0], point, t[2] );
|
||
|
b3 = idMath::BarycentricTriangleArea( normal, t[0], t[1], point );
|
||
|
|
||
|
result[0] = ( ( b1 * tc[0][0] ) + ( b2 * tc[1][0] ) + ( b3 * tc[2][0] ) ) * scale;
|
||
|
result[1] = ( ( b1 * tc[0][1] ) + ( b2 * tc[1][1] ) + ( b3 * tc[2][1] ) ) * scale;
|
||
|
}
|