db8ca37fa3
git-svn-id: https://svn.code.sf.net/p/q3cellshading/code/trunk@2 db09e94b-7117-0410-a7e6-85ae5ff6e0e9
682 lines
18 KiB
C
682 lines
18 KiB
C
/*
|
|
===========================================================================
|
|
Copyright (C) 1999-2005 Id Software, Inc.
|
|
|
|
This file is part of Quake III Arena source code.
|
|
|
|
Quake III Arena source code is free software; you can redistribute it
|
|
and/or modify it under the terms of the GNU General Public License as
|
|
published by the Free Software Foundation; either version 2 of the License,
|
|
or (at your option) any later version.
|
|
|
|
Quake III Arena source code is distributed in the hope that it will be
|
|
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Foobar; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
===========================================================================
|
|
*/
|
|
|
|
#include "qbsp.h"
|
|
|
|
|
|
/*
|
|
===============================================================
|
|
|
|
MESH SUBDIVISION
|
|
|
|
===============================================================
|
|
*/
|
|
|
|
|
|
int originalWidths[MAX_EXPANDED_AXIS];
|
|
int originalHeights[MAX_EXPANDED_AXIS];
|
|
|
|
int neighbors[8][2] = {
|
|
{0,1}, {1,1}, {1,0}, {1,-1}, {0,-1}, {-1,-1}, {-1,0}, {-1,1}
|
|
};
|
|
|
|
/*
|
|
============
|
|
LerpDrawVert
|
|
============
|
|
*/
|
|
void LerpDrawVert( drawVert_t *a, drawVert_t *b, drawVert_t *out ) {
|
|
out->xyz[0] = 0.5 * (a->xyz[0] + b->xyz[0]);
|
|
out->xyz[1] = 0.5 * (a->xyz[1] + b->xyz[1]);
|
|
out->xyz[2] = 0.5 * (a->xyz[2] + b->xyz[2]);
|
|
|
|
out->st[0] = 0.5 * (a->st[0] + b->st[0]);
|
|
out->st[1] = 0.5 * (a->st[1] + b->st[1]);
|
|
|
|
out->lightmap[0] = 0.5 * (a->lightmap[0] + b->lightmap[0]);
|
|
out->lightmap[1] = 0.5 * (a->lightmap[1] + b->lightmap[1]);
|
|
|
|
out->color[0] = (a->color[0] + b->color[0]) >> 1;
|
|
out->color[1] = (a->color[1] + b->color[1]) >> 1;
|
|
out->color[2] = (a->color[2] + b->color[2]) >> 1;
|
|
out->color[3] = (a->color[3] + b->color[3]) >> 1;
|
|
}
|
|
|
|
|
|
void FreeMesh( mesh_t *m ) {
|
|
free( m->verts );
|
|
free( m );
|
|
}
|
|
|
|
void PrintMesh( mesh_t *m ) {
|
|
int i, j;
|
|
|
|
for ( i = 0 ; i < m->height ; i++ ) {
|
|
for ( j = 0 ; j < m->width ; j++ ) {
|
|
_printf("(%5.2f %5.2f %5.2f) "
|
|
, m->verts[i*m->width+j].xyz[0]
|
|
, m->verts[i*m->width+j].xyz[1]
|
|
, m->verts[i*m->width+j].xyz[2] );
|
|
}
|
|
_printf("\n");
|
|
}
|
|
}
|
|
|
|
|
|
mesh_t *CopyMesh( mesh_t *mesh ) {
|
|
mesh_t *out;
|
|
int size;
|
|
|
|
out = malloc( sizeof( *out ) );
|
|
out->width = mesh->width;
|
|
out->height = mesh->height;
|
|
|
|
size = out->width * out->height * sizeof( *out->verts );
|
|
out->verts = malloc( size );
|
|
memcpy( out->verts, mesh->verts, size );
|
|
|
|
return out;
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
TransposeMesh
|
|
|
|
Returns a transposed copy of the mesh, freeing the original
|
|
=================
|
|
*/
|
|
mesh_t *TransposeMesh( mesh_t *in ) {
|
|
int w, h;
|
|
mesh_t *out;
|
|
|
|
out = malloc( sizeof( *out ) );
|
|
out->width = in->height;
|
|
out->height = in->width;
|
|
out->verts = malloc( out->width * out->height * sizeof( drawVert_t ) );
|
|
|
|
for ( h = 0 ; h < in->height ; h++ ) {
|
|
for ( w = 0 ; w < in->width ; w++ ) {
|
|
out->verts[ w * in->height + h ] = in->verts[ h * in->width + w ];
|
|
}
|
|
}
|
|
|
|
FreeMesh( in );
|
|
|
|
return out;
|
|
}
|
|
|
|
void InvertMesh( mesh_t *in ) {
|
|
int w, h;
|
|
drawVert_t temp;
|
|
|
|
for ( h = 0 ; h < in->height ; h++ ) {
|
|
for ( w = 0 ; w < in->width / 2 ; w++ ) {
|
|
temp = in->verts[ h * in->width + w ];
|
|
in->verts[ h * in->width + w ] = in->verts[ h * in->width + in->width - 1 - w ];
|
|
in->verts[ h * in->width + in->width - 1 - w ] = temp;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
=================
|
|
MakeMeshNormals
|
|
|
|
=================
|
|
*/
|
|
void MakeMeshNormals( mesh_t in ) {
|
|
int i, j, k, dist;
|
|
vec3_t normal;
|
|
vec3_t sum;
|
|
int count;
|
|
vec3_t base;
|
|
vec3_t delta;
|
|
int x, y;
|
|
drawVert_t *dv;
|
|
vec3_t around[8], temp;
|
|
qboolean good[8];
|
|
qboolean wrapWidth, wrapHeight;
|
|
float len;
|
|
|
|
wrapWidth = qfalse;
|
|
for ( i = 0 ; i < in.height ; i++ ) {
|
|
VectorSubtract( in.verts[i*in.width].xyz,
|
|
in.verts[i*in.width+in.width-1].xyz, delta );
|
|
len = VectorLength( delta );
|
|
if ( len > 1.0 ) {
|
|
break;
|
|
}
|
|
}
|
|
if ( i == in.height ) {
|
|
wrapWidth = qtrue;
|
|
}
|
|
|
|
wrapHeight = qfalse;
|
|
for ( i = 0 ; i < in.width ; i++ ) {
|
|
VectorSubtract( in.verts[i].xyz,
|
|
in.verts[i + (in.height-1)*in.width].xyz, delta );
|
|
len = VectorLength( delta );
|
|
if ( len > 1.0 ) {
|
|
break;
|
|
}
|
|
}
|
|
if ( i == in.width) {
|
|
wrapHeight = qtrue;
|
|
}
|
|
|
|
|
|
for ( i = 0 ; i < in.width ; i++ ) {
|
|
for ( j = 0 ; j < in.height ; j++ ) {
|
|
count = 0;
|
|
dv = &in.verts[j*in.width+i];
|
|
VectorCopy( dv->xyz, base );
|
|
for ( k = 0 ; k < 8 ; k++ ) {
|
|
VectorClear( around[k] );
|
|
good[k] = qfalse;
|
|
|
|
for ( dist = 1 ; dist <= 3 ; dist++ ) {
|
|
x = i + neighbors[k][0] * dist;
|
|
y = j + neighbors[k][1] * dist;
|
|
if ( wrapWidth ) {
|
|
if ( x < 0 ) {
|
|
x = in.width - 1 + x;
|
|
} else if ( x >= in.width ) {
|
|
x = 1 + x - in.width;
|
|
}
|
|
}
|
|
if ( wrapHeight ) {
|
|
if ( y < 0 ) {
|
|
y = in.height - 1 + y;
|
|
} else if ( y >= in.height ) {
|
|
y = 1 + y - in.height;
|
|
}
|
|
}
|
|
|
|
if ( x < 0 || x >= in.width || y < 0 || y >= in.height ) {
|
|
break; // edge of patch
|
|
}
|
|
VectorSubtract( in.verts[y*in.width+x].xyz, base, temp );
|
|
if ( VectorNormalize( temp, temp ) == 0 ) {
|
|
continue; // degenerate edge, get more dist
|
|
} else {
|
|
good[k] = qtrue;
|
|
VectorCopy( temp, around[k] );
|
|
break; // good edge
|
|
}
|
|
}
|
|
}
|
|
|
|
VectorClear( sum );
|
|
for ( k = 0 ; k < 8 ; k++ ) {
|
|
if ( !good[k] || !good[(k+1)&7] ) {
|
|
continue; // didn't get two points
|
|
}
|
|
CrossProduct( around[(k+1)&7], around[k], normal );
|
|
if ( VectorNormalize( normal, normal ) == 0 ) {
|
|
continue;
|
|
}
|
|
VectorAdd( normal, sum, sum );
|
|
count++;
|
|
}
|
|
if ( count == 0 ) {
|
|
//_printf("bad normal\n");
|
|
count = 1;
|
|
}
|
|
VectorNormalize( sum, dv->normal );
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
=================
|
|
PutMeshOnCurve
|
|
|
|
Drops the aproximating points onto the curve
|
|
=================
|
|
*/
|
|
void PutMeshOnCurve( mesh_t in ) {
|
|
int i, j, l;
|
|
float prev, next;
|
|
|
|
// put all the aproximating points on the curve
|
|
for ( i = 0 ; i < in.width ; i++ ) {
|
|
for ( j = 1 ; j < in.height ; j += 2 ) {
|
|
for ( l = 0 ; l < 3 ; l++ ) {
|
|
prev = ( in.verts[j*in.width+i].xyz[l] + in.verts[(j+1)*in.width+i].xyz[l] ) * 0.5;
|
|
next = ( in.verts[j*in.width+i].xyz[l] + in.verts[(j-1)*in.width+i].xyz[l] ) * 0.5;
|
|
in.verts[j*in.width+i].xyz[l] = ( prev + next ) * 0.5;
|
|
}
|
|
}
|
|
}
|
|
|
|
for ( j = 0 ; j < in.height ; j++ ) {
|
|
for ( i = 1 ; i < in.width ; i += 2 ) {
|
|
for ( l = 0 ; l < 3 ; l++ ) {
|
|
prev = ( in.verts[j*in.width+i].xyz[l] + in.verts[j*in.width+i+1].xyz[l] ) * 0.5;
|
|
next = ( in.verts[j*in.width+i].xyz[l] + in.verts[j*in.width+i-1].xyz[l] ) * 0.5;
|
|
in.verts[j*in.width+i].xyz[l] = ( prev + next ) * 0.5;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
=================
|
|
SubdivideMesh
|
|
|
|
=================
|
|
*/
|
|
mesh_t *SubdivideMesh( mesh_t in, float maxError, float minLength ) {
|
|
int i, j, k, l;
|
|
drawVert_t prev, next, mid;
|
|
vec3_t prevxyz, nextxyz, midxyz;
|
|
vec3_t delta;
|
|
float len;
|
|
mesh_t out;
|
|
drawVert_t expand[MAX_EXPANDED_AXIS][MAX_EXPANDED_AXIS];
|
|
|
|
out.width = in.width;
|
|
out.height = in.height;
|
|
|
|
for ( i = 0 ; i < in.width ; i++ ) {
|
|
for ( j = 0 ; j < in.height ; j++ ) {
|
|
expand[j][i] = in.verts[j*in.width+i];
|
|
}
|
|
}
|
|
|
|
for ( i = 0 ; i < in.height ; i++ ) {
|
|
originalHeights[i] = i;
|
|
}
|
|
for ( i = 0 ; i < in.width ; i++ ) {
|
|
originalWidths[i] = i;
|
|
}
|
|
|
|
// horizontal subdivisions
|
|
for ( j = 0 ; j + 2 < out.width ; j += 2 ) {
|
|
// check subdivided midpoints against control points
|
|
for ( i = 0 ; i < out.height ; i++ ) {
|
|
for ( l = 0 ; l < 3 ; l++ ) {
|
|
prevxyz[l] = expand[i][j+1].xyz[l] - expand[i][j].xyz[l];
|
|
nextxyz[l] = expand[i][j+2].xyz[l] - expand[i][j+1].xyz[l];
|
|
midxyz[l] = (expand[i][j].xyz[l] + expand[i][j+1].xyz[l] * 2
|
|
+ expand[i][j+2].xyz[l] ) * 0.25;
|
|
}
|
|
|
|
// if the span length is too long, force a subdivision
|
|
if ( VectorLength( prevxyz ) > minLength
|
|
|| VectorLength( nextxyz ) > minLength ) {
|
|
break;
|
|
}
|
|
|
|
// see if this midpoint is off far enough to subdivide
|
|
VectorSubtract( expand[i][j+1].xyz, midxyz, delta );
|
|
len = VectorLength( delta );
|
|
if ( len > maxError ) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ( out.width + 2 >= MAX_EXPANDED_AXIS ) {
|
|
break; // can't subdivide any more
|
|
}
|
|
|
|
if ( i == out.height ) {
|
|
continue; // didn't need subdivision
|
|
}
|
|
|
|
// insert two columns and replace the peak
|
|
out.width += 2;
|
|
|
|
for ( k = out.width - 1 ; k > j + 3 ; k-- ) {
|
|
originalWidths[k] = originalWidths[k-2];
|
|
}
|
|
originalWidths[j+3] = originalWidths[j+1];
|
|
originalWidths[j+2] = originalWidths[j+1];
|
|
originalWidths[j+1] = originalWidths[j];
|
|
|
|
for ( i = 0 ; i < out.height ; i++ ) {
|
|
LerpDrawVert( &expand[i][j], &expand[i][j+1], &prev );
|
|
LerpDrawVert( &expand[i][j+1], &expand[i][j+2], &next );
|
|
LerpDrawVert( &prev, &next, &mid );
|
|
|
|
for ( k = out.width - 1 ; k > j + 3 ; k-- ) {
|
|
expand[i][k] = expand[i][k-2];
|
|
}
|
|
expand[i][j + 1] = prev;
|
|
expand[i][j + 2] = mid;
|
|
expand[i][j + 3] = next;
|
|
}
|
|
|
|
// back up and recheck this set again, it may need more subdivision
|
|
j -= 2;
|
|
|
|
}
|
|
|
|
// vertical subdivisions
|
|
for ( j = 0 ; j + 2 < out.height ; j += 2 ) {
|
|
// check subdivided midpoints against control points
|
|
for ( i = 0 ; i < out.width ; i++ ) {
|
|
for ( l = 0 ; l < 3 ; l++ ) {
|
|
prevxyz[l] = expand[j+1][i].xyz[l] - expand[j][i].xyz[l];
|
|
nextxyz[l] = expand[j+2][i].xyz[l] - expand[j+1][i].xyz[l];
|
|
midxyz[l] = (expand[j][i].xyz[l] + expand[j+1][i].xyz[l] * 2
|
|
+ expand[j+2][i].xyz[l] ) * 0.25;
|
|
}
|
|
|
|
// if the span length is too long, force a subdivision
|
|
if ( VectorLength( prevxyz ) > minLength
|
|
|| VectorLength( nextxyz ) > minLength ) {
|
|
break;
|
|
}
|
|
// see if this midpoint is off far enough to subdivide
|
|
VectorSubtract( expand[j+1][i].xyz, midxyz, delta );
|
|
len = VectorLength( delta );
|
|
if ( len > maxError ) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ( out.height + 2 >= MAX_EXPANDED_AXIS ) {
|
|
break; // can't subdivide any more
|
|
}
|
|
|
|
if ( i == out.width ) {
|
|
continue; // didn't need subdivision
|
|
}
|
|
|
|
// insert two columns and replace the peak
|
|
out.height += 2;
|
|
|
|
for ( k = out.height - 1 ; k > j + 3 ; k-- ) {
|
|
originalHeights[k] = originalHeights[k-2];
|
|
}
|
|
originalHeights[j+3] = originalHeights[j+1];
|
|
originalHeights[j+2] = originalHeights[j+1];
|
|
originalHeights[j+1] = originalHeights[j];
|
|
|
|
for ( i = 0 ; i < out.width ; i++ ) {
|
|
LerpDrawVert( &expand[j][i], &expand[j+1][i], &prev );
|
|
LerpDrawVert( &expand[j+1][i], &expand[j+2][i], &next );
|
|
LerpDrawVert( &prev, &next, &mid );
|
|
|
|
for ( k = out.height - 1 ; k > j + 3 ; k-- ) {
|
|
expand[k][i] = expand[k-2][i];
|
|
}
|
|
expand[j+1][i] = prev;
|
|
expand[j+2][i] = mid;
|
|
expand[j+3][i] = next;
|
|
}
|
|
|
|
// back up and recheck this set again, it may need more subdivision
|
|
j -= 2;
|
|
|
|
}
|
|
|
|
// collapse the verts
|
|
|
|
out.verts = &expand[0][0];
|
|
for ( i = 1 ; i < out.height ; i++ ) {
|
|
memmove( &out.verts[i*out.width], expand[i], out.width * sizeof(drawVert_t) );
|
|
}
|
|
|
|
return CopyMesh(&out);
|
|
}
|
|
|
|
/*
|
|
================
|
|
ProjectPointOntoVector
|
|
================
|
|
*/
|
|
void ProjectPointOntoVector( vec3_t point, vec3_t vStart, vec3_t vEnd, vec3_t vProj )
|
|
{
|
|
vec3_t pVec, vec;
|
|
|
|
VectorSubtract( point, vStart, pVec );
|
|
VectorSubtract( vEnd, vStart, vec );
|
|
VectorNormalize( vec, vec );
|
|
// project onto the directional vector for this segment
|
|
VectorMA( vStart, DotProduct( pVec, vec ), vec, vProj );
|
|
}
|
|
|
|
/*
|
|
================
|
|
RemoveLinearMeshColumsRows
|
|
================
|
|
*/
|
|
mesh_t *RemoveLinearMeshColumnsRows( mesh_t *in ) {
|
|
int i, j, k;
|
|
float len, maxLength;
|
|
vec3_t proj, dir;
|
|
mesh_t out;
|
|
drawVert_t expand[MAX_EXPANDED_AXIS][MAX_EXPANDED_AXIS];
|
|
|
|
out.width = in->width;
|
|
out.height = in->height;
|
|
|
|
for ( i = 0 ; i < in->width ; i++ ) {
|
|
for ( j = 0 ; j < in->height ; j++ ) {
|
|
expand[j][i] = in->verts[j*in->width+i];
|
|
}
|
|
}
|
|
|
|
for ( j = 1 ; j < out.width - 1; j++ ) {
|
|
maxLength = 0;
|
|
for ( i = 0 ; i < out.height ; i++ ) {
|
|
ProjectPointOntoVector(expand[i][j].xyz, expand[i][j-1].xyz, expand[i][j+1].xyz, proj);
|
|
VectorSubtract(expand[i][j].xyz, proj, dir);
|
|
len = VectorLength(dir);
|
|
if (len > maxLength) {
|
|
maxLength = len;
|
|
}
|
|
}
|
|
if (maxLength < 0.1)
|
|
{
|
|
out.width--;
|
|
for ( i = 0 ; i < out.height ; i++ ) {
|
|
for (k = j; k < out.width; k++) {
|
|
expand[i][k] = expand[i][k+1];
|
|
}
|
|
}
|
|
for (k = j; k < out.width; k++) {
|
|
originalWidths[k] = originalWidths[k+1];
|
|
}
|
|
j--;
|
|
}
|
|
}
|
|
for ( j = 1 ; j < out.height - 1; j++ ) {
|
|
maxLength = 0;
|
|
for ( i = 0 ; i < out.width ; i++ ) {
|
|
ProjectPointOntoVector(expand[j][i].xyz, expand[j-1][i].xyz, expand[j+1][i].xyz, proj);
|
|
VectorSubtract(expand[j][i].xyz, proj, dir);
|
|
len = VectorLength(dir);
|
|
if (len > maxLength) {
|
|
maxLength = len;
|
|
}
|
|
}
|
|
if (maxLength < 0.1)
|
|
{
|
|
out.height--;
|
|
for ( i = 0 ; i < out.width ; i++ ) {
|
|
for (k = j; k < out.height; k++) {
|
|
expand[k][i] = expand[k+1][i];
|
|
}
|
|
}
|
|
for (k = j; k < out.height; k++) {
|
|
originalHeights[k] = originalHeights[k+1];
|
|
}
|
|
j--;
|
|
}
|
|
}
|
|
// collapse the verts
|
|
out.verts = &expand[0][0];
|
|
for ( i = 1 ; i < out.height ; i++ ) {
|
|
memmove( &out.verts[i*out.width], expand[i], out.width * sizeof(drawVert_t) );
|
|
}
|
|
|
|
return CopyMesh(&out);
|
|
}
|
|
|
|
/*
|
|
============
|
|
LerpDrawVertAmount
|
|
============
|
|
*/
|
|
void LerpDrawVertAmount( drawVert_t *a, drawVert_t *b, float amount, drawVert_t *out ) {
|
|
out->xyz[0] = a->xyz[0] + amount * (b->xyz[0] - a->xyz[0]);
|
|
out->xyz[1] = a->xyz[1] + amount * (b->xyz[1] - a->xyz[1]);
|
|
out->xyz[2] = a->xyz[2] + amount * (b->xyz[2] - a->xyz[2]);
|
|
|
|
out->st[0] = a->st[0] + amount * (b->st[0] - a->st[0]);
|
|
out->st[1] = a->st[1] + amount * (b->st[1] - a->st[1]);
|
|
|
|
out->lightmap[0] = a->lightmap[0] + amount * (b->lightmap[0] - a->lightmap[0]);
|
|
out->lightmap[1] = a->lightmap[1] + amount * (b->lightmap[1] - a->lightmap[1]);
|
|
|
|
out->color[0] = a->color[0] + amount * (b->color[0] - a->color[0]);
|
|
out->color[1] = a->color[1] + amount * (b->color[1] - a->color[1]);
|
|
out->color[2] = a->color[2] + amount * (b->color[2] - a->color[2]);
|
|
out->color[3] = a->color[3] + amount * (b->color[3] - a->color[3]);
|
|
|
|
out->normal[0] = a->normal[0] + amount * (b->normal[0] - a->normal[0]);
|
|
out->normal[1] = a->normal[1] + amount * (b->normal[1] - a->normal[1]);
|
|
out->normal[2] = a->normal[2] + amount * (b->normal[2] - a->normal[2]);
|
|
VectorNormalize(out->normal, out->normal);
|
|
}
|
|
|
|
/*
|
|
=================
|
|
SubdivideMeshQuads
|
|
=================
|
|
*/
|
|
mesh_t *SubdivideMeshQuads( mesh_t *in, float minLength, int maxsize, int widthtable[], int heighttable[]) {
|
|
int i, j, k, w, h, maxsubdivisions, subdivisions;
|
|
vec3_t dir;
|
|
float length, maxLength, amount;
|
|
mesh_t out;
|
|
drawVert_t expand[MAX_EXPANDED_AXIS][MAX_EXPANDED_AXIS];
|
|
|
|
out.width = in->width;
|
|
out.height = in->height;
|
|
|
|
for ( i = 0 ; i < in->width ; i++ ) {
|
|
for ( j = 0 ; j < in->height ; j++ ) {
|
|
expand[j][i] = in->verts[j*in->width+i];
|
|
}
|
|
}
|
|
|
|
if (maxsize > MAX_EXPANDED_AXIS)
|
|
Error("SubdivideMeshQuads: maxsize > MAX_EXPANDED_AXIS");
|
|
|
|
// horizontal subdivisions
|
|
|
|
maxsubdivisions = (maxsize - in->width) / (in->width - 1);
|
|
|
|
for ( w = 0, j = 0 ; w < in->width - 1; w++, j += subdivisions + 1) {
|
|
maxLength = 0;
|
|
for ( i = 0 ; i < out.height ; i++ ) {
|
|
VectorSubtract(expand[i][j+1].xyz, expand[i][j].xyz, dir);
|
|
length = VectorLength( dir );
|
|
if (length > maxLength) {
|
|
maxLength = length;
|
|
}
|
|
}
|
|
|
|
subdivisions = (int) (maxLength / minLength);
|
|
if (subdivisions > maxsubdivisions)
|
|
subdivisions = maxsubdivisions;
|
|
|
|
widthtable[w] = subdivisions + 1;
|
|
if (subdivisions <= 0)
|
|
continue;
|
|
|
|
out.width += subdivisions;
|
|
|
|
for ( k = out.width - 1; k >= j + subdivisions; k-- ) {
|
|
originalWidths[k] = originalWidths[k-subdivisions];
|
|
}
|
|
for (k = 1; k <= subdivisions; k++) {
|
|
originalWidths[j+k] = originalWidths[j];
|
|
}
|
|
|
|
for ( i = 0 ; i < out.height ; i++ ) {
|
|
for ( k = out.width - 1 ; k > j + subdivisions; k-- ) {
|
|
expand[i][k] = expand[i][k-subdivisions];
|
|
}
|
|
for (k = 1; k <= subdivisions; k++)
|
|
{
|
|
amount = (float) k / (subdivisions + 1);
|
|
LerpDrawVertAmount(&expand[i][j], &expand[i][j+subdivisions+1], amount, &expand[i][j+k]);
|
|
}
|
|
}
|
|
}
|
|
|
|
maxsubdivisions = (maxsize - in->height) / (in->height - 1);
|
|
|
|
for ( h = 0, j = 0 ; h < in->height - 1; h++, j += subdivisions + 1) {
|
|
maxLength = 0;
|
|
for ( i = 0 ; i < out.width ; i++ ) {
|
|
VectorSubtract(expand[j+1][i].xyz, expand[j][i].xyz, dir);
|
|
length = VectorLength( dir );
|
|
if (length > maxLength) {
|
|
maxLength = length;
|
|
}
|
|
}
|
|
|
|
subdivisions = (int) (maxLength / minLength);
|
|
if (subdivisions > maxsubdivisions)
|
|
subdivisions = maxsubdivisions;
|
|
|
|
heighttable[h] = subdivisions + 1;
|
|
if (subdivisions <= 0)
|
|
continue;
|
|
|
|
out.height += subdivisions;
|
|
|
|
for ( k = out.height - 1; k >= j + subdivisions; k-- ) {
|
|
originalHeights[k] = originalHeights[k-subdivisions];
|
|
}
|
|
for (k = 1; k <= subdivisions; k++) {
|
|
originalHeights[j+k] = originalHeights[j];
|
|
}
|
|
|
|
for ( i = 0 ; i < out.width ; i++ ) {
|
|
for ( k = out.height - 1 ; k > j + subdivisions; k-- ) {
|
|
expand[k][i] = expand[k-subdivisions][i];
|
|
}
|
|
for (k = 1; k <= subdivisions; k++)
|
|
{
|
|
amount = (float) k / (subdivisions + 1);
|
|
LerpDrawVertAmount(&expand[j][i], &expand[j+subdivisions+1][i], amount, &expand[j+k][i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// collapse the verts
|
|
out.verts = &expand[0][0];
|
|
for ( i = 1 ; i < out.height ; i++ ) {
|
|
memmove( &out.verts[i*out.width], expand[i], out.width * sizeof(drawVert_t) );
|
|
}
|
|
|
|
return CopyMesh(&out);
|
|
}
|