reaction/code/renderergl2/tr_image.c
2014-05-03 22:47:46 +00:00

3329 lines
78 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_image.c
#include "tr_local.h"
static byte s_intensitytable[256];
static unsigned char s_gammatable[256];
int gl_filter_min = GL_LINEAR_MIPMAP_NEAREST;
int gl_filter_max = GL_LINEAR;
#define FILE_HASH_SIZE 1024
static image_t* hashTable[FILE_HASH_SIZE];
/*
** R_GammaCorrect
*/
void R_GammaCorrect( byte *buffer, int bufSize ) {
int i;
for ( i = 0; i < bufSize; i++ ) {
buffer[i] = s_gammatable[buffer[i]];
}
}
typedef struct {
char *name;
int minimize, maximize;
} textureMode_t;
textureMode_t modes[] = {
{"GL_NEAREST", GL_NEAREST, GL_NEAREST},
{"GL_LINEAR", GL_LINEAR, GL_LINEAR},
{"GL_NEAREST_MIPMAP_NEAREST", GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST},
{"GL_LINEAR_MIPMAP_NEAREST", GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR},
{"GL_NEAREST_MIPMAP_LINEAR", GL_NEAREST_MIPMAP_LINEAR, GL_NEAREST},
{"GL_LINEAR_MIPMAP_LINEAR", GL_LINEAR_MIPMAP_LINEAR, GL_LINEAR}
};
/*
================
return a hash value for the filename
================
*/
static long generateHashValue( const char *fname ) {
int i;
long hash;
char letter;
hash = 0;
i = 0;
while (fname[i] != '\0') {
letter = tolower(fname[i]);
if (letter =='.') break; // don't include extension
if (letter =='\\') letter = '/'; // damn path names
hash+=(long)(letter)*(i+119);
i++;
}
hash &= (FILE_HASH_SIZE-1);
return hash;
}
/*
===============
GL_TextureMode
===============
*/
void GL_TextureMode( const char *string ) {
int i;
image_t *glt;
for ( i=0 ; i< 6 ; i++ ) {
if ( !Q_stricmp( modes[i].name, string ) ) {
break;
}
}
// hack to prevent trilinear from being set on voodoo,
// because their driver freaks...
if ( i == 5 && glConfig.hardwareType == GLHW_3DFX_2D3D ) {
ri.Printf( PRINT_ALL, "Refusing to set trilinear on a voodoo.\n" );
i = 3;
}
if ( i == 6 ) {
ri.Printf (PRINT_ALL, "bad filter name\n");
return;
}
gl_filter_min = modes[i].minimize;
gl_filter_max = modes[i].maximize;
// change all the existing mipmap texture objects
for ( i = 0 ; i < tr.numImages ; i++ ) {
glt = tr.images[ i ];
if ( glt->flags & IMGFLAG_MIPMAP ) {
GL_Bind (glt);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
}
}
}
/*
===============
R_SumOfUsedImages
===============
*/
int R_SumOfUsedImages( void ) {
int total;
int i;
total = 0;
for ( i = 0; i < tr.numImages; i++ ) {
if ( tr.images[i]->frameUsed == tr.frameCount ) {
total += tr.images[i]->uploadWidth * tr.images[i]->uploadHeight;
}
}
return total;
}
/*
===============
R_ImageList_f
===============
*/
void R_ImageList_f( void ) {
int i;
int estTotalSize = 0;
ri.Printf(PRINT_ALL, "\n -w-- -h-- type -size- --name-------\n");
for ( i = 0 ; i < tr.numImages ; i++ )
{
image_t *image = tr.images[i];
char *format = "???? ";
char *sizeSuffix;
int estSize;
int displaySize;
estSize = image->uploadHeight * image->uploadWidth;
switch(image->internalFormat)
{
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT:
format = "sDXT1";
// 64 bits per 16 pixels, so 4 bits per pixel
estSize /= 2;
break;
case GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT:
format = "sDXT5";
// 128 bits per 16 pixels, so 1 byte per pixel
break;
case GL_COMPRESSED_SRGB_ALPHA_BPTC_UNORM_ARB:
format = "sBPTC";
// 128 bits per 16 pixels, so 1 byte per pixel
break;
case GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT:
format = "LATC ";
// 128 bits per 16 pixels, so 1 byte per pixel
break;
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
format = "DXT1 ";
// 64 bits per 16 pixels, so 4 bits per pixel
estSize /= 2;
break;
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
format = "DXT5 ";
// 128 bits per 16 pixels, so 1 byte per pixel
break;
case GL_COMPRESSED_RGBA_BPTC_UNORM_ARB:
format = "BPTC ";
// 128 bits per 16 pixels, so 1 byte per pixel
break;
case GL_RGB4_S3TC:
format = "S3TC ";
// same as DXT1?
estSize /= 2;
break;
case GL_RGBA4:
case GL_RGBA8:
case GL_RGBA:
format = "RGBA ";
// 4 bytes per pixel
estSize *= 4;
break;
case GL_LUMINANCE8:
case GL_LUMINANCE16:
case GL_LUMINANCE:
format = "L ";
// 1 byte per pixel?
break;
case GL_RGB5:
case GL_RGB8:
case GL_RGB:
format = "RGB ";
// 3 bytes per pixel?
estSize *= 3;
break;
case GL_LUMINANCE8_ALPHA8:
case GL_LUMINANCE16_ALPHA16:
case GL_LUMINANCE_ALPHA:
format = "LA ";
// 2 bytes per pixel?
estSize *= 2;
break;
case GL_SRGB_EXT:
case GL_SRGB8_EXT:
format = "sRGB ";
// 3 bytes per pixel?
estSize *= 3;
break;
case GL_SRGB_ALPHA_EXT:
case GL_SRGB8_ALPHA8_EXT:
format = "sRGBA";
// 4 bytes per pixel?
estSize *= 4;
break;
case GL_SLUMINANCE_EXT:
case GL_SLUMINANCE8_EXT:
format = "sL ";
// 1 byte per pixel?
break;
case GL_SLUMINANCE_ALPHA_EXT:
case GL_SLUMINANCE8_ALPHA8_EXT:
format = "sLA ";
// 2 byte per pixel?
estSize *= 2;
break;
}
// mipmap adds about 50%
if (image->flags & IMGFLAG_MIPMAP)
estSize += estSize / 2;
sizeSuffix = "b ";
displaySize = estSize;
if (displaySize > 1024)
{
displaySize /= 1024;
sizeSuffix = "kb";
}
if (displaySize > 1024)
{
displaySize /= 1024;
sizeSuffix = "Mb";
}
if (displaySize > 1024)
{
displaySize /= 1024;
sizeSuffix = "Gb";
}
ri.Printf(PRINT_ALL, "%4i: %4ix%4i %s %4i%s %s\n", i, image->uploadWidth, image->uploadHeight, format, displaySize, sizeSuffix, image->imgName);
estTotalSize += estSize;
}
ri.Printf (PRINT_ALL, " ---------\n");
ri.Printf (PRINT_ALL, " approx %i bytes\n", estTotalSize);
ri.Printf (PRINT_ALL, " %i total images\n\n", tr.numImages );
}
//=======================================================================
/*
================
ResampleTexture
Used to resample images in a more general than quartering fashion.
This will only be filtered properly if the resampled size
is greater than half the original size.
If a larger shrinking is needed, use the mipmap function
before or after.
================
*/
static void ResampleTexture( byte *in, int inwidth, int inheight, byte *out,
int outwidth, int outheight ) {
int i, j;
byte *inrow, *inrow2;
int frac, fracstep;
int p1[2048], p2[2048];
byte *pix1, *pix2, *pix3, *pix4;
if (outwidth>2048)
ri.Error(ERR_DROP, "ResampleTexture: max width");
fracstep = inwidth*0x10000/outwidth;
frac = fracstep>>2;
for ( i=0 ; i<outwidth ; i++ ) {
p1[i] = 4*(frac>>16);
frac += fracstep;
}
frac = 3*(fracstep>>2);
for ( i=0 ; i<outwidth ; i++ ) {
p2[i] = 4*(frac>>16);
frac += fracstep;
}
for (i=0 ; i<outheight ; i++) {
inrow = in + 4*inwidth*(int)((i+0.25)*inheight/outheight);
inrow2 = in + 4*inwidth*(int)((i+0.75)*inheight/outheight);
for (j=0 ; j<outwidth ; j++) {
pix1 = inrow + p1[j];
pix2 = inrow + p2[j];
pix3 = inrow2 + p1[j];
pix4 = inrow2 + p2[j];
*out++ = (pix1[0] + pix2[0] + pix3[0] + pix4[0])>>2;
*out++ = (pix1[1] + pix2[1] + pix3[1] + pix4[1])>>2;
*out++ = (pix1[2] + pix2[2] + pix3[2] + pix4[2])>>2;
*out++ = (pix1[3] + pix2[3] + pix3[3] + pix4[3])>>2;
}
}
}
static void RGBAtoYCoCgA(const byte *in, byte *out, int width, int height)
{
int x, y;
for (y = 0; y < height; y++)
{
const byte *inbyte = in + y * width * 4;
byte *outbyte = out + y * width * 4;
for (x = 0; x < width; x++)
{
byte r, g, b, a, rb2;
r = *inbyte++;
g = *inbyte++;
b = *inbyte++;
a = *inbyte++;
rb2 = (r + b) >> 1;
*outbyte++ = (g + rb2) >> 1; // Y = R/4 + G/2 + B/4
*outbyte++ = (r - b + 256) >> 1; // Co = R/2 - B/2
*outbyte++ = (g - rb2 + 256) >> 1; // Cg = -R/4 + G/2 - B/4
*outbyte++ = a;
}
}
}
static void YCoCgAtoRGBA(const byte *in, byte *out, int width, int height)
{
int x, y;
for (y = 0; y < height; y++)
{
const byte *inbyte = in + y * width * 4;
byte *outbyte = out + y * width * 4;
for (x = 0; x < width; x++)
{
byte _Y, Co, Cg, a;
_Y = *inbyte++;
Co = *inbyte++;
Cg = *inbyte++;
a = *inbyte++;
*outbyte++ = CLAMP(_Y + Co - Cg, 0, 255); // R = Y + Co - Cg
*outbyte++ = CLAMP(_Y + Cg - 128, 0, 255); // G = Y + Cg
*outbyte++ = CLAMP(_Y - Co - Cg + 256, 0, 255); // B = Y - Co - Cg
*outbyte++ = a;
}
}
}
// uses a sobel filter to change a texture to a normal map
static void RGBAtoNormal(const byte *in, byte *out, int width, int height, qboolean clampToEdge)
{
int x, y, max;
// convert to heightmap, storing in alpha
// same as converting to Y in YCoCg
max = 1;
for (y = 0; y < height; y++)
{
const byte *inbyte = in + y * width * 4;
byte *outbyte = out + y * width * 4 + 3;
for (x = 0; x < width; x++)
{
byte result = (inbyte[0] >> 2) + (inbyte[1] >> 1) + (inbyte[2] >> 2);
result = result * result / 255; // Make linear
*outbyte = result;
max = MAX(max, *outbyte);
outbyte += 4;
inbyte += 4;
}
}
// level out heights
if (max < 255)
{
for (y = 0; y < height; y++)
{
byte *outbyte = out + y * width * 4 + 3;
for (x = 0; x < width; x++)
{
*outbyte = *outbyte + (255 - max);
outbyte += 4;
}
}
}
// now run sobel filter over height values to generate X and Y
// then normalize
for (y = 0; y < height; y++)
{
byte *outbyte = out + y * width * 4;
for (x = 0; x < width; x++)
{
// 0 1 2
// 3 4 5
// 6 7 8
byte s[9];
int x2, y2, i;
vec3_t normal;
i = 0;
for (y2 = -1; y2 <= 1; y2++)
{
int src_y = y + y2;
if (clampToEdge)
{
src_y = CLAMP(src_y, 0, height - 1);
}
else
{
src_y = (src_y + height) % height;
}
for (x2 = -1; x2 <= 1; x2++)
{
int src_x = x + x2;
if (clampToEdge)
{
src_x = CLAMP(src_x, 0, height - 1);
}
else
{
src_x = (src_x + height) % height;
}
s[i++] = *(out + (src_y * width + src_x) * 4 + 3);
}
}
normal[0] = s[0] - s[2]
+ 2 * s[3] - 2 * s[5]
+ s[6] - s[8];
normal[1] = s[0] + 2 * s[1] + s[2]
- s[6] - 2 * s[7] - s[8];
normal[2] = s[4] * 4;
if (!VectorNormalize2(normal, normal))
{
VectorSet(normal, 0, 0, 1);
}
*outbyte++ = FloatToOffsetByte(normal[0]);
*outbyte++ = FloatToOffsetByte(normal[1]);
*outbyte++ = FloatToOffsetByte(normal[2]);
outbyte++;
}
}
}
#define COPYSAMPLE(a,b) *(unsigned int *)(a) = *(unsigned int *)(b)
// based on Fast Curve Based Interpolation
// from Fast Artifacts-Free Image Interpolation (http://www.andreagiachetti.it/icbi/)
// assumes data has a 2 pixel thick border of clamped or wrapped data
// expects data to be a grid with even (0, 0), (2, 0), (0, 2), (2, 2) etc pixels filled
// only performs FCBI on specified component
static void DoFCBI(byte *in, byte *out, int width, int height, int component)
{
int x, y;
byte *outbyte, *inbyte;
// copy in to out
for (y = 2; y < height - 2; y += 2)
{
inbyte = in + (y * width + 2) * 4 + component;
outbyte = out + (y * width + 2) * 4 + component;
for (x = 2; x < width - 2; x += 2)
{
*outbyte = *inbyte;
outbyte += 8;
inbyte += 8;
}
}
for (y = 3; y < height - 3; y += 2)
{
// diagonals
//
// NWp - northwest interpolated pixel
// NEp - northeast interpolated pixel
// NWd - northwest first derivative
// NEd - northeast first derivative
// NWdd - northwest second derivative
// NEdd - northeast second derivative
//
// Uses these samples:
//
// 0
// - - a - b - -
// - - - - - - -
// c - d - e - f
// 0 - - - - - - -
// g - h - i - j
// - - - - - - -
// - - k - l - -
//
// x+2 uses these samples:
//
// 0
// - - - - a - b - -
// - - - - - - - - -
// - - c - d - e - f
// 0 - - - - - - - - -
// - - g - h - i - j
// - - - - - - - - -
// - - - - k - l - -
//
// so we can reuse 8 of them on next iteration
//
// a=b, c=d, d=e, e=f, g=h, h=i, i=j, k=l
//
// only b, f, j, and l need to be sampled on next iteration
byte sa, sb, sc, sd, se, sf, sg, sh, si, sj, sk, sl;
byte *line1, *line2, *line3, *line4;
x = 3;
// optimization one
// SAMPLE2(sa, x-1, y-3);
//SAMPLE2(sc, x-3, y-1); SAMPLE2(sd, x-1, y-1); SAMPLE2(se, x+1, y-1);
//SAMPLE2(sg, x-3, y+1); SAMPLE2(sh, x-1, y+1); SAMPLE2(si, x+1, y+1);
// SAMPLE2(sk, x-1, y+3);
// optimization two
line1 = in + ((y - 3) * width + (x - 1)) * 4 + component;
line2 = in + ((y - 1) * width + (x - 3)) * 4 + component;
line3 = in + ((y + 1) * width + (x - 3)) * 4 + component;
line4 = in + ((y + 3) * width + (x - 1)) * 4 + component;
// COPYSAMPLE(sa, line1); line1 += 8;
//COPYSAMPLE(sc, line2); line2 += 8; COPYSAMPLE(sd, line2); line2 += 8; COPYSAMPLE(se, line2); line2 += 8;
//COPYSAMPLE(sg, line3); line3 += 8; COPYSAMPLE(sh, line3); line3 += 8; COPYSAMPLE(si, line3); line3 += 8;
// COPYSAMPLE(sk, line4); line4 += 8;
sa = *line1; line1 += 8;
sc = *line2; line2 += 8; sd = *line2; line2 += 8; se = *line2; line2 += 8;
sg = *line3; line3 += 8; sh = *line3; line3 += 8; si = *line3; line3 += 8;
sk = *line4; line4 += 8;
outbyte = out + (y * width + x) * 4 + component;
for ( ; x < width - 3; x += 2)
{
int NWd, NEd, NWp, NEp;
// original
// SAMPLE2(sa, x-1, y-3); SAMPLE2(sb, x+1, y-3);
//SAMPLE2(sc, x-3, y-1); SAMPLE2(sd, x-1, y-1); SAMPLE2(se, x+1, y-1); SAMPLE2(sf, x+3, y-1);
//SAMPLE2(sg, x-3, y+1); SAMPLE2(sh, x-1, y+1); SAMPLE2(si, x+1, y+1); SAMPLE2(sj, x+3, y+1);
// SAMPLE2(sk, x-1, y+3); SAMPLE2(sl, x+1, y+3);
// optimization one
//SAMPLE2(sb, x+1, y-3);
//SAMPLE2(sf, x+3, y-1);
//SAMPLE2(sj, x+3, y+1);
//SAMPLE2(sl, x+1, y+3);
// optimization two
//COPYSAMPLE(sb, line1); line1 += 8;
//COPYSAMPLE(sf, line2); line2 += 8;
//COPYSAMPLE(sj, line3); line3 += 8;
//COPYSAMPLE(sl, line4); line4 += 8;
sb = *line1; line1 += 8;
sf = *line2; line2 += 8;
sj = *line3; line3 += 8;
sl = *line4; line4 += 8;
NWp = sd + si;
NEp = se + sh;
NWd = abs(sd - si);
NEd = abs(se - sh);
if (NWd > 100 || NEd > 100 || abs(NWp-NEp) > 200)
{
if (NWd < NEd)
*outbyte = NWp >> 1;
else
*outbyte = NEp >> 1;
}
else
{
int NWdd, NEdd;
//NEdd = abs(sg + sd + sb - 3 * (se + sh) + sk + si + sf);
//NWdd = abs(sa + se + sj - 3 * (sd + si) + sc + sh + sl);
NEdd = abs(sg + sb - 3 * NEp + sk + sf + NWp);
NWdd = abs(sa + sj - 3 * NWp + sc + sl + NEp);
if (NWdd > NEdd)
*outbyte = NWp >> 1;
else
*outbyte = NEp >> 1;
}
outbyte += 8;
// COPYSAMPLE(sa, sb);
//COPYSAMPLE(sc, sd); COPYSAMPLE(sd, se); COPYSAMPLE(se, sf);
//COPYSAMPLE(sg, sh); COPYSAMPLE(sh, si); COPYSAMPLE(si, sj);
// COPYSAMPLE(sk, sl);
sa = sb;
sc = sd; sd = se; se = sf;
sg = sh; sh = si; si = sj;
sk = sl;
}
}
// hack: copy out to in again
for (y = 3; y < height - 3; y += 2)
{
inbyte = out + (y * width + 3) * 4 + component;
outbyte = in + (y * width + 3) * 4 + component;
for (x = 3; x < width - 3; x += 2)
{
*outbyte = *inbyte;
outbyte += 8;
inbyte += 8;
}
}
for (y = 2; y < height - 3; y++)
{
// horizontal & vertical
//
// hp - horizontally interpolated pixel
// vp - vertically interpolated pixel
// hd - horizontal first derivative
// vd - vertical first derivative
// hdd - horizontal second derivative
// vdd - vertical second derivative
// Uses these samples:
//
// 0
// - a - b -
// c - d - e
// 0 - f - g -
// h - i - j
// - k - l -
//
// x+2 uses these samples:
//
// 0
// - - - a - b -
// - - c - d - e
// 0 - - - f - g -
// - - h - i - j
// - - - k - l -
//
// so we can reuse 7 of them on next iteration
//
// a=b, c=d, d=e, f=g, h=i, i=j, k=l
//
// only b, e, g, j, and l need to be sampled on next iteration
byte sa, sb, sc, sd, se, sf, sg, sh, si, sj, sk, sl;
byte *line1, *line2, *line3, *line4, *line5;
//x = (y + 1) % 2;
x = (y + 1) % 2 + 2;
// optimization one
// SAMPLE2(sa, x-1, y-2);
//SAMPLE2(sc, x-2, y-1); SAMPLE2(sd, x, y-1);
// SAMPLE2(sf, x-1, y );
//SAMPLE2(sh, x-2, y+1); SAMPLE2(si, x, y+1);
// SAMPLE2(sk, x-1, y+2);
line1 = in + ((y - 2) * width + (x - 1)) * 4 + component;
line2 = in + ((y - 1) * width + (x - 2)) * 4 + component;
line3 = in + ((y ) * width + (x - 1)) * 4 + component;
line4 = in + ((y + 1) * width + (x - 2)) * 4 + component;
line5 = in + ((y + 2) * width + (x - 1)) * 4 + component;
// COPYSAMPLE(sa, line1); line1 += 8;
//COPYSAMPLE(sc, line2); line2 += 8; COPYSAMPLE(sd, line2); line2 += 8;
// COPYSAMPLE(sf, line3); line3 += 8;
//COPYSAMPLE(sh, line4); line4 += 8; COPYSAMPLE(si, line4); line4 += 8;
// COPYSAMPLE(sk, line5); line5 += 8;
sa = *line1; line1 += 8;
sc = *line2; line2 += 8; sd = *line2; line2 += 8;
sf = *line3; line3 += 8;
sh = *line4; line4 += 8; si = *line4; line4 += 8;
sk = *line5; line5 += 8;
outbyte = out + (y * width + x) * 4 + component;
for ( ; x < width - 3; x+=2)
{
int hd, vd, hp, vp;
// SAMPLE2(sa, x-1, y-2); SAMPLE2(sb, x+1, y-2);
//SAMPLE2(sc, x-2, y-1); SAMPLE2(sd, x, y-1); SAMPLE2(se, x+2, y-1);
// SAMPLE2(sf, x-1, y ); SAMPLE2(sg, x+1, y );
//SAMPLE2(sh, x-2, y+1); SAMPLE2(si, x, y+1); SAMPLE2(sj, x+2, y+1);
// SAMPLE2(sk, x-1, y+2); SAMPLE2(sl, x+1, y+2);
// optimization one
//SAMPLE2(sb, x+1, y-2);
//SAMPLE2(se, x+2, y-1);
//SAMPLE2(sg, x+1, y );
//SAMPLE2(sj, x+2, y+1);
//SAMPLE2(sl, x+1, y+2);
//COPYSAMPLE(sb, line1); line1 += 8;
//COPYSAMPLE(se, line2); line2 += 8;
//COPYSAMPLE(sg, line3); line3 += 8;
//COPYSAMPLE(sj, line4); line4 += 8;
//COPYSAMPLE(sl, line5); line5 += 8;
sb = *line1; line1 += 8;
se = *line2; line2 += 8;
sg = *line3; line3 += 8;
sj = *line4; line4 += 8;
sl = *line5; line5 += 8;
hp = sf + sg;
vp = sd + si;
hd = abs(sf - sg);
vd = abs(sd - si);
if (hd > 100 || vd > 100 || abs(hp-vp) > 200)
{
if (hd < vd)
*outbyte = hp >> 1;
else
*outbyte = vp >> 1;
}
else
{
int hdd, vdd;
//hdd = abs(sc[i] + sd[i] + se[i] - 3 * (sf[i] + sg[i]) + sh[i] + si[i] + sj[i]);
//vdd = abs(sa[i] + sf[i] + sk[i] - 3 * (sd[i] + si[i]) + sb[i] + sg[i] + sl[i]);
hdd = abs(sc + se - 3 * hp + sh + sj + vp);
vdd = abs(sa + sk - 3 * vp + sb + sl + hp);
if (hdd > vdd)
*outbyte = hp >> 1;
else
*outbyte = vp >> 1;
}
outbyte += 8;
// COPYSAMPLE(sa, sb);
//COPYSAMPLE(sc, sd); COPYSAMPLE(sd, se);
// COPYSAMPLE(sf, sg);
//COPYSAMPLE(sh, si); COPYSAMPLE(si, sj);
// COPYSAMPLE(sk, sl);
sa = sb;
sc = sd; sd = se;
sf = sg;
sh = si; si = sj;
sk = sl;
}
}
}
// Similar to FCBI, but throws out the second order derivatives for speed
static void DoFCBIQuick(byte *in, byte *out, int width, int height, int component)
{
int x, y;
byte *outbyte, *inbyte;
// copy in to out
for (y = 2; y < height - 2; y += 2)
{
inbyte = in + (y * width + 2) * 4 + component;
outbyte = out + (y * width + 2) * 4 + component;
for (x = 2; x < width - 2; x += 2)
{
*outbyte = *inbyte;
outbyte += 8;
inbyte += 8;
}
}
for (y = 3; y < height - 4; y += 2)
{
byte sd, se, sh, si;
byte *line2, *line3;
x = 3;
line2 = in + ((y - 1) * width + (x - 1)) * 4 + component;
line3 = in + ((y + 1) * width + (x - 1)) * 4 + component;
sd = *line2; line2 += 8;
sh = *line3; line3 += 8;
outbyte = out + (y * width + x) * 4 + component;
for ( ; x < width - 4; x += 2)
{
int NWd, NEd, NWp, NEp;
se = *line2; line2 += 8;
si = *line3; line3 += 8;
NWp = sd + si;
NEp = se + sh;
NWd = abs(sd - si);
NEd = abs(se - sh);
if (NWd < NEd)
*outbyte = NWp >> 1;
else
*outbyte = NEp >> 1;
outbyte += 8;
sd = se;
sh = si;
}
}
// hack: copy out to in again
for (y = 3; y < height - 3; y += 2)
{
inbyte = out + (y * width + 3) * 4 + component;
outbyte = in + (y * width + 3) * 4 + component;
for (x = 3; x < width - 3; x += 2)
{
*outbyte = *inbyte;
outbyte += 8;
inbyte += 8;
}
}
for (y = 2; y < height - 3; y++)
{
byte sd, sf, sg, si;
byte *line2, *line3, *line4;
x = (y + 1) % 2 + 2;
line2 = in + ((y - 1) * width + (x )) * 4 + component;
line3 = in + ((y ) * width + (x - 1)) * 4 + component;
line4 = in + ((y + 1) * width + (x )) * 4 + component;
outbyte = out + (y * width + x) * 4 + component;
sf = *line3; line3 += 8;
for ( ; x < width - 3; x+=2)
{
int hd, vd, hp, vp;
sd = *line2; line2 += 8;
sg = *line3; line3 += 8;
si = *line4; line4 += 8;
hp = sf + sg;
vp = sd + si;
hd = abs(sf - sg);
vd = abs(sd - si);
if (hd < vd)
*outbyte = hp >> 1;
else
*outbyte = vp >> 1;
outbyte += 8;
sf = sg;
}
}
}
// Similar to DoFCBIQuick, but just takes the average instead of checking derivatives
// as well, this operates on all four components
static void DoLinear(byte *in, byte *out, int width, int height)
{
int x, y, i;
byte *outbyte, *inbyte;
// copy in to out
for (y = 2; y < height - 2; y += 2)
{
x = 2;
inbyte = in + (y * width + x) * 4;
outbyte = out + (y * width + x) * 4;
for ( ; x < width - 2; x += 2)
{
COPYSAMPLE(outbyte, inbyte);
outbyte += 8;
inbyte += 8;
}
}
for (y = 1; y < height - 1; y += 2)
{
byte sd[4] = {0}, se[4] = {0}, sh[4] = {0}, si[4] = {0};
byte *line2, *line3;
x = 1;
line2 = in + ((y - 1) * width + (x - 1)) * 4;
line3 = in + ((y + 1) * width + (x - 1)) * 4;
COPYSAMPLE(sd, line2); line2 += 8;
COPYSAMPLE(sh, line3); line3 += 8;
outbyte = out + (y * width + x) * 4;
for ( ; x < width - 1; x += 2)
{
COPYSAMPLE(se, line2); line2 += 8;
COPYSAMPLE(si, line3); line3 += 8;
for (i = 0; i < 4; i++)
{
*outbyte++ = (sd[i] + si[i] + se[i] + sh[i]) >> 2;
}
outbyte += 4;
COPYSAMPLE(sd, se);
COPYSAMPLE(sh, si);
}
}
// hack: copy out to in again
for (y = 1; y < height - 1; y += 2)
{
x = 1;
inbyte = out + (y * width + x) * 4;
outbyte = in + (y * width + x) * 4;
for ( ; x < width - 1; x += 2)
{
COPYSAMPLE(outbyte, inbyte);
outbyte += 8;
inbyte += 8;
}
}
for (y = 1; y < height - 1; y++)
{
byte sd[4], sf[4], sg[4], si[4];
byte *line2, *line3, *line4;
x = y % 2 + 1;
line2 = in + ((y - 1) * width + (x )) * 4;
line3 = in + ((y ) * width + (x - 1)) * 4;
line4 = in + ((y + 1) * width + (x )) * 4;
COPYSAMPLE(sf, line3); line3 += 8;
outbyte = out + (y * width + x) * 4;
for ( ; x < width - 1; x += 2)
{
COPYSAMPLE(sd, line2); line2 += 8;
COPYSAMPLE(sg, line3); line3 += 8;
COPYSAMPLE(si, line4); line4 += 8;
for (i = 0; i < 4; i++)
{
*outbyte++ = (sf[i] + sg[i] + sd[i] + si[i]) >> 2;
}
outbyte += 4;
COPYSAMPLE(sf, sg);
}
}
}
static void ExpandHalfTextureToGrid( byte *data, int width, int height)
{
int x, y;
for (y = height / 2; y > 0; y--)
{
byte *outbyte = data + ((y * 2 - 1) * (width) - 2) * 4;
byte *inbyte = data + (y * (width / 2) - 1) * 4;
for (x = width / 2; x > 0; x--)
{
COPYSAMPLE(outbyte, inbyte);
outbyte -= 8;
inbyte -= 4;
}
}
}
static void FillInNormalizedZ(const byte *in, byte *out, int width, int height)
{
int x, y;
for (y = 0; y < height; y++)
{
const byte *inbyte = in + y * width * 4;
byte *outbyte = out + y * width * 4;
for (x = 0; x < width; x++)
{
byte nx, ny, nz, h;
float fnx, fny, fll, fnz;
nx = *inbyte++;
ny = *inbyte++;
inbyte++;
h = *inbyte++;
fnx = OffsetByteToFloat(nx);
fny = OffsetByteToFloat(ny);
fll = 1.0f - fnx * fnx - fny * fny;
if (fll >= 0.0f)
fnz = (float)sqrt(fll);
else
fnz = 0.0f;
nz = FloatToOffsetByte(fnz);
*outbyte++ = nx;
*outbyte++ = ny;
*outbyte++ = nz;
*outbyte++ = h;
}
}
}
// size must be even
#define WORKBLOCK_SIZE 128
#define WORKBLOCK_BORDER 4
#define WORKBLOCK_REALSIZE (WORKBLOCK_SIZE + WORKBLOCK_BORDER * 2)
// assumes that data has already been expanded into a 2x2 grid
static void FCBIByBlock(byte *data, int width, int height, qboolean clampToEdge, qboolean normalized)
{
byte workdata[WORKBLOCK_REALSIZE * WORKBLOCK_REALSIZE * 4];
byte outdata[WORKBLOCK_REALSIZE * WORKBLOCK_REALSIZE * 4];
byte *inbyte, *outbyte;
int x, y;
int srcx, srcy;
ExpandHalfTextureToGrid(data, width, height);
for (y = 0; y < height; y += WORKBLOCK_SIZE)
{
for (x = 0; x < width; x += WORKBLOCK_SIZE)
{
int x2, y2;
int workwidth, workheight, fullworkwidth, fullworkheight;
workwidth = MIN(WORKBLOCK_SIZE, width - x);
workheight = MIN(WORKBLOCK_SIZE, height - y);
fullworkwidth = workwidth + WORKBLOCK_BORDER * 2;
fullworkheight = workheight + WORKBLOCK_BORDER * 2;
//memset(workdata, 0, WORKBLOCK_REALSIZE * WORKBLOCK_REALSIZE * 4);
// fill in work block
for (y2 = 0; y2 < fullworkheight; y2 += 2)
{
srcy = y + y2 - WORKBLOCK_BORDER;
if (clampToEdge)
{
srcy = CLAMP(srcy, 0, height - 2);
}
else
{
srcy = (srcy + height) % height;
}
outbyte = workdata + y2 * fullworkwidth * 4;
inbyte = data + srcy * width * 4;
for (x2 = 0; x2 < fullworkwidth; x2 += 2)
{
srcx = x + x2 - WORKBLOCK_BORDER;
if (clampToEdge)
{
srcx = CLAMP(srcx, 0, width - 2);
}
else
{
srcx = (srcx + width) % width;
}
COPYSAMPLE(outbyte, inbyte + srcx * 4);
outbyte += 8;
}
}
// submit work block
DoLinear(workdata, outdata, fullworkwidth, fullworkheight);
if (!normalized)
{
switch (r_imageUpsampleType->integer)
{
case 0:
break;
case 1:
DoFCBIQuick(workdata, outdata, fullworkwidth, fullworkheight, 0);
break;
case 2:
default:
DoFCBI(workdata, outdata, fullworkwidth, fullworkheight, 0);
break;
}
}
else
{
switch (r_imageUpsampleType->integer)
{
case 0:
break;
case 1:
DoFCBIQuick(workdata, outdata, fullworkwidth, fullworkheight, 0);
DoFCBIQuick(workdata, outdata, fullworkwidth, fullworkheight, 1);
break;
case 2:
default:
DoFCBI(workdata, outdata, fullworkwidth, fullworkheight, 0);
DoFCBI(workdata, outdata, fullworkwidth, fullworkheight, 1);
break;
}
}
// copy back work block
for (y2 = 0; y2 < workheight; y2++)
{
inbyte = outdata + ((y2 + WORKBLOCK_BORDER) * fullworkwidth + WORKBLOCK_BORDER) * 4;
outbyte = data + ((y + y2) * width + x) * 4;
for (x2 = 0; x2 < workwidth; x2++)
{
COPYSAMPLE(outbyte, inbyte);
outbyte += 4;
inbyte += 4;
}
}
}
}
}
#undef COPYSAMPLE
/*
================
R_LightScaleTexture
Scale up the pixel values in a texture to increase the
lighting range
================
*/
void R_LightScaleTexture (byte *in, int inwidth, int inheight, qboolean only_gamma )
{
if ( only_gamma )
{
if ( !glConfig.deviceSupportsGamma )
{
int i, c;
byte *p;
p = in;
c = inwidth*inheight;
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_gammatable[p[0]];
p[1] = s_gammatable[p[1]];
p[2] = s_gammatable[p[2]];
}
}
}
else
{
int i, c;
byte *p;
p = in;
c = inwidth*inheight;
if ( glConfig.deviceSupportsGamma )
{
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_intensitytable[p[0]];
p[1] = s_intensitytable[p[1]];
p[2] = s_intensitytable[p[2]];
}
}
else
{
for (i=0 ; i<c ; i++, p+=4)
{
p[0] = s_gammatable[s_intensitytable[p[0]]];
p[1] = s_gammatable[s_intensitytable[p[1]]];
p[2] = s_gammatable[s_intensitytable[p[2]]];
}
}
}
}
/*
================
R_MipMap2
Operates in place, quartering the size of the texture
Proper linear filter
================
*/
static void R_MipMap2( byte *in, int inWidth, int inHeight ) {
int i, j, k;
byte *outpix;
int inWidthMask, inHeightMask;
int total;
int outWidth, outHeight;
unsigned *temp;
outWidth = inWidth >> 1;
outHeight = inHeight >> 1;
temp = ri.Hunk_AllocateTempMemory( outWidth * outHeight * 4 );
inWidthMask = inWidth - 1;
inHeightMask = inHeight - 1;
for ( i = 0 ; i < outHeight ; i++ ) {
for ( j = 0 ; j < outWidth ; j++ ) {
outpix = (byte *) ( temp + i * outWidth + j );
for ( k = 0 ; k < 4 ; k++ ) {
total =
1 * (&in[ 4*(((i*2-1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask)) ])[k] +
2 * (&in[ 4*(((i*2-1)&inHeightMask)*inWidth + ((j*2 )&inWidthMask)) ])[k] +
2 * (&in[ 4*(((i*2-1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask)) ])[k] +
1 * (&in[ 4*(((i*2-1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask)) ])[k] +
2 * (&in[ 4*(((i*2 )&inHeightMask)*inWidth + ((j*2-1)&inWidthMask)) ])[k] +
4 * (&in[ 4*(((i*2 )&inHeightMask)*inWidth + ((j*2 )&inWidthMask)) ])[k] +
4 * (&in[ 4*(((i*2 )&inHeightMask)*inWidth + ((j*2+1)&inWidthMask)) ])[k] +
2 * (&in[ 4*(((i*2 )&inHeightMask)*inWidth + ((j*2+2)&inWidthMask)) ])[k] +
2 * (&in[ 4*(((i*2+1)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask)) ])[k] +
4 * (&in[ 4*(((i*2+1)&inHeightMask)*inWidth + ((j*2 )&inWidthMask)) ])[k] +
4 * (&in[ 4*(((i*2+1)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask)) ])[k] +
2 * (&in[ 4*(((i*2+1)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask)) ])[k] +
1 * (&in[ 4*(((i*2+2)&inHeightMask)*inWidth + ((j*2-1)&inWidthMask)) ])[k] +
2 * (&in[ 4*(((i*2+2)&inHeightMask)*inWidth + ((j*2 )&inWidthMask)) ])[k] +
2 * (&in[ 4*(((i*2+2)&inHeightMask)*inWidth + ((j*2+1)&inWidthMask)) ])[k] +
1 * (&in[ 4*(((i*2+2)&inHeightMask)*inWidth + ((j*2+2)&inWidthMask)) ])[k];
outpix[k] = total / 36;
}
}
}
Com_Memcpy( in, temp, outWidth * outHeight * 4 );
ri.Hunk_FreeTempMemory( temp );
}
static void R_MipMapsRGB( byte *in, int inWidth, int inHeight)
{
int i, j, k;
int outWidth, outHeight;
byte *temp;
outWidth = inWidth >> 1;
outHeight = inHeight >> 1;
temp = ri.Hunk_AllocateTempMemory( outWidth * outHeight * 4 );
for ( i = 0 ; i < outHeight ; i++ ) {
byte *outbyte = temp + ( i * outWidth ) * 4;
byte *inbyte1 = in + ( i * 2 * inWidth ) * 4;
byte *inbyte2 = in + ( (i * 2 + 1) * inWidth ) * 4;
for ( j = 0 ; j < outWidth ; j++ ) {
for ( k = 0 ; k < 3 ; k++ ) {
float total, current;
current = ByteToFloat(inbyte1[0]); total = sRGBtoRGB(current);
current = ByteToFloat(inbyte1[4]); total += sRGBtoRGB(current);
current = ByteToFloat(inbyte2[0]); total += sRGBtoRGB(current);
current = ByteToFloat(inbyte2[4]); total += sRGBtoRGB(current);
total *= 0.25f;
inbyte1++;
inbyte2++;
current = RGBtosRGB(total);
*outbyte++ = FloatToByte(current);
}
*outbyte++ = (inbyte1[0] + inbyte1[4] + inbyte2[0] + inbyte2[4]) >> 2;
inbyte1 += 5;
inbyte2 += 5;
}
}
Com_Memcpy( in, temp, outWidth * outHeight * 4 );
ri.Hunk_FreeTempMemory( temp );
}
/*
================
R_MipMap
Operates in place, quartering the size of the texture
================
*/
static void R_MipMap (byte *in, int width, int height) {
int i, j;
byte *out;
int row;
if ( !r_simpleMipMaps->integer ) {
R_MipMap2( in, width, height );
return;
}
if ( width == 1 && height == 1 ) {
return;
}
row = width * 4;
out = in;
width >>= 1;
height >>= 1;
if ( width == 0 || height == 0 ) {
width += height; // get largest
for (i=0 ; i<width ; i++, out+=4, in+=8 ) {
out[0] = ( in[0] + in[4] )>>1;
out[1] = ( in[1] + in[5] )>>1;
out[2] = ( in[2] + in[6] )>>1;
out[3] = ( in[3] + in[7] )>>1;
}
return;
}
for (i=0 ; i<height ; i++, in+=row) {
for (j=0 ; j<width ; j++, out+=4, in+=8) {
out[0] = (in[0] + in[4] + in[row+0] + in[row+4])>>2;
out[1] = (in[1] + in[5] + in[row+1] + in[row+5])>>2;
out[2] = (in[2] + in[6] + in[row+2] + in[row+6])>>2;
out[3] = (in[3] + in[7] + in[row+3] + in[row+7])>>2;
}
}
}
static void R_MipMapLuminanceAlpha (const byte *in, byte *out, int width, int height)
{
int i, j, row;
if ( width == 1 && height == 1 ) {
return;
}
row = width * 4;
width >>= 1;
height >>= 1;
if ( width == 0 || height == 0 ) {
width += height; // get largest
for (i=0 ; i<width ; i++, out+=4, in+=8 ) {
out[0] =
out[1] =
out[2] = (in[0] + in[4]) >> 1;
out[3] = (in[3] + in[7]) >> 1;
}
return;
}
for (i=0 ; i<height ; i++, in+=row) {
for (j=0 ; j<width ; j++, out+=4, in+=8) {
out[0] =
out[1] =
out[2] = (in[0] + in[4] + in[row ] + in[row+4]) >> 2;
out[3] = (in[3] + in[7] + in[row+3] + in[row+7]) >> 2;
}
}
}
static void R_MipMapNormalHeight (const byte *in, byte *out, int width, int height, qboolean swizzle)
{
int i, j;
int row;
int sx = swizzle ? 3 : 0;
int sa = swizzle ? 0 : 3;
if ( width == 1 && height == 1 ) {
return;
}
row = width * 4;
width >>= 1;
height >>= 1;
for (i=0 ; i<height ; i++, in+=row) {
for (j=0 ; j<width ; j++, out+=4, in+=8) {
vec3_t v;
v[0] = OffsetByteToFloat(in[sx ]);
v[1] = OffsetByteToFloat(in[ 1]);
v[2] = OffsetByteToFloat(in[ 2]);
v[0] += OffsetByteToFloat(in[sx +4]);
v[1] += OffsetByteToFloat(in[ 5]);
v[2] += OffsetByteToFloat(in[ 6]);
v[0] += OffsetByteToFloat(in[sx+row ]);
v[1] += OffsetByteToFloat(in[ row+1]);
v[2] += OffsetByteToFloat(in[ row+2]);
v[0] += OffsetByteToFloat(in[sx+row+4]);
v[1] += OffsetByteToFloat(in[ row+5]);
v[2] += OffsetByteToFloat(in[ row+6]);
VectorNormalizeFast(v);
//v[0] *= 0.25f;
//v[1] *= 0.25f;
//v[2] = 1.0f - v[0] * v[0] - v[1] * v[1];
//v[2] = sqrt(MAX(v[2], 0.0f));
out[sx] = FloatToOffsetByte(v[0]);
out[1 ] = FloatToOffsetByte(v[1]);
out[2 ] = FloatToOffsetByte(v[2]);
out[sa] = MAX(MAX(in[sa], in[sa+4]), MAX(in[sa+row], in[sa+row+4]));
}
}
}
/*
==================
R_BlendOverTexture
Apply a color blend over a set of pixels
==================
*/
static void R_BlendOverTexture( byte *data, int pixelCount, byte blend[4] ) {
int i;
int inverseAlpha;
int premult[3];
inverseAlpha = 255 - blend[3];
premult[0] = blend[0] * blend[3];
premult[1] = blend[1] * blend[3];
premult[2] = blend[2] * blend[3];
for ( i = 0 ; i < pixelCount ; i++, data+=4 ) {
data[0] = ( data[0] * inverseAlpha + premult[0] ) >> 9;
data[1] = ( data[1] * inverseAlpha + premult[1] ) >> 9;
data[2] = ( data[2] * inverseAlpha + premult[2] ) >> 9;
}
}
byte mipBlendColors[16][4] = {
{0,0,0,0},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
{255,0,0,128},
{0,255,0,128},
{0,0,255,128},
};
static void RawImage_SwizzleRA( byte *data, int width, int height )
{
int i;
byte *ptr = data, swap;
for (i=0; i<width*height; i++, ptr+=4)
{
// swap red and alpha
swap = ptr[0];
ptr[0] = ptr[3];
ptr[3] = swap;
}
}
/*
===============
RawImage_ScaleToPower2
===============
*/
static void RawImage_ScaleToPower2( byte **data, int *inout_width, int *inout_height, int *inout_scaled_width, int *inout_scaled_height, imgType_t type, imgFlags_t flags, byte **resampledBuffer)
{
int width = *inout_width;
int height = *inout_height;
int scaled_width;
int scaled_height;
qboolean picmip = flags & IMGFLAG_PICMIP;
qboolean mipmap = flags & IMGFLAG_MIPMAP;
qboolean clampToEdge = flags & IMGFLAG_CLAMPTOEDGE;
//
// convert to exact power of 2 sizes
//
if (glRefConfig.textureNonPowerOfTwo && !mipmap)
{
scaled_width = width;
scaled_height = height;
}
else
{
scaled_width = NextPowerOfTwo(width);
scaled_height = NextPowerOfTwo(height);
}
if ( r_roundImagesDown->integer && scaled_width > width )
scaled_width >>= 1;
if ( r_roundImagesDown->integer && scaled_height > height )
scaled_height >>= 1;
if ( picmip && data && resampledBuffer && r_imageUpsample->integer &&
scaled_width < r_imageUpsampleMaxSize->integer && scaled_height < r_imageUpsampleMaxSize->integer)
{
int finalwidth, finalheight;
//int startTime, endTime;
//startTime = ri.Milliseconds();
finalwidth = scaled_width << r_imageUpsample->integer;
finalheight = scaled_height << r_imageUpsample->integer;
while ( finalwidth > r_imageUpsampleMaxSize->integer
|| finalheight > r_imageUpsampleMaxSize->integer ) {
finalwidth >>= 1;
finalheight >>= 1;
}
while ( finalwidth > glConfig.maxTextureSize
|| finalheight > glConfig.maxTextureSize ) {
finalwidth >>= 1;
finalheight >>= 1;
}
*resampledBuffer = ri.Hunk_AllocateTempMemory( finalwidth * finalheight * 4 );
if (scaled_width != width || scaled_height != height)
{
ResampleTexture (*data, width, height, *resampledBuffer, scaled_width, scaled_height);
}
else
{
byte *inbyte, *outbyte;
int i;
inbyte = *data;
outbyte = *resampledBuffer;
for (i = width * height * 4; i > 0; i--)
{
*outbyte++ = *inbyte++;
}
}
if (type == IMGTYPE_COLORALPHA)
RGBAtoYCoCgA(*resampledBuffer, *resampledBuffer, scaled_width, scaled_height);
while (scaled_width < finalwidth || scaled_height < finalheight)
{
scaled_width <<= 1;
scaled_height <<= 1;
FCBIByBlock(*resampledBuffer, scaled_width, scaled_height, clampToEdge, (type == IMGTYPE_NORMAL || type == IMGTYPE_NORMALHEIGHT));
}
if (type == IMGTYPE_COLORALPHA)
{
YCoCgAtoRGBA(*resampledBuffer, *resampledBuffer, scaled_width, scaled_height);
}
else if (type == IMGTYPE_NORMAL || type == IMGTYPE_NORMALHEIGHT)
{
FillInNormalizedZ(*resampledBuffer, *resampledBuffer, scaled_width, scaled_height);
}
//endTime = ri.Milliseconds();
//ri.Printf(PRINT_ALL, "upsampled %dx%d to %dx%d in %dms\n", width, height, scaled_width, scaled_height, endTime - startTime);
*data = *resampledBuffer;
width = scaled_width;
height = scaled_height;
}
else if ( scaled_width != width || scaled_height != height ) {
if (data && resampledBuffer)
{
*resampledBuffer = ri.Hunk_AllocateTempMemory( scaled_width * scaled_height * 4 );
ResampleTexture (*data, width, height, *resampledBuffer, scaled_width, scaled_height);
*data = *resampledBuffer;
}
width = scaled_width;
height = scaled_height;
}
//
// perform optional picmip operation
//
if ( picmip ) {
scaled_width >>= r_picmip->integer;
scaled_height >>= r_picmip->integer;
}
//
// clamp to minimum size
//
if (scaled_width < 1) {
scaled_width = 1;
}
if (scaled_height < 1) {
scaled_height = 1;
}
//
// clamp to the current upper OpenGL limit
// scale both axis down equally so we don't have to
// deal with a half mip resampling
//
while ( scaled_width > glConfig.maxTextureSize
|| scaled_height > glConfig.maxTextureSize ) {
scaled_width >>= 1;
scaled_height >>= 1;
}
*inout_width = width;
*inout_height = height;
*inout_scaled_width = scaled_width;
*inout_scaled_height = scaled_height;
}
static qboolean RawImage_HasAlpha(const byte *scan, int numPixels)
{
int i;
if (!scan)
return qtrue;
for ( i = 0; i < numPixels; i++ )
{
if ( scan[i*4 + 3] != 255 )
{
return qtrue;
}
}
return qfalse;
}
static GLenum RawImage_GetFormat(const byte *data, int numPixels, qboolean lightMap, imgType_t type, imgFlags_t flags)
{
int samples = 3;
GLenum internalFormat = GL_RGB;
qboolean forceNoCompression = (flags & IMGFLAG_NO_COMPRESSION);
qboolean normalmap = (type == IMGTYPE_NORMAL || type == IMGTYPE_NORMALHEIGHT);
if(normalmap)
{
if ((!RawImage_HasAlpha(data, numPixels) || (type == IMGTYPE_NORMAL)) && !forceNoCompression && (glRefConfig.textureCompression & TCR_LATC))
{
internalFormat = GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT;
}
else
{
if ( !forceNoCompression && glConfig.textureCompression == TC_S3TC_ARB )
{
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
}
else if ( r_texturebits->integer == 16 )
{
internalFormat = GL_RGBA4;
}
else if ( r_texturebits->integer == 32 )
{
internalFormat = GL_RGBA8;
}
else
{
internalFormat = GL_RGBA;
}
}
}
else if(lightMap)
{
if(r_greyscale->integer)
internalFormat = GL_LUMINANCE;
else
internalFormat = GL_RGBA;
}
else
{
if (RawImage_HasAlpha(data, numPixels))
{
samples = 4;
}
// select proper internal format
if ( samples == 3 )
{
if(r_greyscale->integer)
{
if(r_texturebits->integer == 16)
internalFormat = GL_LUMINANCE8;
else if(r_texturebits->integer == 32)
internalFormat = GL_LUMINANCE16;
else
internalFormat = GL_LUMINANCE;
}
else
{
if ( !forceNoCompression && (glRefConfig.textureCompression & TCR_BPTC) )
{
internalFormat = GL_COMPRESSED_RGBA_BPTC_UNORM_ARB;
}
else if ( !forceNoCompression && glConfig.textureCompression == TC_S3TC_ARB )
{
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
}
else if ( !forceNoCompression && glConfig.textureCompression == TC_S3TC )
{
internalFormat = GL_RGB4_S3TC;
}
else if ( r_texturebits->integer == 16 )
{
internalFormat = GL_RGB5;
}
else if ( r_texturebits->integer == 32 )
{
internalFormat = GL_RGB8;
}
else
{
internalFormat = GL_RGB;
}
}
}
else if ( samples == 4 )
{
if(r_greyscale->integer)
{
if(r_texturebits->integer == 16)
internalFormat = GL_LUMINANCE8_ALPHA8;
else if(r_texturebits->integer == 32)
internalFormat = GL_LUMINANCE16_ALPHA16;
else
internalFormat = GL_LUMINANCE_ALPHA;
}
else
{
if ( !forceNoCompression && (glRefConfig.textureCompression & TCR_BPTC) )
{
internalFormat = GL_COMPRESSED_RGBA_BPTC_UNORM_ARB;
}
else if ( !forceNoCompression && glConfig.textureCompression == TC_S3TC_ARB )
{
internalFormat = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
}
else if ( r_texturebits->integer == 16 )
{
internalFormat = GL_RGBA4;
}
else if ( r_texturebits->integer == 32 )
{
internalFormat = GL_RGBA8;
}
else
{
internalFormat = GL_RGBA;
}
}
}
}
return internalFormat;
}
static void RawImage_UploadTexture( byte *data, int x, int y, int width, int height, GLenum internalFormat, imgType_t type, imgFlags_t flags, qboolean subtexture )
{
int dataFormat, dataType;
switch(internalFormat)
{
case GL_DEPTH_COMPONENT:
case GL_DEPTH_COMPONENT16_ARB:
case GL_DEPTH_COMPONENT24_ARB:
case GL_DEPTH_COMPONENT32_ARB:
dataFormat = GL_DEPTH_COMPONENT;
dataType = GL_UNSIGNED_BYTE;
break;
case GL_RGBA16F_ARB:
dataFormat = GL_RGBA;
dataType = GL_HALF_FLOAT_ARB;
break;
default:
dataFormat = GL_RGBA;
dataType = GL_UNSIGNED_BYTE;
break;
}
if ( subtexture )
qglTexSubImage2D( GL_TEXTURE_2D, 0, x, y, width, height, dataFormat, dataType, data );
else
qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, width, height, 0, dataFormat, dataType, data );
if (flags & IMGFLAG_MIPMAP)
{
int miplevel;
miplevel = 0;
while (width > 1 || height > 1)
{
if (data)
{
if (type == IMGTYPE_NORMAL || type == IMGTYPE_NORMALHEIGHT)
{
if (internalFormat == GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT)
{
R_MipMapLuminanceAlpha( data, data, width, height );
}
else
{
R_MipMapNormalHeight( data, data, width, height, qtrue);
}
}
else
{
R_MipMapsRGB( data, width, height );
}
}
width >>= 1;
height >>= 1;
if (width < 1)
width = 1;
if (height < 1)
height = 1;
miplevel++;
if ( data && r_colorMipLevels->integer )
R_BlendOverTexture( (byte *)data, width * height, mipBlendColors[miplevel] );
if ( subtexture )
{
x >>= 1;
y >>= 1;
qglTexSubImage2D( GL_TEXTURE_2D, miplevel, x, y, width, height, dataFormat, dataType, data );
}
else
{
qglTexImage2D (GL_TEXTURE_2D, miplevel, internalFormat, width, height, 0, dataFormat, dataType, data );
}
}
}
}
/*
===============
Upload32
===============
*/
static void Upload32( byte *data, int width, int height, imgType_t type, imgFlags_t flags,
qboolean lightMap, GLenum internalFormat, int *pUploadWidth, int *pUploadHeight)
{
byte *scaledBuffer = NULL;
byte *resampledBuffer = NULL;
int scaled_width, scaled_height;
int i, c;
byte *scan;
RawImage_ScaleToPower2(&data, &width, &height, &scaled_width, &scaled_height, type, flags, &resampledBuffer);
scaledBuffer = ri.Hunk_AllocateTempMemory( sizeof( unsigned ) * scaled_width * scaled_height );
//
// scan the texture for each channel's max values
// and verify if the alpha channel is being used or not
//
c = width*height;
scan = data;
if( r_greyscale->integer )
{
for ( i = 0; i < c; i++ )
{
byte luma = LUMA(scan[i*4], scan[i*4 + 1], scan[i*4 + 2]);
scan[i*4] = luma;
scan[i*4 + 1] = luma;
scan[i*4 + 2] = luma;
}
}
else if( r_greyscale->value )
{
for ( i = 0; i < c; i++ )
{
float luma = LUMA(scan[i*4], scan[i*4 + 1], scan[i*4 + 2]);
scan[i*4] = LERP(scan[i*4], luma, r_greyscale->value);
scan[i*4 + 1] = LERP(scan[i*4 + 1], luma, r_greyscale->value);
scan[i*4 + 2] = LERP(scan[i*4 + 2], luma, r_greyscale->value);
}
}
// normals are always swizzled
if (type == IMGTYPE_NORMAL || type == IMGTYPE_NORMALHEIGHT)
{
RawImage_SwizzleRA(data, width, height);
}
// LATC2 is only used for normals
if (internalFormat == GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT)
{
byte *in = data;
int c = width * height;
while (c--)
{
in[0] = in[1];
in[2] = in[1];
in += 4;
}
}
// copy or resample data as appropriate for first MIP level
if ( ( scaled_width == width ) &&
( scaled_height == height ) ) {
if (!(flags & IMGFLAG_MIPMAP))
{
RawImage_UploadTexture( data, 0, 0, scaled_width, scaled_height, internalFormat, type, flags, qfalse );
//qglTexImage2D (GL_TEXTURE_2D, 0, internalFormat, scaled_width, scaled_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
*pUploadWidth = scaled_width;
*pUploadHeight = scaled_height;
goto done;
}
Com_Memcpy (scaledBuffer, data, width*height*4);
}
else
{
// use the normal mip-mapping function to go down from here
while ( width > scaled_width || height > scaled_height ) {
if (type == IMGTYPE_NORMAL || type == IMGTYPE_NORMALHEIGHT)
{
if (internalFormat == GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT)
{
R_MipMapLuminanceAlpha( data, data, width, height );
}
else
{
R_MipMapNormalHeight( data, data, width, height, qtrue);
}
}
else
{
R_MipMapsRGB( data, width, height );
}
width >>= 1;
height >>= 1;
if ( width < 1 ) {
width = 1;
}
if ( height < 1 ) {
height = 1;
}
}
Com_Memcpy( scaledBuffer, data, width * height * 4 );
}
if (!(flags & IMGFLAG_NOLIGHTSCALE))
R_LightScaleTexture (scaledBuffer, scaled_width, scaled_height, !(flags & IMGFLAG_MIPMAP) );
*pUploadWidth = scaled_width;
*pUploadHeight = scaled_height;
RawImage_UploadTexture(scaledBuffer, 0, 0, scaled_width, scaled_height, internalFormat, type, flags, qfalse);
done:
if (flags & IMGFLAG_MIPMAP)
{
if ( textureFilterAnisotropic )
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT,
(GLint)Com_Clamp( 1, maxAnisotropy, r_ext_max_anisotropy->integer ) );
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
}
else
{
if ( textureFilterAnisotropic )
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1 );
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
GL_CheckErrors();
if ( scaledBuffer != 0 )
ri.Hunk_FreeTempMemory( scaledBuffer );
if ( resampledBuffer != 0 )
ri.Hunk_FreeTempMemory( resampledBuffer );
}
static void EmptyTexture( int width, int height, imgType_t type, imgFlags_t flags,
qboolean lightMap, GLenum internalFormat, int *pUploadWidth, int *pUploadHeight )
{
int scaled_width, scaled_height;
RawImage_ScaleToPower2(NULL, &width, &height, &scaled_width, &scaled_height, type, flags, NULL);
*pUploadWidth = scaled_width;
*pUploadHeight = scaled_height;
RawImage_UploadTexture(NULL, 0, 0, scaled_width, scaled_height, internalFormat, type, flags, qfalse);
if (flags & IMGFLAG_MIPMAP)
{
if ( textureFilterAnisotropic )
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT,
(GLint)Com_Clamp( 1, maxAnisotropy, r_ext_max_anisotropy->integer ) );
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gl_filter_min);
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gl_filter_max);
}
else
{
if ( textureFilterAnisotropic )
qglTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1 );
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
// Fix for sampling depth buffer on old nVidia cards
// from http://www.idevgames.com/forums/thread-4141-post-34844.html#pid34844
switch(internalFormat)
{
case GL_DEPTH_COMPONENT:
case GL_DEPTH_COMPONENT16_ARB:
case GL_DEPTH_COMPONENT24_ARB:
case GL_DEPTH_COMPONENT32_ARB:
qglTexParameterf(GL_TEXTURE_2D, GL_DEPTH_TEXTURE_MODE, GL_LUMINANCE );
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
qglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
break;
default:
break;
}
GL_CheckErrors();
}
/*
================
R_CreateImage
This is the only way any image_t are created
================
*/
image_t *R_CreateImage( const char *name, byte *pic, int width, int height, imgType_t type, imgFlags_t flags, int internalFormat ) {
image_t *image;
qboolean isLightmap = qfalse;
long hash;
int glWrapClampMode;
if (strlen(name) >= MAX_QPATH ) {
ri.Error (ERR_DROP, "R_CreateImage: \"%s\" is too long", name);
}
if ( !strncmp( name, "*lightmap", 9 ) ) {
isLightmap = qtrue;
}
if ( tr.numImages == MAX_DRAWIMAGES ) {
ri.Error( ERR_DROP, "R_CreateImage: MAX_DRAWIMAGES hit");
}
image = tr.images[tr.numImages] = ri.Hunk_Alloc( sizeof( image_t ), h_low );
image->texnum = 1024 + tr.numImages;
tr.numImages++;
image->type = type;
image->flags = flags;
strcpy (image->imgName, name);
image->width = width;
image->height = height;
if (flags & IMGFLAG_CLAMPTOEDGE)
glWrapClampMode = GL_CLAMP_TO_EDGE;
else
glWrapClampMode = GL_REPEAT;
if (!internalFormat)
{
if (image->flags & IMGFLAG_CUBEMAP)
internalFormat = GL_RGBA8;
else
internalFormat = RawImage_GetFormat(pic, width * height, isLightmap, image->type, image->flags);
}
image->internalFormat = internalFormat;
// lightmaps are always allocated on TMU 1
if ( qglActiveTextureARB && isLightmap ) {
image->TMU = 1;
} else {
image->TMU = 0;
}
if ( qglActiveTextureARB ) {
GL_SelectTexture( image->TMU );
}
if (image->flags & IMGFLAG_CUBEMAP)
{
GL_Bind(image);
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
if (image->flags & IMGFLAG_MIPMAP)
{
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR_MIPMAP_LINEAR);
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
}
else
{
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
qglTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
qglTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, pic);
qglTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, pic);
qglTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, pic);
qglTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, pic);
qglTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, pic);
qglTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, pic);
if (image->flags & IMGFLAG_MIPMAP)
qglGenerateMipmapEXT(GL_TEXTURE_CUBE_MAP);
image->uploadWidth = width;
image->uploadHeight = height;
}
else
{
GL_Bind(image);
if (pic)
{
Upload32( pic, image->width, image->height, image->type, image->flags,
isLightmap, image->internalFormat, &image->uploadWidth,
&image->uploadHeight );
}
else
{
EmptyTexture(image->width, image->height, image->type, image->flags,
isLightmap, image->internalFormat, &image->uploadWidth,
&image->uploadHeight );
}
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, glWrapClampMode );
qglTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, glWrapClampMode );
}
GL_SelectTexture( 0 );
hash = generateHashValue(name);
image->next = hashTable[hash];
hashTable[hash] = image;
return image;
}
void R_UpdateSubImage( image_t *image, byte *pic, int x, int y, int width, int height )
{
byte *scaledBuffer = NULL;
byte *resampledBuffer = NULL;
int scaled_width, scaled_height, scaled_x, scaled_y;
byte *data = pic;
// normals are always swizzled
if (image->type == IMGTYPE_NORMAL || image->type == IMGTYPE_NORMALHEIGHT)
{
RawImage_SwizzleRA(pic, width, height);
}
// LATC2 is only used for normals
if (image->internalFormat == GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT)
{
byte *in = data;
int c = width * height;
while (c--)
{
in[0] = in[1];
in[2] = in[1];
in += 4;
}
}
RawImage_ScaleToPower2(&pic, &width, &height, &scaled_width, &scaled_height, image->type, image->flags, &resampledBuffer);
scaledBuffer = ri.Hunk_AllocateTempMemory( sizeof( unsigned ) * scaled_width * scaled_height );
if ( qglActiveTextureARB ) {
GL_SelectTexture( image->TMU );
}
GL_Bind(image);
// copy or resample data as appropriate for first MIP level
if ( ( scaled_width == width ) &&
( scaled_height == height ) ) {
if (!(image->flags & IMGFLAG_MIPMAP))
{
scaled_x = x * scaled_width / width;
scaled_y = y * scaled_height / height;
RawImage_UploadTexture( data, scaled_x, scaled_y, scaled_width, scaled_height, image->internalFormat, image->type, image->flags, qtrue );
//qglTexSubImage2D( GL_TEXTURE_2D, 0, scaled_x, scaled_y, scaled_width, scaled_height, GL_RGBA, GL_UNSIGNED_BYTE, data );
GL_CheckErrors();
goto done;
}
Com_Memcpy (scaledBuffer, data, width*height*4);
}
else
{
// use the normal mip-mapping function to go down from here
while ( width > scaled_width || height > scaled_height ) {
if (image->type == IMGTYPE_NORMAL || image->type == IMGTYPE_NORMALHEIGHT)
{
if (image->internalFormat == GL_COMPRESSED_LUMINANCE_ALPHA_LATC2_EXT)
{
R_MipMapLuminanceAlpha( data, data, width, height );
}
else
{
R_MipMapNormalHeight( data, data, width, height, qtrue);
}
}
else
{
R_MipMapsRGB( data, width, height );
}
width >>= 1;
height >>= 1;
x >>= 1;
y >>= 1;
if ( width < 1 ) {
width = 1;
}
if ( height < 1 ) {
height = 1;
}
}
Com_Memcpy( scaledBuffer, data, width * height * 4 );
}
if (!(image->flags & IMGFLAG_NOLIGHTSCALE))
R_LightScaleTexture (scaledBuffer, scaled_width, scaled_height, !(image->flags & IMGFLAG_MIPMAP) );
scaled_x = x * scaled_width / width;
scaled_y = y * scaled_height / height;
RawImage_UploadTexture( (byte *)data, scaled_x, scaled_y, scaled_width, scaled_height, image->internalFormat, image->type, image->flags, qtrue );
done:
GL_SelectTexture( 0 );
GL_CheckErrors();
if ( scaledBuffer != 0 )
ri.Hunk_FreeTempMemory( scaledBuffer );
if ( resampledBuffer != 0 )
ri.Hunk_FreeTempMemory( resampledBuffer );
}
//===================================================================
typedef struct
{
char *ext;
void (*ImageLoader)( const char *, unsigned char **, int *, int * );
} imageExtToLoaderMap_t;
// Note that the ordering indicates the order of preference used
// when there are multiple images of different formats available
static imageExtToLoaderMap_t imageLoaders[ ] =
{
{ "tga", R_LoadTGA },
{ "jpg", R_LoadJPG },
{ "jpeg", R_LoadJPG },
{ "png", R_LoadPNG },
{ "pcx", R_LoadPCX },
{ "bmp", R_LoadBMP }
};
static int numImageLoaders = ARRAY_LEN( imageLoaders );
/*
=================
R_LoadImage
Loads any of the supported image types into a cannonical
32 bit format.
=================
*/
void R_LoadImage( const char *name, byte **pic, int *width, int *height )
{
qboolean orgNameFailed = qfalse;
int orgLoader = -1;
int i;
char localName[ MAX_QPATH ];
const char *ext;
char *altName;
*pic = NULL;
*width = 0;
*height = 0;
Q_strncpyz( localName, name, MAX_QPATH );
ext = COM_GetExtension( localName );
if( *ext )
{
// Look for the correct loader and use it
for( i = 0; i < numImageLoaders; i++ )
{
if( !Q_stricmp( ext, imageLoaders[ i ].ext ) )
{
// Load
imageLoaders[ i ].ImageLoader( localName, pic, width, height );
break;
}
}
// A loader was found
if( i < numImageLoaders )
{
if( *pic == NULL )
{
// Loader failed, most likely because the file isn't there;
// try again without the extension
orgNameFailed = qtrue;
orgLoader = i;
COM_StripExtension( name, localName, MAX_QPATH );
}
else
{
// Something loaded
return;
}
}
}
// Try and find a suitable match using all
// the image formats supported
for( i = 0; i < numImageLoaders; i++ )
{
if (i == orgLoader)
continue;
altName = va( "%s.%s", localName, imageLoaders[ i ].ext );
// Load
imageLoaders[ i ].ImageLoader( altName, pic, width, height );
if( *pic )
{
if( orgNameFailed )
{
ri.Printf( PRINT_DEVELOPER, "WARNING: %s not present, using %s instead\n",
name, altName );
}
break;
}
}
}
/*
===============
R_FindImageFile
Finds or loads the given image.
Returns NULL if it fails, not a default image.
==============
*/
image_t *R_FindImageFile( const char *name, imgType_t type, imgFlags_t flags )
{
image_t *image;
int width, height;
byte *pic;
long hash;
if (!name) {
return NULL;
}
hash = generateHashValue(name);
//
// see if the image is already loaded
//
for (image=hashTable[hash]; image; image=image->next) {
if ( !strcmp( name, image->imgName ) ) {
// the white image can be used with any set of parms, but other mismatches are errors
if ( strcmp( name, "*white" ) ) {
if ( image->flags != flags ) {
ri.Printf( PRINT_DEVELOPER, "WARNING: reused image %s with mixed flags (%i vs %i)\n", name, image->flags, flags );
}
}
return image;
}
}
//
// load the pic from disk
//
R_LoadImage( name, &pic, &width, &height );
if ( pic == NULL ) {
return NULL;
}
if (r_normalMapping->integer && !(type == IMGTYPE_NORMAL) && (flags & IMGFLAG_PICMIP) && (flags & IMGFLAG_MIPMAP) && (flags & IMGFLAG_GENNORMALMAP))
{
char normalName[MAX_QPATH];
image_t *normalImage;
int normalWidth, normalHeight;
imgFlags_t normalFlags;
normalFlags = (flags & ~IMGFLAG_GENNORMALMAP) | IMGFLAG_NOLIGHTSCALE;
COM_StripExtension(name, normalName, MAX_QPATH);
Q_strcat(normalName, MAX_QPATH, "_n");
// find normalmap in case it's there
normalImage = R_FindImageFile(normalName, IMGTYPE_NORMAL, normalFlags);
// if not, generate it
if (normalImage == NULL)
{
byte *normalPic;
int x, y;
normalWidth = width;
normalHeight = height;
normalPic = ri.Malloc(width * height * 4);
RGBAtoNormal(pic, normalPic, width, height, flags & IMGFLAG_CLAMPTOEDGE);
#if 1
// Brighten up the original image to work with the normal map
RGBAtoYCoCgA(pic, pic, width, height);
for (y = 0; y < height; y++)
{
byte *picbyte = pic + y * width * 4;
byte *normbyte = normalPic + y * width * 4;
for (x = 0; x < width; x++)
{
int div = MAX(normbyte[2] - 127, 16);
picbyte[0] = CLAMP(picbyte[0] * 128 / div, 0, 255);
picbyte += 4;
normbyte += 4;
}
}
YCoCgAtoRGBA(pic, pic, width, height);
#else
// Blur original image's luma to work with the normal map
{
byte *blurPic;
RGBAtoYCoCgA(pic, pic, width, height);
blurPic = ri.Malloc(width * height);
for (y = 1; y < height - 1; y++)
{
byte *picbyte = pic + y * width * 4;
byte *blurbyte = blurPic + y * width;
picbyte += 4;
blurbyte += 1;
for (x = 1; x < width - 1; x++)
{
int result;
result = *(picbyte - (width + 1) * 4) + *(picbyte - width * 4) + *(picbyte - (width - 1) * 4) +
*(picbyte - 1 * 4) + *(picbyte ) + *(picbyte + 1 * 4) +
*(picbyte + (width - 1) * 4) + *(picbyte + width * 4) + *(picbyte + (width + 1) * 4);
result /= 9;
*blurbyte = result;
picbyte += 4;
blurbyte += 1;
}
}
// FIXME: do borders
for (y = 1; y < height - 1; y++)
{
byte *picbyte = pic + y * width * 4;
byte *blurbyte = blurPic + y * width;
picbyte += 4;
blurbyte += 1;
for (x = 1; x < width - 1; x++)
{
picbyte[0] = *blurbyte;
picbyte += 4;
blurbyte += 1;
}
}
ri.Free(blurPic);
YCoCgAtoRGBA(pic, pic, width, height);
}
#endif
R_CreateImage( normalName, normalPic, normalWidth, normalHeight, IMGTYPE_NORMAL, normalFlags, 0 );
ri.Free( normalPic );
}
}
image = R_CreateImage( ( char * ) name, pic, width, height, type, flags, 0 );
ri.Free( pic );
return image;
}
/*
================
R_CreateDlightImage
================
*/
#define DLIGHT_SIZE 16
static void R_CreateDlightImage( void ) {
int x,y;
byte data[DLIGHT_SIZE][DLIGHT_SIZE][4];
int b;
// make a centered inverse-square falloff blob for dynamic lighting
for (x=0 ; x<DLIGHT_SIZE ; x++) {
for (y=0 ; y<DLIGHT_SIZE ; y++) {
float d;
d = ( DLIGHT_SIZE/2 - 0.5f - x ) * ( DLIGHT_SIZE/2 - 0.5f - x ) +
( DLIGHT_SIZE/2 - 0.5f - y ) * ( DLIGHT_SIZE/2 - 0.5f - y );
b = 4000 / d;
if (b > 255) {
b = 255;
} else if ( b < 75 ) {
b = 0;
}
data[y][x][0] =
data[y][x][1] =
data[y][x][2] = b;
data[y][x][3] = 255;
}
}
tr.dlightImage = R_CreateImage("*dlight", (byte *)data, DLIGHT_SIZE, DLIGHT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_CLAMPTOEDGE, 0 );
}
/*
=================
R_InitFogTable
=================
*/
void R_InitFogTable( void ) {
int i;
float d;
float exp;
exp = 0.5;
for ( i = 0 ; i < FOG_TABLE_SIZE ; i++ ) {
d = pow ( (float)i/(FOG_TABLE_SIZE-1), exp );
tr.fogTable[i] = d;
}
}
/*
================
R_FogFactor
Returns a 0.0 to 1.0 fog density value
This is called for each texel of the fog texture on startup
and for each vertex of transparent shaders in fog dynamically
================
*/
float R_FogFactor( float s, float t ) {
float d;
s -= 1.0/512;
if ( s < 0 ) {
return 0;
}
if ( t < 1.0/32 ) {
return 0;
}
if ( t < 31.0/32 ) {
s *= (t - 1.0f/32.0f) / (30.0f/32.0f);
}
// we need to leave a lot of clamp range
s *= 8;
if ( s > 1.0 ) {
s = 1.0;
}
d = tr.fogTable[ (int)(s * (FOG_TABLE_SIZE-1)) ];
return d;
}
/*
================
R_CreateFogImage
================
*/
#define FOG_S 256
#define FOG_T 32
static void R_CreateFogImage( void ) {
int x,y;
byte *data;
float d;
float borderColor[4];
data = ri.Hunk_AllocateTempMemory( FOG_S * FOG_T * 4 );
// S is distance, T is depth
for (x=0 ; x<FOG_S ; x++) {
for (y=0 ; y<FOG_T ; y++) {
d = R_FogFactor( ( x + 0.5f ) / FOG_S, ( y + 0.5f ) / FOG_T );
data[(y*FOG_S+x)*4+0] =
data[(y*FOG_S+x)*4+1] =
data[(y*FOG_S+x)*4+2] = 255;
data[(y*FOG_S+x)*4+3] = 255*d;
}
}
// standard openGL clamping doesn't really do what we want -- it includes
// the border color at the edges. OpenGL 1.2 has clamp-to-edge, which does
// what we want.
tr.fogImage = R_CreateImage("*fog", (byte *)data, FOG_S, FOG_T, IMGTYPE_COLORALPHA, IMGFLAG_CLAMPTOEDGE, 0 );
ri.Hunk_FreeTempMemory( data );
borderColor[0] = 1.0;
borderColor[1] = 1.0;
borderColor[2] = 1.0;
borderColor[3] = 1;
qglTexParameterfv( GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor );
}
/*
==================
R_CreateDefaultImage
==================
*/
#define DEFAULT_SIZE 16
static void R_CreateDefaultImage( void ) {
int x;
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
// the default image will be a box, to allow you to see the mapping coordinates
Com_Memset( data, 32, sizeof( data ) );
for ( x = 0 ; x < DEFAULT_SIZE ; x++ ) {
data[0][x][0] =
data[0][x][1] =
data[0][x][2] =
data[0][x][3] = 255;
data[x][0][0] =
data[x][0][1] =
data[x][0][2] =
data[x][0][3] = 255;
data[DEFAULT_SIZE-1][x][0] =
data[DEFAULT_SIZE-1][x][1] =
data[DEFAULT_SIZE-1][x][2] =
data[DEFAULT_SIZE-1][x][3] = 255;
data[x][DEFAULT_SIZE-1][0] =
data[x][DEFAULT_SIZE-1][1] =
data[x][DEFAULT_SIZE-1][2] =
data[x][DEFAULT_SIZE-1][3] = 255;
}
tr.defaultImage = R_CreateImage("*default", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_MIPMAP, 0);
}
/*
==================
R_CreateBuiltinImages
==================
*/
void R_CreateBuiltinImages( void ) {
int x,y;
byte data[DEFAULT_SIZE][DEFAULT_SIZE][4];
R_CreateDefaultImage();
// we use a solid white image instead of disabling texturing
Com_Memset( data, 255, sizeof( data ) );
tr.whiteImage = R_CreateImage("*white", (byte *)data, 8, 8, IMGTYPE_COLORALPHA, IMGFLAG_NONE, 0);
if (r_dlightMode->integer >= 2)
{
for( x = 0; x < MAX_DLIGHTS; x++)
{
tr.shadowCubemaps[x] = R_CreateImage(va("*shadowcubemap%i", x), (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_CLAMPTOEDGE | IMGFLAG_CUBEMAP, 0);
}
}
// with overbright bits active, we need an image which is some fraction of full color,
// for default lightmaps, etc
for (x=0 ; x<DEFAULT_SIZE ; x++) {
for (y=0 ; y<DEFAULT_SIZE ; y++) {
data[y][x][0] =
data[y][x][1] =
data[y][x][2] = tr.identityLightByte;
data[y][x][3] = 255;
}
}
tr.identityLightImage = R_CreateImage("*identityLight", (byte *)data, 8, 8, IMGTYPE_COLORALPHA, IMGFLAG_NONE, 0);
for(x=0;x<32;x++) {
// scratchimage is usually used for cinematic drawing
tr.scratchImage[x] = R_CreateImage("*scratch", (byte *)data, DEFAULT_SIZE, DEFAULT_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_PICMIP | IMGFLAG_CLAMPTOEDGE, 0);
}
R_CreateDlightImage();
R_CreateFogImage();
if (glRefConfig.framebufferObject)
{
int width, height, hdrFormat, rgbFormat;
if(glRefConfig.textureNonPowerOfTwo)
{
width = glConfig.vidWidth;
height = glConfig.vidHeight;
}
else
{
width = NextPowerOfTwo(glConfig.vidWidth);
height = NextPowerOfTwo(glConfig.vidHeight);
}
hdrFormat = GL_RGBA8;
if (r_hdr->integer && glRefConfig.framebufferObject && glRefConfig.textureFloat)
hdrFormat = GL_RGBA16F_ARB;
rgbFormat = GL_RGBA8;
tr.renderImage = R_CreateImage("_render", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, hdrFormat);
if (r_drawSunRays->integer)
tr.sunRaysImage = R_CreateImage("*sunRays", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, rgbFormat);
if (glRefConfig.framebufferObject)
{
tr.renderDepthImage = R_CreateImage("*renderdepth", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_DEPTH_COMPONENT24_ARB);
tr.textureDepthImage = R_CreateImage("*texturedepth", NULL, PSHADOW_MAP_SIZE, PSHADOW_MAP_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_DEPTH_COMPONENT24_ARB);
}
{
unsigned short sdata[4];
void *p;
if (hdrFormat == GL_RGBA16F_ARB)
{
sdata[0] = FloatToHalf(0.0f);
sdata[1] = FloatToHalf(0.45f);
sdata[2] = FloatToHalf(1.0f);
sdata[3] = FloatToHalf(1.0f);
p = &sdata[0];
}
else
{
data[0][0][0] = 0;
data[0][0][1] = 0.45f * 255;
data[0][0][2] = 255;
data[0][0][3] = 255;
p = data;
}
tr.calcLevelsImage = R_CreateImage("*calcLevels", p, 1, 1, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, hdrFormat);
tr.targetLevelsImage = R_CreateImage("*targetLevels", p, 1, 1, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, hdrFormat);
tr.fixedLevelsImage = R_CreateImage("*fixedLevels", p, 1, 1, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, hdrFormat);
}
for (x = 0; x < 2; x++)
{
tr.textureScratchImage[x] = R_CreateImage(va("*textureScratch%d", x), NULL, 256, 256, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_RGBA8);
}
for (x = 0; x < 2; x++)
{
tr.quarterImage[x] = R_CreateImage(va("*quarter%d", x), NULL, width / 2, height / 2, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_RGBA8);
}
if (r_ssao->integer)
{
tr.screenSsaoImage = R_CreateImage("*screenSsao", NULL, width / 2, height / 2, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_RGBA8);
tr.hdrDepthImage = R_CreateImage("*hdrDepth", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_INTENSITY32F_ARB);
}
if (r_shadows->integer == 4)
{
for( x = 0; x < MAX_DRAWN_PSHADOWS; x++)
{
tr.pshadowMaps[x] = R_CreateImage(va("*shadowmap%i", x), NULL, PSHADOW_MAP_SIZE, PSHADOW_MAP_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_RGBA8);
}
}
if (r_sunlightMode->integer)
{
for ( x = 0; x < 3; x++)
{
tr.sunShadowDepthImage[x] = R_CreateImage(va("*sunshadowdepth%i", x), NULL, r_shadowMapSize->integer, r_shadowMapSize->integer, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_DEPTH_COMPONENT24_ARB);
}
tr.screenShadowImage = R_CreateImage("*screenShadow", NULL, width, height, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, GL_RGBA8);
}
if (r_cubeMapping->integer)
{
tr.renderCubeImage = R_CreateImage("*renderCube", NULL, CUBE_MAP_SIZE, CUBE_MAP_SIZE, IMGTYPE_COLORALPHA, IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE | IMGFLAG_MIPMAP | IMGFLAG_CUBEMAP, rgbFormat);
}
}
}
/*
===============
R_SetColorMappings
===============
*/
void R_SetColorMappings( void ) {
int i, j;
float g;
int inf;
// setup the overbright lighting
tr.overbrightBits = r_overBrightBits->integer;
// allow 2 overbright bits
if ( tr.overbrightBits > 2 ) {
tr.overbrightBits = 2;
} else if ( tr.overbrightBits < 0 ) {
tr.overbrightBits = 0;
}
tr.identityLight = 1.0f / ( 1 << tr.overbrightBits );
tr.identityLightByte = 255 * tr.identityLight;
if ( r_intensity->value <= 1 ) {
ri.Cvar_Set( "r_intensity", "1" );
}
if ( r_gamma->value < 0.5f ) {
ri.Cvar_Set( "r_gamma", "0.5" );
} else if ( r_gamma->value > 3.0f ) {
ri.Cvar_Set( "r_gamma", "3.0" );
}
g = r_gamma->value;
for ( i = 0; i < 256; i++ ) {
if ( g == 1 ) {
inf = i;
} else {
inf = 255 * pow ( i/255.0f, 1.0f / g ) + 0.5f;
}
if (inf < 0) {
inf = 0;
}
if (inf > 255) {
inf = 255;
}
s_gammatable[i] = inf;
}
for (i=0 ; i<256 ; i++) {
j = i * r_intensity->value;
if (j > 255) {
j = 255;
}
s_intensitytable[i] = j;
}
if ( glConfig.deviceSupportsGamma )
{
GLimp_SetGamma( s_gammatable, s_gammatable, s_gammatable );
}
}
/*
===============
R_InitImages
===============
*/
void R_InitImages( void ) {
Com_Memset(hashTable, 0, sizeof(hashTable));
// build brightness translation tables
R_SetColorMappings();
// create default texture and white texture
R_CreateBuiltinImages();
}
/*
===============
R_DeleteTextures
===============
*/
void R_DeleteTextures( void ) {
int i;
for ( i=0; i<tr.numImages ; i++ ) {
qglDeleteTextures( 1, &tr.images[i]->texnum );
}
Com_Memset( tr.images, 0, sizeof( tr.images ) );
tr.numImages = 0;
Com_Memset( glState.currenttextures, 0, sizeof( glState.currenttextures ) );
if ( qglActiveTextureARB ) {
GL_SelectTexture( 1 );
qglBindTexture( GL_TEXTURE_2D, 0 );
GL_SelectTexture( 0 );
qglBindTexture( GL_TEXTURE_2D, 0 );
} else {
qglBindTexture( GL_TEXTURE_2D, 0 );
}
}
/*
============================================================================
SKINS
============================================================================
*/
/*
==================
CommaParse
This is unfortunate, but the skin files aren't
compatable with our normal parsing rules.
==================
*/
static char *CommaParse( char **data_p ) {
int c = 0, len;
char *data;
static char com_token[MAX_TOKEN_CHARS];
data = *data_p;
len = 0;
com_token[0] = 0;
// make sure incoming data is valid
if ( !data ) {
*data_p = NULL;
return com_token;
}
while ( 1 ) {
// skip whitespace
while( (c = *data) <= ' ') {
if( !c ) {
break;
}
data++;
}
c = *data;
// skip double slash comments
if ( c == '/' && data[1] == '/' )
{
while (*data && *data != '\n')
data++;
}
// skip /* */ comments
else if ( c=='/' && data[1] == '*' )
{
while ( *data && ( *data != '*' || data[1] != '/' ) )
{
data++;
}
if ( *data )
{
data += 2;
}
}
else
{
break;
}
}
if ( c == 0 ) {
return "";
}
// handle quoted strings
if (c == '\"')
{
data++;
while (1)
{
c = *data++;
if (c=='\"' || !c)
{
com_token[len] = 0;
*data_p = ( char * ) data;
return com_token;
}
if (len < MAX_TOKEN_CHARS)
{
com_token[len] = c;
len++;
}
}
}
// parse a regular word
do
{
if (len < MAX_TOKEN_CHARS)
{
com_token[len] = c;
len++;
}
data++;
c = *data;
} while (c>32 && c != ',' );
if (len == MAX_TOKEN_CHARS)
{
// ri.Printf (PRINT_DEVELOPER, "Token exceeded %i chars, discarded.\n", MAX_TOKEN_CHARS);
len = 0;
}
com_token[len] = 0;
*data_p = ( char * ) data;
return com_token;
}
/*
===============
RE_RegisterSkin
===============
*/
qhandle_t RE_RegisterSkin( const char *name ) {
qhandle_t hSkin;
skin_t *skin;
skinSurface_t *surf;
union {
char *c;
void *v;
} text;
char *text_p;
char *token;
char surfName[MAX_QPATH];
if ( !name || !name[0] ) {
ri.Printf( PRINT_DEVELOPER, "Empty name passed to RE_RegisterSkin\n" );
return 0;
}
if ( strlen( name ) >= MAX_QPATH ) {
ri.Printf( PRINT_DEVELOPER, "Skin name exceeds MAX_QPATH\n" );
return 0;
}
// see if the skin is already loaded
for ( hSkin = 1; hSkin < tr.numSkins ; hSkin++ ) {
skin = tr.skins[hSkin];
if ( !Q_stricmp( skin->name, name ) ) {
if( skin->numSurfaces == 0 ) {
return 0; // default skin
}
return hSkin;
}
}
// allocate a new skin
if ( tr.numSkins == MAX_SKINS ) {
ri.Printf( PRINT_WARNING, "WARNING: RE_RegisterSkin( '%s' ) MAX_SKINS hit\n", name );
return 0;
}
tr.numSkins++;
skin = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
tr.skins[hSkin] = skin;
Q_strncpyz( skin->name, name, sizeof( skin->name ) );
skin->numSurfaces = 0;
R_IssuePendingRenderCommands();
// If not a .skin file, load as a single shader
if ( strcmp( name + strlen( name ) - 5, ".skin" ) ) {
skin->numSurfaces = 1;
skin->surfaces[0] = ri.Hunk_Alloc( sizeof(skin->surfaces[0]), h_low );
skin->surfaces[0]->shader = R_FindShader( name, LIGHTMAP_NONE, qtrue );
return hSkin;
}
// load and parse the skin file
ri.FS_ReadFile( name, &text.v );
if ( !text.c ) {
return 0;
}
text_p = text.c;
while ( text_p && *text_p ) {
// get surface name
token = CommaParse( &text_p );
Q_strncpyz( surfName, token, sizeof( surfName ) );
if ( !token[0] ) {
break;
}
// lowercase the surface name so skin compares are faster
Q_strlwr( surfName );
if ( *text_p == ',' ) {
text_p++;
}
if ( strstr( token, "tag_" ) ) {
continue;
}
// parse the shader name
token = CommaParse( &text_p );
if ( skin->numSurfaces >= MD3_MAX_SURFACES ) {
ri.Printf( PRINT_WARNING, "WARNING: Ignoring surfaces in '%s', the max is %d surfaces!\n", name, MD3_MAX_SURFACES );
break;
}
surf = skin->surfaces[ skin->numSurfaces ] = ri.Hunk_Alloc( sizeof( *skin->surfaces[0] ), h_low );
Q_strncpyz( surf->name, surfName, sizeof( surf->name ) );
surf->shader = R_FindShader( token, LIGHTMAP_NONE, qtrue );
skin->numSurfaces++;
}
ri.FS_FreeFile( text.v );
// never let a skin have 0 shaders
if ( skin->numSurfaces == 0 ) {
return 0; // use default skin
}
return hSkin;
}
/*
===============
R_InitSkins
===============
*/
void R_InitSkins( void ) {
skin_t *skin;
tr.numSkins = 1;
// make the default skin have all default shaders
skin = tr.skins[0] = ri.Hunk_Alloc( sizeof( skin_t ), h_low );
Q_strncpyz( skin->name, "<default skin>", sizeof( skin->name ) );
skin->numSurfaces = 1;
skin->surfaces[0] = ri.Hunk_Alloc( sizeof( *skin->surfaces ), h_low );
skin->surfaces[0]->shader = tr.defaultShader;
}
/*
===============
R_GetSkinByHandle
===============
*/
skin_t *R_GetSkinByHandle( qhandle_t hSkin ) {
if ( hSkin < 1 || hSkin >= tr.numSkins ) {
return tr.skins[0];
}
return tr.skins[ hSkin ];
}
/*
===============
R_SkinList_f
===============
*/
void R_SkinList_f( void ) {
int i, j;
skin_t *skin;
ri.Printf (PRINT_ALL, "------------------\n");
for ( i = 0 ; i < tr.numSkins ; i++ ) {
skin = tr.skins[i];
ri.Printf( PRINT_ALL, "%3i:%s\n", i, skin->name );
for ( j = 0 ; j < skin->numSurfaces ; j++ ) {
ri.Printf( PRINT_ALL, " %s = %s\n",
skin->surfaces[j]->name, skin->surfaces[j]->shader->name );
}
}
ri.Printf (PRINT_ALL, "------------------\n");
}