reaction/code/cgame/cg_atmospheric.c
2013-01-04 13:27:22 +00:00

724 lines
22 KiB
C

//-----------------------------------------------------------------------------
//
// $Id$
//
//-----------------------------------------------------------------------------
//
// $Log$
// Revision 1.2 2002/08/25 19:19:49 jbravo
// Added cg_atmospheric to the Linux Makefile and added a CVS header to
// cg_atmospheric and indented it like the other files.
//
//
//-----------------------------------------------------------------------------
/*
** Copyright (C) 2000, 2001 by the Q3F Development team
** All rights reserved.
**
** cg_atmospheric.c
**
** Add atmospheric effects to view.
**
** Current supported effects are rain and snow.
*/
#include "cg_local.h"
#define MAX_ATMOSPHERIC_PARTICLES 1000 // maximum # of particles
#define MAX_ATMOSPHERIC_DISTANCE 1000 // maximum distance from refdef origin that particles are visible
#define MAX_ATMOSPHERIC_HEIGHT 4096 // maximum world height (FIXME: since 1.27 this should be 65536)
#define MIN_ATMOSPHERIC_HEIGHT -4096 // minimum world height (FIXME: since 1.27 this should be -65536)
#define MAX_ATMOSPHERIC_EFFECTSHADERS 6 // maximum different effectshaders for an atmospheric effect
#define ATMOSPHERIC_DROPDELAY 1000
#define ATMOSPHERIC_CUTHEIGHT 800
#define ATMOSPHERIC_RAIN_SPEED 1.1f * DEFAULT_GRAVITY
#define ATMOSPHERIC_RAIN_HEIGHT 150
#define ATMOSPHERIC_SNOW_SPEED 0.1f * DEFAULT_GRAVITY
#define ATMOSPHERIC_SNOW_HEIGHT 10
typedef struct cg_atmosphericParticle_s {
vec3_t pos, delta, deltaNormalized, colour, surfacenormal;
float height, minz, weight;
qboolean active;
int contents, surface, nextDropTime;
qhandle_t *effectshader;
} cg_atmosphericParticle_t;
typedef struct cg_atmosphericEffect_s {
cg_atmosphericParticle_t particles[MAX_ATMOSPHERIC_PARTICLES];
qhandle_t effectshaders[MAX_ATMOSPHERIC_EFFECTSHADERS];
qhandle_t effectwatershader, effectlandshader;
int lastRainTime, numDrops, gustStartTime, gustEndTime;
int baseStartTime, baseEndTime, gustMinTime, gustMaxTime;
int changeMinTime, changeMaxTime, baseMinTime, baseMaxTime;
float baseWeight, gustWeight;
int baseDrops, gustDrops, numEffectShaders;
qboolean waterSplash, landSplash;
vec3_t baseVec, gustVec;
qboolean(*ParticleCheckVisible) (cg_atmosphericParticle_t * particle);
qboolean(*ParticleGenerate) (cg_atmosphericParticle_t * particle, vec3_t currvec, float currweight);
void (*ParticleRender) (cg_atmosphericParticle_t * particle);
} cg_atmosphericEffect_t;
static cg_atmosphericEffect_t cg_atmFx;
/*
** Render utility functions
*/
void CG_EffectMark(qhandle_t markShader, const vec3_t origin, const vec3_t dir, float alpha, float radius)
{
// 'quick' version of the CG_ImpactMark function
vec3_t axis[3], originalPoints[4];
float texCoordScale;
byte colors[4];
int i;
polyVert_t *v, verts[4];
if (!cg_addMarks.integer) {
return;
}
if (radius <= 0) {
CG_Error("CG_EffectMark called with <= 0 radius");
}
// create the texture axis
VectorNormalize2(dir, axis[0]);
PerpendicularVector(axis[1], axis[0]);
VectorSet(axis[2], 1, 0, 0); // This is _wrong_, but the function is for water anyway (i.e. usually flat)
CrossProduct(axis[0], axis[2], axis[1]);
texCoordScale = 0.5 * 1.0 / radius;
// create the full polygon
for (i = 0; i < 3; i++) {
originalPoints[0][i] = origin[i] - radius * axis[1][i] - radius * axis[2][i];
originalPoints[1][i] = origin[i] + radius * axis[1][i] - radius * axis[2][i];
originalPoints[2][i] = origin[i] + radius * axis[1][i] + radius * axis[2][i];
originalPoints[3][i] = origin[i] - radius * axis[1][i] + radius * axis[2][i];
}
colors[0] = 127;
colors[1] = 127;
colors[2] = 127;
colors[3] = alpha * 255;
for (i = 0, v = verts; i < 4; i++, v++) {
vec3_t delta;
VectorCopy(originalPoints[i], v->xyz);
VectorSubtract(v->xyz, origin, delta);
v->st[0] = 0.5 + DotProduct(delta, axis[1]) * texCoordScale;
v->st[1] = 0.5 + DotProduct(delta, axis[2]) * texCoordScale;
*(int *) v->modulate = *(int *) colors;
}
trap_R_AddPolyToScene(markShader, 4, verts);
}
/*
** Raindrop management functions
*/
static qboolean CG_RainParticleCheckVisible(cg_atmosphericParticle_t * particle)
{
// Check the raindrop is visible and still going, wrapping if necessary.
float moved;
vec3_t distance;
if (!particle || !particle->active)
return (qfalse);
moved = (cg.time - cg_atmFx.lastRainTime) * 0.001; // Units moved since last frame
VectorMA(particle->pos, moved, particle->delta, particle->pos);
if (particle->pos[2] + ATMOSPHERIC_CUTHEIGHT < particle->minz)
return (particle->active = qfalse);
VectorSubtract(cg.refdef.vieworg, particle->pos, distance);
if (sqrt(distance[0] * distance[0] + distance[1] * distance[1]) > MAX_ATMOSPHERIC_DISTANCE)
return (particle->active = qfalse);
return (qtrue);
}
static qboolean CG_RainParticleGenerate(cg_atmosphericParticle_t * particle, vec3_t currvec, float currweight)
{
// Attempt to 'spot' a raindrop somewhere below a sky texture.
float angle, distance, origz;
vec3_t testpoint, testend;
trace_t tr;
angle = random() * 2 * M_PI;
distance = 20 + MAX_ATMOSPHERIC_DISTANCE * random();
testpoint[0] = testend[0] = cg.refdef.vieworg[0] + sin(angle) * distance;
testpoint[1] = testend[1] = cg.refdef.vieworg[1] + cos(angle) * distance;
testpoint[2] = origz = cg.refdef.vieworg[2];
testend[2] = testpoint[2] + MAX_ATMOSPHERIC_HEIGHT;
while (1) {
if (testpoint[2] >= MAX_ATMOSPHERIC_HEIGHT)
return (qfalse);
if (testend[2] >= MAX_ATMOSPHERIC_HEIGHT)
testend[2] = MAX_ATMOSPHERIC_HEIGHT - 1;
CG_Trace(&tr, testpoint, NULL, NULL, testend, ENTITYNUM_NONE, MASK_SOLID | MASK_WATER);
if (tr.startsolid) // Stuck in something, skip over it.
{
testpoint[2] += 64;
testend[2] = testpoint[2] + MAX_ATMOSPHERIC_HEIGHT;
} else if (tr.fraction == 1) // Didn't hit anything, we're (probably) outside the world
return (qfalse);
else if (tr.surfaceFlags & SURF_SKY) // Hit sky, this is where we start.
break;
else
return (qfalse);
}
particle->active = qtrue;
particle->colour[0] = 0.6 + 0.2 * random();
particle->colour[1] = 0.6 + 0.2 * random();
particle->colour[2] = 0.6 + 0.2 * random();
VectorCopy(tr.endpos, particle->pos);
VectorCopy(currvec, particle->delta);
particle->delta[2] += crandom() * 100;
VectorNormalize2(particle->delta, particle->deltaNormalized);
particle->height = ATMOSPHERIC_RAIN_HEIGHT + crandom() * 100;
particle->weight = currweight;
particle->effectshader = &cg_atmFx.effectshaders[0];
distance = ((float) (tr.endpos[2] - MIN_ATMOSPHERIC_HEIGHT)) / -particle->delta[2];
VectorMA(tr.endpos, distance, particle->delta, testend);
CG_Trace(&tr, particle->pos, NULL, NULL, testend, ENTITYNUM_NONE, MASK_SOLID | MASK_WATER);
particle->minz = tr.endpos[2];
tr.endpos[2]--;
VectorCopy(tr.plane.normal, particle->surfacenormal);
particle->surface = tr.surfaceFlags;
particle->contents = CG_PointContents(tr.endpos, ENTITYNUM_NONE);
return (qtrue);
}
static void CG_RainParticleRender(cg_atmosphericParticle_t * particle)
{
// Draw a raindrop
vec3_t forward, right;
polyVert_t verts[4];
vec2_t line;
float len, frac;
vec3_t start, finish;
if (!particle->active)
return;
VectorCopy(particle->pos, start);
len = particle->height;
if (start[2] <= particle->minz) {
// Stop rain going through surfaces.
len = particle->height - particle->minz + start[2];
frac = start[2];
VectorMA(start, len - particle->height, particle->deltaNormalized, start);
if (!cg_lowEffects.integer) {
frac = (ATMOSPHERIC_CUTHEIGHT - particle->minz + frac) / (float) ATMOSPHERIC_CUTHEIGHT;
// Splash effects on different surfaces
if (particle->contents & (CONTENTS_WATER | CONTENTS_SLIME)) {
// Water splash
if (cg_atmFx.effectwatershader && frac > 0 && frac < 1)
CG_EffectMark(cg_atmFx.effectwatershader, start, particle->surfacenormal,
frac * 0.5, 8 - frac * 8);
} else if (!(particle->contents & CONTENTS_LAVA)
&& !(particle->
surface & (SURF_NODAMAGE | SURF_NOIMPACT | SURF_NOMARKS | SURF_SKY))) {
// Solid splash
if (cg_atmFx.effectlandshader && frac > 0 && frac < 1)
CG_ImpactMark(cg_atmFx.effectlandshader, start, particle->surfacenormal, 0, 1,
1, 1, frac * 0.5, qfalse, 3 - frac * 2, qtrue);
}
}
}
if (len <= 0)
return;
VectorCopy(particle->deltaNormalized, forward);
VectorMA(start, -len, forward, finish);
line[0] = DotProduct(forward, cg.refdef.viewaxis[1]);
line[1] = DotProduct(forward, cg.refdef.viewaxis[2]);
VectorScale(cg.refdef.viewaxis[1], line[1], right);
VectorMA(right, -line[0], cg.refdef.viewaxis[2], right);
VectorNormalize(right);
VectorMA(finish, particle->weight, right, verts[0].xyz);
verts[0].st[0] = 1;
verts[0].st[1] = 0;
verts[0].modulate[0] = 255;
verts[0].modulate[1] = 255;
verts[0].modulate[2] = 255;
verts[0].modulate[3] = 0;
VectorMA(finish, -particle->weight, right, verts[1].xyz);
verts[1].st[0] = 0;
verts[1].st[1] = 0;
verts[1].modulate[0] = 255;
verts[1].modulate[1] = 255;
verts[1].modulate[2] = 255;
verts[1].modulate[3] = 0;
VectorMA(start, -particle->weight, right, verts[2].xyz);
verts[2].st[0] = 0;
verts[2].st[1] = 1;
verts[2].modulate[0] = 255;
verts[2].modulate[1] = 255;
verts[2].modulate[2] = 255;
verts[2].modulate[3] = 127;
VectorMA(start, particle->weight, right, verts[3].xyz);
verts[3].st[0] = 1;
verts[3].st[1] = 1;
verts[3].modulate[0] = 255;
verts[3].modulate[1] = 255;
verts[3].modulate[2] = 255;
verts[3].modulate[3] = 127;
trap_R_AddPolyToScene(*particle->effectshader, 4, verts);
}
/*
** Snow management functions
*/
static qboolean CG_SnowParticleGenerate(cg_atmosphericParticle_t * particle, vec3_t currvec, float currweight)
{
// Attempt to 'spot' a raindrop somewhere below a sky texture.
float angle, distance, origz;
vec3_t testpoint, testend;
trace_t tr;
angle = random() * 2 * M_PI;
distance = 20 + MAX_ATMOSPHERIC_DISTANCE * random();
testpoint[0] = testend[0] = cg.refdef.vieworg[0] + sin(angle) * distance;
testpoint[1] = testend[1] = cg.refdef.vieworg[1] + cos(angle) * distance;
testpoint[2] = origz = cg.refdef.vieworg[2];
testend[2] = testpoint[2] + MAX_ATMOSPHERIC_HEIGHT;
while (1) {
if (testpoint[2] >= MAX_ATMOSPHERIC_HEIGHT)
return (qfalse);
if (testend[2] >= MAX_ATMOSPHERIC_HEIGHT)
testend[2] = MAX_ATMOSPHERIC_HEIGHT - 1;
CG_Trace(&tr, testpoint, NULL, NULL, testend, ENTITYNUM_NONE, MASK_SOLID | MASK_WATER);
if (tr.startsolid) // Stuck in something, skip over it.
{
testpoint[2] += 64;
testend[2] = testpoint[2] + MAX_ATMOSPHERIC_HEIGHT;
} else if (tr.fraction == 1) // Didn't hit anything, we're (probably) outside the world
return (qfalse);
else if (tr.surfaceFlags & SURF_SKY) // Hit sky, this is where we start.
break;
else
return (qfalse);
}
particle->active = qtrue;
particle->colour[0] = 0.6 + 0.2 * random();
particle->colour[1] = 0.6 + 0.2 * random();
particle->colour[2] = 0.6 + 0.2 * random();
VectorCopy(tr.endpos, particle->pos);
VectorCopy(currvec, particle->delta);
particle->delta[2] += crandom() * 25;
VectorNormalize2(particle->delta, particle->deltaNormalized);
particle->height = ATMOSPHERIC_SNOW_HEIGHT + crandom() * 8;
particle->weight = particle->height * 0.5f;
particle->effectshader = &cg_atmFx.effectshaders[(int) (random() * (cg_atmFx.numEffectShaders - 1))];
distance = ((float) (tr.endpos[2] - MIN_ATMOSPHERIC_HEIGHT)) / -particle->delta[2];
VectorMA(tr.endpos, distance, particle->delta, testend);
CG_Trace(&tr, particle->pos, NULL, NULL, testend, ENTITYNUM_NONE, MASK_SOLID | MASK_WATER);
particle->minz = tr.endpos[2];
tr.endpos[2]--;
VectorCopy(tr.plane.normal, particle->surfacenormal);
particle->surface = tr.surfaceFlags;
particle->contents = CG_PointContents(tr.endpos, ENTITYNUM_NONE);
return (qtrue);
}
static void CG_SnowParticleRender(cg_atmosphericParticle_t * particle)
{
// Draw a snowflake
vec3_t forward, right;
polyVert_t verts[4];
vec2_t line;
float len, sinTumbling, cosTumbling, particleWidth;
vec3_t start, finish;
if (!particle->active)
return;
VectorCopy(particle->pos, start);
sinTumbling = sin(particle->pos[2] * 0.03125f);
cosTumbling = cos((particle->pos[2] + particle->pos[1]) * 0.03125f);
start[0] += 24 * (1 - particle->deltaNormalized[2]) * sinTumbling;
start[1] += 24 * (1 - particle->deltaNormalized[2]) * cosTumbling;
len = particle->height;
if (start[2] <= particle->minz) {
// Stop snow going through surfaces.
len = particle->height - particle->minz + start[2];
// frac = start[2];
VectorMA(start, len - particle->height, particle->deltaNormalized, start);
}
if (len <= 0)
return;
VectorCopy(particle->deltaNormalized, forward);
VectorMA(start, -(len * sinTumbling), forward, finish);
line[0] = DotProduct(forward, cg.refdef.viewaxis[1]);
line[1] = DotProduct(forward, cg.refdef.viewaxis[2]);
VectorScale(cg.refdef.viewaxis[1], line[1], right);
VectorMA(right, -line[0], cg.refdef.viewaxis[2], right);
VectorNormalize(right);
particleWidth = cosTumbling * particle->weight;
VectorMA(finish, particleWidth, right, verts[0].xyz);
verts[0].st[0] = 1;
verts[0].st[1] = 0;
verts[0].modulate[0] = 255;
verts[0].modulate[1] = 255;
verts[0].modulate[2] = 255;
verts[0].modulate[3] = 255;
VectorMA(finish, -particleWidth, right, verts[1].xyz);
verts[1].st[0] = 0;
verts[1].st[1] = 0;
verts[1].modulate[0] = 255;
verts[1].modulate[1] = 255;
verts[1].modulate[2] = 255;
verts[1].modulate[3] = 255;
VectorMA(start, -particleWidth, right, verts[2].xyz);
verts[2].st[0] = 0;
verts[2].st[1] = 1;
verts[2].modulate[0] = 255;
verts[2].modulate[1] = 255;
verts[2].modulate[2] = 255;
verts[2].modulate[3] = 255;
VectorMA(start, particleWidth, right, verts[3].xyz);
verts[3].st[0] = 1;
verts[3].st[1] = 1;
verts[3].modulate[0] = 255;
verts[3].modulate[1] = 255;
verts[3].modulate[2] = 255;
verts[3].modulate[3] = 255;
trap_R_AddPolyToScene(*particle->effectshader, 4, verts);
}
/*
** Set up gust parameters.
*/
static void CG_EffectGust( void )
{
// Generate random values for the next gust
int diff;
cg_atmFx.baseEndTime =
cg.time + cg_atmFx.baseMinTime + (rand() % (cg_atmFx.baseMaxTime - cg_atmFx.baseMinTime));
diff = cg_atmFx.changeMaxTime - cg_atmFx.changeMinTime;
cg_atmFx.gustStartTime = cg_atmFx.baseEndTime + cg_atmFx.changeMinTime + (diff ? (rand() % diff) : 0);
diff = cg_atmFx.gustMaxTime - cg_atmFx.gustMinTime;
cg_atmFx.gustEndTime = cg_atmFx.gustStartTime + cg_atmFx.gustMinTime + (diff ? (rand() % diff) : 0);
diff = cg_atmFx.changeMaxTime - cg_atmFx.changeMinTime;
cg_atmFx.baseStartTime = cg_atmFx.gustEndTime + cg_atmFx.changeMinTime + (diff ? (rand() % diff) : 0);
}
static qboolean CG_EffectGustCurrent(vec3_t curr, float *weight, int *num)
{
// Calculate direction for new drops.
vec3_t temp;
float frac;
if (cg.time < cg_atmFx.baseEndTime) {
VectorCopy(cg_atmFx.baseVec, curr);
*weight = cg_atmFx.baseWeight;
*num = cg_atmFx.baseDrops;
} else {
VectorSubtract(cg_atmFx.gustVec, cg_atmFx.baseVec, temp);
if (cg.time < cg_atmFx.gustStartTime) {
frac =
((float) (cg.time - cg_atmFx.baseEndTime)) /
((float) (cg_atmFx.gustStartTime - cg_atmFx.baseEndTime));
VectorMA(cg_atmFx.baseVec, frac, temp, curr);
*weight = cg_atmFx.baseWeight + (cg_atmFx.gustWeight - cg_atmFx.baseWeight) * frac;
*num = cg_atmFx.baseDrops + ((float) (cg_atmFx.gustDrops - cg_atmFx.baseDrops)) * frac;
} else if (cg.time < cg_atmFx.gustEndTime) {
VectorCopy(cg_atmFx.gustVec, curr);
*weight = cg_atmFx.gustWeight;
*num = cg_atmFx.gustDrops;
} else {
frac =
1.0 -
((float) (cg.time - cg_atmFx.gustEndTime)) /
((float) (cg_atmFx.baseStartTime - cg_atmFx.gustEndTime));
VectorMA(cg_atmFx.baseVec, frac, temp, curr);
*weight = cg_atmFx.baseWeight + (cg_atmFx.gustWeight - cg_atmFx.baseWeight) * frac;
*num = cg_atmFx.baseDrops + ((float) (cg_atmFx.gustDrops - cg_atmFx.baseDrops)) * frac;
if (cg.time >= cg_atmFx.baseStartTime)
return (qtrue);
}
}
return (qfalse);
}
static void CG_EP_ParseFloats(char *floatstr, float *f1, float *f2)
{
// Parse the float or floats
char *middleptr;
char buff[64];
Q_strncpyz(buff, floatstr, sizeof(buff));
for (middleptr = buff; *middleptr && *middleptr != ' '; middleptr++);
if (*middleptr) {
*middleptr++ = 0;
*f1 = atof(floatstr);
*f2 = atof(middleptr);
} else {
*f1 = *f2 = atof(floatstr);
}
}
void CG_EffectParse(const char *effectstr)
{
// Split the string into it's component parts.
float bmin, bmax, cmin, cmax, gmin, gmax, bdrop, gdrop, wsplash, lsplash;
int count;
char *startptr, *eqptr, *endptr, *type;
char workbuff[128];
if (CG_AtmosphericKludge())
return;
// Set up some default values
cg_atmFx.baseVec[0] = cg_atmFx.baseVec[1] = 0;
cg_atmFx.gustVec[0] = cg_atmFx.gustVec[1] = 100;
bmin = 5;
bmax = 10;
cmin = 1;
cmax = 1;
gmin = 0;
gmax = 2;
bdrop = gdrop = 300;
cg_atmFx.baseWeight = 0.7f;
cg_atmFx.gustWeight = 1.5f;
wsplash = 1;
lsplash = 1;
type = NULL;
// Parse the parameter string
Q_strncpyz(workbuff, effectstr, sizeof(workbuff));
for (startptr = workbuff; *startptr;) {
for (eqptr = startptr; *eqptr && *eqptr != '=' && *eqptr != ','; eqptr++);
if (!*eqptr)
break; // No more string
if (*eqptr == ',') {
startptr = eqptr + 1; // Bad argument, continue
continue;
}
*eqptr++ = 0;
for (endptr = eqptr; *endptr && *endptr != ','; endptr++);
if (*endptr)
*endptr++ = 0;
if (!type) {
if (Q_stricmp(startptr, "T")) {
cg_atmFx.numDrops = 0;
CG_Printf("Atmospheric effect must start with a type.\n");
return;
}
if (!Q_stricmp(eqptr, "RAIN")) {
type = "rain";
cg_atmFx.ParticleCheckVisible = &CG_RainParticleCheckVisible;
cg_atmFx.ParticleGenerate = &CG_RainParticleGenerate;
cg_atmFx.ParticleRender = &CG_RainParticleRender;
cg_atmFx.baseVec[2] = cg_atmFx.gustVec[2] = -ATMOSPHERIC_RAIN_SPEED;
} else if (!Q_stricmp(eqptr, "SNOW")) {
type = "snow";
cg_atmFx.ParticleCheckVisible = &CG_RainParticleCheckVisible;
cg_atmFx.ParticleGenerate = &CG_SnowParticleGenerate;
cg_atmFx.ParticleRender = &CG_SnowParticleRender;
cg_atmFx.baseVec[2] = cg_atmFx.gustVec[2] = -ATMOSPHERIC_SNOW_SPEED;
} else {
cg_atmFx.numDrops = 0;
CG_Printf("Only effect type 'rain' and 'snow' are supported.\n");
return;
}
} else {
if (!Q_stricmp(startptr, "B"))
CG_EP_ParseFloats(eqptr, &bmin, &bmax);
else if (!Q_stricmp(startptr, "C"))
CG_EP_ParseFloats(eqptr, &cmin, &cmax);
else if (!Q_stricmp(startptr, "G"))
CG_EP_ParseFloats(eqptr, &gmin, &gmax);
else if (!Q_stricmp(startptr, "BV"))
CG_EP_ParseFloats(eqptr, &cg_atmFx.baseVec[0], &cg_atmFx.baseVec[1]);
else if (!Q_stricmp(startptr, "GV"))
CG_EP_ParseFloats(eqptr, &cg_atmFx.gustVec[0], &cg_atmFx.gustVec[1]);
else if (!Q_stricmp(startptr, "W"))
CG_EP_ParseFloats(eqptr, &cg_atmFx.baseWeight, &cg_atmFx.gustWeight);
else if (!Q_stricmp(startptr, "S"))
CG_EP_ParseFloats(eqptr, &wsplash, &lsplash);
else if (!Q_stricmp(startptr, "D"))
CG_EP_ParseFloats(eqptr, &bdrop, &gdrop);
else
CG_Printf("Unknown effect key '%s'.\n", startptr);
}
startptr = endptr;
}
if (!type) {
// No effects
cg_atmFx.numDrops = -1;
return;
}
cg_atmFx.baseMinTime = 1000 * bmin;
cg_atmFx.baseMaxTime = 1000 * bmax;
cg_atmFx.changeMinTime = 1000 * cmin;
cg_atmFx.changeMaxTime = 1000 * cmax;
cg_atmFx.gustMinTime = 1000 * gmin;
cg_atmFx.gustMaxTime = 1000 * gmax;
cg_atmFx.baseDrops = bdrop;
cg_atmFx.gustDrops = gdrop;
cg_atmFx.waterSplash = wsplash;
cg_atmFx.landSplash = lsplash;
cg_atmFx.numDrops = (cg_atmFx.baseDrops > cg_atmFx.gustDrops) ? cg_atmFx.baseDrops : cg_atmFx.gustDrops;
if (cg_atmFx.numDrops > MAX_ATMOSPHERIC_PARTICLES)
cg_atmFx.numDrops = MAX_ATMOSPHERIC_PARTICLES;
// Load graphics
// Rain
if (!Q_stricmp(type, "rain")) {
cg_atmFx.numEffectShaders = 1;
if (!(cg_atmFx.effectshaders[0] = trap_R_RegisterShader("gfx/atmosphere/raindrop")))
cg_atmFx.effectshaders[0] = -1;
if (cg_atmFx.waterSplash)
cg_atmFx.effectwatershader = trap_R_RegisterShader("gfx/atmosphere/raindropwater");
if (cg_atmFx.landSplash)
cg_atmFx.effectlandshader = trap_R_RegisterShader("gfx/atmosphere/raindropsolid");
// Snow
} else if (!Q_stricmp(type, "snow")) {
for (cg_atmFx.numEffectShaders = 0; cg_atmFx.numEffectShaders < 6; cg_atmFx.numEffectShaders++) {
if (!
(cg_atmFx.effectshaders[cg_atmFx.numEffectShaders] =
trap_R_RegisterShader(va("gfx/atmosphere/snowflake0%i", cg_atmFx.numEffectShaders))))
cg_atmFx.effectshaders[cg_atmFx.numEffectShaders] = -1; // we had some kind of a problem
}
cg_atmFx.waterSplash = 0;
cg_atmFx.landSplash = 0;
// This really should never happen
} else
cg_atmFx.numEffectShaders = 0;
// Initialise atmospheric effect to prevent all particles falling at the start
for (count = 0; count < cg_atmFx.numDrops; count++)
cg_atmFx.particles[count].nextDropTime = ATMOSPHERIC_DROPDELAY + (rand() % ATMOSPHERIC_DROPDELAY);
CG_EffectGust();
}
/*
** Main render loop
*/
void CG_AddAtmosphericEffects()
{
// Add atmospheric effects (e.g. rain, snow etc.) to view
int curr, max, currnum;
cg_atmosphericParticle_t *particle;
vec3_t currvec;
float currweight;
if (cg_atmFx.numDrops <= 0 || cg_atmFx.numEffectShaders == 0)
return;
max = cg_lowEffects.integer ? (cg_atmFx.numDrops >> 1) : cg_atmFx.numDrops;
if (CG_EffectGustCurrent(currvec, &currweight, &currnum))
CG_EffectGust(); // Recalculate gust parameters
for (curr = 0; curr < max; curr++) {
particle = &cg_atmFx.particles[curr];
if (!cg_atmFx.ParticleCheckVisible(particle)) {
// Effect has terminated / fallen from screen view
if (!particle->nextDropTime) {
// Stop rain being synchronized
particle->nextDropTime = rand() % ATMOSPHERIC_DROPDELAY;
} else if (currnum < curr || particle->nextDropTime > cg.time)
continue;
if (!cg_atmFx.ParticleGenerate(particle, currvec, currweight)) {
// Ensure it doesn't attempt to generate every frame, to prevent
// 'clumping' when there's only a small sky area available.
particle->nextDropTime = cg.time + ATMOSPHERIC_DROPDELAY;
continue;
}
}
cg_atmFx.ParticleRender(particle);
}
cg_atmFx.lastRainTime = cg.time;
}
/*
** G_AtmosphericKludge
*/
static qboolean kludgeChecked, kludgeResult;
qboolean CG_AtmosphericKludge()
{
// Activate effects for specified kludge maps that don't
// have it specified for them.
if (kludgeChecked)
return (kludgeResult);
kludgeChecked = qtrue;
kludgeResult = qfalse;
// NiceAss: apparently example code:
// T=RAIN and T=SNOW are the two options
/*
if( !Q_stricmp( cgs.mapname, "maps/bank.bsp" ) )
{
CG_EffectParse( "T=RAIN" );
return ( kludgeResult = qtrue );
}
*/
return (kludgeResult = qfalse);
}