IOQ3 commit 2343

This commit is contained in:
Richard Allen 2012-12-12 19:50:14 +00:00
parent da8b7ebb9e
commit f45519a018
2 changed files with 7 additions and 7 deletions

View file

@ -731,7 +731,7 @@ static const char *fallbackShadowmaskShader_fp =
"\r\n\r\nfloat random( const vec2 p )\r\n{\r\n // We need irrationals for p"
"seudo randomness.\r\n // Most (all?) known transcendental numbers will (ge"
"nerally) work.\r\n const vec2 r = vec2(\r\n 23.1406926327792690, // e^"
"pi (Gelfond's constant)\r\n 2.6651441426902251); // 2^sqrt(2) (Gelfond"
"pi (Gelfond's constant)\r\n 2.6651441426902251); // 2^sqrt(2) (Gelfond-"
"Schneider constant)\r\n //return fract( cos( mod( 123456789., 1e-7 + 256. "
"* dot(p,r) ) ) );\r\n return mod( 123456789., 1e-7 + 256. * dot(p,r) ); "
"\r\n}\r\n\r\nfloat PCF(const sampler2D shadowmap, const vec2 st, const floa"
@ -798,7 +798,7 @@ static const char *fallbackSsaoShader_fp =
"\r\n // We need irrationals for pseudo randomness.\r\n // Most (all?) kno"
"wn transcendental numbers will (generally) work.\r\n const vec2 r = vec2("
"\r\n 23.1406926327792690, // e^pi (Gelfond's constant)\r\n 2.665144"
"1426902251); // 2^sqrt(2) (GelfondSchneider constant)\r\n //return fract("
"1426902251); // 2^sqrt(2) (Gelfond-Schneider constant)\r\n //return fract("
" cos( mod( 123456789., 1e-7 + 256. * dot(p,r) ) ) );\r\n return mod( 12345"
"6789., 1e-7 + 256. * dot(p,r) ); \r\n}\r\n\r\nmat2 randomRotation( const v"
"ec2 p )\r\n{\r\n\tfloat r = random(p);\r\n\tfloat sinr = sin(r);\r\n\tfloat"

View file

@ -368,10 +368,10 @@ void R_CalcTBN2(vec3_t tangent, vec3_t bitangent, vec3_t normal,
VectorSubtract(v3, v1, v3v1);
// The equation presented in the article states that:
// c2c1_T = V2.texcoord.x V1.texcoord.x
// c2c1_B = V2.texcoord.y V1.texcoord.y
// c3c1_T = V3.texcoord.x V1.texcoord.x
// c3c1_B = V3.texcoord.y V1.texcoord.y
// c2c1_T = V2.texcoord.x - V1.texcoord.x
// c2c1_B = V2.texcoord.y - V1.texcoord.y
// c3c1_T = V3.texcoord.x - V1.texcoord.x
// c3c1_B = V3.texcoord.y - V1.texcoord.y
// Calculate c2c1_T and c2c1_B
c2c1_T = t2[0] - t1[0];
@ -1227,7 +1227,7 @@ void R_SetupProjectionZ(viewParms_t *dest)
plane2[2] = -DotProduct (dest->or.axis[0], plane);
plane2[3] = DotProduct (plane, dest->or.origin) - plane[3];
// Lengyel, Eric. “Modifying the Projection Matrix to Perform Oblique Near-plane Clipping”.
// Lengyel, Eric. "Modifying the Projection Matrix to Perform Oblique Near-plane Clipping".
// Terathon Software 3D Graphics Library, 2004. http://www.terathon.com/code/oblique.html
q[0] = (SGN(plane2[0]) + dest->projectionMatrix[8]) / dest->projectionMatrix[0];
q[1] = (SGN(plane2[1]) + dest->projectionMatrix[9]) / dest->projectionMatrix[5];