IOQ3 commit 1936

This commit is contained in:
Richard Allen 2011-05-18 02:08:38 +00:00
parent 1faa98b440
commit 0853626386
4 changed files with 84 additions and 161 deletions

View file

@ -368,8 +368,9 @@ qboolean CL_OpenAVIForWriting( const char *fileName )
else
afd.motionJpeg = qfalse;
afd.cBuffer = Z_Malloc( afd.width * afd.height * 4 );
afd.eBuffer = Z_Malloc( afd.width * afd.height * 4 );
// Buffers only need to store RGB pixels
afd.cBuffer = Z_Malloc(afd.width * afd.height * 3);
afd.eBuffer = Z_Malloc(afd.width * afd.height * 3);
afd.a.rate = dma.speed;
afd.a.format = WAV_FORMAT_PCM;

View file

@ -86,10 +86,10 @@ void R_LoadJPG(const char *filename, unsigned char **pic, int *width, int *heigh
struct jpeg_error_mgr jerr;
/* More stuff */
JSAMPARRAY buffer; /* Output row buffer */
unsigned row_stride; /* physical row width in output buffer */
unsigned pixelcount, memcount;
int sindex, dindex;
unsigned char *out;
unsigned int row_stride; /* physical row width in output buffer */
unsigned int pixelcount, memcount;
unsigned int sindex, dindex;
byte *out;
int len;
union {
byte *b;
@ -161,7 +161,11 @@ void R_LoadJPG(const char *filename, unsigned char **pic, int *width, int *heigh
|| pixelcount > 0x1FFFFFFF || cinfo.output_components != 3
)
{
ri.Error (ERR_DROP, "LoadJPG: %s has an invalid image format: %dx%d*4=%d, components: %d\n", filename,
// Free the memory to make sure we don't leak memory
ri.FS_FreeFile (fbuffer.v);
jpeg_destroy_decompress(&cinfo);
ri.Error(ERR_DROP, "LoadJPG: %s has an invalid image format: %dx%d*4=%d, components: %d\n", filename,
cinfo.output_width, cinfo.output_height, pixelcount * 4, cinfo.output_components);
}
@ -211,7 +215,7 @@ void R_LoadJPG(const char *filename, unsigned char **pic, int *width, int *heigh
/* Step 7: Finish decompression */
(void) jpeg_finish_decompress(&cinfo);
jpeg_finish_decompress(&cinfo);
/* We can ignore the return value since suspension is not possible
* with the stdio data source.
*/
@ -289,7 +293,15 @@ init_destination (j_compress_ptr cinfo)
static boolean
empty_output_buffer (j_compress_ptr cinfo)
{
return TRUE;
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
jpeg_destroy_compress(cinfo);
// Make crash fatal or we would probably leak memory.
ri.Error(ERR_FATAL, "Output buffer for encoded JPEG image has insufficient size of %d bytes\n",
dest->size);
return FALSE;
}
/*
@ -301,14 +313,8 @@ empty_output_buffer (j_compress_ptr cinfo)
* for error exit.
*/
static int hackSize;
static void
term_destination (j_compress_ptr cinfo)
static void term_destination(j_compress_ptr cinfo)
{
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
size_t datacount = dest->size - dest->pub.free_in_buffer;
hackSize = datacount;
}
@ -343,143 +349,40 @@ jpegDest (j_compress_ptr cinfo, byte* outfile, int size)
dest->size = size;
}
void SaveJPG(char * filename, int quality, int image_width, int image_height, unsigned char *image_buffer) {
/* This struct contains the JPEG compression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
* It is possible to have several such structures, representing multiple
* compression/decompression processes, in existence at once. We refer
* to any one struct (and its associated working data) as a "JPEG object".
*/
struct jpeg_compress_struct cinfo;
/* This struct represents a JPEG error handler. It is declared separately
* because applications often want to supply a specialized error handler
* (see the second half of this file for an example). But here we just
* take the easy way out and use the standard error handler, which will
* print a message on stderr and call exit() if compression fails.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
int row_stride; /* physical row width in image buffer */
unsigned char *out;
/* Step 1: allocate and initialize JPEG compression object */
/* We have to set up the error handler first, in case the initialization
* step fails. (Unlikely, but it could happen if you are out of memory.)
* This routine fills in the contents of struct jerr, and returns jerr's
* address which we place into the link field in cinfo.
*/
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG compression object. */
jpeg_create_compress(&cinfo);
/* Step 2: specify data destination (eg, a file) */
/* Note: steps 2 and 3 can be done in either order. */
/* Here we use the library-supplied code to send compressed data to a
* stdio stream. You can also write your own code to do something else.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to write binary files.
*/
out = ri.Hunk_AllocateTempMemory(image_width*image_height*4);
jpegDest(&cinfo, out, image_width*image_height*4);
/* Step 3: set parameters for compression */
/* First we supply a description of the input image.
* Four fields of the cinfo struct must be filled in:
*/
cinfo.image_width = image_width; /* image width and height, in pixels */
cinfo.image_height = image_height;
cinfo.input_components = 4; /* # of color components per pixel */
cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
/* Now use the library's routine to set default compression parameters.
* (You must set at least cinfo.in_color_space before calling this,
* since the defaults depend on the source color space.)
*/
jpeg_set_defaults(&cinfo);
/* Now you can set any non-default parameters you wish to.
* Here we just illustrate the use of quality (quantization table) scaling:
*/
jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
/* If quality is set high, disable chroma subsampling */
if (quality >= 85) {
cinfo.comp_info[0].h_samp_factor = 1;
cinfo.comp_info[0].v_samp_factor = 1;
}
/* Step 4: Start compressor */
/* TRUE ensures that we will write a complete interchange-JPEG file.
* Pass TRUE unless you are very sure of what you're doing.
*/
jpeg_start_compress(&cinfo, TRUE);
/* Step 5: while (scan lines remain to be written) */
/* jpeg_write_scanlines(...); */
/* Here we use the library's state variable cinfo.next_scanline as the
* loop counter, so that we don't have to keep track ourselves.
* To keep things simple, we pass one scanline per call; you can pass
* more if you wish, though.
*/
row_stride = image_width * 4; /* JSAMPLEs per row in image_buffer */
while (cinfo.next_scanline < cinfo.image_height) {
/* jpeg_write_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = & image_buffer[((cinfo.image_height-1)*row_stride)-cinfo.next_scanline * row_stride];
(void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
}
/* Step 6: Finish compression */
jpeg_finish_compress(&cinfo);
/* After finish_compress, we can close the output file. */
ri.FS_WriteFile( filename, out, hackSize );
ri.Hunk_FreeTempMemory(out);
/* Step 7: release JPEG compression object */
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_compress(&cinfo);
/* And we're done! */
}
/*
=================
SaveJPGToBuffer
Encodes JPEG from image in image_buffer and writes to buffer.
Expects RGB input data
=================
*/
int SaveJPGToBuffer( byte *buffer, int quality,
int image_width, int image_height,
byte *image_buffer )
size_t RE_SaveJPGToBuffer(byte *buffer, size_t bufSize, int quality,
int image_width, int image_height, byte *image_buffer)
{
struct jpeg_compress_struct cinfo;
struct jpeg_error_mgr jerr;
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
my_dest_ptr dest;
int row_stride; /* physical row width in image buffer */
size_t outcount;
/* Step 1: allocate and initialize JPEG compression object */
cinfo.err = jpeg_std_error(&jerr);
cinfo.err->error_exit = R_JPGErrorExit;
cinfo.err->output_message = R_JPGOutputMessage;
/* Now we can initialize the JPEG compression object. */
jpeg_create_compress(&cinfo);
/* Step 2: specify data destination (eg, a file) */
/* Note: steps 2 and 3 can be done in either order. */
jpegDest(&cinfo, buffer, image_width*image_height*4);
jpegDest(&cinfo, buffer, bufSize);
/* Step 3: set parameters for compression */
cinfo.image_width = image_width; /* image width and height, in pixels */
cinfo.image_height = image_height;
cinfo.input_components = 4; /* # of color components per pixel */
cinfo.input_components = 3; /* # of color components per pixel */
cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
jpeg_set_defaults(&cinfo);
@ -495,23 +398,40 @@ int SaveJPGToBuffer( byte *buffer, int quality,
/* Step 5: while (scan lines remain to be written) */
/* jpeg_write_scanlines(...); */
row_stride = image_width * 4; /* JSAMPLEs per row in image_buffer */
row_stride = image_width * cinfo.input_components; /* JSAMPLEs per row in image_buffer */
while (cinfo.next_scanline < cinfo.image_height) {
/* jpeg_write_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = & image_buffer[((cinfo.image_height-1)*row_stride)-cinfo.next_scanline * row_stride];
row_pointer[0] = &image_buffer[((cinfo.image_height-1)*row_stride)-cinfo.next_scanline * row_stride];
(void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
}
/* Step 6: Finish compression */
jpeg_finish_compress(&cinfo);
dest = (my_dest_ptr) cinfo.dest;
outcount = dest->size - dest->pub.free_in_buffer;
/* Step 7: release JPEG compression object */
jpeg_destroy_compress(&cinfo);
/* And we're done! */
return hackSize;
return outcount;
}
void RE_SaveJPG(char * filename, int quality, int image_width, int image_height, unsigned char *image_buffer)
{
byte *out;
size_t bufSize;
bufSize = image_width * image_height * 3;
out = ri.Hunk_AllocateTempMemory(bufSize);
bufSize = RE_SaveJPGToBuffer(out, bufSize, quality, image_width, image_height, image_buffer);
ri.FS_WriteFile(filename, out, bufSize);
ri.Hunk_FreeTempMemory(out);
}

View file

@ -413,18 +413,20 @@ RB_TakeScreenshotJPEG
*/
void RB_TakeScreenshotJPEG( int x, int y, int width, int height, char *fileName ) {
byte *buffer;
size_t memcount;
buffer = ri.Hunk_AllocateTempMemory(glConfig.vidWidth*glConfig.vidHeight*4);
memcount = glConfig.vidWidth * glConfig.vidHeight * 3;
qglReadPixels( x, y, width, height, GL_RGB, GL_UNSIGNED_BYTE, buffer );
buffer = ri.Hunk_AllocateTempMemory(memcount);
qglReadPixels(x, y, width, height, GL_RGB, GL_UNSIGNED_BYTE, buffer);
// gamma correct
if ( glConfig.deviceSupportsGamma ) {
R_GammaCorrect( buffer, glConfig.vidWidth * glConfig.vidHeight * 4 );
}
if(glConfig.deviceSupportsGamma)
R_GammaCorrect(buffer, memcount);
ri.FS_WriteFile( fileName, buffer, 1 ); // create path
SaveJPG( fileName, r_screenshotJpegQuality->integer, glConfig.vidWidth, glConfig.vidHeight, buffer);
RE_SaveJPG(fileName, r_screenshotJpegQuality->integer, glConfig.vidWidth, glConfig.vidHeight, buffer);
ri.Hunk_FreeTempMemory( buffer );
}
@ -717,41 +719,42 @@ RB_TakeVideoFrameCmd
const void *RB_TakeVideoFrameCmd( const void *data )
{
const videoFrameCommand_t *cmd;
int frameSize;
int i;
size_t memcount;
int i;
fbo_t *fbo;
cmd = (const videoFrameCommand_t *)data;
fbo = R_FBO_Bind(NULL);
qglReadPixels( 0, 0, cmd->width, cmd->height, GL_RGBA,
GL_UNSIGNED_BYTE, cmd->captureBuffer );
qglReadPixels(0, 0, cmd->width, cmd->height, GL_RGB,
GL_UNSIGNED_BYTE, cmd->captureBuffer);
memcount = cmd->width * cmd->height * 3;
R_FBO_Bind(fbo);
// gamma correct
if( glConfig.deviceSupportsGamma )
R_GammaCorrect( cmd->captureBuffer, cmd->width * cmd->height * 4 );
R_GammaCorrect(cmd->captureBuffer, memcount);
if( cmd->motionJpeg )
{
frameSize = SaveJPGToBuffer( cmd->encodeBuffer, r_aviMotionJpegQuality->integer,
cmd->width, cmd->height, cmd->captureBuffer );
ri.CL_WriteAVIVideoFrame( cmd->encodeBuffer, frameSize );
memcount = RE_SaveJPGToBuffer(cmd->encodeBuffer, memcount,
r_aviMotionJpegQuality->integer,
cmd->width, cmd->height, cmd->captureBuffer);
ri.CL_WriteAVIVideoFrame(cmd->encodeBuffer, memcount);
}
else
{
frameSize = cmd->width * cmd->height;
for( i = 0; i < frameSize; i++) // Pack to 24bpp and swap R and B
for(i = 0; i < memcount; i += 3) // swap R and B
{
cmd->encodeBuffer[ i*3 ] = cmd->captureBuffer[ i*4 + 2 ];
cmd->encodeBuffer[ i*3 + 1 ] = cmd->captureBuffer[ i*4 + 1 ];
cmd->encodeBuffer[ i*3 + 2 ] = cmd->captureBuffer[ i*4 ];
cmd->encodeBuffer[i] = cmd->captureBuffer[i + 2];
cmd->encodeBuffer[i + 1] = cmd->captureBuffer[i + 1];
cmd->encodeBuffer[i + 2] = cmd->captureBuffer[i];
}
ri.CL_WriteAVIVideoFrame( cmd->encodeBuffer, frameSize * 3 );
ri.CL_WriteAVIVideoFrame(cmd->encodeBuffer, memcount);
}
return (const void *)(cmd + 1);

View file

@ -2556,10 +2556,9 @@ void RE_StretchPic ( float x, float y, float w, float h,
float s1, float t1, float s2, float t2, qhandle_t hShader );
void RE_BeginFrame( stereoFrame_t stereoFrame );
void RE_EndFrame( int *frontEndMsec, int *backEndMsec );
void SaveJPG(char * filename, int quality, int image_width, int image_height, unsigned char *image_buffer);
int SaveJPGToBuffer( byte *buffer, int quality,
int image_width, int image_height,
byte *image_buffer );
void RE_SaveJPG(char * filename, int quality, int image_width, int image_height, unsigned char *image_buffer);
size_t RE_SaveJPGToBuffer(byte *buffer, size_t bufSize, int quality,
int image_width, int image_height, byte *image_buffer);
void RE_TakeVideoFrame( int width, int height,
byte *captureBuffer, byte *encodeBuffer, qboolean motionJpeg );