quake4-sdk/source/mpgame/Pvs.cpp

1440 lines
34 KiB
C++

#include "../idlib/precompiled.h"
#pragma hdrstop
#include "Game_local.h"
#define MAX_BOUNDS_AREAS 16
typedef struct pvsPassage_s {
byte * canSee; // bit set for all portals that can be seen through this passage
} pvsPassage_t;
typedef struct pvsPortal_s {
int areaNum; // area this portal leads to
idWinding * w; // winding goes counter clockwise seen from the area this portal is part of
idBounds bounds; // winding bounds
idPlane plane; // winding plane, normal points towards the area this portal leads to
pvsPassage_t * passages; // passages to portals in the area this portal leads to
bool done; // true if pvs is calculated for this portal
byte * vis; // PVS for this portal
byte * mightSee; // used during construction
} pvsPortal_t;
typedef struct pvsArea_s {
int numPortals; // number of portals in this area
idBounds bounds; // bounds of the whole area
pvsPortal_t ** portals; // array with pointers to the portals of this area
} pvsArea_t;
typedef struct pvsStack_s {
struct pvsStack_s * next; // next stack entry
byte * mightSee; // bit set for all portals that might be visible through this passage/portal stack
} pvsStack_t;
/*
================
idPVS::idPVS
================
*/
idPVS::idPVS( void ) {
int i;
numAreas = 0;
numPortals = 0;
connectedAreas = NULL;
areaQueue = NULL;
areaPVS = NULL;
for ( i = 0; i < MAX_CURRENT_PVS; i++ ) {
currentPVS[i].handle.i = -1;
currentPVS[i].handle.h = 0;
currentPVS[i].pvs = NULL;
}
pvsAreas = NULL;
pvsPortals = NULL;
}
/*
================
idPVS::~idPVS
================
*/
idPVS::~idPVS( void ) {
Shutdown();
}
/*
================
idPVS::GetPortalCount
================
*/
int idPVS::GetPortalCount( void ) const {
int i, na, np;
na = gameRenderWorld->NumAreas();
np = 0;
for ( i = 0; i < na; i++ ) {
np += gameRenderWorld->NumPortalsInArea( i );
}
return np;
}
/*
================
idPVS::CreatePVSData
================
*/
void idPVS::CreatePVSData( void ) {
int i, j, n, cp;
exitPortal_t portal;
pvsArea_t *area;
pvsPortal_t *p, **portalPtrs;
if ( !numPortals ) {
return;
}
pvsPortals = new pvsPortal_t[numPortals];
pvsAreas = new pvsArea_t[numAreas];
memset( pvsAreas, 0, numAreas * sizeof( *pvsAreas ) );
cp = 0;
portalPtrs = new pvsPortal_t*[numPortals];
for ( i = 0; i < numAreas; i++ ) {
area = &pvsAreas[i];
area->bounds.Clear();
area->portals = portalPtrs + cp;
n = gameRenderWorld->NumPortalsInArea( i );
for ( j = 0; j < n; j++ ) {
portal = gameRenderWorld->GetPortal( i, j );
p = &pvsPortals[cp++];
// the winding goes counter clockwise seen from this area
p->w = portal.w->Copy();
p->areaNum = portal.areas[1]; // area[1] is always the area the portal leads to
p->vis = new byte[portalVisBytes];
memset( p->vis, 0, portalVisBytes );
p->mightSee = new byte[portalVisBytes];
memset( p->mightSee, 0, portalVisBytes );
p->w->GetBounds( p->bounds );
p->w->GetPlane( p->plane );
// plane normal points to outside the area
p->plane = -p->plane;
// no PVS calculated for this portal yet
p->done = false;
area->portals[area->numPortals] = p;
area->numPortals++;
area->bounds += p->bounds;
}
}
}
/*
================
idPVS::DestroyPVSData
================
*/
void idPVS::DestroyPVSData( void ) {
int i;
if ( !pvsAreas ) {
return;
}
// delete portal pointer array
delete[] pvsAreas[0].portals;
// delete all areas
delete[] pvsAreas;
pvsAreas = NULL;
// delete portal data
for ( i = 0; i < numPortals; i++ ) {
delete[] pvsPortals[i].vis;
delete[] pvsPortals[i].mightSee;
delete pvsPortals[i].w;
}
// delete portals
delete[] pvsPortals;
pvsPortals = NULL;
}
/*
================
idPVS::FloodFrontPortalPVS_r
================
*/
void idPVS::FloodFrontPortalPVS_r( pvsPortal_t *portal, int areaNum ) const {
int i, n;
pvsArea_t *area;
pvsPortal_t *p;
area = &pvsAreas[ areaNum ];
for ( i = 0; i < area->numPortals; i++ ) {
p = area->portals[i];
n = p - pvsPortals;
// don't flood through if this portal is not at the front
if ( !( portal->mightSee[ n>>3 ] & (1 << (n&7)) ) ) {
continue;
}
// don't flood through if already visited this portal
if ( portal->vis[ n>>3 ] & (1 << (n&7)) ) {
continue;
}
// this portal might be visible
portal->vis[ n>>3 ] |= (1 << (n&7));
// flood through the portal
FloodFrontPortalPVS_r( portal, p->areaNum );
}
}
/*
================
idPVS::FrontPortalPVS
================
*/
void idPVS::FrontPortalPVS( void ) const {
int i, j, k, n, p, side1, side2, areaSide;
pvsPortal_t *p1, *p2;
pvsArea_t *area;
for ( i = 0; i < numPortals; i++ ) {
p1 = &pvsPortals[i];
for ( j = 0; j < numAreas; j++ ) {
area = &pvsAreas[j];
areaSide = side1 = area->bounds.PlaneSide( p1->plane );
// if the whole area is at the back side of the portal
if ( areaSide == PLANESIDE_BACK ) {
continue;
}
for ( p = 0; p < area->numPortals; p++ ) {
p2 = area->portals[p];
// if we the whole area is not at the front we need to check
if ( areaSide != PLANESIDE_FRONT ) {
// if the second portal is completely at the back side of the first portal
side1 = p2->bounds.PlaneSide( p1->plane );
if ( side1 == PLANESIDE_BACK ) {
continue;
}
}
// if the first portal is completely at the front of the second portal
side2 = p1->bounds.PlaneSide( p2->plane );
if ( side2 == PLANESIDE_FRONT ) {
continue;
}
// if the second portal is not completely at the front of the first portal
if ( side1 != PLANESIDE_FRONT ) {
// more accurate check
for ( k = 0; k < p2->w->GetNumPoints(); k++ ) {
// if more than an epsilon at the front side
if ( p1->plane.Side( (*p2->w)[k].ToVec3(), ON_EPSILON ) == PLANESIDE_FRONT ) {
break;
}
}
if ( k >= p2->w->GetNumPoints() ) {
continue; // second portal is at the back of the first portal
}
}
// if the first portal is not completely at the back side of the second portal
if ( side2 != PLANESIDE_BACK ) {
// more accurate check
for ( k = 0; k < p1->w->GetNumPoints(); k++ ) {
// if more than an epsilon at the back side
if ( p2->plane.Side( (*p1->w)[k].ToVec3(), ON_EPSILON ) == PLANESIDE_BACK ) {
break;
}
}
if ( k >= p1->w->GetNumPoints() ) {
continue; // first portal is at the front of the second portal
}
}
// the portal might be visible at the front
n = p2 - pvsPortals;
p1->mightSee[ n >> 3 ] |= 1 << (n&7);
}
}
}
// flood the front portal pvs for all portals
for ( i = 0; i < numPortals; i++ ) {
p1 = &pvsPortals[i];
FloodFrontPortalPVS_r( p1, p1->areaNum );
}
}
/*
===============
idPVS::FloodPassagePVS_r
===============
*/
pvsStack_t *idPVS::FloodPassagePVS_r( pvsPortal_t *source, const pvsPortal_t *portal, pvsStack_t *prevStack ) const {
int i, j, n, m;
pvsPortal_t *p;
pvsArea_t *area;
pvsStack_t *stack;
pvsPassage_t *passage;
long *sourceVis, *passageVis, *portalVis, *mightSee, *prevMightSee, more;
area = &pvsAreas[portal->areaNum];
stack = prevStack->next;
// if no next stack entry allocated
if ( !stack ) {
stack = reinterpret_cast<pvsStack_t*>(new byte[sizeof(pvsStack_t) + portalVisBytes]);
stack->mightSee = (reinterpret_cast<byte *>(stack)) + sizeof(pvsStack_t);
stack->next = NULL;
prevStack->next = stack;
}
// check all portals for flooding into other areas
for ( i = 0; i < area->numPortals; i++ ) {
passage = &portal->passages[i];
// if this passage is completely empty
if ( !passage->canSee ) {
continue;
}
p = area->portals[i];
n = p - pvsPortals;
// if this portal cannot be seen through our current portal/passage stack
if ( !( prevStack->mightSee[n >> 3] & (1 << (n & 7)) ) ) {
continue;
}
// mark the portal as visible
source->vis[n >> 3] |= (1 << (n & 7));
// get pointers to vis data
prevMightSee = reinterpret_cast<long *>(prevStack->mightSee);
passageVis = reinterpret_cast<long *>(passage->canSee);
sourceVis = reinterpret_cast<long *>(source->vis);
mightSee = reinterpret_cast<long *>(stack->mightSee);
more = 0;
// use the portal PVS if it has been calculated
if ( p->done ) {
portalVis = reinterpret_cast<long *>(p->vis);
for ( j = 0; j < portalVisLongs; j++ ) {
// get new PVS which is decreased by going through this passage
m = *prevMightSee++ & *passageVis++ & *portalVis++;
// check if anything might be visible through this passage that wasn't yet visible
more |= (m & ~(*sourceVis++));
// store new PVS
*mightSee++ = m;
}
}
else {
// the p->mightSee is implicitely stored in the passageVis
for ( j = 0; j < portalVisLongs; j++ ) {
// get new PVS which is decreased by going through this passage
m = *prevMightSee++ & *passageVis++;
// check if anything might be visible through this passage that wasn't yet visible
more |= (m & ~(*sourceVis++));
// store new PVS
*mightSee++ = m;
}
}
// if nothing more can be seen
if ( !more ) {
continue;
}
// go through the portal
stack->next = FloodPassagePVS_r( source, p, stack );
}
return stack;
}
/*
===============
idPVS::PassagePVS
===============
*/
void idPVS::PassagePVS( void ) const {
int i;
pvsPortal_t *source;
pvsStack_t *stack, *s;
// create the passages
CreatePassages();
// allocate first stack entry
stack = reinterpret_cast<pvsStack_t*>(new byte[sizeof(pvsStack_t) + portalVisBytes]);
stack->mightSee = (reinterpret_cast<byte *>(stack)) + sizeof(pvsStack_t);
stack->next = NULL;
// calculate portal PVS by flooding through the passages
for ( i = 0; i < numPortals; i++ ) {
source = &pvsPortals[i];
memset( source->vis, 0, portalVisBytes );
// RAVEN BEGIN
// JSinger: Changed to call optimized memcpy
SIMDProcessor->Memcpy( stack->mightSee, source->mightSee, portalVisBytes );
// RAVEN END
FloodPassagePVS_r( source, source, stack );
source->done = true;
}
// free the allocated stack
for ( s = stack; s; s = stack ) {
stack = stack->next;
delete[] s;
}
// destroy the passages
DestroyPassages();
}
/*
===============
idPVS::AddPassageBoundaries
===============
*/
void idPVS::AddPassageBoundaries( const idWinding &source, const idWinding &pass, bool flipClip, idPlane *bounds, int &numBounds, int maxBounds ) const {
int i, j, k, l;
idVec3 v1, v2, normal;
float d, dist;
bool flipTest, front;
idPlane plane;
// check all combinations
for ( i = 0; i < source.GetNumPoints(); i++ ) {
l = (i + 1) % source.GetNumPoints();
v1 = source[l].ToVec3() - source[i].ToVec3();
// find a vertex of pass that makes a plane that puts all of the
// vertices of pass on the front side and all of the vertices of
// source on the back side
for ( j = 0; j < pass.GetNumPoints(); j++ ) {
v2 = pass[j].ToVec3() - source[i].ToVec3();
normal = v1.Cross( v2 );
if ( normal.Normalize() < 0.01f ) {
continue;
}
dist = normal * pass[j].ToVec3();
//
// find out which side of the generated seperating plane has the
// source portal
//
flipTest = false;
for ( k = 0; k < source.GetNumPoints(); k++ ) {
if ( k == i || k == l ) {
continue;
}
d = source[k].ToVec3() * normal - dist;
if ( d < -ON_EPSILON ) {
// source is on the negative side, so we want all
// pass and target on the positive side
flipTest = false;
break;
}
else if ( d > ON_EPSILON ) {
// source is on the positive side, so we want all
// pass and target on the negative side
flipTest = true;
break;
}
}
if ( k == source.GetNumPoints() ) {
continue; // planar with source portal
}
// flip the normal if the source portal is backwards
if (flipTest) {
normal = -normal;
dist = -dist;
}
// if all of the pass portal points are now on the positive side,
// this is the seperating plane
front = false;
for ( k = 0; k < pass.GetNumPoints(); k++ ) {
if ( k == j ) {
continue;
}
d = pass[k].ToVec3() * normal - dist;
if ( d < -ON_EPSILON ) {
break;
}
else if ( d > ON_EPSILON ) {
front = true;
}
}
if ( k < pass.GetNumPoints() ) {
continue; // points on negative side, not a seperating plane
}
if ( !front ) {
continue; // planar with seperating plane
}
// flip the normal if we want the back side
if ( flipClip ) {
plane.SetNormal( -normal );
plane.SetDist( -dist );
}
else {
plane.SetNormal( normal );
plane.SetDist( dist );
}
// check if the plane is already a passage boundary
for ( k = 0; k < numBounds; k++ ) {
if ( plane.Compare( bounds[k], 0.001f, 0.01f ) ) {
break;
}
}
if ( k < numBounds ) {
break;
}
if ( numBounds >= maxBounds ) {
gameLocal.Warning( "max passage boundaries." );
break;
}
bounds[numBounds] = plane;
numBounds++;
break;
}
}
}
/*
================
idPVS::CreatePassages
================
*/
#define MAX_PASSAGE_BOUNDS 128
void idPVS::CreatePassages( void ) const {
int i, j, l, n, numBounds, front, passageMemory, byteNum, bitNum;
int sides[MAX_PASSAGE_BOUNDS];
idPlane passageBounds[MAX_PASSAGE_BOUNDS];
pvsPortal_t *source, *target, *p;
pvsArea_t *area;
pvsPassage_t *passage;
idFixedWinding winding;
byte canSee, mightSee, bit;
passageMemory = 0;
for ( i = 0; i < numPortals; i++ ) {
source = &pvsPortals[i];
area = &pvsAreas[source->areaNum];
source->passages = new pvsPassage_t[area->numPortals];
for ( j = 0; j < area->numPortals; j++ ) {
target = area->portals[j];
n = target - pvsPortals;
passage = &source->passages[j];
// if the source portal cannot see this portal
if ( !( source->mightSee[ n>>3 ] & (1 << (n&7)) ) ) {
// not all portals in the area have to be visible because areas are not necesarily convex
// also no passage has to be created for the portal which is the opposite of the source
passage->canSee = NULL;
continue;
}
passage->canSee = new byte[portalVisBytes];
passageMemory += portalVisBytes;
// boundary plane normals point inwards
numBounds = 0;
AddPassageBoundaries( *(source->w), *(target->w), false, passageBounds, numBounds, MAX_PASSAGE_BOUNDS );
AddPassageBoundaries( *(target->w), *(source->w), true, passageBounds, numBounds, MAX_PASSAGE_BOUNDS );
// get all portals visible through this passage
for ( byteNum = 0; byteNum < portalVisBytes; byteNum++) {
canSee = 0;
mightSee = source->mightSee[byteNum] & target->mightSee[byteNum];
// go through eight portals at a time to speed things up
for ( bitNum = 0; bitNum < 8; bitNum++ ) {
bit = 1 << bitNum;
if ( !( mightSee & bit ) ) {
continue;
}
p = &pvsPortals[(byteNum << 3) + bitNum];
if ( p->areaNum == source->areaNum ) {
continue;
}
for ( front = 0, l = 0; l < numBounds; l++ ) {
sides[l] = p->bounds.PlaneSide( passageBounds[l] );
// if completely at the back of the passage bounding plane
if ( sides[l] == PLANESIDE_BACK ) {
break;
}
// if completely at the front
if ( sides[l] == PLANESIDE_FRONT ) {
front++;
}
}
// if completely outside the passage
if ( l < numBounds ) {
continue;
}
// if not at the front of all bounding planes and thus not completely inside the passage
if ( front != numBounds ) {
winding = *p->w;
for ( l = 0; l < numBounds; l++ ) {
// only clip if the winding possibly crosses this plane
if ( sides[l] != PLANESIDE_CROSS ) {
continue;
}
// clip away the part at the back of the bounding plane
winding.ClipInPlace( passageBounds[l] );
// if completely clipped away
if ( !winding.GetNumPoints() ) {
break;
}
}
// if completely outside the passage
if ( l < numBounds ) {
continue;
}
}
canSee |= bit;
}
// store results of all eight portals
passage->canSee[byteNum] = canSee;
}
// can always see the target portal
passage->canSee[n >> 3] |= (1 << (n&7));
}
}
if ( passageMemory < 1024 ) {
gameLocal.Printf( "%5d bytes passage memory used to build PVS\n", passageMemory );
}
else {
gameLocal.Printf( "%5d KB passage memory used to build PVS\n", passageMemory>>10 );
}
}
/*
================
idPVS::DestroyPassages
================
*/
void idPVS::DestroyPassages( void ) const {
int i, j;
pvsPortal_t *p;
pvsArea_t *area;
for ( i = 0; i < numPortals; i++ ) {
p = &pvsPortals[i];
area = &pvsAreas[p->areaNum];
for ( j = 0; j < area->numPortals; j++ ) {
if ( p->passages[j].canSee ) {
delete[] p->passages[j].canSee;
}
}
delete[] p->passages;
}
}
/*
================
idPVS::CopyPortalPVSToMightSee
================
*/
void idPVS::CopyPortalPVSToMightSee( void ) const {
int i;
pvsPortal_t *p;
for ( i = 0; i < numPortals; i++ ) {
p = &pvsPortals[i];
// RAVEN BEGIN
// JSinger: Changed to call optimized memcpy
SIMDProcessor->Memcpy( p->mightSee, p->vis, portalVisBytes );
// RAVEN BEGIN
}
}
/*
================
idPVS::AreaPVSFromPortalPVS
================
*/
int idPVS::AreaPVSFromPortalPVS( void ) const {
int i, j, k, areaNum, totalVisibleAreas;
long *p1, *p2;
byte *pvs, *portalPVS;
pvsArea_t *area;
totalVisibleAreas = 0;
if ( !numPortals ) {
return totalVisibleAreas;
}
memset( areaPVS, 0, numAreas * areaVisBytes );
for ( i = 0; i < numAreas; i++ ) {
area = &pvsAreas[i];
pvs = areaPVS + i * areaVisBytes;
// the area is visible to itself
pvs[ i >> 3 ] |= 1 << (i & 7);
if ( !area->numPortals ) {
continue;
}
// store the PVS of all portals in this area at the first portal
for ( j = 1; j < area->numPortals; j++ ) {
p1 = reinterpret_cast<long *>(area->portals[0]->vis);
p2 = reinterpret_cast<long *>(area->portals[j]->vis);
for ( k = 0; k < portalVisLongs; k++ ) {
*p1++ |= *p2++;
}
}
// the portals of this area are always visible
for ( j = 0; j < area->numPortals; j++ ) {
k = area->portals[j] - pvsPortals;
area->portals[0]->vis[ k >> 3 ] |= 1 << (k & 7);
}
// set all areas to visible that can be seen from the portals of this area
portalPVS = area->portals[0]->vis;
for ( j = 0; j < numPortals; j++ ) {
// if this portal is visible
if ( portalPVS[j>>3] & (1 << (j&7)) ) {
areaNum = pvsPortals[j].areaNum;
pvs[ areaNum >> 3 ] |= 1 << (areaNum & 7);
}
}
// count the number of visible areas
for ( j = 0; j < numAreas; j++ ) {
if ( pvs[j>>3] & (1 << (j&7)) ) {
totalVisibleAreas++;
}
}
}
return totalVisibleAreas;
}
/*
================
idPVS::Init
================
*/
void idPVS::Init( void ) {
int totalVisibleAreas;
Shutdown();
numAreas = gameRenderWorld->NumAreas();
if ( numAreas <= 0 ) {
return;
}
connectedAreas = new bool[numAreas];
areaQueue = new int[numAreas];
areaVisBytes = ( ((numAreas+31)&~31) >> 3);
areaVisLongs = areaVisBytes/sizeof(long);
areaPVS = new byte[numAreas * areaVisBytes];
memset( areaPVS, 0xFF, numAreas * areaVisBytes );
numPortals = GetPortalCount();
portalVisBytes = ( ((numPortals+31)&~31) >> 3);
portalVisLongs = portalVisBytes/sizeof(long);
for ( int i = 0; i < MAX_CURRENT_PVS; i++ ) {
currentPVS[i].handle.i = -1;
currentPVS[i].handle.h = 0;
currentPVS[i].pvs = new byte[areaVisBytes];
memset( currentPVS[i].pvs, 0, areaVisBytes );
}
idTimer timer;
timer.Start();
CreatePVSData();
FrontPortalPVS();
CopyPortalPVSToMightSee();
PassagePVS();
totalVisibleAreas = AreaPVSFromPortalPVS();
DestroyPVSData();
timer.Stop();
#if 0
// bkreimeier20060123 - per MrE's recommendation, used this in Wolf
// if the PVS is not relexive for (i,j), we assume floating point errors
// and assume a false positive - remove either from either
for ( int i=0; i<numAreas; i++ ) {
byte* const pvs_i = areaPVS + i * areaVisBytes;
for ( int j=0; j<numAreas; j++ ) {
byte* const pvs_j = areaPVS + j * areaVisBytes;
const bool j_in_i = (pvs_i[j>>3] & (1<<(j&7)));
const bool i_in_j = (pvs_j[i>>3] & (1<<(i&7)));
if ( i_in_j!=j_in_i ) {
pvs_i[j>>3] &= ~(1 << (j&7));
pvs_j[i>>3] &= ~(1 << (i&7));
}
}
}
#endif
gameLocal.Printf( "%5.0f msec to calculate PVS\n", timer.Milliseconds() );
gameLocal.Printf( "%5d areas\n", numAreas );
gameLocal.Printf( "%5d portals\n", numPortals );
// RAVEN BEGIN
// rjohnson: fix for div by 0
if( numAreas ) {
gameLocal.Printf( "%5d areas visible on average\n", totalVisibleAreas / numAreas );
}
// RAVEN END
if ( numAreas * areaVisBytes < 1024 ) {
gameLocal.Printf( "%5d bytes PVS data\n", numAreas * areaVisBytes );
}
else {
gameLocal.Printf( "%5d KB PVS data\n", (numAreas * areaVisBytes) >> 10 );
}
}
/*
================
idPVS::Shutdown
================
*/
void idPVS::Shutdown( void ) {
if ( connectedAreas ) {
delete[] connectedAreas;
connectedAreas = NULL;
}
if ( areaQueue ) {
delete[] areaQueue;
areaQueue = NULL;
}
if ( areaPVS ) {
delete[] areaPVS;
areaPVS = NULL;
}
if ( currentPVS ) {
for ( int i = 0; i < MAX_CURRENT_PVS; i++ ) {
// RAVEN BEGIN
// jsinger: modified to check to make sure the pointers have a value before attempting to delete
// them. This prevents a call through the unified allocator before it has been initialized
if(currentPVS[i].pvs)
{
delete[] currentPVS[i].pvs;
}
// RAVEN END
currentPVS[i].pvs = NULL;
}
}
}
/*
================
idPVS::GetConnectedAreas
assumes the 'areas' array is initialized to false
================
*/
void idPVS::GetConnectedAreas( int srcArea, bool *areas ) const {
int curArea, nextArea;
int queueStart, queueEnd;
int i, n;
exitPortal_t portal;
queueStart = -1;
queueEnd = 0;
areas[srcArea] = true;
for ( curArea = srcArea; queueStart < queueEnd; curArea = areaQueue[++queueStart] ) {
n = gameRenderWorld->NumPortalsInArea( curArea );
for ( i = 0; i < n; i++ ) {
portal = gameRenderWorld->GetPortal( curArea, i );
if ( portal.blockingBits & PS_BLOCK_VIEW ) {
continue;
}
// area[1] is always the area the portal leads to
nextArea = portal.areas[1];
// if already visited this area
if ( areas[nextArea] ) {
continue;
}
// add area to queue
areaQueue[queueEnd++] = nextArea;
areas[nextArea] = true;
}
}
}
/*
================
idPVS::GetPVSArea
================
*/
int idPVS::GetPVSArea( const idVec3 &point ) const {
return gameRenderWorld->PointInArea( point );
}
/*
================
idPVS::GetPVSAreas
================
*/
int idPVS::GetPVSAreas( const idBounds &bounds, int *areas, int maxAreas ) const {
return gameRenderWorld->BoundsInAreas( bounds, areas, maxAreas );
}
/*
================
idPVS::SetupCurrentPVS
================
*/
pvsHandle_t idPVS::SetupCurrentPVS( const idVec3 &source, const pvsType_t type ) const {
int sourceArea;
sourceArea = gameRenderWorld->PointInArea( source );
return SetupCurrentPVS( sourceArea, type );
}
/*
================
idPVS::SetupCurrentPVS
================
*/
pvsHandle_t idPVS::SetupCurrentPVS( const idBounds &source, const pvsType_t type ) const {
int numSourceAreas, sourceAreas[MAX_BOUNDS_AREAS];
numSourceAreas = gameRenderWorld->BoundsInAreas( source, sourceAreas, MAX_BOUNDS_AREAS );
return SetupCurrentPVS( sourceAreas, numSourceAreas, type );
}
/*
================
idPVS::SetupCurrentPVS
================
*/
pvsHandle_t idPVS::SetupCurrentPVS( const int sourceArea, const pvsType_t type ) const {
int i;
pvsHandle_t handle;
handle = AllocCurrentPVS( *reinterpret_cast<const unsigned int *>(&sourceArea) );
if ( sourceArea < 0 || sourceArea >= numAreas ) {
memset( currentPVS[handle.i].pvs, 0, areaVisBytes );
return handle;
}
if ( type != PVS_CONNECTED_AREAS ) {
// RAVEN BEGIN
// JSinger: Changed to call optimized memcpy
SIMDProcessor->Memcpy( currentPVS[handle.i].pvs, areaPVS + sourceArea * areaVisBytes, areaVisBytes );
// RAVEN END
} else {
memset( currentPVS[handle.i].pvs, -1, areaVisBytes );
}
if ( type == PVS_ALL_PORTALS_OPEN ) {
return handle;
}
memset( connectedAreas, 0, numAreas * sizeof( *connectedAreas ) );
GetConnectedAreas( sourceArea, connectedAreas );
for ( i = 0; i < numAreas; i++ ) {
if ( !connectedAreas[i] ) {
currentPVS[handle.i].pvs[i>>3] &= ~(1 << (i&7));
}
}
return handle;
}
/*
================
idPVS::SetupCurrentPVS
================
*/
pvsHandle_t idPVS::SetupCurrentPVS( const int *sourceAreas, const int numSourceAreas, const pvsType_t type ) const {
int i, j;
unsigned int h;
long *vis, *pvs;
pvsHandle_t handle;
h = 0;
for ( i = 0; i < numSourceAreas; i++ ) {
h ^= *reinterpret_cast<const unsigned int *>(&sourceAreas[i]);
}
handle = AllocCurrentPVS( h );
if ( !numSourceAreas || sourceAreas[0] < 0 || sourceAreas[0] >= numAreas) {
memset( currentPVS[handle.i].pvs, 0, areaVisBytes );
return handle;
}
if ( type != PVS_CONNECTED_AREAS ) {
// merge PVS of all areas the source is in
// RAVEN BEGIN
// JSinger: Changed to call optimized memcpy
SIMDProcessor->Memcpy( currentPVS[handle.i].pvs, areaPVS + sourceAreas[0] * areaVisBytes, areaVisBytes );
// RAVEN END
for ( i = 1; i < numSourceAreas; i++ ) {
assert( sourceAreas[i] >= 0 && sourceAreas[i] < numAreas );
vis = reinterpret_cast<long*>(areaPVS + sourceAreas[i] * areaVisBytes);
pvs = reinterpret_cast<long*>(currentPVS[handle.i].pvs);
for ( j = 0; j < areaVisLongs; j++ ) {
*pvs++ |= *vis++;
}
}
} else {
memset( currentPVS[handle.i].pvs, -1, areaVisBytes );
}
if ( type == PVS_ALL_PORTALS_OPEN ) {
return handle;
}
memset( connectedAreas, 0, numAreas * sizeof( *connectedAreas ) );
// get all areas connected to any of the source areas
for ( i = 0; i < numSourceAreas; i++ ) {
if ( !connectedAreas[sourceAreas[i]] ) {
GetConnectedAreas( sourceAreas[i], connectedAreas );
}
}
// remove unconnected areas from the PVS
for ( i = 0; i < numAreas; i++ ) {
if ( !connectedAreas[i] ) {
currentPVS[handle.i].pvs[i>>3] &= ~(1 << (i&7));
}
}
return handle;
}
/*
================
idPVS::MergeCurrentPVS
================
*/
pvsHandle_t idPVS::MergeCurrentPVS( pvsHandle_t pvs1, pvsHandle_t pvs2 ) const {
int i;
long *pvs1Ptr, *pvs2Ptr, *ptr;
pvsHandle_t handle;
if ( pvs1.i < 0 || pvs1.i >= MAX_CURRENT_PVS || pvs1.h != currentPVS[pvs1.i].handle.h ||
pvs2.i < 0 || pvs2.i >= MAX_CURRENT_PVS || pvs2.h != currentPVS[pvs2.i].handle.h ) {
gameLocal.Error( "idPVS::MergeCurrentPVS: invalid handle" );
}
handle = AllocCurrentPVS( pvs1.h ^ pvs2.h );
ptr = reinterpret_cast<long*>(currentPVS[handle.i].pvs);
pvs1Ptr = reinterpret_cast<long*>(currentPVS[pvs1.i].pvs);
pvs2Ptr = reinterpret_cast<long*>(currentPVS[pvs2.i].pvs);
for ( i = 0; i < areaVisLongs; i++ ) {
*ptr++ = *pvs1Ptr++ | *pvs2Ptr++;
}
return handle;
}
/*
================
idPVS::AllocCurrentPVS
================
*/
pvsHandle_t idPVS::AllocCurrentPVS( unsigned int h ) const {
int i;
pvsHandle_t handle;
for ( i = 0; i < MAX_CURRENT_PVS; i++ ) {
if ( currentPVS[i].handle.i == -1 ) {
currentPVS[i].handle.i = i;
currentPVS[i].handle.h = h;
return currentPVS[i].handle;
}
}
gameLocal.Error( "idPVS::AllocCurrentPVS: no free PVS left" );
handle.i = -1;
handle.h = 0;
return handle;
}
/*
================
idPVS::FreeCurrentPVS
================
*/
void idPVS::FreeCurrentPVS( pvsHandle_t handle ) const {
if ( handle.i < 0 || handle.i >= MAX_CURRENT_PVS || handle.h != currentPVS[handle.i].handle.h ) {
gameLocal.Error( "idPVS::FreeCurrentPVS: invalid handle" );
}
currentPVS[handle.i].handle.i = -1;
}
/*
================
idPVS::InCurrentPVS
================
*/
bool idPVS::InCurrentPVS( const pvsHandle_t handle, const idVec3 &target ) const {
int targetArea;
if ( handle.i < 0 || handle.i >= MAX_CURRENT_PVS ||
handle.h != currentPVS[handle.i].handle.h ) {
gameLocal.Error( "idPVS::InCurrentPVS: invalid handle" );
}
targetArea = gameRenderWorld->PointInArea( target );
if ( targetArea == -1 ) {
return false;
}
return ( ( currentPVS[handle.i].pvs[targetArea>>3] & (1 << (targetArea&7)) ) != 0 );
}
/*
================
idPVS::InCurrentPVS
================
*/
bool idPVS::InCurrentPVS( const pvsHandle_t handle, const idBounds &target ) const {
int i, numTargetAreas, targetAreas[MAX_BOUNDS_AREAS];
if ( handle.i < 0 || handle.i >= MAX_CURRENT_PVS ||
handle.h != currentPVS[handle.i].handle.h ) {
gameLocal.Error( "idPVS::InCurrentPVS: invalid handle" );
}
numTargetAreas = gameRenderWorld->BoundsInAreas( target, targetAreas, MAX_BOUNDS_AREAS );
for ( i = 0; i < numTargetAreas; i++ ) {
if ( currentPVS[handle.i].pvs[targetAreas[i]>>3] & (1 << (targetAreas[i]&7)) ) {
return true;
}
}
return false;
}
/*
================
idPVS::InCurrentPVS
================
*/
bool idPVS::InCurrentPVS( const pvsHandle_t handle, const int targetArea ) const {
if ( handle.i < 0 || handle.i >= MAX_CURRENT_PVS ||
handle.h != currentPVS[handle.i].handle.h ) {
gameLocal.Error( "idPVS::InCurrentPVS: invalid handle" );
}
if ( targetArea < 0 || targetArea >= numAreas ) {
return false;
}
return ( ( currentPVS[handle.i].pvs[targetArea>>3] & (1 << (targetArea&7)) ) != 0 );
}
/*
================
idPVS::InCurrentPVS
================
*/
bool idPVS::InCurrentPVS( const pvsHandle_t handle, const int *targetAreas, int numTargetAreas ) const {
int i;
if ( handle.i < 0 || handle.i >= MAX_CURRENT_PVS ||
handle.h != currentPVS[handle.i].handle.h ) {
gameLocal.Error( "idPVS::InCurrentPVS: invalid handle" );
}
for ( i = 0; i < numTargetAreas; i++ ) {
if ( targetAreas[i] < 0 || targetAreas[i] >= numAreas ) {
continue;
}
if ( currentPVS[handle.i].pvs[targetAreas[i]>>3] & (1 << (targetAreas[i]&7)) ) {
return true;
}
}
return false;
}
/*
================
idPVS::DrawPVS
================
*/
void idPVS::DrawPVS( const idVec3 &source, const pvsType_t type ) const {
int i, j, k, numPoints, n, sourceArea;
exitPortal_t portal;
idPlane plane;
idVec3 offset;
idVec4 *color;
pvsHandle_t handle;
sourceArea = gameRenderWorld->PointInArea( source );
if ( sourceArea == -1 ) {
return;
}
handle = SetupCurrentPVS( source, type );
for ( j = 0; j < numAreas; j++ ) {
if ( !( currentPVS[handle.i].pvs[j>>3] & (1 << (j&7)) ) ) {
continue;
}
if ( j == sourceArea ) {
color = &colorRed;
}
else {
color = &colorCyan;
}
n = gameRenderWorld->NumPortalsInArea( j );
// draw all the portals of the area
for ( i = 0; i < n; i++ ) {
portal = gameRenderWorld->GetPortal( j, i );
numPoints = portal.w->GetNumPoints();
portal.w->GetPlane( plane );
offset = plane.Normal() * 4.0f;
for ( k = 0; k < numPoints; k++ ) {
gameRenderWorld->DebugLine( *color, (*portal.w)[k].ToVec3() + offset, (*portal.w)[(k+1)%numPoints].ToVec3() + offset );
}
}
}
FreeCurrentPVS( handle );
}
/*
================
idPVS::DrawPVS
================
*/
void idPVS::DrawPVS( const idBounds &source, const pvsType_t type ) const {
int i, j, k, numPoints, n, num, areas[MAX_BOUNDS_AREAS];
exitPortal_t portal;
idPlane plane;
idVec3 offset;
idVec4 *color;
pvsHandle_t handle;
num = gameRenderWorld->BoundsInAreas( source, areas, MAX_BOUNDS_AREAS );
if ( !num ) {
return;
}
handle = SetupCurrentPVS( source, type );
for ( j = 0; j < numAreas; j++ ) {
if ( !( currentPVS[handle.i].pvs[j>>3] & (1 << (j&7)) ) ) {
continue;
}
for ( i = 0; i < num; i++ ) {
if ( j == areas[i] ) {
break;
}
}
if ( i < num ) {
color = &colorRed;
}
else {
color = &colorCyan;
}
n = gameRenderWorld->NumPortalsInArea( j );
// draw all the portals of the area
for ( i = 0; i < n; i++ ) {
portal = gameRenderWorld->GetPortal( j, i );
numPoints = portal.w->GetNumPoints();
portal.w->GetPlane( plane );
offset = plane.Normal() * 4.0f;
for ( k = 0; k < numPoints; k++ ) {
gameRenderWorld->DebugLine( *color, (*portal.w)[k].ToVec3() + offset, (*portal.w)[(k+1)%numPoints].ToVec3() + offset );
}
}
}
FreeCurrentPVS( handle );
}
/*
================
idPVS::DrawPVS
================
*/
void idPVS::DrawCurrentPVS( const pvsHandle_t handle, const idVec3 &source ) const {
int i, j, k, numPoints, n, sourceArea;
exitPortal_t portal;
idPlane plane;
idVec3 offset;
idVec4 *color;
if ( handle.i < 0 || handle.i >= MAX_CURRENT_PVS ||
handle.h != currentPVS[handle.i].handle.h ) {
gameLocal.Error( "idPVS::DrawCurrentPVS: invalid handle" );
}
sourceArea = gameRenderWorld->PointInArea( source );
if ( sourceArea == -1 ) {
return;
}
for ( j = 0; j < numAreas; j++ ) {
if ( !( currentPVS[handle.i].pvs[j>>3] & (1 << (j&7)) ) ) {
continue;
}
if ( j == sourceArea ) {
color = &colorRed;
}
else {
color = &colorCyan;
}
n = gameRenderWorld->NumPortalsInArea( j );
// draw all the portals of the area
for ( i = 0; i < n; i++ ) {
portal = gameRenderWorld->GetPortal( j, i );
numPoints = portal.w->GetNumPoints();
portal.w->GetPlane( plane );
offset = plane.Normal() * 4.0f;
for ( k = 0; k < numPoints; k++ ) {
gameRenderWorld->DebugLine( *color, (*portal.w)[k].ToVec3() + offset, (*portal.w)[(k+1)%numPoints].ToVec3() + offset );
}
}
}
}
#if ASYNC_WRITE_PVS
/*
===================
idPVS::WritePVS
===================
*/
void idPVS::WritePVS( const pvsHandle_t handle, idBitMsg &msg ) {
msg.WriteData( currentPVS[ handle.i ].pvs, areaVisBytes );
}
/*
===================
idPVS::ReadPVS
===================
*/
void idPVS::ReadPVS( const pvsHandle_t handle, const idBitMsg &msg ) {
byte l_pvs[ 256 ];
int i;
assert( areaVisBytes <= 256 );
msg.ReadData( l_pvs, areaVisBytes );
if ( memcmp( l_pvs, currentPVS[ handle.i ].pvs, areaVisBytes ) ) {
common->Printf( "PVS not matching ( %d areaVisBytes ) - server then client:\n", areaVisBytes );
for ( i = 0; i < areaVisBytes; i++ ) {
common->Printf( "%x ", l_pvs[ i ] );
}
common->Printf( "\n" );
for ( i = 0; i < areaVisBytes; i++ ) {
common->Printf( "%x ", currentPVS[ handle.i ].pvs[ i ] );
}
common->Printf( "\n" );
}
}
#endif