quake4-sdk/source/idlib/math/Math.cpp

274 lines
7.5 KiB
C++
Raw Permalink Normal View History

2007-06-15 00:00:00 +00:00
#include "../precompiled.h"
#pragma hdrstop
const float idMath::PI = 3.14159265358979323846f;
const float idMath::TWO_PI = 2.0f * PI;
const float idMath::HALF_PI = 0.5f * PI;
const float idMath::ONEFOURTH_PI = 0.25f * PI;
const float idMath::E = 2.71828182845904523536f;
const float idMath::SQRT_TWO = 1.41421356237309504880f;
const float idMath::SQRT_THREE = 1.73205080756887729352f;
// RAVEN BEGIN
const float idMath::THREEFOURTHS_PI = 0.75f * PI;
// RAVEN END
const float idMath::SQRT_1OVER2 = 0.70710678118654752440f;
const float idMath::SQRT_1OVER3 = 0.57735026918962576450f;
const float idMath::M_DEG2RAD = PI / 180.0f;
const float idMath::M_RAD2DEG = 180.0f / PI;
const float idMath::M_SEC2MS = 1000.0f;
const float idMath::M_MS2SEC = 0.001f;
const float idMath::INFINITY = 1e30f;
// RAVEN BEGIN
// jscott: renamed to prevent name clash
const float idMath::FLOAT_EPSILON = 1.192092896e-07f;
// ddynerman: added, from limits.h
const int idMath::INT_MIN = (-2147483647 - 1);
const int idMath::INT_MAX = 2147483647;
// RAVEN END
bool idMath::initialized = false;
#ifdef _FAST_MATH
dword idMath::iSqrt[SQRT_TABLE_SIZE]; // inverse square root lookup table
#endif
#ifdef ID_WIN_X86_SSE
const float idMath::SSE_FLOAT_ZERO = 0.0f;
const float idMath::SSE_FLOAT_255 = 255.0f;
#endif
/*
===============
idMath::Init
===============
*/
void idMath::Init( void ) {
#ifdef _FAST_MATH
union _flint fi, fo;
for ( int i = 0; i < SQRT_TABLE_SIZE; i++ ) {
fi.i = ((EXP_BIAS-1) << EXP_POS) | (i << LOOKUP_POS);
fo.f = (float)( 1.0 / sqrt( fi.f ) );
iSqrt[i] = ((dword)(((fo.i + (1<<(SEED_POS-2))) >> SEED_POS) & 0xFF))<<SEED_POS;
}
iSqrt[SQRT_TABLE_SIZE / 2] = ((dword)(0xFF))<<(SEED_POS);
#endif
initialized = true;
}
/*
================
idMath::FloatToBits
================
*/
int idMath::FloatToBits( float f, int exponentBits, int mantissaBits ) {
int i, sign, exponent, mantissa, value;
assert( exponentBits >= 2 && exponentBits <= 8 );
assert( mantissaBits >= 2 && mantissaBits <= 23 );
int maxBits = ( ( ( 1 << ( exponentBits - 1 ) ) - 1 ) << mantissaBits ) | ( ( 1 << mantissaBits ) - 1 );
int minBits = ( ( ( 1 << exponentBits ) - 2 ) << mantissaBits ) | 1;
float max = BitsToFloat( maxBits, exponentBits, mantissaBits );
float min = BitsToFloat( minBits, exponentBits, mantissaBits );
if ( f >= 0.0f ) {
if ( f >= max ) {
return maxBits;
} else if ( f <= min ) {
return minBits;
}
} else {
if ( f <= -max ) {
return ( maxBits | ( 1 << ( exponentBits + mantissaBits ) ) );
} else if ( f >= -min ) {
return ( minBits | ( 1 << ( exponentBits + mantissaBits ) ) );
}
}
exponentBits--;
i = *reinterpret_cast<int *>(&f);
sign = ( i >> IEEE_FLT_SIGN_BIT ) & 1;
exponent = ( ( i >> IEEE_FLT_MANTISSA_BITS ) & ( ( 1 << IEEE_FLT_EXPONENT_BITS ) - 1 ) ) - IEEE_FLT_EXPONENT_BIAS;
mantissa = i & ( ( 1 << IEEE_FLT_MANTISSA_BITS ) - 1 );
value = sign << ( 1 + exponentBits + mantissaBits );
value |= ( ( INTSIGNBITSET( exponent ) << exponentBits ) | ( abs( exponent ) & ( ( 1 << exponentBits ) - 1 ) ) ) << mantissaBits;
value |= mantissa >> ( IEEE_FLT_MANTISSA_BITS - mantissaBits );
return value;
}
/*
================
idMath::BitsToFloat
================
*/
float idMath::BitsToFloat( int i, int exponentBits, int mantissaBits ) {
static int exponentSign[2] = { 1, -1 };
int sign, exponent, mantissa, value;
assert( exponentBits >= 2 && exponentBits <= 8 );
assert( mantissaBits >= 2 && mantissaBits <= 23 );
exponentBits--;
sign = i >> ( 1 + exponentBits + mantissaBits );
exponent = ( ( i >> mantissaBits ) & ( ( 1 << exponentBits ) - 1 ) ) * exponentSign[( i >> ( exponentBits + mantissaBits ) ) & 1];
mantissa = ( i & ( ( 1 << mantissaBits ) - 1 ) ) << ( IEEE_FLT_MANTISSA_BITS - mantissaBits );
value = sign << IEEE_FLT_SIGN_BIT | ( exponent + IEEE_FLT_EXPONENT_BIAS ) << IEEE_FLT_MANTISSA_BITS | mantissa;
return *reinterpret_cast<float *>(&value);
}
// RAVEN BEGIN
// bdube: added block
void idMath::ArtesianFromPolar( idVec3 &result, idVec3 view )
{
float s1, c1, s2, c2;
idMath::SinCos( view[1], s1, c1 );
idMath::SinCos( view[2], s2, c2 );
result[0] = c1 * s2 * view[0];
result[1] = s1 * s2 * view[0];
result[2] = c2 * view[0];
}
void idMath::PolarFromArtesian( idVec3 &view, idVec3 artesian )
{
float length;
view[0] = artesian.Length();
view[1] = idMath::ATan( artesian[1], artesian[0] );
length = sqrtf( ( artesian[0] * artesian[0] ) + ( artesian[1] * artesian[1] ) );
view[2] = idMath::ATan( length, artesian[2] );
}
// ================================================================================================
// jscott: fast and reliable random routines
// ================================================================================================
unsigned long rvRandom::mSeed;
float rvRandom::flrand( float min, float max )
{
float result;
mSeed = ( mSeed * 214013L ) + 2531011;
// Note: the shift and divide cannot be combined as this breaks the routine
result = ( float )( mSeed >> 17 ); // 0 - 32767 range
result = ( ( result * ( max - min ) ) * ( 1.0f / 32768.0f ) ) + min;
return( result );
}
float rvRandom::flrand() {
return flrand( 0.0f, 1.0f );
}
float rvRandom::flrand( const idVec2& v ) {
return flrand( v[0], v[1] );
}
int rvRandom::irand( int min, int max )
{
int result;
max++;
mSeed = ( mSeed * 214013L ) + 2531011;
result = mSeed >> 17;
result = ( ( result * ( max - min ) ) >> 15 ) + min;
return( result );
}
// Try to get a seed independent of the random number system
int rvRandom::Init( void )
{
mSeed *= ( unsigned long )sys->Milliseconds();
return( mSeed );
}
// ================================================================================================
// Barycentric texture coordinate functions
// Get the *SIGNED* area of a triangle required for barycentric
// ================================================================================================
float idMath::BarycentricTriangleArea( const idVec3 &normal, const idVec3 &a, const idVec3 &b, const idVec3 &c )
{
idVec3 v1, v2;
idVec3 cross;
float area;
v1 = b - a;
v2 = c - a;
cross = v1.Cross( v2 );
area = 0.5f * DotProduct( cross, normal );
return( area );
}
void idMath::BarycentricEvaluate( idVec2 &result, const idVec3 &point, const idVec3 &normal, const float area, const idVec3 t[3], const idVec2 tc[3] )
{
float b1, b2, b3;
b1 = idMath::BarycentricTriangleArea( normal, point, t[1], t[2] ) / area;
b2 = idMath::BarycentricTriangleArea( normal, t[0], point, t[2] ) / area;
b3 = idMath::BarycentricTriangleArea( normal, t[0], t[1], point ) / area;
result[0] = ( b1 * tc[0][0] ) + ( b2 * tc[1][0] ) + ( b3 * tc[2][0] );
result[1] = ( b1 * tc[0][1] ) + ( b2 * tc[1][1] ) + ( b3 * tc[2][1] );
}
// abahr:
float idMath::Lerp( const idVec2& range, float frac ) {
return Lerp( range[0], range[1], frac );
}
// abahr:
float idMath::Lerp( float start, float end, float frac ) {
if( frac >= 1.0f ) {
return end;
}
if( frac <= 0.0f ) {
return start;
}
return start + (end - start) * frac;
}
// abahr:
float idMath::MidPointLerp( float start, float mid, float end, float frac ) {
if( frac < 0.5f ) {
return Lerp( start, mid, 2.0f * frac );
}
return Lerp( mid, end, 2.0f * (frac - 0.5f) );
}
float idMath::dBToScale( float db ) {
if( db < -60.0f ) {
return( 0.0f );
} else {
return( powf( 2.0f, db * ( 1.0f / 6.0f ) ) );
}
}
float idMath::ScaleToDb( float scale ) {
if( scale <= 0.0f ) {
return( -60.0f );
} else {
return( 6.0f * idMath::Log( scale ) / idMath::Log( 2 ) );
}
}
// RAVEN END