jedioutcast/code/game/q_math.cpp
2013-04-04 09:52:42 -05:00

1250 lines
31 KiB
C++

// q_math.c -- stateless support routines that are included in each code module
// leave this at the top for PCH reasons...
#include "common_headers.h"
//#include "q_shared.h"
const vec3_t vec3_origin = {0,0,0};
const vec3_t axisDefault[3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } };
vec4_t colorTable[CT_MAX] =
{
{0, 0, 0, 0}, // CT_NONE
{0, 0, 0, 1}, // CT_BLACK
{1, 0, 0, 1}, // CT_RED
{0, 1, 0, 1}, // CT_GREEN
{0, 0, 1, 1}, // CT_BLUE
{1, 1, 0, 1}, // CT_YELLOW
{1, 0, 1, 1}, // CT_MAGENTA
{0, 1, 1, 1}, // CT_CYAN
{1, 1, 1, 1}, // CT_WHITE
{0.75f, 0.75f, 0.75f, 1}, // CT_LTGREY
{0.50f, 0.50f, 0.50f, 1}, // CT_MDGREY
{0.25f, 0.25f, 0.25f, 1}, // CT_DKGREY
{0.15f, 0.15f, 0.15f, 1}, // CT_DKGREY2
{0.810f, 0.530f, 0.0f, 1}, // CT_VLTORANGE -- needs values
{0.810f, 0.530f, 0.0f, 1}, // CT_LTORANGE
{0.610f, 0.330f, 0.0f, 1}, // CT_DKORANGE
{0.402f, 0.265f, 0.0f, 1}, // CT_VDKORANGE
{0.503f, 0.375f, 0.996f, 1}, // CT_VLTBLUE1
{0.367f, 0.261f, 0.722f, 1}, // CT_LTBLUE1
{0.199f, 0.0f, 0.398f, 1}, // CT_DKBLUE1
{0.160f, 0.117f, 0.324f, 1}, // CT_VDKBLUE1
{0.300f, 0.628f, 0.816f, 1}, // CT_VLTBLUE2 -- needs values
{0.300f, 0.628f, 0.816f, 1}, // CT_LTBLUE2
{0.191f, 0.289f, 0.457f, 1}, // CT_DKBLUE2
{0.125f, 0.250f, 0.324f, 1}, // CT_VDKBLUE2
{0.796f, 0.398f, 0.199f, 1}, // CT_VLTBROWN1 -- needs values
{0.796f, 0.398f, 0.199f, 1}, // CT_LTBROWN1
{0.558f, 0.207f, 0.027f, 1}, // CT_DKBROWN1
{0.328f, 0.125f, 0.035f, 1}, // CT_VDKBROWN1
{0.996f, 0.796f, 0.398f, 1}, // CT_VLTGOLD1 -- needs values
{0.996f, 0.796f, 0.398f, 1}, // CT_LTGOLD1
{0.605f, 0.441f, 0.113f, 1}, // CT_DKGOLD1
{0.386f, 0.308f, 0.148f, 1}, // CT_VDKGOLD1
{0.648f, 0.562f, 0.784f, 1}, // CT_VLTPURPLE1 -- needs values
{0.648f, 0.562f, 0.784f, 1}, // CT_LTPURPLE1
{0.437f, 0.335f, 0.597f, 1}, // CT_DKPURPLE1
{0.308f, 0.269f, 0.375f, 1}, // CT_VDKPURPLE1
{0.816f, 0.531f, 0.710f, 1}, // CT_VLTPURPLE2 -- needs values
{0.816f, 0.531f, 0.710f, 1}, // CT_LTPURPLE2
{0.566f, 0.269f, 0.457f, 1}, // CT_DKPURPLE2
{0.343f, 0.226f, 0.316f, 1}, // CT_VDKPURPLE2
{0.929f, 0.597f, 0.929f, 1}, // CT_VLTPURPLE3
{0.570f, 0.371f, 0.570f, 1}, // CT_LTPURPLE3
{0.355f, 0.199f, 0.355f, 1}, // CT_DKPURPLE3
{0.285f, 0.136f, 0.230f, 1}, // CT_VDKPURPLE3
{0.953f, 0.378f, 0.250f, 1}, // CT_VLTRED1
{0.953f, 0.378f, 0.250f, 1}, // CT_LTRED1
{0.593f, 0.121f, 0.109f, 1}, // CT_DKRED1
{0.429f, 0.171f, 0.113f, 1}, // CT_VDKRED1
{.25f, 0, 0, 1}, // CT_VDKRED
{.70f, 0, 0, 1}, // CT_DKRED
{0.717f, 0.902f, 1.0f, 1}, // CT_VLTAQUA
{0.574f, 0.722f, 0.804f, 1}, // CT_LTAQUA
{0.287f, 0.361f, 0.402f, 1}, // CT_DKAQUA
{0.143f, 0.180f, 0.201f, 1}, // CT_VDKAQUA
{0.871f, 0.386f, 0.375f, 1}, // CT_LTPINK
{0.435f, 0.193f, 0.187f, 1}, // CT_DKPINK
{ 0, .5f, .5f, 1}, // CT_LTCYAN
{ 0, .25f, .25f, 1}, // CT_DKCYAN
{ .179f, .51f, .92f, 1}, // CT_LTBLUE3
{ .199f, .71f, .92f, 1}, // CT_LTBLUE3
{ .5f, .05f, .4f, 1}, // CT_DKBLUE3
{ 0.0f, .613f, .097f, 1}, // CT_HUD_GREEN
{ 0.835f, .015f, .015f, 1}, // CT_HUD_RED
{ .567f, .685f, 1.0f, .75f}, // CT_ICON_BLUE
{ .515f, .406f, .507f, 1}, // CT_NO_AMMO_RED
{ 1.0f, .658f, .062f, 1}, // CT_HUD_ORANGE
};
vec4_t g_color_table[8] =
{
{0.0, 0.0, 0.0, 1.0},
{1.0, 0.0, 0.0, 1.0},
{0.0, 1.0, 0.0, 1.0},
{1.0, 1.0, 0.0, 1.0},
{0.0, 0.0, 1.0, 1.0},
{0.0, 1.0, 1.0, 1.0},
{1.0, 0.0, 1.0, 1.0},
{1.0, 1.0, 1.0, 1.0},
};
#pragma warning(disable : 4305) // truncation from const double to float
vec3_t bytedirs[NUMVERTEXNORMALS] =
{
{-0.525731, 0.000000, 0.850651}, {-0.442863, 0.238856, 0.864188},
{-0.295242, 0.000000, 0.955423}, {-0.309017, 0.500000, 0.809017},
{-0.162460, 0.262866, 0.951056}, {0.000000, 0.000000, 1.000000},
{0.000000, 0.850651, 0.525731}, {-0.147621, 0.716567, 0.681718},
{0.147621, 0.716567, 0.681718}, {0.000000, 0.525731, 0.850651},
{0.309017, 0.500000, 0.809017}, {0.525731, 0.000000, 0.850651},
{0.295242, 0.000000, 0.955423}, {0.442863, 0.238856, 0.864188},
{0.162460, 0.262866, 0.951056}, {-0.681718, 0.147621, 0.716567},
{-0.809017, 0.309017, 0.500000},{-0.587785, 0.425325, 0.688191},
{-0.850651, 0.525731, 0.000000},{-0.864188, 0.442863, 0.238856},
{-0.716567, 0.681718, 0.147621},{-0.688191, 0.587785, 0.425325},
{-0.500000, 0.809017, 0.309017}, {-0.238856, 0.864188, 0.442863},
{-0.425325, 0.688191, 0.587785}, {-0.716567, 0.681718, -0.147621},
{-0.500000, 0.809017, -0.309017}, {-0.525731, 0.850651, 0.000000},
{0.000000, 0.850651, -0.525731}, {-0.238856, 0.864188, -0.442863},
{0.000000, 0.955423, -0.295242}, {-0.262866, 0.951056, -0.162460},
{0.000000, 1.000000, 0.000000}, {0.000000, 0.955423, 0.295242},
{-0.262866, 0.951056, 0.162460}, {0.238856, 0.864188, 0.442863},
{0.262866, 0.951056, 0.162460}, {0.500000, 0.809017, 0.309017},
{0.238856, 0.864188, -0.442863},{0.262866, 0.951056, -0.162460},
{0.500000, 0.809017, -0.309017},{0.850651, 0.525731, 0.000000},
{0.716567, 0.681718, 0.147621}, {0.716567, 0.681718, -0.147621},
{0.525731, 0.850651, 0.000000}, {0.425325, 0.688191, 0.587785},
{0.864188, 0.442863, 0.238856}, {0.688191, 0.587785, 0.425325},
{0.809017, 0.309017, 0.500000}, {0.681718, 0.147621, 0.716567},
{0.587785, 0.425325, 0.688191}, {0.955423, 0.295242, 0.000000},
{1.000000, 0.000000, 0.000000}, {0.951056, 0.162460, 0.262866},
{0.850651, -0.525731, 0.000000},{0.955423, -0.295242, 0.000000},
{0.864188, -0.442863, 0.238856}, {0.951056, -0.162460, 0.262866},
{0.809017, -0.309017, 0.500000}, {0.681718, -0.147621, 0.716567},
{0.850651, 0.000000, 0.525731}, {0.864188, 0.442863, -0.238856},
{0.809017, 0.309017, -0.500000}, {0.951056, 0.162460, -0.262866},
{0.525731, 0.000000, -0.850651}, {0.681718, 0.147621, -0.716567},
{0.681718, -0.147621, -0.716567},{0.850651, 0.000000, -0.525731},
{0.809017, -0.309017, -0.500000}, {0.864188, -0.442863, -0.238856},
{0.951056, -0.162460, -0.262866}, {0.147621, 0.716567, -0.681718},
{0.309017, 0.500000, -0.809017}, {0.425325, 0.688191, -0.587785},
{0.442863, 0.238856, -0.864188}, {0.587785, 0.425325, -0.688191},
{0.688191, 0.587785, -0.425325}, {-0.147621, 0.716567, -0.681718},
{-0.309017, 0.500000, -0.809017}, {0.000000, 0.525731, -0.850651},
{-0.525731, 0.000000, -0.850651}, {-0.442863, 0.238856, -0.864188},
{-0.295242, 0.000000, -0.955423}, {-0.162460, 0.262866, -0.951056},
{0.000000, 0.000000, -1.000000}, {0.295242, 0.000000, -0.955423},
{0.162460, 0.262866, -0.951056}, {-0.442863, -0.238856, -0.864188},
{-0.309017, -0.500000, -0.809017}, {-0.162460, -0.262866, -0.951056},
{0.000000, -0.850651, -0.525731}, {-0.147621, -0.716567, -0.681718},
{0.147621, -0.716567, -0.681718}, {0.000000, -0.525731, -0.850651},
{0.309017, -0.500000, -0.809017}, {0.442863, -0.238856, -0.864188},
{0.162460, -0.262866, -0.951056}, {0.238856, -0.864188, -0.442863},
{0.500000, -0.809017, -0.309017}, {0.425325, -0.688191, -0.587785},
{0.716567, -0.681718, -0.147621}, {0.688191, -0.587785, -0.425325},
{0.587785, -0.425325, -0.688191}, {0.000000, -0.955423, -0.295242},
{0.000000, -1.000000, 0.000000}, {0.262866, -0.951056, -0.162460},
{0.000000, -0.850651, 0.525731}, {0.000000, -0.955423, 0.295242},
{0.238856, -0.864188, 0.442863}, {0.262866, -0.951056, 0.162460},
{0.500000, -0.809017, 0.309017}, {0.716567, -0.681718, 0.147621},
{0.525731, -0.850651, 0.000000}, {-0.238856, -0.864188, -0.442863},
{-0.500000, -0.809017, -0.309017}, {-0.262866, -0.951056, -0.162460},
{-0.850651, -0.525731, 0.000000}, {-0.716567, -0.681718, -0.147621},
{-0.716567, -0.681718, 0.147621}, {-0.525731, -0.850651, 0.000000},
{-0.500000, -0.809017, 0.309017}, {-0.238856, -0.864188, 0.442863},
{-0.262866, -0.951056, 0.162460}, {-0.864188, -0.442863, 0.238856},
{-0.809017, -0.309017, 0.500000}, {-0.688191, -0.587785, 0.425325},
{-0.681718, -0.147621, 0.716567}, {-0.442863, -0.238856, 0.864188},
{-0.587785, -0.425325, 0.688191}, {-0.309017, -0.500000, 0.809017},
{-0.147621, -0.716567, 0.681718}, {-0.425325, -0.688191, 0.587785},
{-0.162460, -0.262866, 0.951056}, {0.442863, -0.238856, 0.864188},
{0.162460, -0.262866, 0.951056}, {0.309017, -0.500000, 0.809017},
{0.147621, -0.716567, 0.681718}, {0.000000, -0.525731, 0.850651},
{0.425325, -0.688191, 0.587785}, {0.587785, -0.425325, 0.688191},
{0.688191, -0.587785, 0.425325}, {-0.955423, 0.295242, 0.000000},
{-0.951056, 0.162460, 0.262866}, {-1.000000, 0.000000, 0.000000},
{-0.850651, 0.000000, 0.525731}, {-0.955423, -0.295242, 0.000000},
{-0.951056, -0.162460, 0.262866}, {-0.864188, 0.442863, -0.238856},
{-0.951056, 0.162460, -0.262866}, {-0.809017, 0.309017, -0.500000},
{-0.864188, -0.442863, -0.238856}, {-0.951056, -0.162460, -0.262866},
{-0.809017, -0.309017, -0.500000}, {-0.681718, 0.147621, -0.716567},
{-0.681718, -0.147621, -0.716567}, {-0.850651, 0.000000, -0.525731},
{-0.688191, 0.587785, -0.425325}, {-0.587785, 0.425325, -0.688191},
{-0.425325, 0.688191, -0.587785}, {-0.425325, -0.688191, -0.587785},
{-0.587785, -0.425325, -0.688191}, {-0.688191, -0.587785, -0.425325}
};
#pragma warning(default : 4305) // truncation from const double to float
//==============================================================
//=======================================================
/*
erandom
This function produces a random number with a exponential
distribution and the specified mean value.
*/
float erandom( float mean ) {
float r;
do {
r = random();
} while ( r == 0.0 );
return -mean * log( r );
}
signed char ClampChar( int i ) {
if ( i < -128 ) {
return -128;
}
if ( i > 127 ) {
return 127;
}
return i;
}
signed short ClampShort( int i ) {
if ( i < (short)0x8000 ) {
return (short)0x8000;
}
if ( i > 0x7fff ) {
return 0x7fff;
}
return i;
}
// this isn't a real cheap function to call!
int DirToByte( vec3_t dir ) {
int i, best;
float d, bestd;
if ( !dir ) {
return 0;
}
bestd = 0;
best = 0;
for (i=0 ; i<NUMVERTEXNORMALS ; i++)
{
d = DotProduct (dir, bytedirs[i]);
if (d > bestd)
{
bestd = d;
best = i;
}
}
return best;
}
void ByteToDir( int b, vec3_t dir ) {
if ( b < 0 || b >= NUMVERTEXNORMALS ) {
VectorCopy( vec3_origin, dir );
return;
}
VectorCopy (bytedirs[b], dir);
}
unsigned ColorBytes3 (float r, float g, float b) {
unsigned i;
( (byte *)&i )[0] = r * 255;
( (byte *)&i )[1] = g * 255;
( (byte *)&i )[2] = b * 255;
return i;
}
unsigned ColorBytes4 (float r, float g, float b, float a) {
unsigned i;
( (byte *)&i )[0] = r * 255;
( (byte *)&i )[1] = g * 255;
( (byte *)&i )[2] = b * 255;
( (byte *)&i )[3] = a * 255;
return i;
}
float NormalizeColor( const vec3_t in, vec3_t out ) {
float max;
max = in[0];
if ( in[1] > max ) {
max = in[1];
}
if ( in[2] > max ) {
max = in[2];
}
if ( !max ) {
VectorClear( out );
} else {
out[0] = in[0] / max;
out[1] = in[1] / max;
out[2] = in[2] / max;
}
return max;
}
//============================================================================
/*
=====================
PlaneFromPoints
Returns false if the triangle is degenrate.
The normal will point out of the clock for clockwise ordered points
=====================
*/
qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
vec3_t d1, d2;
VectorSubtract( b, a, d1 );
VectorSubtract( c, a, d2 );
CrossProduct( d2, d1, plane );
if ( VectorNormalize( plane ) == 0 ) {
return qfalse;
}
plane[3] = DotProduct( a, plane );
return qtrue;
}
/*
===============
RotatePointAroundVector
This is not implemented very well...
===============
*/
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
float degrees ) {
float m[3][3];
float im[3][3];
float zrot[3][3];
float tmpmat[3][3];
float rot[3][3];
int i;
vec3_t vr, vup, vf;
float rad;
vf[0] = dir[0];
vf[1] = dir[1];
vf[2] = dir[2];
PerpendicularVector( vr, dir );
CrossProduct( vr, vf, vup );
m[0][0] = vr[0];
m[1][0] = vr[1];
m[2][0] = vr[2];
m[0][1] = vup[0];
m[1][1] = vup[1];
m[2][1] = vup[2];
m[0][2] = vf[0];
m[1][2] = vf[1];
m[2][2] = vf[2];
memcpy( im, m, sizeof( im ) );
im[0][1] = m[1][0];
im[0][2] = m[2][0];
im[1][0] = m[0][1];
im[1][2] = m[2][1];
im[2][0] = m[0][2];
im[2][1] = m[1][2];
memset( zrot, 0, sizeof( zrot ) );
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
rad = DEG2RAD( degrees );
zrot[0][0] = cos( rad );
zrot[0][1] = sin( rad );
zrot[1][0] = -sin( rad );
zrot[1][1] = cos( rad );
MatrixMultiply( m, zrot, tmpmat );
MatrixMultiply( tmpmat, im, rot );
for ( i = 0; i < 3; i++ ) {
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
}
}
/*
===============
RotateAroundDirection
===============
*/
void RotateAroundDirection( vec3_t axis[3], float yaw ) {
// create an arbitrary axis[1]
PerpendicularVector( axis[1], axis[0] );
// rotate it around axis[0] by yaw
if ( yaw ) {
vec3_t temp;
VectorCopy( axis[1], temp );
RotatePointAroundVector( axis[1], axis[0], temp, yaw );
}
// cross to get axis[2]
CrossProduct( axis[0], axis[1], axis[2] );
}
void vectoangles( const vec3_t value1, vec3_t angles ) {
float forward;
float yaw, pitch;
if ( value1[1] == 0 && value1[0] == 0 ) {
yaw = 0;
if ( value1[2] > 0 ) {
pitch = 90;
}
else {
pitch = 270;
}
}
else {
if ( value1[0] ) {
yaw = ( atan2 ( value1[1], value1[0] ) * 180 / M_PI );
}
else if ( value1[1] > 0 ) {
yaw = 90;
}
else {
yaw = 270;
}
if ( yaw < 0 ) {
yaw += 360;
}
forward = sqrt ( value1[0]*value1[0] + value1[1]*value1[1] );
pitch = ( atan2(value1[2], forward) * 180 / M_PI );
if ( pitch < 0 ) {
pitch += 360;
}
}
angles[PITCH] = -pitch;
angles[YAW] = yaw;
angles[ROLL] = 0;
}
void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
{
float d;
vec3_t n;
float inv_denom;
inv_denom = 1.0F / DotProduct( normal, normal );
d = DotProduct( normal, p ) * inv_denom;
n[0] = normal[0] * inv_denom;
n[1] = normal[1] * inv_denom;
n[2] = normal[2] * inv_denom;
dst[0] = p[0] - d * n[0];
dst[1] = p[1] - d * n[1];
dst[2] = p[2] - d * n[2];
}
/*
================
MakeNormalVectors
Given a normalized forward vector, create two
other perpendicular vectors
================
*/
void MakeNormalVectors( const vec3_t forward, vec3_t right, vec3_t up) {
float d;
// this rotate and negate guarantees a vector
// not colinear with the original
right[1] = -forward[0];
right[2] = forward[1];
right[0] = forward[2];
d = DotProduct (right, forward);
VectorMA (right, -d, forward, right);
VectorNormalize (right);
CrossProduct (right, forward, up);
}
//============================================================================
/*
** float q_rsqrt( float number )
*/
float Q_rsqrt( float number )
{
long i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = * ( long * ) &y; // evil floating point bit level hacking
i = 0x5f3759df - ( i >> 1 ); // what the fuck?
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
return y;
}
float Q_fabs( float f ) {
int tmp = * ( int * ) &f;
tmp &= 0x7FFFFFFF;
return * ( float * ) &tmp;
}
//============================================================
//float AngleMod(float a) {
// a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535);
// return a;
//}
//============================================================
/*
=================
SetPlaneSignbits
=================
*/
void SetPlaneSignbits (cplane_t *out) {
int bits, j;
// for fast box on planeside test
bits = 0;
for (j=0 ; j<3 ; j++) {
if (out->normal[j] < 0) {
bits |= 1<<j;
}
}
out->signbits = bits;
}
/*
==================
BoxOnPlaneSide
Returns 1, 2, or 1 + 2
// this is the slow, general version
int BoxOnPlaneSide2 (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
int i;
float dist1, dist2;
int sides;
vec3_t corners[2];
for (i=0 ; i<3 ; i++)
{
if (p->normal[i] < 0)
{
corners[0][i] = emins[i];
corners[1][i] = emaxs[i];
}
else
{
corners[1][i] = emins[i];
corners[0][i] = emaxs[i];
}
}
dist1 = DotProduct (p->normal, corners[0]) - p->dist;
dist2 = DotProduct (p->normal, corners[1]) - p->dist;
sides = 0;
if (dist1 >= 0)
sides = 1;
if (dist2 < 0)
sides |= 2;
return sides;
}
==================
*/
#if !(defined __linux__ && defined __i386__) || defined __LCC__
#if !id386
int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
float dist1, dist2;
int sides;
// fast axial cases
if (p->type < 3)
{
if (p->dist <= emins[p->type])
return 1;
if (p->dist >= emaxs[p->type])
return 2;
return 3;
}
// general case
switch (p->signbits)
{
case 0:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
break;
case 1:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
break;
case 2:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
break;
case 3:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
break;
case 4:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
break;
case 5:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2];
break;
case 6:
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
break;
case 7:
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2];
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2];
break;
default:
dist1 = dist2 = 0; // shut up compiler
break;
}
sides = 0;
if (dist1 >= p->dist)
sides = 1;
if (dist2 < p->dist)
sides |= 2;
return sides;
}
#else
#pragma warning( disable: 4035 )
__declspec( naked ) int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p)
{
static int bops_initialized;
static int Ljmptab[8];
__asm {
push ebx
cmp bops_initialized, 1
je initialized
mov bops_initialized, 1
mov Ljmptab[0*4], offset Lcase0
mov Ljmptab[1*4], offset Lcase1
mov Ljmptab[2*4], offset Lcase2
mov Ljmptab[3*4], offset Lcase3
mov Ljmptab[4*4], offset Lcase4
mov Ljmptab[5*4], offset Lcase5
mov Ljmptab[6*4], offset Lcase6
mov Ljmptab[7*4], offset Lcase7
initialized:
mov edx,dword ptr[4+12+esp]
mov ecx,dword ptr[4+4+esp]
xor eax,eax
mov ebx,dword ptr[4+8+esp]
mov al,byte ptr[17+edx]
cmp al,8
jge Lerror
fld dword ptr[0+edx]
fld st(0)
jmp dword ptr[Ljmptab+eax*4]
Lcase0:
fmul dword ptr[ebx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ebx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase1:
fmul dword ptr[ecx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ebx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase2:
fmul dword ptr[ebx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ecx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase3:
fmul dword ptr[ecx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ecx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ebx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ecx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase4:
fmul dword ptr[ebx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ebx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase5:
fmul dword ptr[ecx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ebx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ecx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase6:
fmul dword ptr[ebx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ecx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ecx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
jmp LSetSides
Lcase7:
fmul dword ptr[ecx]
fld dword ptr[0+4+edx]
fxch st(2)
fmul dword ptr[ebx]
fxch st(2)
fld st(0)
fmul dword ptr[4+ecx]
fld dword ptr[0+8+edx]
fxch st(2)
fmul dword ptr[4+ebx]
fxch st(2)
fld st(0)
fmul dword ptr[8+ecx]
fxch st(5)
faddp st(3),st(0)
fmul dword ptr[8+ebx]
fxch st(1)
faddp st(3),st(0)
fxch st(3)
faddp st(2),st(0)
LSetSides:
faddp st(2),st(0)
fcomp dword ptr[12+edx]
xor ecx,ecx
fnstsw ax
fcomp dword ptr[12+edx]
and ah,1
xor ah,1
add cl,ah
fnstsw ax
and ah,1
add ah,ah
add cl,ah
pop ebx
mov eax,ecx
ret
Lerror:
int 3
}
}
#pragma warning( default: 4035 )
#endif
#endif
/*
=================
RadiusFromBounds
=================
*/
float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) {
int i;
vec3_t corner;
float a, b;
for (i=0 ; i<3 ; i++) {
a = fabs( mins[i] );
b = fabs( maxs[i] );
corner[i] = a > b ? a : b;
}
return VectorLength (corner);
}
void ClearBounds( vec3_t mins, vec3_t maxs ) {
mins[0] = mins[1] = mins[2] = WORLD_SIZE; //99999; // I used WORLD_SIZE instead of MAX_WORLD_COORD...
maxs[0] = maxs[1] = maxs[2] = -WORLD_SIZE; //-99999; // ... so it would definately be beyond furthese legal.
}
vec_t DistanceHorizontal( const vec3_t p1, const vec3_t p2 ) {
vec3_t v;
VectorSubtract( p2, p1, v );
return sqrt( v[0]*v[0] + v[1]*v[1] ); //Leave off the z component
}
vec_t DistanceHorizontalSquared( const vec3_t p1, const vec3_t p2 ) {
vec3_t v;
VectorSubtract( p2, p1, v );
return v[0]*v[0] + v[1]*v[1]; //Leave off the z component
}
int Q_log2( int val ) {
int answer;
answer = 0;
while ( ( val>>=1 ) != 0 ) {
answer++;
}
return answer;
}
/*
=================
PlaneTypeForNormal
=================
*/
int PlaneTypeForNormal (vec3_t normal) {
if ( normal[0] == 1.0 )
return PLANE_X;
if ( normal[1] == 1.0 )
return PLANE_Y;
if ( normal[2] == 1.0 )
return PLANE_Z;
return PLANE_NON_AXIAL;
}
/*
================
MatrixMultiply
================
*/
void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
in1[0][2] * in2[2][0];
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
in1[0][2] * in2[2][1];
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
in1[0][2] * in2[2][2];
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
in1[1][2] * in2[2][0];
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
in1[1][2] * in2[2][1];
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
in1[1][2] * in2[2][2];
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
in1[2][2] * in2[2][0];
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
in1[2][2] * in2[2][1];
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
in1[2][2] * in2[2][2];
}
void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) {
float angle;
static float sr, sp, sy, cr, cp, cy;
// static to help MS compiler fp bugs
angle = angles[YAW] * (M_PI*2 / 360.0);
sy = sin(angle);
cy = cos(angle);
angle = angles[PITCH] * (M_PI*2 / 360.0);
sp = sin(angle);
cp = cos(angle);
if (forward)
{
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
}
if (right || up)
{
angle = angles[ROLL] * (M_PI*2 / 360.0);
sr = sin(angle);
cr = cos(angle);
if (right)
{
right[0] = (-sr*sp*cy + cr*sy);
right[1] = (-sr*sp*sy + -cr*cy);
right[2] = -sr*cp;
}
if (up)
{
up[0] = (cr*sp*cy + sr*sy);
up[1] = (cr*sp*sy + -sr*cy);
up[2] = cr*cp;
}
}
}
/*
** assumes "src" is normalized
*/
void PerpendicularVector( vec3_t dst, const vec3_t src )
{
int pos;
int i;
float minelem = 1.0F;
vec3_t tempvec;
/*
** find the smallest magnitude axially aligned vector
** bias towards using z instead of x or y
*/
for ( pos = 0, i = 2; i >= 0; i-- )
{
if ( fabs( src[i] ) < minelem )
{
pos = i;
minelem = fabs( src[i] );
}
}
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
tempvec[pos] = 1.0F;
/*
** project the point onto the plane defined by src
*/
ProjectPointOnPlane( dst, tempvec, src );
/*
** normalize the result
*/
VectorNormalize( dst );
}
/*
-------------------------
DotProductNormalize
-------------------------
*/
float DotProductNormalize( const vec3_t inVec1, const vec3_t inVec2 )
{
vec3_t v1, v2;
VectorNormalize2( inVec1, v1 );
VectorNormalize2( inVec2, v2 );
return DotProduct(v1, v2);
}
/*
-------------------------
G_FindClosestPointOnLineSegment
-------------------------
*/
qboolean G_FindClosestPointOnLineSegment( const vec3_t start, const vec3_t end, const vec3_t from, vec3_t result )
{
vec3_t vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From;
float distEnd2From, distEnd2Result, theta, cos_theta;
//Find the perpendicular vector to vec from start to end
VectorSubtract( from, start, vecStart2From);
VectorSubtract( end, start, vecStart2End);
float dot = DotProductNormalize( vecStart2From, vecStart2End );
if ( dot <= 0 )
{
//The perpendicular would be beyond or through the start point
VectorCopy( start, result );
return qfalse;
}
if ( dot == 1 )
{
//parallel, closer of 2 points will be the target
if( (VectorLengthSquared( vecStart2From )) < (VectorLengthSquared( vecStart2End )) )
{
VectorCopy( from, result );
}
else
{
VectorCopy( end, result );
}
return qfalse;
}
//Try other end
VectorSubtract( from, end, vecEnd2From);
VectorSubtract( start, end, vecEnd2Start);
dot = DotProductNormalize( vecEnd2From, vecEnd2Start );
if ( dot <= 0 )
{//The perpendicular would be beyond or through the start point
VectorCopy( end, result );
return qfalse;
}
if ( dot == 1 )
{//parallel, closer of 2 points will be the target
if( (VectorLengthSquared( vecEnd2From )) < (VectorLengthSquared( vecEnd2Start )))
{
VectorCopy( from, result );
}
else
{
VectorCopy( end, result );
}
return qfalse;
}
// /|
// c / |
// / |a
// theta /)__|
// b
//cos(theta) = b / c
//solve for b
//b = cos(theta) * c
//angle between vecs end2from and end2start, should be between 0 and 90
theta = 90 * (1 - dot);//theta
//Get length of side from End2Result using sine of theta
distEnd2From = VectorLength( vecEnd2From );//c
cos_theta = cos(DEG2RAD(theta));//cos(theta)
distEnd2Result = cos_theta * distEnd2From;//b
//Extrapolate to find result
VectorNormalize( vecEnd2Start );
VectorMA( end, distEnd2Result, vecEnd2Start, result );
//perpendicular intersection is between the 2 endpoints
return qtrue;
}
float G_PointDistFromLineSegment( const vec3_t start, const vec3_t end, const vec3_t from )
{
vec3_t vecStart2From, vecStart2End, vecEnd2Start, vecEnd2From, intersection;
float distEnd2From, distStart2From, distEnd2Result, theta, cos_theta;
//Find the perpendicular vector to vec from start to end
VectorSubtract( from, start, vecStart2From);
VectorSubtract( end, start, vecStart2End);
VectorSubtract( from, end, vecEnd2From);
VectorSubtract( start, end, vecEnd2Start);
float dot = DotProductNormalize( vecStart2From, vecStart2End );
distStart2From = Distance( start, from );
distEnd2From = Distance( end, from );
if ( dot <= 0 )
{
//The perpendicular would be beyond or through the start point
return distStart2From;
}
if ( dot == 1 )
{
//parallel, closer of 2 points will be the target
return ((distStart2From<distEnd2From)?distStart2From:distEnd2From);
}
//Try other end
dot = DotProductNormalize( vecEnd2From, vecEnd2Start );
if ( dot <= 0 )
{//The perpendicular would be beyond or through the end point
return distEnd2From;
}
if ( dot == 1 )
{//parallel, closer of 2 points will be the target
return ((distStart2From<distEnd2From)?distStart2From:distEnd2From);
}
// /|
// c / |
// / |a
// theta /)__|
// b
//cos(theta) = b / c
//solve for b
//b = cos(theta) * c
//angle between vecs end2from and end2start, should be between 0 and 90
theta = 90 * (1 - dot);//theta
//Get length of side from End2Result using sine of theta
cos_theta = cos(DEG2RAD(theta));//cos(theta)
distEnd2Result = cos_theta * distEnd2From;//b
//Extrapolate to find result
VectorNormalize( vecEnd2Start );
VectorMA( end, distEnd2Result, vecEnd2Start, intersection );
//perpendicular intersection is between the 2 endpoints, return dist to it from from
return Distance( intersection, from );
}