jedioutcast/code/mac/MacGamma.cpp

474 lines
18 KiB
C++
Raw Normal View History

2013-04-04 14:52:42 +00:00
/*
File: MacGamma.cpp
Contains: Functions to enable Mac OS device gamma adjustments using Windows common 3 channel 256 element 8 bit gamma ramps
Written by: Geoff Stahl
Copyright: Copyright <EFBFBD> 1999 Apple Computer, Inc., All Rights Reserved
Change History (most recent first):
<4> 5/20/99 GGS Added handling for gamma tables with different data widths,
number of entries, and channels. Forced updates to 3 channels
(poss. could break on rare card, but very unlikely). Added
quick update with BlockMove for 3x256x8 tables. Updated function
names.
<3> 5/20/99 GGS Cleaned up and commented
<2> 5/20/99 GGS Added system wide get and restore gamma functions to enable
restoration of original for all devices. Modified functionality
to return pointers vice squirreling away the memory.
<1> 5/20/99 GGS Initial Add
*/
// system includes ----------------------------------------------------------
#include <Devices.h>
#include <Files.h>
#include <MacTypes.h>
#include <QDOffscreen.h>
#include <Quickdraw.h>
#include <video.h>
// project includes ---------------------------------------------------------
#include "MacGamma.h"
// functions (external/public) ----------------------------------------------
// GetRawDeviceGamma
// Returns the device gamma table pointer in ppDeviceTable
OSErr GetGammaTable (GDHandle hGD, GammaTblPtr * ppTableGammaOut)
{
VDGammaRecord DeviceGammaRec;
CntrlParam cParam;
OSErr err;
cParam.ioCompletion = NULL; // set up control params
cParam.ioNamePtr = NULL;
cParam.ioVRefNum = 0;
cParam.ioCRefNum = (**hGD).gdRefNum;
cParam.csCode = cscGetGamma; // Get Gamma commnd to device
*(Ptr *)cParam.csParam = (Ptr) &DeviceGammaRec; // record for gamma
err = PBStatus( (ParmBlkPtr)&cParam, 0 ); // get gamma
*ppTableGammaOut = (GammaTblPtr)(DeviceGammaRec.csGTable); // pull table out of record
return err;
}
// --------------------------------------------------------------------------
// CreateEmptyGammaTable
// creates an empty gamma table of a given size, assume no formula data will be used
Ptr CreateEmptyGammaTable (short channels, short entries, short bits)
{
GammaTblPtr pTableGammaOut = NULL;
short tableSize, dataWidth;
dataWidth = (bits + 7) / 8; // number of bytes per entry
tableSize = sizeof (GammaTbl) + (channels * entries * dataWidth);
pTableGammaOut = (GammaTblPtr) NewPtrClear (tableSize); // allocate new tabel
if (pTableGammaOut) // if we successfully allocated
{
pTableGammaOut->gVersion = 0; // set parameters based on input
pTableGammaOut->gType = 0;
pTableGammaOut->gFormulaSize = 0;
pTableGammaOut->gChanCnt = channels;
pTableGammaOut->gDataCnt = entries;
pTableGammaOut->gDataWidth = bits;
}
return (Ptr)pTableGammaOut; // return whatever we allocated
}
// --------------------------------------------------------------------------
// CopyGammaTable
// given a pointer toa device gamma table properly iterates and copies
Ptr CopyGammaTable (GammaTblPtr pTableGammaIn)
{
GammaTblPtr pTableGammaOut = NULL;
short tableSize, dataWidth;
if (pTableGammaIn) // if there is a table to copy
{
dataWidth = (pTableGammaIn->gDataWidth + 7) / 8; // number of bytes per entry
tableSize = sizeof (GammaTbl) + pTableGammaIn->gFormulaSize +
(pTableGammaIn->gChanCnt * pTableGammaIn->gDataCnt * dataWidth);
pTableGammaOut = (GammaTblPtr) NewPtr (tableSize); // allocate new table
if (pTableGammaOut)
BlockMove( (Ptr)pTableGammaIn, (Ptr)pTableGammaOut, tableSize); // move everything
}
return (Ptr)pTableGammaOut; // return whatever we allocated, could be NULL
}
// --------------------------------------------------------------------------
// DisposeGammaTable
// disposes gamma table returned from GetGammaTable, GetDeviceGamma, or CopyGammaTable
// 5/20/99: (GGS) added
void DisposeGammaTable (Ptr pGamma)
{
if (pGamma)
DisposePtr((Ptr) pGamma); // get rid of it
}
// --------------------------------------------------------------------------
// GetDeviceGamma
// returns pointer to copy of orginal device gamma table in native format (allocates memory for gamma table, call DisposeDeviceGamma to delete)
// 5/20/99: (GGS) change spec to return the allocated pointer vice storing internally
Ptr GetDeviceGamma (GDHandle hGD)
{
GammaTblPtr pTableGammaDevice = NULL;
GammaTblPtr pTableGammaReturn = NULL;
OSErr err;
err = GetGammaTable (hGD, &pTableGammaDevice); // get a pointer to the devices table
if ((err == noErr) && pTableGammaDevice) // if succesful
pTableGammaReturn = (GammaTblPtr) CopyGammaTable (pTableGammaDevice); // copy to global
return (Ptr) pTableGammaReturn;
}
// --------------------------------------------------------------------------
// RestoreDeviceGamma
// sets device to saved table
// 5/20/99: (GGS) now does not delete table, avoids confusion
void RestoreDeviceGamma (GDHandle hGD, Ptr pGammaTable)
{
VDSetEntryRecord setEntriesRec;
VDGammaRecord gameRecRestore;
CTabHandle hCTabDeviceColors;
Ptr csPtr;
OSErr err = noErr;
if (pGammaTable) // if we have a table to restore
{
gameRecRestore.csGTable = pGammaTable; // setup restore record
csPtr = (Ptr) &gameRecRestore;
err = Control((**hGD).gdRefNum, cscSetGamma, (Ptr) &csPtr); // restore gamma
if ((err == noErr) && ((**(**hGD).gdPMap).pixelSize == 8)) // if successful and on an 8 bit device
{
hCTabDeviceColors = (**(**hGD).gdPMap).pmTable; // do SetEntries to force CLUT update
setEntriesRec.csTable = (ColorSpec *) &(**hCTabDeviceColors).ctTable;
setEntriesRec.csStart = 0;
setEntriesRec.csCount = (**hCTabDeviceColors).ctSize;
csPtr = (Ptr) &setEntriesRec;
err = Control((**hGD).gdRefNum, cscSetEntries, (Ptr) &csPtr); // SetEntries in CLUT
}
}
}
// --------------------------------------------------------------------------
// GetSystemGammas
// returns a pointer to a set of all current device gammas in native format (returns NULL on failure, which means reseting gamma will not be possible)
// 5/20/99: (GGS) added
Ptr GetSystemGammas (void)
{
precSystemGamma pSysGammaOut; // return pointer to system device gamma info
short devCount = 0; // number of devices attached
Boolean fail = false;
pSysGammaOut = (precSystemGamma) NewPtr (sizeof (recSystemGamma)); // allocate for structure
GDHandle hGDevice = GetDeviceList (); // top of device list
do // iterate
{
devCount++; // count devices
hGDevice = GetNextDevice (hGDevice); // next device
} while (hGDevice);
pSysGammaOut->devGamma = (precDeviceGamma *) NewPtr (sizeof (precDeviceGamma) * devCount); // allocate for array of pointers to device records
if (pSysGammaOut)
{
pSysGammaOut->numDevices = devCount; // stuff count
devCount = 0; // reset iteration
hGDevice = GetDeviceList ();
do
{
pSysGammaOut->devGamma [devCount] = (precDeviceGamma) NewPtr (sizeof (recDeviceGamma)); // new device record
if (pSysGammaOut->devGamma [devCount]) // if we actually allocated memory
{
pSysGammaOut->devGamma [devCount]->hGD = hGDevice; // stuff handle
pSysGammaOut->devGamma [devCount]->pDeviceGamma = (GammaTblPtr)GetDeviceGamma (hGDevice); // copy gamma table
}
else // otherwise dump record on exit
fail = true;
devCount++; // next device
hGDevice = GetNextDevice (hGDevice);
} while (hGDevice);
}
if (!fail) // if we did not fail
return (Ptr) pSysGammaOut; // return pointer to structure
else
{
DisposeSystemGammas (&(Ptr)pSysGammaOut); // otherwise dump the current structures (dispose does error checking)
return NULL; // could not complete
}
}
// --------------------------------------------------------------------------
// RestoreSystemGammas
// restores all system devices to saved gamma setting
// 5/20/99: (GGS) added
void RestoreSystemGammas (Ptr pSystemGammas)
{
precSystemGamma pSysGammaIn = (precSystemGamma) pSystemGammas;
if (pSysGammaIn)
for (short i = 0; i < pSysGammaIn->numDevices; i++) // for all devices
RestoreDeviceGamma (pSysGammaIn->devGamma [i]->hGD, (Ptr) pSysGammaIn->devGamma [i]->pDeviceGamma); // restore gamma
}
// --------------------------------------------------------------------------
// DisposeSystemGammas
// iterates through and deletes stored gamma settings
// 5/20/99: (GGS) added
void DisposeSystemGammas (Ptr* ppSystemGammas)
{
precSystemGamma pSysGammaIn;
if (ppSystemGammas)
{
pSysGammaIn = (precSystemGamma) *ppSystemGammas;
if (pSysGammaIn)
{
for (short i = 0; i < pSysGammaIn->numDevices; i++) // for all devices
if (pSysGammaIn->devGamma [i]) // if pointer is valid
{
DisposeGammaTable ((Ptr) pSysGammaIn->devGamma [i]->pDeviceGamma); // dump gamma table
DisposePtr ((Ptr) pSysGammaIn->devGamma [i]); // dump device info
}
DisposePtr ((Ptr) pSysGammaIn->devGamma); // dump device pointer array
DisposePtr ((Ptr) pSysGammaIn); // dump system structure
*ppSystemGammas = NULL;
}
}
}
// --------------------------------------------------------------------------
// GetDeviceGammaRampGD
// retrieves the gamma ramp from a graphics device (pRamp: 3 arrays of 256 elements each)
Boolean GetDeviceGammaRampGD (GDHandle hGD, Ptr pRamp)
{
GammaTblPtr pTableGammaTemp = NULL;
long indexChan, indexEntry;
OSErr err;
if (pRamp) // ensure pRamp is allocated
{
err = GetGammaTable (hGD, &pTableGammaTemp); // get a pointer to the current gamma
if ((err == noErr) && pTableGammaTemp) // if successful
{
// fill ramp
unsigned char * pEntry = (unsigned char *)&pTableGammaTemp->gFormulaData + pTableGammaTemp->gFormulaSize; // base of table
short bytesPerEntry = (pTableGammaTemp->gDataWidth + 7) / 8; // size, in bytes, of the device table entries
short shiftRightValue = pTableGammaTemp->gDataWidth - 8; // number of right shifts device -> ramp
short channels = pTableGammaTemp->gChanCnt;
short entries = pTableGammaTemp->gDataCnt;
if (channels == 3) // RGB format
{ // note, this will create runs of entries if dest. is bigger (not linear interpolate)
for (indexChan = 0; indexChan < channels; indexChan++)
for (indexEntry = 0; indexEntry < 256; indexEntry++)
*((unsigned char *)pRamp + (indexChan << 8) + indexEntry) =
*(pEntry + (indexChan * entries * bytesPerEntry) + indexEntry * ((entries * bytesPerEntry) >> 8)) >> shiftRightValue;
}
else // single channel format
{
for (indexEntry = 0; indexEntry < 256; indexEntry++) // for all entries set vramp value
for (indexChan = 0; indexChan < channels; indexChan++) // repeat for all channels
*((unsigned char *)pRamp + (indexChan << 8) + indexEntry) =
*(pEntry + ((indexEntry * entries * bytesPerEntry) >> 8)) >> shiftRightValue;
}
return true;
}
}
return false;
}
// --------------------------------------------------------------------------
// GetDeviceGammaRampGW
// retrieves the gamma ramp from a graphics device associated with a GWorld pointer (pRamp: 3 arrays of 256 elements each)
Boolean GetDeviceGammaRampGW (GWorldPtr pGW, Ptr pRamp)
{
GDHandle hGD = GetGWorldDevice (pGW);
return GetDeviceGammaRampGD (hGD, pRamp);
}
// --------------------------------------------------------------------------
// GetDeviceGammaRampCGP
// retrieves the gamma ramp from a graphics device associated with a CGraf pointer (pRamp: 3 arrays of 256 elements each)
Boolean GetDeviceGammaRampCGP (CGrafPtr pGraf, Ptr pRamp)
{
CGrafPtr pGrafSave;
GDHandle hGDSave;
GetGWorld (&pGrafSave, &hGDSave);
SetGWorld (pGraf, NULL);
GDHandle hGD = GetGDevice ();
Boolean fResult = GetDeviceGammaRampGD (hGD, pRamp);
SetGWorld (pGrafSave, hGDSave);
return fResult;
}
// --------------------------------------------------------------------------
// SetDeviceGammaRampGD
// sets the gamma ramp for a graphics device (pRamp: 3 arrays of 256 elements each (R,G,B))
Boolean SetDeviceGammaRampGD (GDHandle hGD, Ptr pRamp)
{
VDSetEntryRecord setEntriesRec;
VDGammaRecord gameRecRestore;
GammaTblPtr pTableGammaNew;
GammaTblPtr pTableGammaCurrent = NULL;
CTabHandle hCTabDeviceColors;
Ptr csPtr;
OSErr err;
short dataBits, entries, channels = 3; // force three channels in the gamma table
if (pRamp) // ensure pRamp is allocated
{
err= GetGammaTable (hGD, &pTableGammaCurrent); // get pointer to current table
if ((err == noErr) && pTableGammaCurrent)
{
dataBits = pTableGammaCurrent->gDataWidth; // table must have same data width
entries = pTableGammaCurrent->gDataCnt; // table must be same size
pTableGammaNew = (GammaTblPtr) CreateEmptyGammaTable (channels, entries, dataBits); // our new table
if (pTableGammaNew) // if successful fill table
{
unsigned char * pGammaBase = (unsigned char *)&pTableGammaNew->gFormulaData + pTableGammaNew->gFormulaSize; // base of table
if (entries == 256 && dataBits == 8) // simple case: direct mapping
BlockMove ((Ptr)pRamp, (Ptr)pGammaBase, channels * entries); // move everything
else // tough case handle entry, channel and data size disparities
{
short bytesPerEntry = (dataBits + 7) / 8; // size, in bytes, of the device table entries
short shiftRightValue = 8 - dataBits; // number of right shifts ramp -> device
shiftRightValue += ((bytesPerEntry - 1) * 8); // multibyte entries and the need to map a byte at a time most sig. to least sig.
for (short indexChan = 0; indexChan < channels; indexChan++) // for all the channels
for (short indexEntry = 0; indexEntry < entries; indexEntry++) // for all the entries
{
short currentShift = shiftRightValue; // reset current bit shift
long temp = *((unsigned char *)pRamp + (indexChan << 8) + (indexEntry << 8) / entries); // get data from ramp
for (short indexByte = 0; indexByte < bytesPerEntry; indexByte++) // for all bytes
{
if (currentShift < 0) // shift data correctly for current byte
*(pGammaBase++) = temp << -currentShift;
else
*(pGammaBase++) = temp >> currentShift;
currentShift -= 8; // increment shift to align to next less sig. byte
}
}
}
// set gamma
gameRecRestore.csGTable = (Ptr) pTableGammaNew; // setup restore record
csPtr = (Ptr) &gameRecRestore;
err = Control((**hGD).gdRefNum, cscSetGamma, (Ptr) &csPtr); // restore gamma
if (((**(**hGD).gdPMap).pixelSize == 8) && (err == noErr)) // if successful and on an 8 bit device
{
hCTabDeviceColors = (**(**hGD).gdPMap).pmTable; // do SetEntries to force CLUT update
setEntriesRec.csTable = (ColorSpec *) &(**hCTabDeviceColors).ctTable;
setEntriesRec.csStart = 0;
setEntriesRec.csCount = (**hCTabDeviceColors).ctSize;
csPtr = (Ptr) &setEntriesRec;
err = Control((**hGD).gdRefNum, cscSetEntries, (Ptr) &csPtr); // SetEntries in CLUT
}
DisposeGammaTable ((Ptr) pTableGammaNew); // dump table
if (err == noErr)
return true;
}
}
}
else // set NULL gamma -> results in linear map
{
gameRecRestore.csGTable = (Ptr) NULL; // setup restore record
csPtr = (Ptr) &gameRecRestore;
err = Control((**hGD).gdRefNum, cscSetGamma, (Ptr) &csPtr); // restore gamma
if (((**(**hGD).gdPMap).pixelSize == 8) && (err == noErr)) // if successful and on an 8 bit device
{
hCTabDeviceColors = (**(**hGD).gdPMap).pmTable; // do SetEntries to force CLUT update
setEntriesRec.csTable = (ColorSpec *) &(**hCTabDeviceColors).ctTable;
setEntriesRec.csStart = 0;
setEntriesRec.csCount = (**hCTabDeviceColors).ctSize;
csPtr = (Ptr) &setEntriesRec;
err = Control((**hGD).gdRefNum, cscSetEntries, (Ptr) &csPtr); // SetEntries in CLUT
}
if (err == noErr)
return true;
}
return false; // memory allocation or device control failed if we get here
}
// --------------------------------------------------------------------------
// SetDeviceGammaRampGW
// sets the gamma ramp for a graphics device associated with a GWorld pointer (pRamp: 3 arrays of 256 elements each (R,G,B))
Boolean SetDeviceGammaRampGW (GWorldPtr pGW, Ptr pRamp)
{
GDHandle hGD = GetGWorldDevice (pGW);
return SetDeviceGammaRampGD (hGD, pRamp);
}
// --------------------------------------------------------------------------
// SetDeviceGammaRampCGP
// sets the gamma ramp for a graphics device associated with a CGraf pointer (pRamp: 3 arrays of 256 elements each (R,G,B))
Boolean SetDeviceGammaRampCGP (CGrafPtr pGraf, Ptr pRamp)
{
CGrafPtr pGrafSave;
GDHandle hGDSave;
GetGWorld (&pGrafSave, &hGDSave);
SetGWorld (pGraf, NULL);
GDHandle hGD = GetGDevice ();
Boolean fResult = SetDeviceGammaRampGD (hGD, pRamp);
SetGWorld (pGrafSave, hGDSave);
return fResult;
}