jedioutcast/utils/roq2/libim/imvfbresize.c

506 lines
13 KiB
C
Raw Normal View History

2013-04-04 18:02:27 +00:00
/**
** $Header: /roq/libim/imvfbresize.c 1 11/02/99 4:38p Zaphod $
** Copyright (c) 1989-1995 San Diego Supercomputer Center (SDSC)
** a division of General Atomics, San Diego, California, USA
**
** Users and possessors of this source code are hereby granted a
** nonexclusive, royalty-free copyright and design patent license to
** use this code in individual software. License is not granted for
** commercial resale, in whole or in part, without prior written
** permission from SDSC. This source is provided "AS IS" without express
** or implied warranty of any kind.
**
** For further information contact:
** E-Mail: info@sds.sdsc.edu
**
** Surface Mail: Information Center
** San Diego Supercomputer Center
** P.O. Box 85608
** San Diego, CA 92186-9784
** (619) 534-5000
**/
#define HEADER " $Header: /roq/libim/imvfbresize.c 1 11/02/99 4:38p Zaphod $ "
/**
** FILE
** imvfbresize.c - Change a VFB to a new size
**
** PROJECT
** libim - SDSC image manipulation library
**
** DESCRIPTION
** imvfbresize.c contains code to change the resolution of an image.
**
** PUBLIC CONTENTS
** d =defined constant
** f =function
** m =defined macro
** t =typedef/struct/union
** v =variable
** ? =other
**
** ImVfbResize f change the resolution of a vfb
**
** PRIVATE CONTENTS
** none
**
** HISTORY
** $Log: /roq/libim/imvfbresize.c $
*
* 1 11/02/99 4:38p Zaphod
** Revision 1.11 1995/06/30 22:11:56 bduggan
** added some casts
**
** Revision 1.10 1995/06/29 00:28:04 bduggan
** updated copyright year
**
** Revision 1.9 1995/06/16 09:00:36 bduggan
** added some casts
**
** Revision 1.8 94/10/03 11:29:55 nadeau
** Updated to ANSI C and C++ compatibility.
** Removed all use of register keyword.
** Minimized use of custom SDSC types (e.g., uchar vs. unsigned char)
** Changed all float arguments to double.
** Added forward declarations.
** Added misc. casts to passify SGI and DEC compilers.
** Changed all macros and defined constants to have names
** starting with IM.
** Updated comments.
** Updated indenting on some code.
** Updated copyright message.
**
** Revision 1.7 92/08/31 17:42:42 vle
** Updated copyright notice.
**
** Revision 1.6 92/08/26 11:19:28 nadeau
** Added additional error checks.
**
** Revision 1.5 92/08/25 16:08:00 groening
** added pixel replication feature
**
** Revision 1.4 92/02/27 16:21:55 nadeau
** Fixed bug in resizing of FDATA field info.
**
** Revision 1.3 91/10/03 09:22:21 nadeau
** Added handling of a non-new destination VFB. Added
** handling of IDATA, FDATA, MONO, Z, and WPROT fields.
** Fixed problem that stepped beyond the right and bottom
** edges of the VFB. Fixed problem that caused jaggy
** edges on all images scaled up.
**
** Revision 1.2 91/03/08 14:37:31 nadeau
** Changed name from ImVfbNewRes to ImVfbReSize. Added comments.
** Deleted comments. Changed IMVFBINDEX32 to IMVFBINDEX16.
**
** Revision 1.1 91/02/05 13:46:55 mjb
** Initial revision
**/
/**
** CODE CREDITS
** Custom development, Michael Bailey, San Diego Supercomputer Center, 1991.
**/
#include <math.h>
#include "iminternal.h"
/*
* FUNCTION
* ImVfbResize - change the resolution of a vfb
*
* DESCRIPTION
* Increase or decrease the size of the image using pixel replication
* or bilinear interpolation. In either case a new
* destination VFB is created (unless one has been passed in) and
* the source image copied into it, changing its size as we go.
*/
ImVfb * /* Returns resized VFB */
#ifdef __STDC__
ImVfbResize( ImVfb *srcVfb, int algorithm, ImVfb *dstVfb, int width, int height )
#else
ImVfbResize( srcVfb, algorithm, dstVfb, width, height )
ImVfb *srcVfb; /* VFB to resize */
int algorithm; /* Algorithm to use */
ImVfb *dstVfb; /* Result VFB */
int width, height;/* Desired dimensions */
#endif
{
ImVfbPtr pdst; /* Destination VFB pointer */
ImVfbPtr psrc; /* Destination VFB pointer */
ImVfbPtr p00, p10, p01, p11; /* corner pointers */
int i,j,k,l; /* generic integer value */
int fields; /* vfb field description */
ImVfb *tmpVfb; /* Temporary VFB */
float f; /* Generic float value */
int sw, sh; /* Source size */
int dw, dh; /* Destination size */
int intdx, intdy; /* Step through dst vfb */
int intsx, intsy; /* Integer source locations */
int intsx2, intsy2;/* Second integer source loc */
float sclw, sclh; /* mapping scale factors */
float c00, c10, c01, c11; /* corner coefficients */
float floatsx, floatsy; /* fp source pos */
float fracsx, fracsy; /* fractional source pos*/
float omfracsx, omfracsy; /* 1.0 - fractional values*/
int scaleFacOne, scaleFacTwo; /* scale factors */
/*
* Check what algorithm the user wants us to use.
*/
switch ( algorithm )
{
case IMVFBPIXELREP:
/*
* Check that the new size is larger than the source size,
* and that it is an even multiple.
*/
if ( width < ImVfbQWidth( srcVfb ) )
{
ImErrNo = IMEWIDTH;
return ( IMVFBNULL );
}
if ( height < ImVfbQHeight( srcVfb ) )
{
ImErrNo = IMEHEIGHT;
return ( IMVFBNULL );
}
scaleFacOne = width % ImVfbQWidth(srcVfb);
scaleFacTwo = height % ImVfbQHeight(srcVfb);
if ( (scaleFacOne!=0) || (scaleFacTwo!=0) )
{
ImErrNo = IMEPIXELREP;
return(IMVFBNULL);
}
break;
case IMVFBBILINEAR:
break;
default:
ImErrNo = IMEBADALGORITHM;
return( IMVFBNULL );
}
/*
* If the user hasn't given us a destination VFB, make one.
* If they have given us a destination VFB, make sure it is usable.
*/
fields = ImVfbQFields( srcVfb );
sw = ImVfbQWidth( srcVfb );
sh = ImVfbQHeight( srcVfb );
tmpVfb = IMVFBNULL;
if ( dstVfb == IMVFBNEW )
{
dstVfb = ImVfbAlloc( width, height, fields );
if( dstVfb == IMVFBNULL )
{
ImErrNo = IMEMALLOC;
return( IMVFBNULL );
}
}
else
{
if ( ImVfbQWidth( dstVfb ) != width )
{
ImErrNo = IMEWIDTH;
return ( IMVFBNULL );
}
if ( ImVfbQHeight( dstVfb ) != height )
{
ImErrNo = IMEHEIGHT;
return ( IMVFBNULL );
}
if ( ImVfbQFields( dstVfb ) != fields )
{
ImErrNo = IMECONFLICT;
return ( IMVFBNULL );
}
}
if (algorithm == IMVFBPIXELREP)
{
/*
* Perform pixel replication to increase the image's size.
*/
scaleFacOne = width / ImVfbQWidth(srcVfb);
scaleFacTwo = height / ImVfbQHeight(srcVfb);
psrc = ImVfbQFirst( srcVfb);
pdst = ImVfbQFirst( dstVfb);
for (i=0; i<ImVfbQHeight(srcVfb); i++)
{
for (k=0; k<scaleFacTwo; k++)
{
for (j=0; j<ImVfbQWidth(srcVfb); j++)
{
for (l=0; l<scaleFacOne;l++)
{
if ( fields & IMVFBRGB )
{
ImVfbSRed (dstVfb, pdst, ImVfbQRed (srcVfb, psrc) );
ImVfbSGreen (dstVfb, pdst,ImVfbQGreen(srcVfb, psrc));
ImVfbSBlue (dstVfb, pdst, ImVfbQBlue(srcVfb, psrc) );
}
if ( fields & IMVFBINDEX8 )
{
ImVfbSIndex8(dstVfb,pdst,ImVfbQIndex8(srcVfb,psrc) );
}
if ( fields & IMVFBINDEX16 )
{
ImVfbSIndex16(dstVfb,pdst,ImVfbQIndex16(srcVfb,psrc));
}
if ( fields & IMVFBALPHA )
{
ImVfbSAlpha(dstVfb,pdst,ImVfbQAlpha(srcVfb,psrc) );
}
if ( fields & IMVFBWPROT )
{
ImVfbSWProt(dstVfb,pdst,ImVfbQWProt(srcVfb,psrc) );
}
if ( fields & IMVFBIDATA )
{
ImVfbSIData(dstVfb,pdst,ImVfbQIData(srcVfb,psrc) );
}
if ( fields & IMVFBFDATA )
{
ImVfbSFData(dstVfb,pdst,ImVfbQFData(srcVfb,psrc) );
}
if ( fields & IMVFBMONO )
{
ImVfbSMono(dstVfb,pdst,ImVfbQMono(srcVfb,psrc) );
}
if ( fields & IMVFBZ )
{
ImVfbSZ(dstVfb,pdst,ImVfbQZ(srcVfb,psrc) );
}
ImVfbSInc (dstVfb, pdst);
}
ImVfbSInc(srcVfb, psrc);
}
ImVfbSUp(srcVfb, psrc);
}
ImVfbSDown (srcVfb, psrc);
}
return( dstVfb );
}
/*
* Perform bilinear interpolation to increase or decrease
* image's size.
*/
if ( srcVfb == dstVfb )
{
/*
* This is a destructive algorithm. In order to
* avoid stepping on ourself we copy the source
* VFB to a temporary VFB and work with that.
*/
tmpVfb = ImVfbCopy( srcVfb, 0, 0, sw, sh, fields,
IMVFBNEW, 0, 0 );
if( tmpVfb == IMVFBNULL )
{
ImErrNo = IMEMALLOC;
return( IMVFBNULL );
}
srcVfb = tmpVfb;
}
/*
* Figure scale factors.
*/
dw = width;
dh = height;
sclw = (float)(sw-1) / (float)(dw-1);
sclh = (float)(sh-1) / (float)(dh-1);
/*
* Walk through the image, computing new X and Y floating point
* positions along the way.
*/
for ( floatsy = 0.0, intdy = 0, pdst = ImVfbQFirst( dstVfb );
intdy < dh; floatsy += sclh, intdy++ )
{
/*
* Compute our integer and fractional Y positions in
* the source image.
*/
intsy = (int)floatsy;
intsy2 = intsy + 1;
if ( intsy2 > sh-1 )
intsy2 = sh-1;
fracsy = floatsy - (float) intsy;
omfracsy = 1.0 - fracsy;
for ( floatsx = 0.0, intdx = 0; intdx < dw;
floatsx += sclw, intdx++, ImVfbSInc( dstVfb, pdst ) )
{
/*
* Compute our integer and fractional X positions
* in the source image.
*/
intsx = (int)floatsx;
intsx2 = intsx + 1;
if ( intsx2 > sw-1 )
intsx2 = sw-1;
fracsx = floatsx - (float) intsx;
omfracsx = 1.0 - fracsx;
/*
* Advance our position in the source image.
*/
p00 = ImVfbQPtr( srcVfb, intsx , intsy );
p10 = ImVfbQPtr( srcVfb, intsx2, intsy );
p01 = ImVfbQPtr( srcVfb, intsx , intsy2 );
p11 = ImVfbQPtr( srcVfb, intsx2, intsy2 );
/*
* Compute corner coefficients.
*/
c00 = omfracsx * omfracsy;
c10 = fracsx * omfracsy;
c01 = omfracsx * fracsy;
c11 = fracsx * fracsy;
/*
* Interpolate each of the VFB fields.
*/
if ( fields & IMVFBRGB )
{
i = (int)
(c00 * ImVfbQRed( srcVfb, p00 ) +
c10 * ImVfbQRed( srcVfb, p10 ) +
c01 * ImVfbQRed( srcVfb, p01 ) +
c11 * ImVfbQRed( srcVfb, p11 ));
ImVfbSRed( dstVfb, pdst, i & 0xFF );
i = (int)
(c00 * ImVfbQGreen( srcVfb, p00 ) +
c10 * ImVfbQGreen( srcVfb, p10 ) +
c01 * ImVfbQGreen( srcVfb, p01 ) +
c11 * ImVfbQGreen( srcVfb, p11 ));
ImVfbSGreen( dstVfb, pdst, i & 0xFF );
i = (int)
(c00 * ImVfbQBlue( srcVfb, p00 ) +
c10 * ImVfbQBlue( srcVfb, p10 ) +
c01 * ImVfbQBlue( srcVfb, p01 ) +
c11 * ImVfbQBlue( srcVfb, p11 ));
ImVfbSBlue( dstVfb, pdst, i & 0xFF );
}
if ( fields & IMVFBINDEX8 )
{
i = (int)
(c00 * ImVfbQIndex8( srcVfb, p00 ) +
c10 * ImVfbQIndex8( srcVfb, p10 ) +
c01 * ImVfbQIndex8( srcVfb, p01 ) +
c11 * ImVfbQIndex8( srcVfb, p11 ));
ImVfbSIndex8( dstVfb, pdst, i & 0xFF );
}
if ( fields & IMVFBINDEX16 )
{
i = (int)
(c00 * ImVfbQIndex16( srcVfb, p00 ) +
c10 * ImVfbQIndex16( srcVfb, p10 ) +
c01 * ImVfbQIndex16( srcVfb, p01 ) +
c11 * ImVfbQIndex16( srcVfb, p11 ));
ImVfbSIndex16( dstVfb, pdst, i & 0xFFFF );
}
if ( fields & IMVFBMONO )
{
i = (int)
(c00 * ImVfbQMono( srcVfb, p00 ) +
c10 * ImVfbQMono( srcVfb, p10 ) +
c01 * ImVfbQMono( srcVfb, p01 ) +
c11 * ImVfbQMono( srcVfb, p11 ));
ImVfbSMono( dstVfb, pdst, i & 0x1 );
}
if ( fields & IMVFBALPHA )
{
i = (int)
(c00 * ImVfbQAlpha( srcVfb, p00 ) +
c10 * ImVfbQAlpha( srcVfb, p10 ) +
c01 * ImVfbQAlpha( srcVfb, p01 ) +
c11 * ImVfbQAlpha( srcVfb, p11 ));
ImVfbSAlpha( dstVfb, pdst, i & 0xFF );
}
if ( fields & IMVFBWPROT )
{
i = (int)
(c00 * ImVfbQWProt( srcVfb, p00 ) +
c10 * ImVfbQWProt( srcVfb, p10 ) +
c01 * ImVfbQWProt( srcVfb, p01 ) +
c11 * ImVfbQWProt( srcVfb, p11 ));
ImVfbSWProt( dstVfb, pdst, i & 0xFF );
}
if ( fields & IMVFBZ )
{
i = (int)
(c00 * ImVfbQZ( srcVfb, p00 ) +
c10 * ImVfbQZ( srcVfb, p10 ) +
c01 * ImVfbQZ( srcVfb, p01 ) +
c11 * ImVfbQZ( srcVfb, p11 ));
ImVfbSZ( dstVfb, pdst, i );
}
if ( fields & IMVFBIDATA )
{
i = (int)
(c00 * ImVfbQIData( srcVfb, p00 ) +
c10 * ImVfbQIData( srcVfb, p10 ) +
c01 * ImVfbQIData( srcVfb, p01 ) +
c11 * ImVfbQIData( srcVfb, p11 ));
ImVfbSIData( dstVfb, pdst, i );
}
if ( fields & IMVFBFDATA )
{
f = (int)
(c00 * ImVfbQFData( srcVfb, p00 ) +
c10 * ImVfbQFData( srcVfb, p10 ) +
c01 * ImVfbQFData( srcVfb, p01 ) +
c11 * ImVfbQFData( srcVfb, p11 ));
ImVfbSFData( dstVfb, pdst, f );
}
}
}
if ( srcVfb == tmpVfb )
ImVfbFree( tmpVfb );
return( dstVfb );
}