jedioutcast/utils/roq2/main/codec.c

1579 lines
45 KiB
C
Raw Normal View History

2013-04-04 18:02:27 +00:00
#include "codec.h"
//#include "libc.h"
#include "Zim.h"
#include "math.h"
#include "ParamImSeq.h"
static TagTable *image;
static TagTable *newImage;
static TagTable *previousImage[2]; // the ones in video ram and offscreen ram
static int numQuadCels;
static int whichFrame;
static BOOL detail;
static int onQuad;
static int initRGBtab;
static byte luty[256];
static byte *luti;
static quadcel *qStatus;
static int dxMean;
static int dyMean;
static int codebooksize;
static int index2[256];
static int overAmount;
static VQDATA **codebook2;
static VQDATA norm2[256];
static int index4[256];
static VQDATA **codebook4;
static VQDATA norm4[256];
static int pixelsWide;
static int pixelsHigh;
static int codebookmade;
static BOOL used2[256];
static BOOL used4[256];
static int dimension2;
static int dimension4;
static int currentTotalBits;
static int sizeQuickAdd[DEAD+1];
int CodecInit( )
{
int i;
printf("init: initing.....\n");
codebooksize = 256;
codebook2 = (VQDATA **) calloc(256,sizeof(VQDATA *));
for(i=0; i < 256; i++) {
codebook2[i] = (VQDATA *) calloc(16,sizeof(VQDATA));
}
codebook4 = (VQDATA **) calloc(256,sizeof(VQDATA *));
for(i=0; i < 256; i++) {
codebook4[i] = (VQDATA *) calloc(64,sizeof(VQDATA));
}
previousImage[0] = 0;
image = NULL;
whichFrame = 0;
qStatus = 0;
luti = 0;
overAmount = 0;
codebookmade = 0;
sizeQuickAdd[DEP] = 2;
sizeQuickAdd[SLD] = 10;
sizeQuickAdd[PAT] = 10;
sizeQuickAdd[CCC] = 34;
sizeQuickAdd[MOT] = 2;
sizeQuickAdd[FCC] = 10;
sizeQuickAdd[DEAD] = 0;
currentTotalBits = 0;
if ( RoqIsQuiet() == NO)
{
unlink("/LocalLibrary/RoQFiles/previousFrame.tiff");
unlink("/LocalLibrary/RoQFiles/previousPreviousFrame.tiff");
}
return 1;
}
int CodecFree( )
{
printf("free: resetting\n");
if (qStatus) free(qStatus);
if (luti) free(luti);
if (previousImage[0]) ZimFree(previousImage[0]);
if (previousImage[1]) ZimFree(previousImage[1]);
qStatus = 0;
initRGBtab = 0;
previousImage[0] = 0;
whichFrame = 0;
luti = 0;
return 1;
}
/* Because Shellsort is a variation on Insertion Sort, it has the same
* inconsistency that I noted in the InsertionSort class. Notice where I
* subtract a move to compensate for calling a swap for visual purposes.
*/
int CodecSort( float * list ,int * intIndex ,int numElements )
{
#define STRIDE_FACTOR 3 // good value for stride factor is not well-understood
// 3 is a fairly good choice (Sedgewick)
int c,d, stride;
BOOL found;
stride = 1;
while (stride <= numElements)
stride = stride*STRIDE_FACTOR +1;
while (stride>(STRIDE_FACTOR-1)) { // loop to sort for each value of stride
stride = stride / STRIDE_FACTOR;
for (c = stride; c < numElements; c++){
found = NO;
d = c-stride;
while ((d >= 0) && !found) { // move to left until correct place
if (list[d]<list[d+stride]) {
float ftemp;
int itemp;
ftemp = list[d]; list[d] = list[d+stride]; list[d+stride] = ftemp;
itemp = intIndex[d]; intIndex[d] = intIndex[d+stride]; intIndex[d+stride] = itemp;
d -= stride; // jump by stride factor
} else
found = YES;
}
}
}
return 1;
}
int CodecSegment( int * alist , float * flist ,int numElements ,float rmse )
{
int x, y, yy, numc, onf, *ilist, index, temp, best, a0, a1, a2, a3;
byte find[16], *lineout;
float fy, fcr, fcb;
FILE *fpcb;
char cbFile[MAXPATHLEN], tempcb[MAXPATHLEN];
BOOL doopen, dosave;
float y0,y1,y2,y3,cr,cb;
doopen = NO;
dosave = YES;
a0 = a1 = a2 = a3 = 0;
sprintf( tempcb, "%s.cb", RoqCurrentFilename());
onf = 0;
for(x=0;x<strlen(tempcb);x++) {
if (tempcb[x] == '\n') for(y=x;y<strlen(tempcb);y++) if (tempcb[y] == '/') x = y+1;
cbFile[onf++] = tempcb[x];
}
cbFile[onf] = 0;
lineout = malloc( 4*1024 );
ilist = calloc( (numQuadCels+1)*4, sizeof(int) );
if ((fpcb = fopen( cbFile, "rb")) == NULL) {
doopen = YES;
} else {
if ( dimension2 == 16 ) x = 3584; else x = 2560;
if ( (fread( lineout, 1, x, fpcb)) != x ) doopen = YES;
fclose( fpcb );
}
if (RoqCurrentFade() != 1.0) //can't use pre-generated codebooks for images that are faded
{
printf("Ignoring saved codebook because of fade = %f \n",RoqCurrentFade());
doopen = YES;
dosave = NO;
}
if ( doopen ) {
printf("segment: making %s\n", cbFile);
numc = numElements;
if (numElements > numc) numc = numElements;
onf = 0;
for(x=0;x<numc;x++) {
ilist[onf++] = (qStatus[alist[x]].yat<<16)+(qStatus[alist[x]].xat);
ilist[onf++] = (qStatus[alist[x]].yat<<16)+(qStatus[alist[x]].xat+4);
ilist[onf++] = ((qStatus[alist[x]].yat+4)<<16)+(qStatus[alist[x]].xat);
ilist[onf++] = ((qStatus[alist[x]].yat+4)<<16)+(qStatus[alist[x]].xat+4);
}
if (RoqIsQuiet() == NO) {
printf("segment: making a new codebook, number of cels to VQ = %d (out of %d)\n", onf, numElements*4);
}
for(x=0;x<256;x++) {
for(y=0;y<dimension2;y++) codebook2[x][y] = 0;
for(y=0;y<dimension4;y++) codebook4[x][y] = 0;
}
y = ZimBpp(image) * ZimWidth(image);
stdvq( dimension4, 256, ZimData(image), y, ilist, onf, codebook4, NO, flist );
stdvq( dimension2, 256, ZimData(image), y, ilist, onf, codebook2, NO, flist );
CodecPrepareCodeBook();
index = 0;
for(onf=0;onf<256;onf++) {
numc = 0; fcr = fcb = 0;
for(x=0;x<4;x++) {
fy = RMULT*codebook2[onf][numc+0];
fy += GMULT*codebook2[onf][numc+1];
fy += BMULT*codebook2[onf][numc+2];
fy = glimit( fy+0.5 );
fcr += RIEMULT*codebook2[onf][numc+0];
fcr += GIEMULT*codebook2[onf][numc+1];
fcr += BIEMULT*codebook2[onf][numc+2];
fcb += RQEMULT*codebook2[onf][numc+0];
fcb += GQEMULT*codebook2[onf][numc+1];
fcb += BQEMULT*codebook2[onf][numc+2];
lineout[index++] = (byte)fy;
if ( dimension2 == 16 ) {
lineout[index++] = (byte)codebook2[onf][numc+3];
numc += 4;
} else {
numc += 3;
}
}
fcr = glimit((fcr/4)+128.5);
fcb = glimit((fcb/4)+128.5);
lineout[index++] = (byte)fcr;
lineout[index++] = (byte)fcb;
}
for(onf=0;onf<256;onf++) {
for(y=0;y<4;y+=2) {
for(x=0;x<4;x+=2) {
numc = 0;
for(yy=y;yy<(y+2);yy++) {
temp = (yy*dimension2)+x*(dimension2/4);
find[numc++] = (byte)(codebook4[onf][temp+0] + 0.50);
find[numc++] = (byte)(codebook4[onf][temp+1] + 0.50);
find[numc++] = (byte)(codebook4[onf][temp+2] + 0.50);
find[numc++] = (byte)(codebook4[onf][temp+3] + 0.50);
find[numc++] = (byte)(codebook4[onf][temp+4] + 0.50);
find[numc++] = (byte)(codebook4[onf][temp+5] + 0.50);
if ( dimension2 == 16 ) {
find[numc++] = (byte)(codebook4[onf][temp+6] + 0.50);
find[numc++] = (byte)(codebook4[onf][temp+7] + 0.50);
}
}
lineout[index++] = CodecBestCodeword(find, dimension2, codebook2, norm2, index2);
}
}
}
printf("made up %d entries\n", index);
if (dosave)
{
fpcb = fopen( cbFile, "wb" );
fwrite( lineout, index, 1, fpcb );
fclose( fpcb );
printf("finished write\n");
}
}
for(y=0;y<256;y++) {
if ( dimension2 == 16 ) x = y*10; else x = y*6;
y0 = (float)lineout[x++];
if ( dimension2 == 16 ) a0 = (int)lineout[x++];
y1 = (float)lineout[x++];
if ( dimension2 == 16 ) a1 = (int)lineout[x++];
y2 = (float)lineout[x++];
if ( dimension2 == 16 ) a2 = (int)lineout[x++];
y3 = (float)lineout[x++];
if ( dimension2 == 16 ) a3 = (int)lineout[x++];
cb = (float)lineout[x++]; cb -= 128;
cr = (float)lineout[x ]; cr -= 128;
x = 0;
codebook2[y][x++] = glimit( y0 + 1.40200*cr );
codebook2[y][x++] = glimit( y0 - 0.34414*cb - 0.71414*cr );
codebook2[y][x++] = glimit( y0 + 1.77200*cb );
if ( dimension2 == 16 ) codebook2[y][x++] = a0;
codebook2[y][x++] = glimit( y1 + 1.40200*cr );
codebook2[y][x++] = glimit( y1 - 0.34414*cb - 0.71414*cr );
codebook2[y][x++] = glimit( y1 + 1.77200*cb );
if ( dimension2 == 16 ) codebook2[y][x++] = a1;
codebook2[y][x++] = glimit( y2 + 1.40200*cr );
codebook2[y][x++] = glimit( y2 - 0.34414*cb - 0.71414*cr );
codebook2[y][x++] = glimit( y2 + 1.77200*cb );
if ( dimension2 == 16 ) codebook2[y][x++] = a2;
codebook2[y][x++] = glimit( y3 + 1.40200*cr );
codebook2[y][x++] = glimit( y3 - 0.34414*cb - 0.71414*cr );
codebook2[y][x++] = glimit( y3 + 1.77200*cb );
if ( dimension2 == 16 ) codebook2[y][x++] = a3;
}
if ( dimension2 == 16 ) index = 10*256; else index = 6*256;
for(onf=0;onf<256;onf++) {
for(y=0;y<4;y+=2) {
for(x=0;x<4;x+=2) {
best = lineout[index++];
numc = 0;
for(yy=y;yy<(y+2);yy++) {
temp = (yy*dimension2)+x*(dimension2/4);
codebook4[onf][temp+0] = codebook2[best][numc++]; //r
codebook4[onf][temp+1] = codebook2[best][numc++]; //g
codebook4[onf][temp+2] = codebook2[best][numc++]; //b
codebook4[onf][temp+3] = codebook2[best][numc++]; //r a
codebook4[onf][temp+4] = codebook2[best][numc++]; //g r
codebook4[onf][temp+5] = codebook2[best][numc++]; //b g
if ( dimension2 == 16 ) {
codebook4[onf][temp+6] = codebook2[best][numc++]; //b
codebook4[onf][temp+7] = codebook2[best][numc++]; //a
}
}
}
}
}
RoqWriteCodeBook(lineout);
CodecPrepareCodeBook();
free(ilist);
free(lineout);
return 1;
}
int CodecPrepareCodeBook( )
{
VQDATA tempfloat; /* temporary variable */
int i, j;
int bestnorm; /* used as an index for sorting norm */
/* initialize index order */
for (i = 0; i < 256; i++) {
index2[i] = i;
index4[i] = i;
}
/* find the norm of each codeword and store in an array */
for (i = 0; i < 256; i++) {
norm2[i] = 0.0;
for (j = 0; j < dimension2; j++) {
norm2[i] += codebook2[i][j]*codebook2[i][j];
}
norm2[i] = sqrt(norm2[i]);
norm4[i] = 0.0;
for (j = 0; j < dimension4; j++) {
norm4[i] += codebook4[i][j]*codebook4[i][j];
}
norm4[i] = sqrt(norm4[i]);
}
/* reorder the codebook by ascending norm */
for (i = 0; i < 256; i++) {
bestnorm = i;
/* find the lowest norm */
for ( j = i; j < 256; j++) {
if (norm2[j] < norm2[bestnorm]) bestnorm = j;
}
/* record index change */
j = index2[i];
index2[i] = bestnorm;
index2[bestnorm] = j;
/* reorder the norm arrray */
tempfloat = norm2[i];
norm2[i] = norm2[bestnorm];
norm2[bestnorm] = tempfloat;
}
/* reorder the codebook by ascending norm */
for (i = 0; i < 256; i++) {
bestnorm = i;
/* find the lowest norm */
for ( j = i; j < 256; j++) {
if (norm4[j] < norm4[bestnorm]) bestnorm = j;
}
/* record index change */
j = index4[i];
index4[i] = bestnorm;
index4[bestnorm] = j;
/* reorder the norm arrray */
tempfloat = norm4[i];
norm4[i] = norm4[bestnorm];
norm4[bestnorm] = tempfloat;
}
return 1;
}
int CodecBestCodeword( unsigned char * tempvector ,int dimension ,VQDATA ** codebook ,VQDATA * norm ,int * index )
{
VQDATA tempnorm; /* temporary variable used to sort codebook */
VQDATA tempfloat; /* temporary variable */
VQDATA temp; /* temporary variable */
VQDATA bestdistortion; /* distortion between vector and best codeword */
int i,j; /* counters and indices */
int bestcodeword; /* index of closest codeword */
int imin,imax; /* indices */
int itemp;
/* compute the norm of the input vector */
// tempnorm = 0.0;
itemp = 0;
for (j = 0; j < dimension; j+=4) {
itemp += tempvector[j+0]*tempvector[j+0];
itemp += tempvector[j+1]*tempvector[j+1];
itemp += tempvector[j+2]*tempvector[j+2];
itemp += tempvector[j+3]*tempvector[j+3];
}
tempnorm = (VQDATA)itemp;
tempnorm = sqrt(tempnorm);
/* find the codeword with a norm closest to the input vector */
bestcodeword = min_sup( 0, (codebooksize-1), tempnorm, norm);
/* compute the distance between the codeword and the input vector that
has the closest norm */
tempfloat = 0.0;
for (j = 0; j < dimension; j+=4) {
temp = ( (VQDATA) tempvector[j+0]) - codebook[index[bestcodeword]][j+0];
tempfloat += temp*temp;
temp = ( (VQDATA) tempvector[j+1]) - codebook[index[bestcodeword]][j+1];
tempfloat += temp*temp;
temp = ( (VQDATA) tempvector[j+2]) - codebook[index[bestcodeword]][j+2];
tempfloat += temp*temp;
temp = ( (VQDATA) tempvector[j+3]) - codebook[index[bestcodeword]][j+3];
tempfloat += temp*temp;
}
tempfloat = sqrt(tempfloat);
/* identify the subset of the codewords to search such that
norm(input)-distance <= norm(codeword) <= norm(input)+distance */
imin = min_sup(0, codebooksize-1, tempnorm-tempfloat, norm);
imax = max_inf(imin, codebooksize-1, tempnorm+tempfloat, norm);
/* find the bestcodeword using partial distortion method */
bestdistortion = HUGE; /* keep convention that ties go to lower index */
/* find the best codeword */
for (i = imin; i <= imax; i++) {
tempfloat = 0.0;
for (j = 0; j < dimension; j++) {
temp = ( (VQDATA) tempvector[j]) - codebook[index[i]][j];
tempfloat += temp*temp;
if (tempfloat > bestdistortion) j = dimension; /* abort loop */
}
if (tempfloat < bestdistortion) {
bestdistortion = tempfloat;
bestcodeword = i;
}
/* if bestidistortion is 0 then the best codeword has been found */
if (bestdistortion == 0.0) i = codebooksize;
} /* the best codeword has been found */
return index[bestcodeword];
}
int CodecSetPreviousImage( const char* filename ,TagTable * timage)
{
if (previousImage[0])
{
ZimFree(previousImage[0]);
}
if (previousImage[1])
{
ZimFree(previousImage[1]);
}
printf("setPreviousImage:%s\n", filename);
image = ZimImageTagTableFromFile(filename, "jpeg");
whichFrame=1;
pixelsHigh = ZimHeight(image);
pixelsWide = ZimWidth(image);
printf("setPreviousImage: %dx%d\n", pixelsWide, pixelsHigh );
previousImage[0] = ZimImageTagTableNew(pixelsWide, pixelsHigh, IMVFBRGB | IMVFBALPHA);
previousImage[1] = ZimImageTagTableNew(pixelsWide, pixelsHigh, IMVFBRGB | IMVFBALPHA);
// memcpy( ZimData(previousImage[0]), ZimData(image), pixelsWide*pixelsHigh*4);
// memcpy( ZimData(previousImage[1]), ZimData(image), pixelsWide*pixelsHigh*4);
ZimFree(image);
printf("setPreviousImage:done\n");
return 1;
}
int CodecMakePreviousImage( quadcel * pquad )
{
int i, dy, dx, pluck, size, ind, renamedone, xx, yy, pWide;
int x, y;
byte *rgbmap, *idataA, *fccdictionary;
BOOL diff;
if (RoqIsQuiet() == NO) {
renamedone = rename("/LocalLibrary/RoQFiles/previousFrame.tiff",
"/LocalLibrary/RoQFiles/previousPreviousFrame.tiff" );
}
for(i=0;i<256;i++) { used2[i] = used4[i] = NO; }
pWide = pixelsWide & 0xfff0;
if (!previousImage[0]) {
previousImage[0] = ZimImageTagTableNew(pWide, pixelsHigh & 0xfff0, IMVFBRGB | IMVFBALPHA);
previousImage[1] = ZimImageTagTableNew(pWide, pixelsHigh & 0xfff0, IMVFBRGB | IMVFBALPHA);
}
rgbmap = ZimData(previousImage[(whichFrame&1)]);
if ((whichFrame&1) == 1) {
fccdictionary = ZimData(previousImage[0]);
} else {
fccdictionary = ZimData(previousImage[1]);
}
idataA = malloc( 16*16*4 );
for(i=0;i<numQuadCels;i++) {
diff = NO;
size = pquad[i].size;
if (size) {
switch( pquad[i].status ) {
case DEP:
break;
case SLD:
ind = pquad[i].patten[0];
used4[ind] = YES;
for( dy=0; dy<size; dy++ ) {
pluck = (((dy+pquad[i].yat)*pWide)+pquad[i].xat)*4;
for( dx=0; dx<size; dx++ ) {
xx = ((dy>>1)*dimension2)+(dx>>1)*(dimension2/4);
if (rgbmap[pluck+0] != codebook4[ind][xx+0]) diff = YES;
if (rgbmap[pluck+1] != codebook4[ind][xx+1]) diff = YES;
if (rgbmap[pluck+2] != codebook4[ind][xx+2]) diff = YES;
if (dimension4 == 64 && rgbmap[pluck+3] != codebook4[ind][xx+3]) diff = YES;
rgbmap[pluck+0] = codebook4[ind][xx+0];
rgbmap[pluck+1] = codebook4[ind][xx+1];
rgbmap[pluck+2] = codebook4[ind][xx+2];
if (dimension4 == 64)
rgbmap[pluck+3] = codebook4[ind][xx+3];
else
rgbmap[pluck+3] = 255;
pluck += 4;
}
}
if (diff == NO && whichFrame) printf("drawImage: SLD just changed the same thing\n");
break;
case PAT:
ind = pquad[i].patten[0];
used4[ind] = YES;
for( dy=0; dy<size; dy++ ) {
pluck = (((dy+pquad[i].yat)*pWide)+pquad[i].xat)*4;
for( dx=0; dx<size; dx++ ) {
xx = (dy*size*(dimension2/4))+dx*(dimension2/4);
if (rgbmap[pluck+0] != codebook4[ind][xx+0]) diff = YES;
if (rgbmap[pluck+1] != codebook4[ind][xx+1]) diff = YES;
if (rgbmap[pluck+2] != codebook4[ind][xx+2]) diff = YES;
if (dimension4 == 64 && rgbmap[pluck+3] != codebook4[ind][xx+3]) diff = YES;
rgbmap[pluck+0] = codebook4[ind][xx+0];
rgbmap[pluck+1] = codebook4[ind][xx+1];
rgbmap[pluck+2] = codebook4[ind][xx+2];
if (dimension4 == 64)
rgbmap[pluck+3] = codebook4[ind][xx+3];
else
rgbmap[pluck+3] = 255;
pluck += 4;
}
}
if (diff == NO && whichFrame) printf("drawImage: PAT just changed the same thing\n");
break;
case CCC:
dx = 1;
for(yy=0;yy<4;yy+=2) {
for(xx=0;xx<4;xx+=2) {
ind = pquad[i].patten[dx++];
used2[ind] = YES;
dy = 0;
for(y=yy;y<(yy+2);y++) {
for(x=xx;x<(xx+2);x++) {
pluck = (((y+pquad[i].yat)*pWide)+(pquad[i].xat+x))*4;
if (rgbmap[pluck+0] != codebook2[ind][dy+0]) diff = YES;
if (rgbmap[pluck+1] != codebook2[ind][dy+1]) diff = YES;
if (rgbmap[pluck+2] != codebook2[ind][dy+2]) diff = YES;
if (dimension4 == 64 && rgbmap[pluck+3] != codebook2[ind][dy+3]) diff = YES;
rgbmap[pluck+0] = codebook2[ind][dy+0];
rgbmap[pluck+1] = codebook2[ind][dy+1];
rgbmap[pluck+2] = codebook2[ind][dy+2];
if (dimension4 == 64) {
rgbmap[pluck+3] = codebook2[ind][dy+3];
dy += 4;
} else {
rgbmap[pluck+3] = 255;
dy += 3;
}
}
}
}
}
if (diff == NO && whichFrame) {
printf("drawImage: CCC just changed the same thing\n");
printf("sparseEncode: something is wrong here\n");
printf("xat: %d\n", pquad[i].xat);
printf("yat: %d\n", pquad[i].yat);
printf("size %d\n", pquad[i].size);
printf("type: %d\n", pquad[i].status);
printf("motsnr: %0f\n", pquad[i].snr[FCC]);
printf("cccsnr: %0f\n", pquad[i].snr[CCC]);
printf("rmse: %0f\n", pquad[i].rsnr);
printf("pat0: %0d\n", pquad[i].patten[1]);
printf("pat1: %0d\n", pquad[i].patten[2]);
printf("pat2: %0d\n", pquad[i].patten[3]);
printf("pat3: %0d\n", pquad[i].patten[4]);
exit(1);
}
break;
case FCC:
dx = pquad[i].xat - ((pquad[i].domain >> 8 ) - 128);
dy = pquad[i].yat - ((pquad[i].domain & 0xff) - 128);
if (ZimWidth(image) == (ZimHeight(image)*4)) dx = pquad[i].xat - ((pquad[i].domain >> 8 ) - 128)*2; // interlaced style video recognition hack
if (RoqScaleable()) {
dx = pquad[i].xat - ((pquad[i].domain >> 8 ) - 128)*2;
dy = pquad[i].yat - ((pquad[i].domain & 0xff) - 128)*2;
}
// if (pquad[i].yat == 0) printf("dx = %d, dy = %d, xat = %d\n", dx, dy, pquad[i].xat);
ind = (dy*pWide+dx)*4;
for( dy=0; dy<size; dy++ ) {
pluck = (((dy+pquad[i].yat)*pWide)+pquad[i].xat)*4;
for( dx=0; dx<size; dx++ ) {
if (rgbmap[pluck+0] != fccdictionary[ind+0]) diff = YES;
if (rgbmap[pluck+1] != fccdictionary[ind+1]) diff = YES;
if (rgbmap[pluck+2] != fccdictionary[ind+2]) diff = YES;
rgbmap[pluck+0] = fccdictionary[ind+0];
rgbmap[pluck+1] = fccdictionary[ind+1];
rgbmap[pluck+2] = fccdictionary[ind+2];
rgbmap[pluck+3] = fccdictionary[ind+3];
pluck += 4; ind += 4;
}
ind += (pWide - size)*4;
}
if (diff == NO && whichFrame) printf("drawImage: FCC just changed the same thing\n");
break;
case MOT:
break;
default:
fprintf(stderr, "bad code!!\n");
break;
}
}
}
/* if (RoqIsQuiet() == NO) {
char filename[1025];
sprintf(filename, "/tmp/%06d.jpg", whichFrame);
//ZimWriteJFIF(previousImage[whichFrame&1], filename, 95);
//fprintf(stdout,"Saved image to %s\n", filename);
}*/
/* fd = open("/LocalLibrary/RoQFiles/previousFrame.tiff", O_WRONLY|O_CREAT|O_TRUNC, 0666);
if (fd<0) {
NXRunAlertPanel(0, "Cannot save file: %s", 0, 0, 0, strerror(errno));
exit(1);
}
stream = NXOpenFile(fd, NX_WRITEONLY);
[previousImage[whichFrame&1] writeTIFF: stream];
NXClose(stream);
close(fd);
if (!dictionaryWindow) {
cRect.origin.x = 8.0 * 48.0;
cRect.origin.y = ([previousImage[whichFrame&1] pixelsHigh]*2+160);
cRect.size.width = [previousImage[whichFrame&1] pixelsWide];
cRect.size.height = [previousImage[whichFrame&1] pixelsHigh];
dictionaryWindow = [[Window alloc] initContent:&cRect style:NX_TITLEDSTYLE
backing:NX_RETAINED buttonMask:0 defer:NO];
cRect.origin.x = cRect.origin.y = 0.0;
[[dictionaryWindow contentView] setClipping:NO];
[dictionaryWindow makeKeyAndOrderFront: [dictionaryWindow contentView]];
[dictionaryWindow display];
[dictionaryWindow setTitle: "previous compressed frame"];
}
[[dictionaryWindow contentView] getBounds: &cRect];
[[dictionaryWindow contentView] lockFocus];
[previousImage[whichFrame&1] drawIn: &cRect];
[[dictionaryWindow contentView] unlockFocus];
}
*/
if (whichFrame == 0) {
memcpy( ZimData(previousImage[1]), ZimData(previousImage[0]), pWide*(pixelsHigh & 0xfff0)*4);
}
x = 0; y = 0;
for(i=0;i<256;i++) { x=x+(used4[i]==YES); y=y+(used2[i]==YES); }
if (RoqIsQuiet() == NO) printf("drawImage: used %d 4x4 and %d 2x2 VQ cels\n", x,y);
free( idataA );
return 1;
}
int CodecInitImages( )
{
int x,y, index0, index1, temp;
float ftemp;
byte *lutimage;
numQuadCels = ((pixelsWide & 0xfff0)*(pixelsHigh & 0xfff0))/(MINSIZE*MINSIZE);
numQuadCels += numQuadCels/4 + numQuadCels/16;
if (qStatus) free(qStatus);
qStatus = (quadcel *) calloc(numQuadCels, sizeof (quadcel));
CodecInitQStatus();
//
if (previousImage[0]) {
pixelsWide = ZimWidth(previousImage[0]);
pixelsHigh = ZimHeight(previousImage[0]);
temp = ((whichFrame+1)&1);
if (!luti) luti = malloc(pixelsWide*pixelsHigh);
lutimage = ZimData(previousImage[temp]);
if (RoqIsQuiet() == NO) {
printf("initImage: remaking lut image using buffer %d\n", temp);
}
index0 = index1 = 0;
for(y=0;y<pixelsHigh; y++) {
for(x=0;x<pixelsWide; x++) {
ftemp = RMULT*lutimage[index0+0] + GMULT*lutimage[index0+1] + BMULT*lutimage[index0+2];
temp = ftemp;
luti[index1] = temp;
index0 += ZimBpp(previousImage[0]);
index1++;
}
}
}
return 1;
}
int CodecQuadX( int startX , int startY , int quadSize )
{
int startSize;
int bigx, bigy, lowx, lowy;
lowx = lowy = 0;
bigx = pixelsWide & 0xfff0;
bigy = pixelsHigh & 0xfff0;
if ( (startX >= lowx) && (startX+quadSize) <= (bigx) && (startY+quadSize) <= (bigy) && (startY >= lowy) && quadSize <= MAXSIZE) {
qStatus[onQuad].size = quadSize;
qStatus[onQuad].xat = startX;
qStatus[onQuad].yat = startY;
onQuad++;
}
if (quadSize != MINSIZE) {
startSize = quadSize>>1;
CodecQuadX( startX, startY, startSize);
CodecQuadX( startX+startSize, startY, startSize);
CodecQuadX( startX, startY+startSize, startSize);
CodecQuadX( startX+startSize, startY+startSize, startSize);
}
return 1;
}
int CodecInitQStatus( )
{
int i,x,y;
for (i=0; i<numQuadCels; i++)
qStatus[i].size = 0;
onQuad = 0;
for(y=0;y<pixelsHigh; y+=16) {
for(x=0;x<pixelsWide; x+=16) {
CodecQuadX(x, y, 16);
}
}
currentTotalBits = CodecComputeCurrentQuadOutputSize(qStatus);
return 1;
}
int CodecVqData8( byte * cel , quadcel * pquad )
{
byte tempImage[8*8*4];
int x, y, i, best, temp;
i = 0;
for(y=0;y<4;y++) {
for(x=0;x<4;x++) {
temp = y*64+x*8;
tempImage[i++] = (cel[temp+0]+cel[temp+4]+cel[temp+32]+cel[temp+36])/4;
tempImage[i++] = (cel[temp+1]+cel[temp+5]+cel[temp+33]+cel[temp+37])/4;
tempImage[i++] = (cel[temp+2]+cel[temp+6]+cel[temp+34]+cel[temp+38])/4;
if (dimension4 == 64)
tempImage[i++] = (cel[temp+3]+cel[temp+7]+cel[temp+35]+cel[temp+39])/4;
}
}
pquad->patten[0] = best = CodecBestCodeword(tempImage, dimension4, codebook4, norm4, index4);
for(y=0;y<8;y++) {
for(x=0;x<8;x++) {
temp = y*32+x*4;
i = ((y/2)*4*(dimension2/4))+(x/2)*(dimension2/4);
tempImage[temp+0] = codebook4[best][i+0];
tempImage[temp+1] = codebook4[best][i+1];
tempImage[temp+2] = codebook4[best][i+2];
if (dimension4 == 64)
tempImage[temp+3] = codebook4[best][i+3];
else
tempImage[temp+3] = 255;
}
}
pquad->snr[SLD] = CodecSnr(cel, tempImage, 8);
return 1;
}
int CodecVqData4( byte * cel , quadcel * pquad )
{
byte tempImage[64];
int i, best, bpp;
// if ([theRoQ makingVideo] && previousImage[0]) return 1;
if (dimension4 == 64) bpp = 4; else bpp = 3;
for(i=0;i<16;i++) {
tempImage[i*bpp+0] = cel[i*4+0];
tempImage[i*bpp+1] = cel[i*4+1];
tempImage[i*bpp+2] = cel[i*4+2];
if (dimension4 == 64) tempImage[i*bpp+3] = cel[i*4+3];
}
pquad->patten[0] = best = CodecBestCodeword(tempImage, dimension4, codebook4, norm4, index4);
for(i=0;i<16;i++) {
tempImage[i*4+0] = codebook4[best][i*bpp+0];
tempImage[i*4+1] = codebook4[best][i*bpp+1];
tempImage[i*4+2] = codebook4[best][i*bpp+2];
if (dimension4 == 64)
tempImage[i*4+3] = codebook4[best][i*bpp+3];
else
tempImage[i*4+3] = 255;
}
pquad->snr[PAT] = CodecSnr(cel, tempImage, 4);
return 1;
}
int CodecVqData2( byte * cel , quadcel * pquad )
{
byte tempImage[16], tempOut[64];
int i, j, best,x,y,xx,yy,bpp;
if (dimension4 == 64) bpp = 4; else bpp = 3;
j = 1;
for(yy=0;yy<4;yy+=2) {
for(xx=0;xx<4;xx+=2) {
i = 0;
for(y=yy;y<(yy+2);y++) {
for(x=xx;x<(xx+2);x++) {
tempImage[i++] = cel[y*16+x*4+0];
tempImage[i++] = cel[y*16+x*4+1];
tempImage[i++] = cel[y*16+x*4+2];
if (dimension4 == 64) tempImage[i++] = cel[y*16+x*4+3];
}
}
pquad->patten[j++] = best = CodecBestCodeword(tempImage, dimension2, codebook2, norm2, index2);
i = 0;
for(y=yy;y<(yy+2);y++) {
for(x=xx;x<(xx+2);x++) {
tempOut[y*16+x*4+0] = codebook2[best][i++];
tempOut[y*16+x*4+1] = codebook2[best][i++];
tempOut[y*16+x*4+2] = codebook2[best][i++];
if (dimension4 == 64)
tempOut[y*16+x*4+3] = codebook2[best][i++];
else
tempOut[y*16+x*4+3] = 255;
}
}
}
}
pquad->snr[CCC] = CodecSnr(cel, tempOut, 4);
return 1;
}
int CodecIRGBtab ( )
{
initRGBtab++;
return 1;
}
float CodecSnr( byte * old ,byte * new ,int size)
{
int i, j;
float fsnr;
register int ind;
ind = 0;
for(i=0; i<size; i++) {
for(j=0; j<size; j++) {
if (old[3]||new[3]) ind += RGBADIST( old, new );
old += 4; new += 4;
}
}
fsnr = (float)ind;
fsnr /= (size*size);
fsnr = sqrt( fsnr );
return (fsnr);
}
int CodecComputeMotionBlock( byte * old ,byte * new ,int size )
{
int i,j,snr;
if (dimension4==64) return 0; // do not use this for alpha pieces
snr = 0;
for(i=0; i<size; i++) {
for(j=0; j<size; j++) {
snr += RGBADIST( old, new );
old += 4; new += 4;
}
}
snr /= (size*size);
return ( snr <= MOTION_MIN );
}
int CodecFvqData( byte * bitmap , int size , int realx , int realy , quadcel * pquad ,BOOL clamp )
{
int x, y, xLen, yLen, mblur0, ripl, bpp, fabort, temp1;
int lowX, lowY, onx, ony, sX, sY, depthx, depthy, breakHigh;
float lowestSNR, fmblur0;
byte *scale1;
byte *bitma2;
int searchY, searchX, xxMean, yyMean;
if (size == 4)
{
if ( !(pquad->snr[FCC] == 9999))
{
return 1;//we already did this cell and dxMean and dyMean don't change for cells of size 4
}
}
if ( !previousImage[0] || dimension4 == 64) {
return 1;
}
for(x=0; x<(size*size); x++) {
fmblur0 = RMULT*bitmap[x*4+0] + GMULT*bitmap[x*4+1] + BMULT*bitmap[x*4+2];
luty[x] = fmblur0;
}
if (!luti) {
pquad->domain = 0x8080;
pquad->snr[FCC] = 9999;
return 1;
}
ony = realy - (realy & 0xfff0);
onx = realx - (realx & 0xfff0);
xLen = ZimWidth(previousImage[0]);
yLen = ZimHeight(previousImage[0]);
ripl = xLen-size;
breakHigh = 99999999;
fabort = 0;
lowX = lowY = -1;
depthx = depthy = 1;
searchY = 32;
searchX = 32;
if (xLen == (yLen*4)) depthx = 2;
if (RoqScaleable()) depthx = depthy = 2;
if (clamp) { searchX = searchY = 8; }
searchX = searchX*depthx;
searchY = searchY*depthy;
xxMean = dxMean*depthx;
yyMean = dyMean*depthy;
if (((realx-xxMean)+searchX)<0 ||(((realx-xxMean)-searchX)+depthx+size)>xLen || ((realy-yyMean)+searchY)<0 || (((realy-yyMean)-searchY)+depthy+size)>yLen) {
pquad->snr[FCC] = 9999;
return 1;
}
for( sX=(((realx-xxMean)-searchX)+depthx); sX<=((realx-xxMean)+searchX) && !fabort; sX+=depthx ) {
for( sY=(((realy-yyMean)-searchY)+depthy); sY<=((realy-yyMean)+searchY); sY+=depthy ) {
temp1 = xLen*sY+sX;
if ( sX >= 0 && (sX+size) <= xLen && sY >= 0 && (sY+size) <= yLen ) {
mblur0 = 0;
bitma2 = luty;
scale1 = luti + temp1;
for( y=0; y<size; y++) {
for( x=0; x<size; x+=4) {
mblur0 += RGBADIST( bitma2, scale1);
bitma2 += 4; scale1 += 4;
}
if (mblur0 > breakHigh) {
break;
}
scale1 += ripl;
}
if (breakHigh > mblur0) {
breakHigh = mblur0;
lowX = sX;
lowY = sY;
if (breakHigh<size) fabort++;
}
}
}
}
if (lowX != -1 && lowY != -1) {
bpp = ZimBpp(previousImage[0]);
ripl = (xLen-size)*bpp;
mblur0 = 0;
bitma2 = bitmap;
scale1 = ((byte *) ZimData(previousImage[((whichFrame+1)&1)])) + (xLen*lowY+lowX)*bpp;
for( y=0; y<size; y++) {
for( x=0; x<size; x++) {
mblur0 += RGBADIST( bitma2, scale1 );
scale1 += 4; bitma2 += 4;
}
scale1 += ripl;
}
lowestSNR = mblur0;
lowestSNR /= (size*size);
lowestSNR = sqrt( lowestSNR );
sX = (realx-lowX+128);
sY = (realy-lowY+128);
if (depthx==2) {
sX = ((realx-lowX)/2+128);
}
if (depthy==2) {
sY = ((realy-lowY)/2+128);
}
pquad->domain = (sX<<8)+sY;
pquad->snr[FCC] = lowestSNR;
}
return 1;
}
int CodecConvertPlanertoPacked( )
{
byte *iPlane[5], *newdata, *olddata;
int x,y,index, sample;
newImage = ZimImageTagTableNew(pixelsWide, pixelsHigh,IMVFBRGB | IMVFBALPHA );
newdata = ZimData(newImage);
index = 0;
if (ZimIsPlanar(image)) {
ZimGetDataPlanes(image, iPlane);
for(y=0;y<pixelsHigh;y++) {
for(x=0;x<pixelsWide;x++) {
newdata[index++] = iPlane[0][y*pixelsWide+x];
newdata[index++] = iPlane[1][y*pixelsWide+x];
newdata[index++] = iPlane[2][y*pixelsWide+x];
if (ZimHasAlpha(image)) {
newdata[index++] = iPlane[3][y*pixelsWide+x];
} else {
newdata[index++] = 255;
}
}
}
} else {
sample = 0;
olddata = ZimData(image);
for(y=0;y<pixelsHigh;y++) {
for(x=0;x<pixelsWide;x++) {
newdata[index++] = olddata[sample++];
newdata[index++] = olddata[sample++];
newdata[index++] = olddata[sample++];
if (ZimHasAlpha(image)) {
newdata[index++] = olddata[sample++];
} else {
newdata[index++] = 255;
}
}
}
}
//ZimFree(image); //bad idea-roq owns it!
image = newImage;
return 1;
}
int CodecGetData( unsigned char * iData , int qSize , int startX , int startY , TagTable * bitmap )
{
int x,y,yoff,bpp,yend,xend;
byte *iPlane[5];
int r,g,b,a;
yend = qSize+startY;
xend = qSize+startX;
if (startY > ZimHeight(bitmap)) return 1;
if (yend > ZimHeight(bitmap)) yend = ZimHeight(bitmap);
if (xend > ZimWidth(bitmap)) xend = ZimWidth(bitmap);
bpp = ZimBpp(bitmap);
if (ZimIsPlanar(bitmap)) {
ZimGetDataPlanes(bitmap, iPlane);
for(y=startY;y<yend;y++) {
yoff = y*ZimWidth(bitmap);
for(x=startX;x<xend;x++) {
r = iPlane[0][yoff+x];
g = iPlane[1][yoff+x];
b = iPlane[2][yoff+x];
*iData++ = r; *iData++ = g; *iData++ = b;
if (ZimHasAlpha(bitmap)) {
*iData++ = iPlane[3][yoff+x];
} else {
*iData++ = 255;
}
}
}
} else if (ZimHasAlpha(bitmap)) {
iPlane[0] = ZimData(bitmap);
for(y=startY;y<yend;y++) {
yoff = y*ZimWidth(bitmap)*bpp;
for(x=startX;x<xend;x++) {
r = iPlane[0][yoff+(x*bpp)+0];
g = iPlane[0][yoff+(x*bpp)+1];
b = iPlane[0][yoff+(x*bpp)+2];
a = iPlane[0][yoff+(x*bpp)+3];
*iData++ = r; *iData++ = g; *iData++ = b; *iData++ = a;
}
}
} else {
iPlane[0] = ZimData(bitmap);
for(y=startY;y<yend;y++) {
yoff = y*ZimWidth(bitmap)*bpp;
for(x=startX;x<xend;x++) {
r = iPlane[0][yoff+(x*bpp)+0];
g = iPlane[0][yoff+(x*bpp)+1];
b = iPlane[0][yoff+(x*bpp)+2];
*iData++ = r; *iData++ = g; *iData++ = b;
*iData++ = 255;
}
}
}
return 1;
}
int CodecLowestQuad( quadcel* qtemp , int* status , float* snr , int bweigh )
{
float wtemp;
int quickadd[DEAD], i;
int tstatus=0;
float tsnr=0.0;
quickadd[CCC] = 2;
quickadd[SLD] = 1;
quickadd[MOT] = 1;
quickadd[FCC] = 1;
quickadd[PAT] = 1;
if ((!previousImage[0] || RoqIsLastFrame() || detail) && !RoqMakingVideo() ) {
quickadd[CCC] = 1;
quickadd[PAT] = 2;
}
if (RoqMakingVideo()) {
quickadd[CCC] = 2;
if (detail) quickadd[CCC] = 1;
}
wtemp = 99999;
for(i=(DEAD-1);i>0;i--) {
if ( qtemp->snr[i]*quickadd[i] < wtemp ) {
tstatus = i;
tsnr = qtemp->snr[i];
wtemp = qtemp->snr[i]*quickadd[i];
}
}
if ( qtemp->mark == YES ) tstatus = MOT;
CodecSetStatus(tstatus,qtemp);
*snr = tsnr;
return 1;
}
int CodecGetCurrentQuadOutputSize( quadcel * pquad )
{
return (currentTotalBits >>3) +2;
}
int CodecComputeCurrentQuadOutputSize( quadcel * pquad )
{
int totalbits, i;
totalbits = 0;
for( i=0; i<numQuadCels; i++ ) {
if (pquad[i].size && pquad[i].size < 16 ) totalbits += sizeQuickAdd[pquad[i].status];
}
return (totalbits);
}
int CodecSetStatus( int status ,quadcel * cel )
{
if (cel->status == status)
{
return 1;
}
else if ((!(cel->size && cel->size < 16)) || (sizeQuickAdd[cel->status] == sizeQuickAdd[status]))
{
cel->status = status;
return 1;
}
if (cel->size && cel->size < 16)
{
currentTotalBits += sizeQuickAdd[status] - sizeQuickAdd[cel->status] ;
}
cel->status = status;
return 1;
}
int CodecSetSize( int size ,quadcel * cel )
{
BOOL oldquick, newquick;
oldquick = (cel->size && cel->size < 16);
newquick = size && size <16;
if (oldquick && !newquick)
{
currentTotalBits -= sizeQuickAdd[cel->status];
}
if (!oldquick && newquick)
{
currentTotalBits += sizeQuickAdd[cel->status];
}
cel->size = size;
return 1;
}
float CodecGetCurrentRMSE( quadcel * pquad )
{
int i, j;
double totalbits;
totalbits = 0;
j = 0;
for( i=0; i<numQuadCels; i++ ) {
if (pquad[i].size && pquad[i].status && pquad[i].status != DEAD) {
if (pquad[i].size == 8) { totalbits += pquad[i].rsnr*4; j += 4; }
if (pquad[i].size == 4) { totalbits += pquad[i].rsnr*1; j += 1; }
}
}
totalbits /= j;
return ((float)totalbits);
}
int CodecAddQuad( quadcel * pquad ,int lownum )
{
int i, nx, nsize;
float newsnr, cmul;
byte *idataA, *idataB;
if (lownum != -1) {
if (pquad[lownum].size == 8) {
nx = 1; nsize = 4; cmul = 1;
} else {
nx = 5; nsize = 8; cmul = 4;
}
newsnr = 0;
idataA = malloc(8*8*4);
idataB = malloc(8*8*4);
for( i=lownum+1; i<lownum+(nx*4)+1; i+=nx ) {
CodecSetSize(nsize, &pquad[i]);
CodecGetData(idataA, pquad[i].size, pquad[i].xat, pquad[i].yat, image);
CodecVqData4(idataA, &pquad[i]);
CodecVqData2(idataA, &pquad[i]);
if (previousImage[0]) {
CodecFvqData(idataA, pquad[i].size, pquad[i].xat, pquad[i].yat, &pquad[i], YES);
CodecGetData(idataB, pquad[i].size, pquad[i].xat, pquad[i].yat, previousImage[whichFrame&1]);
pquad[i].snr[MOT] = CodecSnr(idataA, idataB, pquad[i].size);
if (CodecComputeMotionBlock(idataA, idataB, pquad[i].size) && !RoqIsLastFrame() && !detail) pquad[i].mark = YES;
}
CodecLowestQuad(&pquad[i], &pquad[i].status, &pquad[i].rsnr, YES);
newsnr += pquad[i].rsnr;
}
free(idataA); free(idataB);
newsnr /= 4;
CodecLowestQuad(&pquad[lownum], &pquad[lownum].status, &pquad[lownum].rsnr, 0);
if ( pquad[lownum+nx*0+1].status == MOT && pquad[lownum+nx*1+1].status == MOT
&& pquad[lownum+nx*2+1].status == MOT && pquad[lownum+nx*3+1].status == MOT
&& nsize == 4) { newsnr = 9999; CodecSetStatus(MOT, &pquad[lownum]); }
if ( pquad[lownum].rsnr > newsnr ) {
CodecSetStatus(DEP,&pquad[lownum]);
pquad[lownum].rsnr = 0;
} else {
CodecSetStatus(0,&pquad[lownum+nx*0+1]);
CodecSetStatus(0,&pquad[lownum+nx*1+1]);
CodecSetStatus(0,&pquad[lownum+nx*2+1]);
CodecSetStatus(0,&pquad[lownum+nx*3+1]);
CodecSetSize(0,&pquad[lownum+nx*0+1]);
CodecSetSize(0,&pquad[lownum+nx*1+1]);
CodecSetSize(0,&pquad[lownum+nx*2+1]);
CodecSetSize(0,&pquad[lownum+nx*3+1]);
}
} else {
lownum = -1;
}
return lownum;
}
int CodecMotMeanX( )
{
return dxMean;
}
int CodecMotMeanY( )
{
return dyMean;
}
int CodecSparseEncode( )
{
int i, j, osize, fsize, num[DEAD+1], *ilist, onf, ong, wtype, temp;
float *flist, sRMSE, numredo;
byte *idataA, *idataB;
osize = 8;
image = RoqCurrentImage();
newImage = 0;
pixelsHigh = ZimHeight(image);
pixelsWide = ZimWidth(image);
dimension2 = 12; dimension4 = 48;
if (ParamImSeqCurrentImageHadAlpha(RoqParamImSeq()) && (RoqParamNoAlpha() == NO)) { dimension2 = 16; dimension4 = 64; }
if (ZimIsPlanar(image) || ZimBpp(image)!=4) CodecConvertPlanertoPacked();
idataA = malloc( 16*16*4 );
idataB = malloc( 16*16*4 );
if (!previousImage[0]) printf("sparseEncode: sparsely encoding a %d,%d image\n", pixelsWide, pixelsHigh);
CodecInitImages();
flist = calloc( (numQuadCels+1), sizeof(float) );
ilist = calloc( (numQuadCels+1), sizeof(int ) );
fsize = 56*1024;
if (previousImage[0]) fsize = RoqNormalFrameSize(); else fsize = RoqFirstFrameSize();
// if (RoqHasSound() && fsize > 6000 && previousImage[0]) fsize = 6000;
dxMean = dyMean = 0;
if (previousImage[0]) wtype = 1; else wtype = 0;
for( i=0; i<numQuadCels; i++ ) {
for(j=0;j<DEAD;j++) qStatus[i].snr[j] = 9999;
qStatus[i].mark = NO;
if ( qStatus[i].size == osize ) {
if (previousImage[0]) {
CodecGetData(idataA, qStatus[i].size, qStatus[i].xat, qStatus[i].yat, image);
CodecGetData(idataB, qStatus[i].size, qStatus[i].xat, qStatus[i].yat, previousImage[whichFrame&1]);
qStatus[i].snr[MOT] = CodecSnr(idataA, idataB, qStatus[i].size);
if (CodecComputeMotionBlock(idataA, idataB, qStatus[i].size) && !RoqIsLastFrame()) qStatus[i].mark = YES;
if (!qStatus[i].mark)
CodecFvqData(idataA, qStatus[i].size, qStatus[i].xat, qStatus[i].yat, &qStatus[i], NO);
}
CodecLowestQuad(&qStatus[i], &qStatus[i].status, &qStatus[i].rsnr, wtype);
} else {
if ( qStatus[i].size < osize ) {
CodecSetStatus(0,&qStatus[i]);
CodecSetSize(0,&qStatus[i]);
} else {
CodecSetStatus(DEP,&qStatus[i]);
qStatus[i].rsnr = 0;
}
}
}
//
// the quad is complete, so status can now be used for quad decomposition
// the first thing to do is to set it up for all the 4x4 cels to get output
// and then recurse from there to see what's what
//
sRMSE = CodecGetCurrentRMSE(qStatus);
if (RoqIsQuiet() == NO) {
printf("sparseEncode: rmse of quad0 is %f, size is %d (meant to be %d)\n", sRMSE, CodecGetCurrentQuadOutputSize( qStatus), fsize );
}
onf = 0;
for(i=0;i<numQuadCels;i++) {
if ( qStatus[i].size && qStatus[i].status != DEP) {
flist[onf] = qStatus[i].rsnr;
ilist[onf] = i;
onf++;
}
}
CodecSort(flist,ilist, onf);
CodecSegment(ilist, flist, onf, CodecGetCurrentRMSE( qStatus));
temp = dxMean = dyMean = 0;
for( i=0; i<numQuadCels; i++ ) {
if (qStatus[i].size && qStatus[i].status == FCC) {
dxMean += (qStatus[i].domain >> 8 ) - 128;
dyMean += (qStatus[i].domain & 0xff) - 128;
temp++;
}
}
if (temp) { dxMean /= temp; dyMean /= temp; }
printf("sparseEncode: dx/dy mean is %d,%d\n", dxMean, dyMean);
numredo = 0;
detail = NO;
if (codebookmade && whichFrame>4) fsize -= 256;
temp = 0;
for( i=0; i<numQuadCels; i++ ) {
if ( qStatus[i].size == osize && qStatus[i].mark == NO && qStatus[i].snr[MOT] > 0 ) {
CodecGetData(idataA, qStatus[i].size, qStatus[i].xat, qStatus[i].yat, image);
if (osize == 8) CodecVqData8(idataA, &qStatus[i]);
if (previousImage[0]) {
int dx,dy;
dx = (qStatus[i].domain >> 8 ) - 128 - dxMean + 8;
dy = (qStatus[i].domain & 0xff) - 128 - dyMean + 8;
if (dx<0||dx>15||dy<0||dy>15) {
qStatus[i].snr[FCC] = 9999;
temp++;
CodecFvqData(idataA, qStatus[i].size, qStatus[i].xat, qStatus[i].yat, &qStatus[i], YES);
dx = (qStatus[i].domain >> 8 ) - 128 - dxMean + 8;
dy = (qStatus[i].domain & 0xff) - 128 - dyMean + 8;
if ((dx<0||dx>15||dy<0||dy>15)&&qStatus[i].snr[FCC]!=9999&&qStatus[i].status==FCC) {
printf("sparseEncode: something is wrong here, dx/dy is %d,%d after being clamped\n", dx, dy);
printf("xat: %d\n", qStatus[i].xat);
printf("yat: %d\n", qStatus[i].yat);
printf("size %d\n", qStatus[i].size);
printf("type: %d\n", qStatus[i].status);
printf("mot: %04x\n", qStatus[i].domain);
printf("motsnr: %0f\n", qStatus[i].snr[FCC]);
printf("rmse: %0f\n", qStatus[i].rsnr);
exit(1);
}
}
}
CodecLowestQuad(&qStatus[i], &qStatus[i].status, &qStatus[i].rsnr, wtype);
if (qStatus[i].status==FCC && qStatus[i].snr[FCC]>qStatus[i].snr[SLD]) {
printf("sparseEncode: something is wrong here\n");
printf("xat: %d\n", qStatus[i].xat);
printf("yat: %d\n", qStatus[i].yat);
printf("size %d\n", qStatus[i].size);
printf("type: %d\n", qStatus[i].status);
printf("mot: %04x\n", qStatus[i].domain);
printf("motsnr: %0f\n", qStatus[i].snr[FCC]);
printf("sldsnr: %0f\n", qStatus[i].snr[SLD]);
printf("rmse: %0f\n", qStatus[i].rsnr);
exit(1);
}
}
}
if (RoqIsQuiet() == NO) {
printf("sparseEncode: rmse of quad0 is %f, size is %d (meant to be %d)\n", CodecGetCurrentRMSE(qStatus), CodecGetCurrentQuadOutputSize(qStatus), fsize );
printf("sparseEncode: %d outside fcc limits\n", temp);
}
onf = 0;
for(i=0;i<numQuadCels;i++) {
if ( qStatus[i].size && qStatus[i].status != DEP) {
flist[onf] = qStatus[i].rsnr;
ilist[onf] = i;
onf++;
}
}
CodecSort(flist, ilist, onf);
ong = 0; detail = NO;
while ( CodecGetCurrentQuadOutputSize( qStatus) < fsize && ong < onf && flist[ong] > 0 && qStatus[ilist[ong]].mark == NO) {
osize = CodecAddQuad(qStatus, ilist[ong++]);
}
if ( CodecGetCurrentQuadOutputSize(qStatus) < fsize) {
ong = 0;
while ( CodecGetCurrentQuadOutputSize(qStatus) < fsize && ong < onf && flist[ong] > 0) {
i = ilist[ong++];
if (qStatus[i].mark) {
detail = NO;
qStatus[i].mark = NO;
CodecGetData(idataA, qStatus[i].size, qStatus[i].xat, qStatus[i].yat, image);
if (qStatus[i].size == 8) CodecVqData8(idataA, &qStatus[i]);
if (qStatus[i].size == 4) CodecVqData4(idataA, &qStatus[i]);
if (qStatus[i].size == 4) CodecVqData2(idataA, &qStatus[i]);
if (previousImage[0]) {
CodecFvqData(idataA, qStatus[i].size, qStatus[i].xat, qStatus[i].yat, &qStatus[i], YES);
}
CodecLowestQuad(&qStatus[i], &qStatus[i].status, &qStatus[i].rsnr, wtype);
}
}
ong = 0;
while ( CodecGetCurrentQuadOutputSize(qStatus) < fsize && ong < onf && flist[ong] > 0) {
i = ilist[ong++];
detail = YES;
osize = CodecAddQuad(qStatus, i);
}
}
printf("sparseEncode: rmse of frame %d is %f, size is %d\n", whichFrame, CodecGetCurrentRMSE(qStatus), CodecGetCurrentQuadOutputSize(qStatus) );
if (RoqIsQuiet() == NO) {
for(i=0;i<DEAD;i++) num[i] = 0;
j = 0;
for( i=0; i<numQuadCels; i++ ) {
if (qStatus[i].size == 8 && qStatus[i].status) {
if (qStatus[i].status < DEAD) num[qStatus[i].status]++; j++;
}
}
printf("sparseEncode: for 08x08 CCC = %d, FCC = %d, MOT = %d, SLD = %d, PAT = %d\n", num[CCC], num[FCC], num[MOT], num[SLD], num[PAT]);
for(i=0;i<DEAD;i++) num[i] = 0;
for( i=0; i<numQuadCels; i++ ) {
if (qStatus[i].size == 4 && qStatus[i].status) {
if (qStatus[i].status < DEAD) num[qStatus[i].status]++; j++;
}
}
printf("sparseEncode: for 04x04 CCC = %d, FCC = %d, MOT = %d, SLD = %d, PAT = %d\n", num[CCC], num[FCC], num[MOT], num[SLD], num[PAT]);
printf("sparseEncode: average RMSE = %f, numActiveQuadCels = %d, estSize = %d \n", CodecGetCurrentRMSE(qStatus), j,CodecGetCurrentQuadOutputSize(qStatus));
}
RoqWriteFrame(qStatus);
CodecMakePreviousImage(qStatus);
free(idataA);
free(idataB);
free(flist);
free(ilist);
if (newImage) ZimFree(newImage);
whichFrame++;
return 1;
}