jediacademy/codemp/renderer/tr_world.cpp
2013-04-04 17:35:38 -05:00

1959 lines
48 KiB
C++

//Anything above this #include will be ignored by the compiler
#include "../qcommon/exe_headers.h"
#include "tr_local.h"
#ifdef VV_LIGHTING
#include "tr_lightmanager.h"
#endif
#ifdef _XBOX
#include "../qcommon/sparc.h"
static bool lookingForWorstLeaf = false;
#endif
#ifndef _XBOX
inline void Q_CastShort2Float(float *f, const short *s)
{
*f = ((float)*s);
}
#endif
#ifdef _XBOX
static bool GetCoordsForLeaf(int leafNum, vec3_t coords)
{
srfSurfaceFace_t *face;
msurface_t *surf;
int i;
for(i=0; i<tr.world->leafs[leafNum].nummarksurfaces; i++) {
surf = *(tr.world->marksurfaces +
tr.world->leafs[leafNum].firstMarkSurfNum + i);
if(!surf->data || *surf->data != SF_FACE) {
continue;
}
face = (srfSurfaceFace_t*)surf->data;
Q_CastShort2Float(&coords[0], (short*)(face->srfPoints + 0));
Q_CastShort2Float(&coords[1], (short*)(face->srfPoints + 1));
Q_CastShort2Float(&coords[2], (short*)(face->srfPoints + 2));
return true;
}
return false;
}
#endif
/*
=================
R_CullTriSurf
Returns true if the grid is completely culled away.
Also sets the clipped hint bit in tess
=================
*/
static qboolean R_CullTriSurf( srfTriangles_t *cv ) {
int boxCull;
boxCull = R_CullLocalBox( cv->bounds );
if ( boxCull == CULL_OUT ) {
return qtrue;
}
return qfalse;
}
/*
=================
R_CullGrid
Returns true if the grid is completely culled away.
Also sets the clipped hint bit in tess
=================
*/
static qboolean R_CullGrid( srfGridMesh_t *cv ) {
int boxCull;
int sphereCull;
if ( r_nocurves->integer ) {
return qtrue;
}
if ( tr.currentEntityNum != TR_WORLDENT ) {
sphereCull = R_CullLocalPointAndRadius( cv->localOrigin, cv->meshRadius );
} else {
sphereCull = R_CullPointAndRadius( cv->localOrigin, cv->meshRadius );
}
boxCull = CULL_OUT;
// check for trivial reject
if ( sphereCull == CULL_OUT )
{
tr.pc.c_sphere_cull_patch_out++;
return qtrue;
}
// check bounding box if necessary
else if ( sphereCull == CULL_CLIP )
{
tr.pc.c_sphere_cull_patch_clip++;
boxCull = R_CullLocalBox( cv->meshBounds );
if ( boxCull == CULL_OUT )
{
tr.pc.c_box_cull_patch_out++;
return qtrue;
}
else if ( boxCull == CULL_IN )
{
tr.pc.c_box_cull_patch_in++;
}
else
{
tr.pc.c_box_cull_patch_clip++;
}
}
else
{
tr.pc.c_sphere_cull_patch_in++;
}
return qfalse;
}
/*
================
R_CullSurface
Tries to back face cull surfaces before they are lighted or
added to the sorting list.
This will also allow mirrors on both sides of a model without recursion.
================
*/
static qboolean R_CullSurface( surfaceType_t *surface, shader_t *shader ) {
srfSurfaceFace_t *sface;
float d;
if ( r_nocull->integer ) {
return qfalse;
}
if ( *surface == SF_GRID ) {
return R_CullGrid( (srfGridMesh_t *)surface );
}
if ( *surface == SF_TRIANGLES ) {
return R_CullTriSurf( (srfTriangles_t *)surface );
}
if ( *surface != SF_FACE ) {
return qfalse;
}
if ( shader->cullType == CT_TWO_SIDED ) {
return qfalse;
}
// face culling
if ( !r_facePlaneCull->integer ) {
return qfalse;
}
sface = ( srfSurfaceFace_t * ) surface;
if (r_cullRoofFaces->integer)
{ //Very slow, but this is only intended for taking shots for automap images.
if (sface->plane.normal[2] > 0.0f &&
sface->numPoints > 0)
{ //it's facing up I guess
static int i;
static trace_t tr;
static vec3_t basePoint;
static vec3_t endPoint;
static vec3_t nNormal;
static vec3_t v;
//The fact that this point is in the middle of the array has no relation to the
//orientation in the surface outline.
#ifdef _XBOX
Q_CastShort2Float(&basePoint[0], (short*)(sface->srfPoints + (sface->numPoints / 2) + 0));
Q_CastShort2Float(&basePoint[1], (short*)(sface->srfPoints + (sface->numPoints / 2) + 1));
Q_CastShort2Float(&basePoint[2], (short*)(sface->srfPoints + (sface->numPoints / 2) + 2));
#else
basePoint[0] = sface->points[sface->numPoints/2][0];
basePoint[1] = sface->points[sface->numPoints/2][1];
basePoint[2] = sface->points[sface->numPoints/2][2];
#endif
basePoint[2] += 2.0f;
//the endpoint will be 8192 units from the chosen point
//in the direction of the surface normal
//just go straight up I guess, for now (slight hack)
VectorSet(nNormal, 0.0f, 0.0f, 1.0f);
VectorMA(basePoint, 8192.0f, nNormal, endPoint);
CM_BoxTrace(&tr, basePoint, endPoint, NULL, NULL, 0, (CONTENTS_SOLID|CONTENTS_TERRAIN), qfalse);
if (!tr.startsolid &&
!tr.allsolid &&
(tr.fraction == 1.0f || (tr.surfaceFlags & SURF_NOIMPACT)))
{ //either hit nothing or sky, so this surface is near the top of the level I guess. Or the floor of a really tall room, but if that's the case we're just screwed.
VectorSubtract(basePoint, tr.endpos, v);
if (tr.fraction == 1.0f || VectorLength(v) < r_roofCullCeilDist->value)
{ //ignore it if it's not close to the top, unless it just hit nothing
//Let's try to dig back into the brush based on the negative direction of the plane,
//and if we pop out on the other side we'll see if it's ground or not.
i = 4;
VectorCopy(sface->plane.normal, nNormal);
VectorInverse(nNormal);
while (i < 4096)
{
VectorMA(basePoint, i, nNormal, endPoint);
CM_BoxTrace(&tr, endPoint, endPoint, NULL, NULL, 0, (CONTENTS_SOLID|CONTENTS_TERRAIN), qfalse);
if (!tr.startsolid &&
!tr.allsolid &&
tr.fraction == 1.0f)
{ //in the clear
break;
}
i++;
}
if (i < 4096)
{ //Make sure we got into clearance
VectorCopy(endPoint, basePoint);
basePoint[2] -= 2.0f;
//just go straight down I guess, for now (slight hack)
VectorSet(nNormal, 0.0f, 0.0f, -1.0f);
VectorMA(basePoint, 4096.0f, nNormal, endPoint);
//trace a second time from the clear point in the inverse normal direction of the surface.
//If we hit something within a set amount of units, we will assume it's a bridge type object
//and leave it to be drawn. Otherwise we will assume it is a roof or other obstruction and
//cull it out.
CM_BoxTrace(&tr, basePoint, endPoint, NULL, NULL, 0, (CONTENTS_SOLID|CONTENTS_TERRAIN), qfalse);
if (!tr.startsolid &&
!tr.allsolid &&
(tr.fraction != 1.0f && !(tr.surfaceFlags & SURF_NOIMPACT)))
{ //if we hit nothing or a noimpact going down then this is probably "ground".
VectorSubtract(basePoint, tr.endpos, endPoint);
if (VectorLength(endPoint) > r_roofCullCeilDist->value)
{ //128 (by default) is our maximum tolerance, above that will be removed
return qtrue;
}
}
}
}
}
}
}
d = DotProduct (tr.ori.viewOrigin, sface->plane.normal);
// don't cull exactly on the plane, because there are levels of rounding
// through the BSP, ICD, and hardware that may cause pixel gaps if an
// epsilon isn't allowed here
if ( shader->cullType == CT_FRONT_SIDED ) {
if ( d < sface->plane.dist - 8 ) {
return qtrue;
}
} else {
if ( d > sface->plane.dist + 8 ) {
return qtrue;
}
}
return qfalse;
}
#ifndef VV_LIGHTING
static int R_DlightFace( srfSurfaceFace_t *face, int dlightBits ) {
float d;
int i;
dlight_t *dl;
for ( i = 0 ; i < tr.refdef.num_dlights ; i++ ) {
if ( ! ( dlightBits & ( 1 << i ) ) ) {
continue;
}
dl = &tr.refdef.dlights[i];
d = DotProduct( dl->origin, face->plane.normal ) - face->plane.dist;
if ( !VectorCompare(face->plane.normal, vec3_origin) && (d < -dl->radius || d > dl->radius) ) {
// dlight doesn't reach the plane
dlightBits &= ~( 1 << i );
}
}
if ( !dlightBits ) {
tr.pc.c_dlightSurfacesCulled++;
}
face->dlightBits = dlightBits;
return dlightBits;
}
static int R_DlightGrid( srfGridMesh_t *grid, int dlightBits ) {
int i;
dlight_t *dl;
for ( i = 0 ; i < tr.refdef.num_dlights ; i++ ) {
if ( ! ( dlightBits & ( 1 << i ) ) ) {
continue;
}
dl = &tr.refdef.dlights[i];
if ( dl->origin[0] - dl->radius > grid->meshBounds[1][0]
|| dl->origin[0] + dl->radius < grid->meshBounds[0][0]
|| dl->origin[1] - dl->radius > grid->meshBounds[1][1]
|| dl->origin[1] + dl->radius < grid->meshBounds[0][1]
|| dl->origin[2] - dl->radius > grid->meshBounds[1][2]
|| dl->origin[2] + dl->radius < grid->meshBounds[0][2] ) {
// dlight doesn't reach the bounds
dlightBits &= ~( 1 << i );
}
}
if ( !dlightBits ) {
tr.pc.c_dlightSurfacesCulled++;
}
grid->dlightBits = dlightBits;
return dlightBits;
}
static int R_DlightTrisurf( srfTriangles_t *surf, int dlightBits ) {
// FIXME: more dlight culling to trisurfs...
surf->dlightBits = dlightBits;
return dlightBits;
#if 0
int i;
dlight_t *dl;
for ( i = 0 ; i < tr.refdef.num_dlights ; i++ ) {
if ( ! ( dlightBits & ( 1 << i ) ) ) {
continue;
}
dl = &tr.refdef.dlights[i];
if ( dl->origin[0] - dl->radius > grid->meshBounds[1][0]
|| dl->origin[0] + dl->radius < grid->meshBounds[0][0]
|| dl->origin[1] - dl->radius > grid->meshBounds[1][1]
|| dl->origin[1] + dl->radius < grid->meshBounds[0][1]
|| dl->origin[2] - dl->radius > grid->meshBounds[1][2]
|| dl->origin[2] + dl->radius < grid->meshBounds[0][2] ) {
// dlight doesn't reach the bounds
dlightBits &= ~( 1 << i );
}
}
if ( !dlightBits ) {
tr.pc.c_dlightSurfacesCulled++;
}
grid->dlightBits = dlightBits;
return dlightBits;
#endif
}
/*
====================
R_DlightSurface
The given surface is going to be drawn, and it touches a leaf
that is touched by one or more dlights, so try to throw out
more dlights if possible.
====================
*/
static int R_DlightSurface( msurface_t *surf, int dlightBits ) {
if ( *surf->data == SF_FACE ) {
dlightBits = R_DlightFace( (srfSurfaceFace_t *)surf->data, dlightBits );
} else if ( *surf->data == SF_GRID ) {
dlightBits = R_DlightGrid( (srfGridMesh_t *)surf->data, dlightBits );
} else if ( *surf->data == SF_TRIANGLES ) {
dlightBits = R_DlightTrisurf( (srfTriangles_t *)surf->data, dlightBits );
} else {
dlightBits = 0;
}
if ( dlightBits ) {
tr.pc.c_dlightSurfaces++;
}
return dlightBits;
}
#endif // VV_LIGHTING
#ifdef _ALT_AUTOMAP_METHOD
static bool tr_drawingAutoMap = false;
#endif
static float g_playerHeight = 0.0f;
/*
======================
R_AddWorldSurface
======================
*/
#ifdef VV_LIGHTING
void R_AddWorldSurface( msurface_t *surf, int dlightBits, qboolean noViewCount )
#else
static void R_AddWorldSurface( msurface_t *surf, int dlightBits, qboolean noViewCount = qfalse )
#endif
{
if (!noViewCount)
{
if ( surf->viewCount == tr.viewCount )
{
// already in this view, but lets make sure all the dlight bits are set
if ( *surf->data == SF_FACE )
{
((srfSurfaceFace_t *)surf->data)->dlightBits |= dlightBits;
}
else if ( *surf->data == SF_GRID )
{
((srfGridMesh_t *)surf->data)->dlightBits |= dlightBits;
}
else if ( *surf->data == SF_TRIANGLES )
{
((srfTriangles_t *)surf->data)->dlightBits |= dlightBits;
}
return;
}
surf->viewCount = tr.viewCount;
// FIXME: bmodel fog?
}
/*
if (r_shadows->integer == 2)
{
dlightBits = R_DlightSurface( surf, dlightBits );
//dlightBits = ( dlightBits != 0 );
R_AddDrawSurf( surf->data, tr.shadowShader, surf->fogIndex, dlightBits );
}
*/
//world shadows?
// try to cull before dlighting or adding
#ifdef _ALT_AUTOMAP_METHOD
if (!tr_drawingAutoMap && R_CullSurface( surf->data, surf->shader ) )
#else
if (R_CullSurface(surf->data, surf->shader))
#endif
{
return;
}
// check for dlighting
if ( dlightBits ) {
#ifdef VV_LIGHTING
dlightBits = VVLightMan.R_DlightSurface( surf, dlightBits );
#else
dlightBits = R_DlightSurface( surf, dlightBits );
#endif
dlightBits = ( dlightBits != 0 );
}
#ifdef _ALT_AUTOMAP_METHOD
if (tr_drawingAutoMap)
{
// if (g_playerHeight != g_lastHeight ||
// !g_lastHeightValid)
if (*surf->data == SF_FACE)
{ //only do this if we need to
bool completelyTransparent = true;
int i = 0;
srfSurfaceFace_t *face = (srfSurfaceFace_t *)surf->data;
byte *indices = (byte *)(face + face->ofsIndices);
float *point;
vec3_t color;
float alpha;
float e;
bool polyStarted = false;
while (i < face->numIndices)
{
point = &face->points[indices[i]][0];
//base the color on the elevation... for now, just check the first point height
if (point[2] < g_playerHeight)
{
e = point[2]-g_playerHeight;
}
else
{
e = g_playerHeight-point[2];
}
if (e < 0.0f)
{
e = -e;
}
//set alpha and color based on relative height of point
alpha = e/256.0f;
e /= 512.0f;
//cap color
if (e > 1.0f)
{
e = 1.0f;
}
else if (e < 0.0f)
{
e = 0.0f;
}
VectorSet(color, e, 1.0f-e, 0.0f);
//cap alpha
if (alpha > 1.0f)
{
alpha = 1.0f;
}
else if (alpha < 0.0f)
{
alpha = 0.0f;
}
if (alpha != 1.0f)
{ //this point is not entirely alpha'd out, so still draw the surface
completelyTransparent = false;
}
if (!completelyTransparent)
{
if (!polyStarted)
{
qglBegin(GL_POLYGON);
polyStarted = true;
}
qglColor4f(color[0], color[1], color[2], 1.0f-alpha);
qglVertex3f(point[i], point[i], point[2]);
}
i++;
}
if (polyStarted)
{
qglEnd();
}
}
}
else
#endif
{
R_AddDrawSurf( surf->data, surf->shader, surf->fogIndex, dlightBits );
}
}
/*
=============================================================
BRUSH MODELS
=============================================================
*/
/*
=================
R_AddBrushModelSurfaces
=================
*/
void R_AddBrushModelSurfaces ( trRefEntity_t *ent ) {
bmodel_t *bmodel;
int clip;
model_t *pModel;
int i;
pModel = R_GetModelByHandle( ent->e.hModel );
bmodel = pModel->bmodel;
clip = R_CullLocalBox( bmodel->bounds );
if ( clip == CULL_OUT ) {
return;
}
if(pModel->bspInstance)
{ //rwwRMG - added
#ifdef VV_LIGHTING
VVLightMan.R_SetupEntityLighting(&tr.refdef, ent);
#else
R_SetupEntityLighting(&tr.refdef, ent);
#endif
}
//rww - Take this into account later?
// if (!com_RMG || !com_RMG->integer)
// { // don't dlight bmodels on rmg, as multiple copies of the same instance will light up
#ifdef VV_LIGHTING
VVLightMan.R_DlightBmodel( bmodel, false );
#else
R_DlightBmodel( bmodel, false );
#endif
// }
// else
// {
// R_DlightBmodel( bmodel, true );
// }
for ( i = 0 ; i < bmodel->numSurfaces ; i++ ) {
R_AddWorldSurface( bmodel->firstSurface + i, tr.currentEntity->dlightBits, qtrue );
}
}
float GetQuadArea( vec3_t v1, vec3_t v2, vec3_t v3, vec3_t v4 )
{
vec3_t vec1, vec2, dis1, dis2;
// Get area of tri1
VectorSubtract( v1, v2, vec1 );
VectorSubtract( v1, v4, vec2 );
CrossProduct( vec1, vec2, dis1 );
VectorScale( dis1, 0.25f, dis1 );
// Get area of tri2
VectorSubtract( v3, v2, vec1 );
VectorSubtract( v3, v4, vec2 );
CrossProduct( vec1, vec2, dis2 );
VectorScale( dis2, 0.25f, dis2 );
// Return addition of disSqr of each tri area
return ( dis1[0] * dis1[0] + dis1[1] * dis1[1] + dis1[2] * dis1[2] +
dis2[0] * dis2[0] + dis2[1] * dis2[1] + dis2[2] * dis2[2] );
}
#ifdef _XBOX
float GetQuadArea( unsigned short v1[3], unsigned short v2[3], unsigned short v3[3], unsigned short v4[3])
{
vec3_t fv1;
vec3_t fv2;
vec3_t fv3;
vec3_t fv4;
for(int i=0; i<3; i++) {
Q_CastShort2Float(&fv1[i], (short*)&v1[i]);
Q_CastShort2Float(&fv2[i], (short*)&v2[i]);
Q_CastShort2Float(&fv3[i], (short*)&v3[i]);
Q_CastShort2Float(&fv4[i], (short*)&v4[i]);
}
return GetQuadArea(fv1, fv2, fv3, fv4);
}
#endif
void RE_GetBModelVerts( int bmodelIndex, vec3_t *verts, vec3_t normal )
{
msurface_t *surfs;
srfSurfaceFace_t *face;
bmodel_t *bmodel;
model_t *pModel;
int i;
// Not sure if we really need to track the best two candidates
int maxDist[2]={0,0};
int maxIndx[2]={0,0};
int dist = 0;
float dot1, dot2;
pModel = R_GetModelByHandle( bmodelIndex );
bmodel = pModel->bmodel;
// Loop through all surfaces on the brush and find the best two candidates
for ( i = 0 ; i < bmodel->numSurfaces; i++ )
{
surfs = bmodel->firstSurface + i;
face = ( srfSurfaceFace_t *)surfs->data;
// It seems that the safest way to handle this is by finding the area of the faces
#ifdef _XBOX
int nextSurfPoint = NEXT_SURFPOINT(face->flags);
dist = GetQuadArea( face->srfPoints, face->srfPoints + nextSurfPoint,
face->srfPoints + nextSurfPoint * 2, face->srfPoints +
nextSurfPoint * 3 );
#else
dist = GetQuadArea( face->points[0], face->points[1], face->points[2], face->points[3] );
#endif
// Check against the highest max
if ( dist > maxDist[0] )
{
// Shuffle our current maxes down
maxDist[1] = maxDist[0];
maxIndx[1] = maxIndx[0];
maxDist[0] = dist;
maxIndx[0] = i;
}
// Check against the second highest max
else if ( dist >= maxDist[1] )
{
// just stomp the old
maxDist[1] = dist;
maxIndx[1] = i;
}
}
// Hopefully we've found two best case candidates. Now we should see which of these faces the viewer
surfs = bmodel->firstSurface + maxIndx[0];
face = ( srfSurfaceFace_t *)surfs->data;
dot1 = DotProduct( face->plane.normal, tr.refdef.viewaxis[0] );
surfs = bmodel->firstSurface + maxIndx[1];
face = ( srfSurfaceFace_t *)surfs->data;
dot2 = DotProduct( face->plane.normal, tr.refdef.viewaxis[0] );
if ( dot2 < dot1 && dot2 < 0.0f )
{
i = maxIndx[1]; // use the second face
}
else if ( dot1 < dot2 && dot1 < 0.0f )
{
i = maxIndx[0]; // use the first face
}
else
{ // Possibly only have one face, so may as well use the first face, which also should be the best one
//i = rand() & 1; // ugh, we don't know which to use. I'd hope this would never happen
i = maxIndx[0]; // use the first face
}
surfs = bmodel->firstSurface + i;
face = ( srfSurfaceFace_t *)surfs->data;
#ifdef _XBOX
int nextSurfPoint = NEXT_SURFPOINT(face->flags);
for ( int t = 0; t < 4; t++ )
{
Q_CastShort2Float(&verts[t][0], (short*)(face->srfPoints + nextSurfPoint * t + 0));
Q_CastShort2Float(&verts[t][1], (short*)(face->srfPoints + nextSurfPoint * t + 1));
Q_CastShort2Float(&verts[t][2], (short*)(face->srfPoints + nextSurfPoint * t + 2));
}
#else
for ( int t = 0; t < 4; t++ )
{
VectorCopy( face->points[t], verts[t] );
}
#endif
}
/*
=============================================================
WORLD MODEL
=============================================================
*/
/*
=============================================================
WIREFRAME AUTOMAP GENERATION SYSTEM - BEGIN
=============================================================
*/
#ifndef _ALT_AUTOMAP_METHOD
typedef struct wireframeSurfPoint_s
{
vec3_t xyz;
float alpha;
vec3_t color;
} wireframeSurfPoint_t;
typedef struct wireframeMapSurf_s
{
bool completelyTransparent;
int numPoints;
wireframeSurfPoint_t *points;
wireframeMapSurf_s *next;
} wireframeMapSurf_t;
typedef struct wireframeMap_s
{
wireframeMapSurf_t *surfs;
} wireframeMap_t;
static wireframeMap_t g_autoMapFrame;
static wireframeMapSurf_t **g_autoMapNextFree = NULL;
static bool g_autoMapValid = false; //set to true of g_autoMapFrame is valid.
//get the next available wireframe automap surface. -rww
static inline wireframeMapSurf_t *R_GetNewWireframeMapSurf(void)
{
wireframeMapSurf_t **next = &g_autoMapFrame.surfs;
if (g_autoMapNextFree)
{ //save us the time of going through the entire linked list from root
next = g_autoMapNextFree;
}
while (*next)
{ //iterate through until we find the next unused one
next = &(*next)->next;
}
//allocate memory for it and pass it back
(*next) = (wireframeMapSurf_t *)Z_Malloc(sizeof(wireframeMapSurf_t), TAG_ALL, qtrue);
g_autoMapNextFree = &(*next)->next;
return (*next);
}
//evaluate a surface, see if it is valid for being part of the
//wireframe map render. -rww
#ifdef _XBOX
static inline void R_EvaluateWireframeSurf(msurface_t *surf)
{
if (*surf->data == SF_FACE)
{
srfSurfaceFace_t *face = (srfSurfaceFace_t *)surf->data;
int numPoints = face->numPoints;
unsigned char *indices = (unsigned char *)(((char *)face) + face->ofsIndices );
if (numPoints > 0)
{ //we can add it
int i = 0;
wireframeMapSurf_t *nextSurf = R_GetNewWireframeMapSurf();
//now go through the indices and add a point for each
nextSurf->points = (wireframeSurfPoint_t *)Z_Malloc(sizeof(wireframeSurfPoint_t)*face->numIndices, TAG_ALL, qtrue);
nextSurf->numPoints = face->numIndices;
while (i < face->numIndices)
{
vec3_t point;
Q_CastShort2Float(&point[0], (short*)face->srfPoints + indices[i] + 0);
Q_CastShort2Float(&point[1], (short*)face->srfPoints + indices[i] + 1);
Q_CastShort2Float(&point[2], (short*)face->srfPoints + indices[i] + 2);
VectorCopy(point, nextSurf->points[i].xyz);
i++;
}
}
}
else if (*surf->data == SF_TRIANGLES)
{
//srfTriangles_t *surfTri = (srfTriangles_t *)surf->data;
return; //not handled
}
else if (*surf->data == SF_GRID)
{
//srfGridMesh_t *gridMesh = (srfGridMesh_t *)surf->data;
return; //not handled
}
else
{ //...unknown type?
return;
}
}
#else // _XBOX
static inline void R_EvaluateWireframeSurf(msurface_t *surf)
{
if (*surf->data == SF_FACE)
{
srfSurfaceFace_t *face = (srfSurfaceFace_t *)surf->data;
float *points = &face->points[0][0];
int numPoints = face->numIndices;
int *indices = (int *)((byte *)face + face->ofsIndices);
//byte *indices = (byte *)(face + face->ofsIndices);
if (points && numPoints > 0)
{ //we can add it
int i = 0;
wireframeMapSurf_t *nextSurf = R_GetNewWireframeMapSurf();
#if 0 //doing in realtime now
float e;
//base the color on the elevation... for now, just check the first point height
if (points[2] < 0.0f)
{
e = -points[2];
}
else
{
e = points[2];
}
e /= 2048.0f;
if (e > 1.0f)
{
e = 1.0f;
}
else if (e < 0.0f)
{
e = 0.0f;
}
VectorSet(color, e, 1.0f-e, 0.0f);
#endif
//now go through the indices and add a point for each
nextSurf->points = (wireframeSurfPoint_t *)Z_Malloc(sizeof(wireframeSurfPoint_t)*face->numIndices, TAG_ALL, qtrue);
nextSurf->numPoints = face->numIndices;
while (i < face->numIndices)
{
points = &face->points[indices[i]][0];
VectorCopy(points, nextSurf->points[i].xyz);
i++;
}
}
}
else if (*surf->data == SF_TRIANGLES)
{
//srfTriangles_t *surfTri = (srfTriangles_t *)surf->data;
return; //not handled
}
else if (*surf->data == SF_GRID)
{
//srfGridMesh_t *gridMesh = (srfGridMesh_t *)surf->data;
return; //not handled
}
else
{ //...unknown type?
return;
}
}
#endif // _XBOX
//see if any surfaces on the node are facing opposite directions
//using plane normals. -rww
static inline bool R_NodeHasOppositeFaces(mnode_t *node)
{
int c, d;
msurface_t *surf, *surf2, **mark, **mark2;
srfSurfaceFace_t *face, *face2;
vec3_t normalDif;
#ifdef _XBOX
mleaf_s *leaf;
leaf = (mleaf_s*)node;
mark = tr.world->marksurfaces + leaf->firstMarkSurfNum;
c = leaf->nummarksurfaces;
#else
mark = node->firstmarksurface;
c = node->nummarksurfaces;
#endif
while (c--)
{
surf = *mark;
if (*surf->data != SF_FACE)
{ //if this node is not entirely comprised of faces, I guess we shouldn't check it?
return false;
}
face = (srfSurfaceFace_t *)surf->data;
//go through other surfs and compare against this surf
#ifdef _XBOX
leaf = (mleaf_s*)node;
d = leaf->nummarksurfaces;
mark2 = tr.world->marksurfaces + leaf->firstMarkSurfNum;
#else
d = node->nummarksurfaces;
mark2 = node->firstmarksurface;
#endif
while (d--)
{
surf2 = *mark2;
if (*surf2->data != SF_FACE)
{
return false;
}
face2 = (srfSurfaceFace_t *)surf2->data;
//see if this normal has a drastic angular change
VectorSubtract(face->plane.normal, face2->plane.normal, normalDif);
if (VectorLength(normalDif) >= 1.8f)
{
return true;
}
mark2++;
}
mark++;
}
return false;
}
//recursively called for each node to go through the surfaces on that
//node and generate the wireframe map. -rww
static inline void R_RecursiveWireframeSurf(mnode_t *node)
{
int c;
msurface_t *surf, **mark;
if (!node)
{
return;
}
while (1)
{
if (!node ||
node->visframe != tr.visCount)
{ //not valid, stop this chain of recursion
return;
}
if ( node->contents != -1 )
{
break;
}
R_RecursiveWireframeSurf(node->children[0]);
node = node->children[1];
}
// add the individual surfaces
#ifdef _XBOX
mleaf_s *leaf;
leaf = (mleaf_s*)node;
mark = tr.world->marksurfaces + leaf->firstMarkSurfNum;
c = leaf->nummarksurfaces;
#else
mark = node->firstmarksurface;
c = node->nummarksurfaces;
#endif
while (c--)
{
// the surface may have already been added if it
// spans multiple leafs
surf = *mark;
R_EvaluateWireframeSurf(surf);
mark++;
}
}
//generates a wireframe model of the map for the automap view -rww
static void R_GenerateWireframeMap(mnode_t *baseNode)
{
int i;
//initialize data to all 0
memset(&g_autoMapFrame, 0, sizeof(g_autoMapFrame));
//take the hit for this frame, mark all of these things as visible
//so we know which are valid for automap generation, but only the
//ones that are facing outside the world! (well, ideally.)
for (i = 0; i < tr.world->numnodes; i++)
{
if (tr.world->nodes[i].contents != CONTENTS_SOLID)
{
#if 0 //doesn't work, I take it surfs on nodes are not related to surfs on brushes
if (!R_NodeHasOppositeFaces(&tr.world->nodes[i]))
#endif
{
tr.world->nodes[i].visframe = tr.visCount;
}
}
}
//now start the recursive evaluation
R_RecursiveWireframeSurf(baseNode);
}
//clear out the wireframe map data -rww
void R_DestroyWireframeMap(void)
{
wireframeMapSurf_t *next;
wireframeMapSurf_t *last;
if (!g_autoMapValid)
{ //not valid to begin with
return;
}
next = g_autoMapFrame.surfs;
while (next)
{
//free memory allocated for points on this surface
Z_Free(next->points);
//get the next surface
last = next;
next = next->next;
//free memory for this surface
Z_Free(last);
}
//invalidate everything
memset(&g_autoMapFrame, 0, sizeof(g_autoMapFrame));
g_autoMapValid = false;
g_autoMapNextFree = NULL;
}
//save 3d automap data to file -rww
qboolean R_WriteWireframeMapToFile(void)
{
fileHandle_t f;
int requiredSize = 0;
wireframeMapSurf_t *surf = g_autoMapFrame.surfs;
byte *out, *rOut;
//let's go through and see how much space we're going to need to stuff all this
//data into
while (surf)
{
//memory for each point
requiredSize += sizeof(wireframeSurfPoint_t)*surf->numPoints;
//memory for numPoints
requiredSize += sizeof(int);
surf = surf->next;
}
if (requiredSize <= 0)
{ //nothing to do..?
return qfalse;
}
f = FS_FOpenFileWrite("blahblah.bla");
if (!f)
{ //can't create?
return qfalse;
}
//allocate the memory we will need
out = (byte *)Z_Malloc(requiredSize, TAG_ALL, qtrue);
rOut = out;
//now go through and put the data into the memory
surf = g_autoMapFrame.surfs;
while (surf)
{
memcpy(out, surf, (sizeof(wireframeSurfPoint_t)*surf->numPoints) + sizeof(int));
//memory for each point
out += sizeof(wireframeSurfPoint_t)*surf->numPoints;
//memory for numPoints
out += sizeof(int);
surf = surf->next;
}
//now write the buffer, and close
FS_Write(rOut, requiredSize, f);
Z_Free(rOut);
FS_FCloseFile(f);
return qtrue;
}
//load 3d automap data from file -rww
qboolean R_GetWireframeMapFromFile(void)
{
wireframeMapSurf_t *surfs, *rSurfs;
wireframeMapSurf_t *newSurf;
fileHandle_t f;
int i = 0;
int len;
int stepBytes;
len = FS_FOpenFileRead("blahblah.bla", &f, qfalse);
if (!f || len <= 0)
{ //it doesn't exist
return qfalse;
}
surfs = (wireframeMapSurf_t *)Z_Malloc(len, TAG_ALL, qtrue);
rSurfs = surfs;
FS_Read(surfs, len, f);
while (i < len)
{
newSurf = R_GetNewWireframeMapSurf();
newSurf->points = (wireframeSurfPoint_t *)Z_Malloc(sizeof(wireframeSurfPoint_t)*surfs->numPoints, TAG_ALL, qtrue);
//copy the surf data into the new surf
//note - the surfs->points pointer is NOT pointing to valid memory, a pointer to that
//pointer is actually what we want to use as the location of the point offsets.
memcpy(newSurf->points, &surfs->points, sizeof(wireframeSurfPoint_t)*surfs->numPoints);
newSurf->numPoints = surfs->numPoints;
//the size of the point data, plus an int (the number of points)
stepBytes = (sizeof(wireframeSurfPoint_t)*surfs->numPoints) + sizeof(int);
i += stepBytes;
//increment the pointer to the start of the next surface
surfs = (wireframeMapSurf_t *)((byte *)surfs+stepBytes);
}
//it should end up being equal, if not something was wrong with this file.
assert(i == len);
FS_FCloseFile(f);
Z_Free(rSurfs);
return qtrue;
}
//create everything, after destroying any existing data -rww
qboolean R_InitializeWireframeAutomap(void)
{
if (r_autoMapDisable && r_autoMapDisable->integer)
{
return qfalse;
}
if (tr.world &&
tr.world->nodes)
{
R_DestroyWireframeMap();
#if 0 //file load-save
if (!R_GetWireframeMapFromFile())
{ //first try loading the data from a file. If there is none, generate it.
R_GenerateWireframeMap(tr.world->nodes);
//now write it to file, since we have generated it successfully.
R_WriteWireframeMapToFile();
}
#else //always generate
R_GenerateWireframeMap(tr.world->nodes);
#endif
g_autoMapValid = true;
}
return (qboolean)g_autoMapValid;
}
#endif //0
/*
=============================================================
WIREFRAME AUTOMAP GENERATION SYSTEM - END
=============================================================
*/
void R_AutomapElevationAdjustment(float newHeight)
{
g_playerHeight = newHeight;
}
#ifdef _ALT_AUTOMAP_METHOD
//adjust the player height for gradient elevation colors -rww
qboolean R_InitializeWireframeAutomap(void)
{ //yoink
return qtrue;
}
#endif
//draw the automap with the given transformation matrix -rww
#define QUADINFINITY 16777216
static float g_lastHeight = 0.0f;
static bool g_lastHeightValid = false;
static void R_RecursiveWorldNode( mnode_t *node, int planeBits, int dlightBits );
const void *R_DrawWireframeAutomap(const void *data)
{
const drawBufferCommand_t *cmd = (const drawBufferCommand_t *)data;
float e = 0.0f;
float alpha;
wireframeMapSurf_t *s = g_autoMapFrame.surfs;
#ifndef _ALT_AUTOMAP_METHOD
int i;
#endif
if (!r_autoMap || !r_autoMap->integer)
{
return (const void *)(cmd + 1);
}
#ifndef _ALT_AUTOMAP_METHOD
if (!g_autoMapValid)
{ //data is not valid, don't draw
return (const void *)(cmd + 1);
}
#endif
#if 0 //instead of this method, just do the automap as a new "scene"
//projection matrix mode
qglMatrixMode(GL_PROJECTION);
//store the current matrix
qglPushMatrix();
//translate to our proper pos/angles from identity
qglLoadIdentity();
qglTranslatef(pos[0], pos[1], pos[2]);
//presumeably this is correct for compensating for quake's
//crazy angle system.
qglRotatef(angles[1], 0.0f, 0.0f, 1.0f);
qglRotatef(-angles[0], 0.0f, 1.0f, 0.0f);
qglRotatef(angles[2], 1.0f, 0.0f, 0.0f);
#endif
//disable 2d texturing
qglDisable( GL_TEXTURE_2D );
//now draw the backdrop
#if 0 //this does no good sadly, because of the issue of having to clear with a second scene
//in order for global fog clearing to work.
if (r_autoMapBackAlpha && r_autoMapBackAlpha->value)
{ //specify the automap background alpha
alpha = r_autoMapBackAlpha->value;
//cap it reasonably
if (alpha < 0.0f)
{
alpha = 0.0f;
}
else if (alpha > 1.0f)
{
alpha = 1.0f;
}
GL_State(GLS_SRCBLEND_SRC_ALPHA|GLS_DSTBLEND_SRC_ALPHA);
}
else
#endif
{
alpha = 1.0f;
GL_State(0);
}
//black
qglColor4f(0.0f, 0.0f, 0.0f, alpha);
//draw a black backdrop
qglPushMatrix();
qglLoadIdentity(); //get the ident matrix
qglBegin( GL_QUADS );
qglVertex3f( -QUADINFINITY, QUADINFINITY, -(backEnd.viewParms.zFar-1) );
qglVertex3f( QUADINFINITY, QUADINFINITY, -(backEnd.viewParms.zFar-1) );
qglVertex3f( QUADINFINITY, -QUADINFINITY, -(backEnd.viewParms.zFar-1) );
qglVertex3f( -QUADINFINITY, -QUADINFINITY, -(backEnd.viewParms.zFar-1) );
qglEnd ();
//pop back the viewmatrix
qglPopMatrix();
//set the mode to line draw
if (r_autoMap->integer == 2)
{ //line mode
GL_State(GLS_POLYMODE_LINE|GLS_SRCBLEND_SRC_ALPHA|GLS_DSTBLEND_SRC_COLOR|GLS_DEPTHMASK_TRUE);
}
else
{ //fill mode
//GL_State(GLS_SRCBLEND_SRC_ALPHA|GLS_DSTBLEND_SRC_COLOR|GLS_DEPTHMASK_TRUE);
GL_State(GLS_DEPTHMASK_TRUE);
}
//set culling
GL_Cull(CT_TWO_SIDED);
#ifndef _ALT_AUTOMAP_METHOD
//Draw the triangles
while (s)
{
//first, loop through and set the alpha on every point for this surf.
//if the alpha ends up being completely transparent for every point, we don't even
//need to draw it
if (g_playerHeight != g_lastHeight ||
!g_lastHeightValid)
{ //only do this if we need to
i = 0;
s->completelyTransparent = true;
while (i < s->numPoints)
{
//base the color on the elevation... for now, just check the first point height
if (s->points[i].xyz[2] < g_playerHeight)
{
e = s->points[i].xyz[2]-g_playerHeight;
}
else
{
e = g_playerHeight-s->points[i].xyz[2];
}
if (e < 0.0f)
{
e = -e;
}
if (r_autoMap->integer != 2)
{ //fill mode
if (s->points[i].xyz[2] > (g_playerHeight+64.0f))
{
s->points[i].alpha = 1.0f;
}
else
{
s->points[i].alpha = e/256.0f;
}
}
else
{
//set alpha and color based on relative height of point
s->points[i].alpha = e/256.0f;
}
e /= 512.0f;
//cap color
if (e > 1.0f)
{
e = 1.0f;
}
else if (e < 0.0f)
{
e = 0.0f;
}
VectorSet(s->points[i].color, e, 1.0f-e, 0.0f);
//cap alpha
if (s->points[i].alpha > 1.0f)
{
s->points[i].alpha = 1.0f;
}
else if (s->points[i].alpha < 0.0f)
{
s->points[i].alpha = 0.0f;
}
if (s->points[i].alpha != 1.0f)
{ //this point is not entirely alpha'd out, so still draw the surface
s->completelyTransparent = false;
}
i++;
}
}
if (s->completelyTransparent)
{
s = s->next;
continue;
}
i = 0;
qglBegin(GL_TRIANGLES);
while (i < s->numPoints)
{
if (r_autoMap->integer == 2 || s->numPoints < 3)
{ //line mode or not enough verts on surface
qglColor4f(s->points[i].color[0], s->points[i].color[1], s->points[i].color[2], s->points[i].alpha);
}
else
{ //fill mode
vec3_t planeNormal;
float fAlpha = s->points[i].alpha;
planeNormal[0] = s->points[0].xyz[1]*(s->points[1].xyz[2]-s->points[2].xyz[2]) + s->points[1].xyz[1]*(s->points[2].xyz[2]-s->points[0].xyz[2]) + s->points[2].xyz[1]*(s->points[0].xyz[2]-s->points[1].xyz[2]);
planeNormal[1] = s->points[0].xyz[2]*(s->points[1].xyz[0]-s->points[2].xyz[0]) + s->points[1].xyz[2]*(s->points[2].xyz[0]-s->points[0].xyz[0]) + s->points[2].xyz[2]*(s->points[0].xyz[0]-s->points[1].xyz[0]);
planeNormal[2] = s->points[0].xyz[0]*(s->points[1].xyz[1]-s->points[2].xyz[1]) + s->points[1].xyz[0]*(s->points[2].xyz[1]-s->points[0].xyz[1]) + s->points[2].xyz[0]*(s->points[0].xyz[1]-s->points[1].xyz[1]);
if (planeNormal[0] < 0.0f) planeNormal[0] = -planeNormal[0];
if (planeNormal[1] < 0.0f) planeNormal[1] = -planeNormal[1];
if (planeNormal[2] < 0.0f) planeNormal[2] = -planeNormal[2];
/*
if (s->points[i].xyz[2] > g_playerHeight+64.0f &&
planeNormal[2] > 0.7f)
{ //surface above player facing up/down directly
fAlpha = 1.0f-planeNormal[2];
}
*/
//qglColor4f(planeNormal[0], planeNormal[1], planeNormal[2], fAlpha);
qglColor4f(s->points[i].color[0], s->points[i].color[1], 1.0f-planeNormal[2], fAlpha);
}
qglVertex3f(s->points[i].xyz[0], s->points[i].xyz[1], s->points[i].xyz[2]);
i++;
}
qglEnd();
s = s->next;
}
#else
tr_drawingAutoMap = true;
R_RecursiveWorldNode( tr.world->nodes, 15, 0 );
tr_drawingAutoMap = false;
#endif
g_lastHeight = g_playerHeight;
g_lastHeightValid = true;
#if 0 //instead of this method, just do the automap as a new "scene"
//pop back the view matrix
qglPopMatrix();
#endif
//reenable 2d texturing
qglEnable( GL_TEXTURE_2D );
//white color/full alpha
qglColor4f(1.0f, 1.0f, 1.0f, 1.0f);
return (const void *)(cmd + 1);
}
/*
================
R_RecursiveWorldNode
================
*/
#ifndef VV_LIGHTING
static void R_RecursiveWorldNode( mnode_t *node, int planeBits, int dlightBits ) {
do
{
int newDlights[2];
#ifdef _ALT_AUTOMAP_METHOD
if (tr_drawingAutoMap)
{
node->visframe = tr.visCount;
}
#endif
// if the node wasn't marked as potentially visible, exit
if (node->visframe != tr.visCount)
{
return;
}
// if the bounding volume is outside the frustum, nothing
// inside can be visible OPTIMIZE: don't do this all the way to leafs?
#ifdef _ALT_AUTOMAP_METHOD
if ( r_nocull->integer!=1 && !tr_drawingAutoMap )
#else
if (r_nocull->integer!=1)
#endif
{
int r;
if ( planeBits & 1 ) {
r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[0]);
if (r == 2) {
return; // culled
}
if ( r == 1 ) {
planeBits &= ~1; // all descendants will also be in front
}
}
if ( planeBits & 2 ) {
r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[1]);
if (r == 2) {
return; // culled
}
if ( r == 1 ) {
planeBits &= ~2; // all descendants will also be in front
}
}
if ( planeBits & 4 ) {
r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[2]);
if (r == 2) {
return; // culled
}
if ( r == 1 ) {
planeBits &= ~4; // all descendants will also be in front
}
}
if ( planeBits & 8 ) {
r = BoxOnPlaneSide(node->mins, node->maxs, &tr.viewParms.frustum[3]);
if (r == 2) {
return; // culled
}
if ( r == 1 ) {
planeBits &= ~8; // all descendants will also be in front
}
}
}
if ( node->contents != -1 ) {
break;
}
// node is just a decision point, so go down both sides
// since we don't care about sort orders, just go positive to negative
// determine which dlights are needed
if ( r_nocull->integer!=2 )
{
newDlights[0] = 0;
newDlights[1] = 0;
if ( dlightBits )
{
int i;
for ( i = 0 ; i < tr.refdef.num_dlights ; i++ )
{
dlight_t *dl;
float dist;
if ( dlightBits & ( 1 << i ) ) {
dl = &tr.refdef.dlights[i];
dist = DotProduct( dl->origin, node->plane->normal ) - node->plane->dist;
if ( dist > -dl->radius ) {
newDlights[0] |= ( 1 << i );
}
if ( dist < dl->radius ) {
newDlights[1] |= ( 1 << i );
}
}
}
}
}
else
{
newDlights[0] = dlightBits;
newDlights[1] = dlightBits;
}
// recurse down the children, front side first
R_RecursiveWorldNode (node->children[0], planeBits, newDlights[0] );
// tail recurse
node = node->children[1];
dlightBits = newDlights[1];
} while ( 1 );
{
// leaf node, so add mark surfaces
int c;
msurface_t *surf, **mark;
tr.pc.c_leafs++;
// add to z buffer bounds
if ( node->mins[0] < tr.viewParms.visBounds[0][0] ) {
tr.viewParms.visBounds[0][0] = node->mins[0];
}
if ( node->mins[1] < tr.viewParms.visBounds[0][1] ) {
tr.viewParms.visBounds[0][1] = node->mins[1];
}
if ( node->mins[2] < tr.viewParms.visBounds[0][2] ) {
tr.viewParms.visBounds[0][2] = node->mins[2];
}
if ( node->maxs[0] > tr.viewParms.visBounds[1][0] ) {
tr.viewParms.visBounds[1][0] = node->maxs[0];
}
if ( node->maxs[1] > tr.viewParms.visBounds[1][1] ) {
tr.viewParms.visBounds[1][1] = node->maxs[1];
}
if ( node->maxs[2] > tr.viewParms.visBounds[1][2] ) {
tr.viewParms.visBounds[1][2] = node->maxs[2];
}
// add the individual surfaces
mark = node->firstmarksurface;
c = node->nummarksurfaces;
while (c--) {
// the surface may have already been added if it
// spans multiple leafs
surf = *mark;
R_AddWorldSurface( surf, dlightBits );
mark++;
}
}
}
#endif // VV_LIGHTING
/*
===============
R_PointInLeaf
===============
*/
static mnode_t *R_PointInLeaf( const vec3_t p ) {
mnode_t *node;
float d;
cplane_t *plane;
if ( !tr.world ) {
Com_Error (ERR_DROP, "R_PointInLeaf: bad model");
}
node = tr.world->nodes;
while( 1 ) {
if (node->contents != -1) {
break;
}
#ifdef _XBOX
plane = tr.world->planes + node->planeNum;
#else
plane = node->plane;
#endif
d = DotProduct (p,plane->normal) - plane->dist;
if (d > 0) {
node = node->children[0];
} else {
node = node->children[1];
}
}
return node;
}
/*
==============
R_ClusterPVS
==============
*/
static const byte *R_ClusterPVS (int cluster) {
if (!tr.world || !tr.world->vis || cluster < 0 || cluster >= tr.world->numClusters ) {
return tr.world->novis;
}
#ifdef _XBOX
return tr.world->vis->Decompress(cluster * tr.world->clusterBytes,
tr.world->numClusters);
#else
return tr.world->vis + cluster * tr.world->clusterBytes;
#endif
}
/*
=================
R_inPVS
=================
*/
qboolean R_inPVS( const vec3_t p1, const vec3_t p2, byte *mask ) {
int leafnum;
int cluster;
int area1, area2;
leafnum = CM_PointLeafnum (p1);
cluster = CM_LeafCluster (leafnum);
area1 = CM_LeafArea (leafnum);
//agh, the damn snapshot mask doesn't work for this
mask = (byte *) CM_ClusterPVS (cluster);
leafnum = CM_PointLeafnum (p2);
cluster = CM_LeafCluster (leafnum);
area2 = CM_LeafArea (leafnum);
if ( mask && (!(mask[cluster>>3] & (1<<(cluster&7)) ) ) )
return qfalse;
//this doesn't freakin work
// if (!CM_AreasConnected (area1, area2))
// return qfalse; // a door blocks sight
return qtrue;
}
/*
===============
R_MarkLeaves
Mark the leaves and nodes that are in the PVS for the current
cluster
===============
*/
#ifdef _XBOX
void R_MarkLeaves (mleaf_s *leafOverride) {
const byte *vis;
mleaf_s *leaf;
mnode_s *parent;
int i;
int cluster;
// lockpvs lets designers walk around to determine the
// extent of the current pvs
if ( r_lockpvs->integer ) {
return;
}
// current viewcluster
if(!leafOverride) {
leaf = (mleaf_s*)R_PointInLeaf( tr.viewParms.pvsOrigin );
} else {
leaf = leafOverride;
}
cluster = leaf->cluster;
assert(leaf->contents != -1);
// if the cluster is the same and the area visibility matrix
// hasn't changed, we don't need to mark everything again
if ( tr.viewCluster == cluster && !tr.refdef.areamaskModified ) {
return;
}
tr.visCount++;
tr.viewCluster = cluster;
if ( r_novis->integer || tr.viewCluster == -1 ) {
for (i=0 ; i<tr.world->numnodes ; i++) {
if (tr.world->nodes[i].contents != CONTENTS_SOLID) {
tr.world->nodes[i].visframe = tr.visCount;
}
}
return;
}
vis = R_ClusterPVS (tr.viewCluster);
for (i=0,leaf=tr.world->leafs ; i<tr.world->numleafs ; i++, leaf++) {
cluster = leaf->cluster;
if ( cluster < 0 || cluster >= tr.world->numClusters ) {
continue;
}
// check general pvs
if ( !(vis[cluster>>3] & (1<<(cluster&7))) ) {
continue;
}
// check for door connection
if (!lookingForWorstLeaf &&
(tr.refdef.areamask[leaf->area>>3] & (1<<(leaf->area&7)) ) ) {
continue; // not visible
}
parent = (mnode_t*)leaf;
assert(leaf->contents != -1);
do {
if (parent->visframe == tr.visCount)
break;
parent->visframe = tr.visCount;
parent = parent->parent;
} while (parent);
}
}
#else // _XBOX
static void R_MarkLeaves (void) {
const byte *vis;
mnode_t *leaf, *parent;
int i;
int cluster;
// lockpvs lets designers walk around to determine the
// extent of the current pvs
if ( r_lockpvs->integer ) {
return;
}
// current viewcluster
leaf = R_PointInLeaf( tr.viewParms.pvsOrigin );
cluster = leaf->cluster;
// if the cluster is the same and the area visibility matrix
// hasn't changed, we don't need to mark everything again
// if r_showcluster was just turned on, remark everything
if ( tr.viewCluster == cluster && !tr.refdef.areamaskModified
&& !r_showcluster->modified ) {
return;
}
if ( r_showcluster->modified || r_showcluster->integer ) {
r_showcluster->modified = qfalse;
if ( r_showcluster->integer ) {
Com_Printf ("cluster:%i area:%i\n", cluster, leaf->area );
}
}
tr.visCount++;
tr.viewCluster = cluster;
if ( r_novis->integer || tr.viewCluster == -1 ) {
for (i=0 ; i<tr.world->numnodes ; i++) {
if (tr.world->nodes[i].contents != CONTENTS_SOLID) {
tr.world->nodes[i].visframe = tr.visCount;
}
}
return;
}
vis = R_ClusterPVS (tr.viewCluster);
for (i=0,leaf=tr.world->nodes ; i<tr.world->numnodes ; i++, leaf++) {
cluster = leaf->cluster;
if ( cluster < 0 || cluster >= tr.world->numClusters ) {
continue;
}
// check general pvs
if ( !(vis[cluster>>3] & (1<<(cluster&7))) ) {
continue;
}
// check for door connection
if ( (tr.refdef.areamask[leaf->area>>3] & (1<<(leaf->area&7)) ) ) {
continue; // not visible
}
parent = leaf;
do {
if (parent->visframe == tr.visCount)
break;
parent->visframe = tr.visCount;
parent = parent->parent;
} while (parent);
}
}
#endif // _XBOX
/*
=============
R_AddWorldSurfaces
=============
*/
#ifdef _XBOX
void R_AddWorldSurfaces (void) {
if ( !r_drawworld->integer ) {
return;
}
if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
return;
}
tr.currentEntityNum = TR_WORLDENT;//ENTITYNUM_WORLD;
tr.shiftedEntityNum = tr.currentEntityNum << QSORT_ENTITYNUM_SHIFT;
// clear out the visible min/max
ClearBounds( tr.viewParms.visBounds[0], tr.viewParms.visBounds[1] );
// perform frustum culling and add all the potentially visible surfaces
if ( VVLightMan.num_dlights > MAX_DLIGHTS ) {
VVLightMan.num_dlights = MAX_DLIGHTS ;
}
VVLightMan.R_RecursiveWorldNode( tr.world->nodes, 15, ( 1 << VVLightMan.num_dlights ) - 1 );
}
#else // _XBOX
void R_AddWorldSurfaces (void) {
if ( !r_drawworld->integer ) {
return;
}
if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
return;
}
tr.currentEntityNum = TR_WORLDENT;
tr.shiftedEntityNum = tr.currentEntityNum << QSORT_ENTITYNUM_SHIFT;
// determine which leaves are in the PVS / areamask
R_MarkLeaves ();
// clear out the visible min/max
ClearBounds( tr.viewParms.visBounds[0], tr.viewParms.visBounds[1] );
// perform frustum culling and add all the potentially visible surfaces
if ( tr.refdef.num_dlights > 32 ) {
tr.refdef.num_dlights = 32 ;
}
R_RecursiveWorldNode( tr.world->nodes, 15, ( 1 << tr.refdef.num_dlights ) - 1 );
}
#endif // _XBOX