jediacademy/codemp/qcommon/cm_patch.cpp

1810 lines
45 KiB
C++

//Anything above this #include will be ignored by the compiler
#include "../qcommon/exe_headers.h"
#include "cm_local.h"
#include "cm_patch.h"
/*
This file does not reference any globals, and has these entry points:
void CM_ClearLevelPatches( void );
struct patchCollide_s *CM_GeneratePatchCollide( int width, int height, const vec3_t *points );
void CM_TraceThroughPatchCollide( traceWork_t *tw, const struct patchCollide_s *pc );
qboolean CM_PositionTestInPatchCollide( traceWork_t *tw, const struct patchCollide_s *pc );
void CM_DrawDebugSurface( void (*drawPoly)(int color, int numPoints, flaot *points) );
Issues for collision against curved surfaces:
Surface edges need to be handled differently than surface planes
Plane expansion causes raw surfaces to expand past expanded bounding box
Position test of a volume against a surface is tricky.
Position test of a point against a surface is not well defined, because the surface has no volume.
Tracing leading edge points instead of volumes?
Position test by tracing corner to corner? (8*7 traces -- ouch)
coplanar edges
triangulated patches
degenerate patches
endcaps
degenerate
WARNING: this may misbehave with meshes that have rows or columns that only
degenerate a few triangles. Completely degenerate rows and columns are handled
properly.
*/
/*
#define MAX_FACETS 1024
#define MAX_PATCH_PLANES 2048
typedef struct {
float plane[4];
int signbits; // signx + (signy<<1) + (signz<<2), used as lookup during collision
} patchPlane_t;
typedef struct {
int surfacePlane;
int numBorders; // 3 or four + 6 axial bevels + 4 or 3 * 4 edge bevels
int borderPlanes[4+6+16];
int borderInward[4+6+16];
qboolean borderNoAdjust[4+6+16];
} facet_t;
typedef struct patchCollide_s {
vec3_t bounds[2];
int numPlanes; // surface planes plus edge planes
patchPlane_t *planes;
int numFacets;
facet_t *facets;
} patchCollide_t;
#define MAX_GRID_SIZE 129
typedef struct {
int width;
int height;
qboolean wrapWidth;
qboolean wrapHeight;
vec3_t points[MAX_GRID_SIZE][MAX_GRID_SIZE]; // [width][height]
} cGrid_t;
#define SUBDIVIDE_DISTANCE 16 //4 // never more than this units away from curve
#define PLANE_TRI_EPSILON 0.1
#define WRAP_POINT_EPSILON 0.1
*/
int c_totalPatchBlocks;
int c_totalPatchSurfaces;
int c_totalPatchEdges;
static const patchCollide_t *debugPatchCollide;
static const facet_t *debugFacet;
static qboolean debugBlock;
static vec3_t debugBlockPoints[4];
#if defined(BSPC)
extern void *Hunk_Alloc( int size );
static void *Hunk_Alloc( int size, ha_pref preference )
{
return Hunk_Alloc( size );
}
#endif
/*
=================
CM_ClearLevelPatches
=================
*/
void CM_ClearLevelPatches( void ) {
debugPatchCollide = NULL;
debugFacet = NULL;
}
/*
=================
CM_SignbitsForNormal
=================
*/
static inline int CM_SignbitsForNormal( vec3_t normal ) {
int bits, j;
bits = 0;
for (j=0 ; j<3 ; j++) {
if ( normal[j] < 0 ) {
bits |= 1<<j;
}
}
return bits;
}
/*
=====================
CM_PlaneFromPoints
Returns false if the triangle is degenrate.
The normal will point out of the clock for clockwise ordered points
=====================
*/
static inline qboolean CM_PlaneFromPoints( vec4_t plane, vec3_t a, vec3_t b, vec3_t c ) {
vec3_t d1, d2;
VectorSubtract( b, a, d1 );
VectorSubtract( c, a, d2 );
CrossProduct( d2, d1, plane );
if ( VectorNormalize( plane ) == 0 ) {
return qfalse;
}
plane[3] = DotProduct( a, plane );
return qtrue;
}
/*
================================================================================
GRID SUBDIVISION
================================================================================
*/
/*
=================
CM_NeedsSubdivision
Returns true if the given quadratic curve is not flat enough for our
collision detection purposes
=================
*/
static qboolean CM_NeedsSubdivision( vec3_t a, vec3_t b, vec3_t c ) {
vec3_t cmid;
vec3_t lmid;
vec3_t delta;
float dist;
int i;
// calculate the linear midpoint
for ( i = 0 ; i < 3 ; i++ ) {
lmid[i] = 0.5*(a[i] + c[i]);
}
// calculate the exact curve midpoint
for ( i = 0 ; i < 3 ; i++ ) {
cmid[i] = 0.5 * ( 0.5*(a[i] + b[i]) + 0.5*(b[i] + c[i]) );
}
// see if the curve is far enough away from the linear mid
VectorSubtract( cmid, lmid, delta );
dist = VectorLengthSquared( delta );
return (qboolean)(dist >= SUBDIVIDE_DISTANCE * SUBDIVIDE_DISTANCE);
}
/*
===============
CM_Subdivide
a, b, and c are control points.
the subdivided sequence will be: a, out1, out2, out3, c
===============
*/
static void CM_Subdivide( vec3_t a, vec3_t b, vec3_t c, vec3_t out1, vec3_t out2, vec3_t out3 ) {
int i;
for ( i = 0 ; i < 3 ; i++ ) {
out1[i] = 0.5 * (a[i] + b[i]);
out3[i] = 0.5 * (b[i] + c[i]);
out2[i] = 0.5 * (out1[i] + out3[i]);
}
}
/*
=================
CM_TransposeGrid
Swaps the rows and columns in place
=================
*/
static void CM_TransposeGrid( cGrid_t *grid ) {
int i, j, l;
vec3_t temp;
qboolean tempWrap;
if ( grid->width > grid->height ) {
for ( i = 0 ; i < grid->height ; i++ ) {
for ( j = i + 1 ; j < grid->width ; j++ ) {
if ( j < grid->height ) {
// swap the value
VectorCopy( grid->points[i][j], temp );
VectorCopy( grid->points[j][i], grid->points[i][j] );
VectorCopy( temp, grid->points[j][i] );
} else {
// just copy
VectorCopy( grid->points[j][i], grid->points[i][j] );
}
}
}
} else {
for ( i = 0 ; i < grid->width ; i++ ) {
for ( j = i + 1 ; j < grid->height ; j++ ) {
if ( j < grid->width ) {
// swap the value
VectorCopy( grid->points[j][i], temp );
VectorCopy( grid->points[i][j], grid->points[j][i] );
VectorCopy( temp, grid->points[i][j] );
} else {
// just copy
VectorCopy( grid->points[i][j], grid->points[j][i] );
}
}
}
}
l = grid->width;
grid->width = grid->height;
grid->height = l;
tempWrap = grid->wrapWidth;
grid->wrapWidth = grid->wrapHeight;
grid->wrapHeight = tempWrap;
}
/*
===================
CM_SetGridWrapWidth
If the left and right columns are exactly equal, set grid->wrapWidth qtrue
===================
*/
static void CM_SetGridWrapWidth( cGrid_t *grid ) {
int i, j;
float d;
for ( i = 0 ; i < grid->height ; i++ ) {
for ( j = 0 ; j < 3 ; j++ ) {
d = grid->points[0][i][j] - grid->points[grid->width-1][i][j];
if ( d < -WRAP_POINT_EPSILON || d > WRAP_POINT_EPSILON ) {
break;
}
}
if ( j != 3 ) {
break;
}
}
if ( i == grid->height ) {
grid->wrapWidth = qtrue;
} else {
grid->wrapWidth = qfalse;
}
}
/*
=================
CM_SubdivideGridColumns
Adds columns as necessary to the grid until
all the aproximating points are within SUBDIVIDE_DISTANCE
from the true curve
=================
*/
static void CM_SubdivideGridColumns( cGrid_t *grid ) {
int i, j, k;
for ( i = 0 ; i < grid->width - 2 ; ) {
// grid->points[i][x] is an interpolating control point
// grid->points[i+1][x] is an aproximating control point
// grid->points[i+2][x] is an interpolating control point
//
// first see if we can collapse the aproximating collumn away
//
for ( j = 0 ; j < grid->height ; j++ ) {
if ( CM_NeedsSubdivision( grid->points[i][j], grid->points[i+1][j], grid->points[i+2][j] ) ) {
break;
}
}
if ( j == grid->height ) {
// all of the points were close enough to the linear midpoints
// that we can collapse the entire column away
for ( j = 0 ; j < grid->height ; j++ ) {
// remove the column
for ( k = i + 2 ; k < grid->width ; k++ ) {
VectorCopy( grid->points[k][j], grid->points[k-1][j] );
}
}
grid->width--;
// go to the next curve segment
i++;
continue;
}
//
// we need to subdivide the curve
//
for ( j = 0 ; j < grid->height ; j++ ) {
vec3_t prev, mid, next;
// save the control points now
VectorCopy( grid->points[i][j], prev );
VectorCopy( grid->points[i+1][j], mid );
VectorCopy( grid->points[i+2][j], next );
// make room for two additional columns in the grid
// columns i+1 will be replaced, column i+2 will become i+4
// i+1, i+2, and i+3 will be generated
for ( k = grid->width - 1 ; k > i + 1 ; k-- ) {
VectorCopy( grid->points[k][j], grid->points[k+2][j] );
}
// generate the subdivided points
CM_Subdivide( prev, mid, next, grid->points[i+1][j], grid->points[i+2][j], grid->points[i+3][j] );
}
grid->width += 2;
// the new aproximating point at i+1 may need to be removed
// or subdivided farther, so don't advance i
}
}
/*
======================
CM_ComparePoints
======================
*/
#define POINT_EPSILON 0.1
static qboolean CM_ComparePoints( float *a, float *b ) {
float d;
d = a[0] - b[0];
if ( d < -POINT_EPSILON || d > POINT_EPSILON ) {
return qfalse;
}
d = a[1] - b[1];
if ( d < -POINT_EPSILON || d > POINT_EPSILON ) {
return qfalse;
}
d = a[2] - b[2];
if ( d < -POINT_EPSILON || d > POINT_EPSILON ) {
return qfalse;
}
return qtrue;
}
/*
=================
CM_RemoveDegenerateColumns
If there are any identical columns, remove them
=================
*/
static void CM_RemoveDegenerateColumns( cGrid_t *grid ) {
int i, j, k;
for ( i = 0 ; i < grid->width - 1 ; i++ ) {
for ( j = 0 ; j < grid->height ; j++ ) {
if ( !CM_ComparePoints( grid->points[i][j], grid->points[i+1][j] ) ) {
break;
}
}
if ( j != grid->height ) {
continue; // not degenerate
}
for ( j = 0 ; j < grid->height ; j++ ) {
// remove the column
for ( k = i + 2 ; k < grid->width ; k++ ) {
VectorCopy( grid->points[k][j], grid->points[k-1][j] );
}
}
grid->width--;
// check against the next column
i--;
}
}
/*
================================================================================
PATCH COLLIDE GENERATION
================================================================================
*/
static int numPlanes;
static patchPlane_t planes[MAX_PATCH_PLANES];
//static int numFacets;
//static facet_t facets[MAX_PATCH_PLANES]; //maybe MAX_FACETS ??
static facet_t *facets = NULL;
#define NORMAL_EPSILON 0.0001
#define DIST_EPSILON 0.02
static inline int CM_PlaneEqual(patchPlane_t *p, float plane[4], int *flipped) {
float invplane[4];
if (
Q_fabs(p->plane[0] - plane[0]) < NORMAL_EPSILON
&& Q_fabs(p->plane[1] - plane[1]) < NORMAL_EPSILON
&& Q_fabs(p->plane[2] - plane[2]) < NORMAL_EPSILON
&& Q_fabs(p->plane[3] - plane[3]) < DIST_EPSILON )
{
*flipped = qfalse;
return qtrue;
}
VectorNegate(plane, invplane);
invplane[3] = -plane[3];
if (
Q_fabs(p->plane[0] - invplane[0]) < NORMAL_EPSILON
&& Q_fabs(p->plane[1] - invplane[1]) < NORMAL_EPSILON
&& Q_fabs(p->plane[2] - invplane[2]) < NORMAL_EPSILON
&& Q_fabs(p->plane[3] - invplane[3]) < DIST_EPSILON )
{
*flipped = qtrue;
return qtrue;
}
return qfalse;
}
static inline void CM_SnapVector(vec3_t normal) {
int i;
for (i=0 ; i<3 ; i++)
{
if ( Q_fabs(normal[i] - 1) < NORMAL_EPSILON )
{
VectorClear (normal);
normal[i] = 1;
break;
}
if ( Q_fabs(normal[i] - -1) < NORMAL_EPSILON )
{
VectorClear (normal);
normal[i] = -1;
break;
}
}
}
static inline int CM_FindPlane2(float plane[4], int *flipped) {
int i;
// see if the points are close enough to an existing plane
for ( i = 0 ; i < numPlanes ; i++ ) {
if (CM_PlaneEqual(&planes[i], plane, flipped)) return i;
}
// add a new plane
if ( numPlanes == MAX_PATCH_PLANES ) {
Com_Error( ERR_DROP, "MAX_PATCH_PLANES" );
}
Vector4Copy( plane, planes[numPlanes].plane );
planes[numPlanes].signbits = CM_SignbitsForNormal( plane );
numPlanes++;
*flipped = qfalse;
return numPlanes-1;
}
/*
==================
CM_FindPlane
==================
*/
static inline int CM_FindPlane( float *p1, float *p2, float *p3 ) {
float plane[4];
int i;
float d;
if ( !CM_PlaneFromPoints( plane, p1, p2, p3 ) ) {
return -1;
}
// see if the points are close enough to an existing plane
for ( i = 0 ; i < numPlanes ; i++ ) {
if ( DotProduct( plane, planes[i].plane ) < 0 ) {
continue; // allow backwards planes?
}
d = DotProduct( p1, planes[i].plane ) - planes[i].plane[3];
if ( d < -PLANE_TRI_EPSILON || d > PLANE_TRI_EPSILON ) {
continue;
}
d = DotProduct( p2, planes[i].plane ) - planes[i].plane[3];
if ( d < -PLANE_TRI_EPSILON || d > PLANE_TRI_EPSILON ) {
continue;
}
d = DotProduct( p3, planes[i].plane ) - planes[i].plane[3];
if ( d < -PLANE_TRI_EPSILON || d > PLANE_TRI_EPSILON ) {
continue;
}
// found it
return i;
}
// add a new plane
if ( numPlanes == MAX_PATCH_PLANES ) {
Com_Error( ERR_DROP, "MAX_PATCH_PLANES" );
}
Vector4Copy( plane, planes[numPlanes].plane );
planes[numPlanes].signbits = CM_SignbitsForNormal( plane );
numPlanes++;
return numPlanes-1;
}
/*
==================
CM_PointOnPlaneSide
==================
*/
static inline int CM_PointOnPlaneSide( float *p, int planeNum ) {
float *plane;
float d;
if ( planeNum == -1 ) {
return SIDE_ON;
}
plane = planes[ planeNum ].plane;
d = DotProduct( p, plane ) - plane[3];
if ( d > PLANE_TRI_EPSILON ) {
return SIDE_FRONT;
}
if ( d < -PLANE_TRI_EPSILON ) {
return SIDE_BACK;
}
return SIDE_ON;
}
static inline int CM_GridPlane( int gridPlanes[MAX_GRID_SIZE][MAX_GRID_SIZE][2], int i, int j, int tri ) {
int p;
p = gridPlanes[i][j][tri];
if ( p != -1 ) {
return p;
}
p = gridPlanes[i][j][!tri];
if ( p != -1 ) {
return p;
}
// should never happen
Com_Printf( "WARNING: CM_GridPlane unresolvable\n" );
return -1;
}
/*
==================
CM_EdgePlaneNum
==================
*/
static inline int CM_EdgePlaneNum( cGrid_t *grid, int gridPlanes[MAX_GRID_SIZE][MAX_GRID_SIZE][2], int i, int j, int k ) {
float *p1, *p2;
vec3_t up;
int p;
switch ( k ) {
case 0: // top border
p1 = grid->points[i][j];
p2 = grid->points[i+1][j];
p = CM_GridPlane( gridPlanes, i, j, 0 );
VectorMA( p1, 4, planes[ p ].plane, up );
return CM_FindPlane( p1, p2, up );
case 2: // bottom border
p1 = grid->points[i][j+1];
p2 = grid->points[i+1][j+1];
p = CM_GridPlane( gridPlanes, i, j, 1 );
VectorMA( p1, 4, planes[ p ].plane, up );
return CM_FindPlane( p2, p1, up );
case 3: // left border
p1 = grid->points[i][j];
p2 = grid->points[i][j+1];
p = CM_GridPlane( gridPlanes, i, j, 1 );
VectorMA( p1, 4, planes[ p ].plane, up );
return CM_FindPlane( p2, p1, up );
case 1: // right border
p1 = grid->points[i+1][j];
p2 = grid->points[i+1][j+1];
p = CM_GridPlane( gridPlanes, i, j, 0 );
VectorMA( p1, 4, planes[ p ].plane, up );
return CM_FindPlane( p1, p2, up );
case 4: // diagonal out of triangle 0
p1 = grid->points[i+1][j+1];
p2 = grid->points[i][j];
p = CM_GridPlane( gridPlanes, i, j, 0 );
VectorMA( p1, 4, planes[ p ].plane, up );
return CM_FindPlane( p1, p2, up );
case 5: // diagonal out of triangle 1
p1 = grid->points[i][j];
p2 = grid->points[i+1][j+1];
p = CM_GridPlane( gridPlanes, i, j, 1 );
VectorMA( p1, 4, planes[ p ].plane, up );
return CM_FindPlane( p1, p2, up );
}
Com_Error( ERR_DROP, "CM_EdgePlaneNum: bad k" );
return -1;
}
/*
===================
CM_SetBorderInward
===================
*/
static inline void CM_SetBorderInward( facet_t *facet, cGrid_t *grid, int gridPlanes[MAX_GRID_SIZE][MAX_GRID_SIZE][2],
int i, int j, int which ) {
int k, l;
float *points[4];
int numPoints;
switch ( which ) {
case -1:
points[0] = grid->points[i][j];
points[1] = grid->points[i+1][j];
points[2] = grid->points[i+1][j+1];
points[3] = grid->points[i][j+1];
numPoints = 4;
break;
case 0:
points[0] = grid->points[i][j];
points[1] = grid->points[i+1][j];
points[2] = grid->points[i+1][j+1];
numPoints = 3;
break;
case 1:
points[0] = grid->points[i+1][j+1];
points[1] = grid->points[i][j+1];
points[2] = grid->points[i][j];
numPoints = 3;
break;
default:
Com_Error( ERR_FATAL, "CM_SetBorderInward: bad parameter" );
numPoints = 0;
break;
}
for ( k = 0 ; k < facet->numBorders ; k++ ) {
int front, back;
front = 0;
back = 0;
for ( l = 0 ; l < numPoints ; l++ ) {
int side;
side = CM_PointOnPlaneSide( points[l], facet->borderPlanes[k] );
if ( side == SIDE_FRONT ) {
front++;
} if ( side == SIDE_BACK ) {
back++;
}
}
if ( front && !back ) {
facet->borderInward[k] = qtrue;
} else if ( back && !front ) {
facet->borderInward[k] = qfalse;
} else if ( !front && !back ) {
// flat side border
facet->borderPlanes[k] = -1;
} else {
// bisecting side border
#ifndef BSPC
Com_DPrintf( "WARNING: CM_SetBorderInward: mixed plane sides\n" );
#endif
facet->borderInward[k] = qfalse;
if ( !debugBlock ) {
debugBlock = qtrue;
VectorCopy( grid->points[i][j], debugBlockPoints[0] );
VectorCopy( grid->points[i+1][j], debugBlockPoints[1] );
VectorCopy( grid->points[i+1][j+1], debugBlockPoints[2] );
VectorCopy( grid->points[i][j+1], debugBlockPoints[3] );
}
}
}
}
/*
==================
CM_ValidateFacet
If the facet isn't bounded by its borders, we screwed up.
==================
*/
static inline qboolean CM_ValidateFacet( facet_t *facet ) {
float plane[4];
int j;
winding_t *w;
vec3_t bounds[2];
if ( facet->surfacePlane == -1 ) {
return qfalse;
}
Vector4Copy( planes[ facet->surfacePlane ].plane, plane );
w = BaseWindingForPlane( plane, plane[3] );
for ( j = 0 ; j < facet->numBorders && w ; j++ ) {
if ( facet->borderPlanes[j] == -1 ) {
FreeWinding(w);
return qfalse;
}
Vector4Copy( planes[ facet->borderPlanes[j] ].plane, plane );
if ( !facet->borderInward[j] ) {
VectorSubtract( vec3_origin, plane, plane );
plane[3] = -plane[3];
}
ChopWindingInPlace( &w, plane, plane[3], 0.1f );
}
if ( !w ) {
return qfalse; // winding was completely chopped away
}
// see if the facet is unreasonably large
WindingBounds( w, bounds[0], bounds[1] );
FreeWinding( w );
for ( j = 0 ; j < 3 ; j++ ) {
if ( bounds[1][j] - bounds[0][j] > MAX_MAP_BOUNDS ) {
return qfalse; // we must be missing a plane
}
if ( bounds[0][j] >= MAX_MAP_BOUNDS ) {
return qfalse;
}
if ( bounds[1][j] <= -MAX_MAP_BOUNDS ) {
return qfalse;
}
}
return qtrue; // winding is fine
}
/*
==================
CM_AddFacetBevels
==================
*/
static inline void CM_AddFacetBevels( facet_t *facet ) {
int i, j, k, l;
int axis, dir, order, flipped;
float plane[4], d, newplane[4];
winding_t *w, *w2;
vec3_t mins, maxs, vec, vec2;
Vector4Copy( planes[ facet->surfacePlane ].plane, plane );
w = BaseWindingForPlane( plane, plane[3] );
for ( j = 0 ; j < facet->numBorders && w ; j++ ) {
if (facet->borderPlanes[j] == facet->surfacePlane) continue;
Vector4Copy( planes[ facet->borderPlanes[j] ].plane, plane );
if ( !facet->borderInward[j] ) {
VectorSubtract( vec3_origin, plane, plane );
plane[3] = -plane[3];
}
ChopWindingInPlace( &w, plane, plane[3], 0.1f );
}
if ( !w ) {
return;
}
WindingBounds(w, mins, maxs);
// add the axial planes
order = 0;
for ( axis = 0 ; axis < 3 ; axis++ )
{
for ( dir = -1 ; dir <= 1 ; dir += 2, order++ )
{
VectorClear(plane);
plane[axis] = dir;
if (dir == 1) {
plane[3] = maxs[axis];
}
else {
plane[3] = -mins[axis];
}
//if it's the surface plane
if (CM_PlaneEqual(&planes[facet->surfacePlane], plane, &flipped)) {
continue;
}
// see if the plane is allready present
for ( i = 0 ; i < facet->numBorders ; i++ ) {
if (CM_PlaneEqual(&planes[facet->borderPlanes[i]], plane, &flipped))
break;
}
if ( i == facet->numBorders ) {
if (facet->numBorders > 4 + 6 + 16) Com_Printf("ERROR: too many bevels\n");
facet->borderPlanes[facet->numBorders] = CM_FindPlane2(plane, &flipped);
facet->borderNoAdjust[facet->numBorders] = (qboolean)0;
facet->borderInward[facet->numBorders] = flipped;
facet->numBorders++;
}
}
}
//
// add the edge bevels
//
// test the non-axial plane edges
for ( j = 0 ; j < w->numpoints ; j++ )
{
k = (j+1)%w->numpoints;
VectorSubtract (w->p[j], w->p[k], vec);
//if it's a degenerate edge
if (VectorNormalize (vec) < 0.5)
continue;
CM_SnapVector(vec);
for ( k = 0; k < 3 ; k++ )
if ( vec[k] == -1 || vec[k] == 1 )
break; // axial
if ( k < 3 )
continue; // only test non-axial edges
// try the six possible slanted axials from this edge
for ( axis = 0 ; axis < 3 ; axis++ )
{
for ( dir = -1 ; dir <= 1 ; dir += 2 )
{
// construct a plane
VectorClear (vec2);
vec2[axis] = dir;
CrossProduct (vec, vec2, plane);
if (VectorNormalize (plane) < 0.5)
continue;
plane[3] = DotProduct (w->p[j], plane);
// if all the points of the facet winding are
// behind this plane, it is a proper edge bevel
for ( l = 0 ; l < w->numpoints ; l++ )
{
d = DotProduct (w->p[l], plane) - plane[3];
if (d > 0.1)
break; // point in front
}
if ( l < w->numpoints )
continue;
//if it's the surface plane
if (CM_PlaneEqual(&planes[facet->surfacePlane], plane, &flipped)) {
continue;
}
// see if the plane is allready present
for ( i = 0 ; i < facet->numBorders ; i++ ) {
if (CM_PlaneEqual(&planes[facet->borderPlanes[i]], plane, &flipped)) {
break;
}
}
if ( i == facet->numBorders ) {
if (facet->numBorders > 4 + 6 + 16) Com_Printf("ERROR: too many bevels\n");
facet->borderPlanes[facet->numBorders] = CM_FindPlane2(plane, &flipped);
for ( k = 0 ; k < facet->numBorders ; k++ ) {
if (facet->borderPlanes[facet->numBorders] ==
facet->borderPlanes[k]) Com_Printf("WARNING: bevel plane already used\n");
}
facet->borderNoAdjust[facet->numBorders] = (qboolean)0;
facet->borderInward[facet->numBorders] = flipped;
//
w2 = CopyWinding(w);
Vector4Copy(planes[facet->borderPlanes[facet->numBorders]].plane, newplane);
if (!facet->borderInward[facet->numBorders])
{
VectorNegate(newplane, newplane);
newplane[3] = -newplane[3];
} //end if
ChopWindingInPlace( &w2, newplane, newplane[3], 0.1f );
if (!w2) {
#ifndef BSPC
Com_DPrintf("WARNING: CM_AddFacetBevels... invalid bevel\n");
#endif
continue;
}
else {
FreeWinding(w2);
}
//
facet->numBorders++;
//already got a bevel
// break;
}
}
}
}
FreeWinding( w );
#ifndef BSPC
//add opposite plane
facet->borderPlanes[facet->numBorders] = facet->surfacePlane;
facet->borderNoAdjust[facet->numBorders] = (qboolean)0;
facet->borderInward[facet->numBorders] = qtrue;
facet->numBorders++;
#endif //BSPC
}
typedef enum {
EN_TOP,
EN_RIGHT,
EN_BOTTOM,
EN_LEFT
} edgeName_t;
/*
==================
CM_PatchCollideFromGrid
==================
*/
static inline void CM_PatchCollideFromGrid( cGrid_t *grid, patchCollide_t *pf ) {
int i, j;
float *p1, *p2, *p3;
MAC_STATIC int gridPlanes[MAX_GRID_SIZE][MAX_GRID_SIZE][2];
facet_t *facet;
int borders[4];
int noAdjust[4];
int numFacets;
facets = (facet_t*) Z_Malloc(MAX_FACETS*sizeof(facet_t), TAG_TEMP_WORKSPACE, qfalse, 4);
numPlanes = 0;
numFacets = 0;
// find the planes for each triangle of the grid
for ( i = 0 ; i < grid->width - 1 ; i++ ) {
for ( j = 0 ; j < grid->height - 1 ; j++ ) {
p1 = grid->points[i][j];
p2 = grid->points[i+1][j];
p3 = grid->points[i+1][j+1];
gridPlanes[i][j][0] = CM_FindPlane( p1, p2, p3 );
p1 = grid->points[i+1][j+1];
p2 = grid->points[i][j+1];
p3 = grid->points[i][j];
gridPlanes[i][j][1] = CM_FindPlane( p1, p2, p3 );
}
}
// create the borders for each facet
for ( i = 0 ; i < grid->width - 1 ; i++ ) {
for ( j = 0 ; j < grid->height - 1 ; j++ ) {
borders[EN_TOP] = -1;
if ( j > 0 ) {
borders[EN_TOP] = gridPlanes[i][j-1][1];
} else if ( grid->wrapHeight ) {
borders[EN_TOP] = gridPlanes[i][grid->height-2][1];
}
noAdjust[EN_TOP] = ( borders[EN_TOP] == gridPlanes[i][j][0] );
if ( borders[EN_TOP] == -1 || noAdjust[EN_TOP] ) {
borders[EN_TOP] = CM_EdgePlaneNum( grid, gridPlanes, i, j, 0 );
}
borders[EN_BOTTOM] = -1;
if ( j < grid->height - 2 ) {
borders[EN_BOTTOM] = gridPlanes[i][j+1][0];
} else if ( grid->wrapHeight ) {
borders[EN_BOTTOM] = gridPlanes[i][0][0];
}
noAdjust[EN_BOTTOM] = ( borders[EN_BOTTOM] == gridPlanes[i][j][1] );
if ( borders[EN_BOTTOM] == -1 || noAdjust[EN_BOTTOM] ) {
borders[EN_BOTTOM] = CM_EdgePlaneNum( grid, gridPlanes, i, j, 2 );
}
borders[EN_LEFT] = -1;
if ( i > 0 ) {
borders[EN_LEFT] = gridPlanes[i-1][j][0];
} else if ( grid->wrapWidth ) {
borders[EN_LEFT] = gridPlanes[grid->width-2][j][0];
}
noAdjust[EN_LEFT] = ( borders[EN_LEFT] == gridPlanes[i][j][1] );
if ( borders[EN_LEFT] == -1 || noAdjust[EN_LEFT] ) {
borders[EN_LEFT] = CM_EdgePlaneNum( grid, gridPlanes, i, j, 3 );
}
borders[EN_RIGHT] = -1;
if ( i < grid->width - 2 ) {
borders[EN_RIGHT] = gridPlanes[i+1][j][1];
} else if ( grid->wrapWidth ) {
borders[EN_RIGHT] = gridPlanes[0][j][1];
}
noAdjust[EN_RIGHT] = ( borders[EN_RIGHT] == gridPlanes[i][j][0] );
if ( borders[EN_RIGHT] == -1 || noAdjust[EN_RIGHT] ) {
borders[EN_RIGHT] = CM_EdgePlaneNum( grid, gridPlanes, i, j, 1 );
}
if ( numFacets == MAX_FACETS ) {
Com_Error( ERR_DROP, "MAX_FACETS" );
}
facet = &facets[numFacets];
Com_Memset( facet, 0, sizeof( *facet ) );
if ( gridPlanes[i][j][0] == gridPlanes[i][j][1] ) {
if ( gridPlanes[i][j][0] == -1 ) {
continue; // degenrate
}
facet->surfacePlane = gridPlanes[i][j][0];
facet->numBorders = 4;
facet->borderPlanes[0] = borders[EN_TOP];
facet->borderNoAdjust[0] = (qboolean)noAdjust[EN_TOP];
facet->borderPlanes[1] = borders[EN_RIGHT];
facet->borderNoAdjust[1] = (qboolean)noAdjust[EN_RIGHT];
facet->borderPlanes[2] = borders[EN_BOTTOM];
facet->borderNoAdjust[2] = (qboolean)noAdjust[EN_BOTTOM];
facet->borderPlanes[3] = borders[EN_LEFT];
facet->borderNoAdjust[3] = (qboolean)noAdjust[EN_LEFT];
CM_SetBorderInward( facet, grid, gridPlanes, i, j, -1 );
if ( CM_ValidateFacet( facet ) ) {
CM_AddFacetBevels( facet );
numFacets++;
}
} else {
// two seperate triangles
facet->surfacePlane = gridPlanes[i][j][0];
facet->numBorders = 3;
facet->borderPlanes[0] = borders[EN_TOP];
facet->borderNoAdjust[0] = (qboolean)noAdjust[EN_TOP];
facet->borderPlanes[1] = borders[EN_RIGHT];
facet->borderNoAdjust[1] = (qboolean)noAdjust[EN_RIGHT];
facet->borderPlanes[2] = gridPlanes[i][j][1];
if ( facet->borderPlanes[2] == -1 ) {
facet->borderPlanes[2] = borders[EN_BOTTOM];
if ( facet->borderPlanes[2] == -1 ) {
facet->borderPlanes[2] = CM_EdgePlaneNum( grid, gridPlanes, i, j, 4 );
}
}
CM_SetBorderInward( facet, grid, gridPlanes, i, j, 0 );
if ( CM_ValidateFacet( facet ) ) {
CM_AddFacetBevels( facet );
numFacets++;
}
if ( numFacets == MAX_FACETS ) {
Com_Error( ERR_DROP, "MAX_FACETS" );
}
facet = &facets[numFacets];
Com_Memset( facet, 0, sizeof( *facet ) );
facet->surfacePlane = gridPlanes[i][j][1];
facet->numBorders = 3;
facet->borderPlanes[0] = borders[EN_BOTTOM];
facet->borderNoAdjust[0] = (qboolean)noAdjust[EN_BOTTOM];
facet->borderPlanes[1] = borders[EN_LEFT];
facet->borderNoAdjust[1] = (qboolean)noAdjust[EN_LEFT];
facet->borderPlanes[2] = gridPlanes[i][j][0];
if ( facet->borderPlanes[2] == -1 ) {
facet->borderPlanes[2] = borders[EN_TOP];
if ( facet->borderPlanes[2] == -1 ) {
facet->borderPlanes[2] = CM_EdgePlaneNum( grid, gridPlanes, i, j, 5 );
}
}
CM_SetBorderInward( facet, grid, gridPlanes, i, j, 1 );
if ( CM_ValidateFacet( facet ) ) {
CM_AddFacetBevels( facet );
numFacets++;
}
}
}
}
// copy the results out
pf->numPlanes = numPlanes;
pf->numFacets = numFacets;
if (numFacets)
{
pf->facets = (facet_t *)Hunk_Alloc( numFacets * sizeof( *pf->facets ), h_high );
Com_Memcpy( pf->facets, facets, numFacets * sizeof( *pf->facets ) );
}
else
{
pf->facets = 0;
}
pf->planes = (patchPlane_t *)Hunk_Alloc( numPlanes * sizeof( *pf->planes ), h_high );
Com_Memcpy( pf->planes, planes, numPlanes * sizeof( *pf->planes ) );
Z_Free(facets);
}
/*
===================
CM_GeneratePatchCollide
Creates an internal structure that will be used to perform
collision detection with a patch mesh.
Points is packed as concatenated rows.
===================
*/
struct patchCollide_s *CM_GeneratePatchCollide( int width, int height, vec3_t *points ) {
patchCollide_t *pf;
MAC_STATIC cGrid_t grid;
int i, j;
if ( width <= 2 || height <= 2 || !points ) {
Com_Error( ERR_DROP, "CM_GeneratePatchFacets: bad parameters: (%i, %i, %p)",
width, height, points );
}
if ( !(width & 1) || !(height & 1) ) {
Com_Error( ERR_DROP, "CM_GeneratePatchFacets: even sizes are invalid for quadratic meshes" );
}
if ( width > MAX_GRID_SIZE || height > MAX_GRID_SIZE ) {
Com_Error( ERR_DROP, "CM_GeneratePatchFacets: source is > MAX_GRID_SIZE" );
}
// build a grid
grid.width = width;
grid.height = height;
grid.wrapWidth = qfalse;
grid.wrapHeight = qfalse;
for ( i = 0 ; i < width ; i++ ) {
for ( j = 0 ; j < height ; j++ ) {
VectorCopy( points[j*width + i], grid.points[i][j] );
}
}
// subdivide the grid
CM_SetGridWrapWidth( &grid );
CM_SubdivideGridColumns( &grid );
CM_RemoveDegenerateColumns( &grid );
CM_TransposeGrid( &grid );
CM_SetGridWrapWidth( &grid );
CM_SubdivideGridColumns( &grid );
CM_RemoveDegenerateColumns( &grid );
// we now have a grid of points exactly on the curve
// the aproximate surface defined by these points will be
// collided against
pf = (struct patchCollide_s *)Hunk_Alloc( sizeof( *pf ), h_high );
ClearBounds( pf->bounds[0], pf->bounds[1] );
for ( i = 0 ; i < grid.width ; i++ ) {
for ( j = 0 ; j < grid.height ; j++ ) {
AddPointToBounds( grid.points[i][j], pf->bounds[0], pf->bounds[1] );
}
}
c_totalPatchBlocks += ( grid.width - 1 ) * ( grid.height - 1 );
// generate a bsp tree for the surface
CM_PatchCollideFromGrid( &grid, pf );
// expand by one unit for epsilon purposes
pf->bounds[0][0] -= 1;
pf->bounds[0][1] -= 1;
pf->bounds[0][2] -= 1;
pf->bounds[1][0] += 1;
pf->bounds[1][1] += 1;
pf->bounds[1][2] += 1;
return pf;
}
/*
================================================================================
TRACE TESTING
================================================================================
*/
/*
====================
CM_TracePointThroughPatchCollide
special case for point traces because the patch collide "brushes" have no volume
====================
*/
static inline void CM_TracePointThroughPatchCollide( traceWork_t *tw, trace_t &trace, const struct patchCollide_s *pc ) {
qboolean frontFacing[MAX_PATCH_PLANES];
float intersection[MAX_PATCH_PLANES];
float intersect;
const patchPlane_t *planes;
const facet_t *facet;
int i, j, k;
float offset;
float d1, d2;
#ifndef BSPC
static cvar_t *cv;
#endif //BSPC
#ifndef BSPC
if ( !cm_playerCurveClip->integer || !tw->isPoint ) {
return;
}
#endif
// determine the trace's relationship to all planes
planes = pc->planes;
for ( i = 0 ; i < pc->numPlanes ; i++, planes++ ) {
offset = DotProduct( tw->offsets[ planes->signbits ], planes->plane );
d1 = DotProduct( tw->start, planes->plane ) - planes->plane[3] + offset;
d2 = DotProduct( tw->end, planes->plane ) - planes->plane[3] + offset;
if ( d1 <= 0 ) {
frontFacing[i] = qfalse;
} else {
frontFacing[i] = qtrue;
}
if ( d1 == d2 ) {
intersection[i] = 99999;
} else {
intersection[i] = d1 / ( d1 - d2 );
if ( intersection[i] <= 0 ) {
intersection[i] = 99999;
}
}
}
// see if any of the surface planes are intersected
facet = pc->facets;
for ( i = 0 ; i < pc->numFacets ; i++, facet++ ) {
if ( !frontFacing[facet->surfacePlane] ) {
continue;
}
intersect = intersection[facet->surfacePlane];
if ( intersect < 0 ) {
continue; // surface is behind the starting point
}
if ( intersect > trace.fraction ) {
continue; // already hit something closer
}
for ( j = 0 ; j < facet->numBorders ; j++ ) {
k = facet->borderPlanes[j];
if ( frontFacing[k] ^ facet->borderInward[j] ) {
if ( intersection[k] > intersect ) {
break;
}
} else {
if ( intersection[k] < intersect ) {
break;
}
}
}
if ( j == facet->numBorders ) {
// we hit this facet
#ifndef BSPC
if (!cv) {
cv = Cvar_Get( "r_debugSurfaceUpdate", "1", 0 );
}
if (cv->integer) {
debugPatchCollide = pc;
debugFacet = facet;
}
#endif //BSPC
planes = &pc->planes[facet->surfacePlane];
// calculate intersection with a slight pushoff
offset = DotProduct( tw->offsets[ planes->signbits ], planes->plane );
d1 = DotProduct( tw->start, planes->plane ) - planes->plane[3] + offset;
d2 = DotProduct( tw->end, planes->plane ) - planes->plane[3] + offset;
trace.fraction = ( d1 - SURFACE_CLIP_EPSILON ) / ( d1 - d2 );
if ( trace.fraction < 0 ) {
trace.fraction = 0;
}
VectorCopy( planes->plane, trace.plane.normal );
trace.plane.dist = planes->plane[3];
}
}
}
/*
====================
CM_CheckFacetPlane
====================
*/
static inline int CM_CheckFacetPlane(float *plane, vec3_t start, vec3_t end, float *enterFrac, float *leaveFrac, int *hit) {
float d1, d2, f;
*hit = qfalse;
d1 = DotProduct( start, plane ) - plane[3];
d2 = DotProduct( end, plane ) - plane[3];
// if completely in front of face, no intersection with the entire facet
if (d1 > 0 && ( d2 >= SURFACE_CLIP_EPSILON || d2 >= d1 ) ) {
return qfalse;
}
// if it doesn't cross the plane, the plane isn't relevent
if (d1 <= 0 && d2 <= 0 ) {
return qtrue;
}
// crosses face
if (d1 > d2) { // enter
f = (d1-SURFACE_CLIP_EPSILON) / (d1-d2);
if ( f < 0 ) {
f = 0;
}
//always favor previous plane hits and thus also the surface plane hit
if (f > *enterFrac) {
*enterFrac = f;
*hit = qtrue;
}
} else { // leave
f = (d1+SURFACE_CLIP_EPSILON) / (d1-d2);
if ( f > 1 ) {
f = 1;
}
if (f < *leaveFrac) {
*leaveFrac = f;
}
}
return qtrue;
}
/*
====================
CM_TraceThroughPatchCollide
====================
*/
void CM_TraceThroughPatchCollide( traceWork_t *tw, trace_t &trace, const struct patchCollide_s *pc )
{
int i, j, hit, hitnum;
float offset, enterFrac, leaveFrac, t;
patchPlane_t *planes;
facet_t *facet;
float plane[4], bestplane[4];
vec3_t startp, endp;
#ifndef BSPC
static cvar_t *cv;
#endif //BSPC
#ifndef CULL_BBOX
// I'm not sure if test is strictly correct. Are all
// bboxes axis aligned? Do I care? It seems to work
// good enough...
for ( i = 0 ; i < 3 ; i++ ) {
if ( tw->bounds[0][i] > pc->bounds[1][i]
|| tw->bounds[1][i] < pc->bounds[0][i] ) {
return;
}
}
#endif
if (tw->isPoint) {
CM_TracePointThroughPatchCollide( tw, trace, pc );
return;
}
//
facet = pc->facets;
for ( i = 0 ; i < pc->numFacets ; i++, facet++ ) {
enterFrac = -1.0;
leaveFrac = 1.0;
hitnum = -1;
//
planes = &pc->planes[ facet->surfacePlane ];
VectorCopy(planes->plane, plane);
plane[3] = planes->plane[3];
if ( tw->sphere.use ) {
// adjust the plane distance apropriately for radius
plane[3] += tw->sphere.radius;
// find the closest point on the capsule to the plane
t = DotProduct( plane, tw->sphere.offset );
if ( t > 0.0f )
{
VectorSubtract( tw->start, tw->sphere.offset, startp );
VectorSubtract( tw->end, tw->sphere.offset, endp );
}
else
{
VectorAdd( tw->start, tw->sphere.offset, startp );
VectorAdd( tw->end, tw->sphere.offset, endp );
}
}
else {
offset = DotProduct( tw->offsets[ planes->signbits ], plane);
plane[3] -= offset;
VectorCopy( tw->start, startp );
VectorCopy( tw->end, endp );
}
//
if (!CM_CheckFacetPlane(plane, startp, endp, &enterFrac, &leaveFrac, &hit))
continue;
if (hit) {
Vector4Copy(plane, bestplane);
}
//
for ( j = 0 ; j < facet->numBorders ; j++ ) {
planes = &pc->planes[ facet->borderPlanes[j] ];
if (facet->borderInward[j]) {
VectorNegate(planes->plane, plane);
plane[3] = -planes->plane[3];
}
else {
VectorCopy(planes->plane, plane);
plane[3] = planes->plane[3];
}
if ( tw->sphere.use ) {
// adjust the plane distance apropriately for radius
plane[3] += tw->sphere.radius;
// find the closest point on the capsule to the plane
t = DotProduct( plane, tw->sphere.offset );
if ( t > 0.0f )
{
VectorSubtract( tw->start, tw->sphere.offset, startp );
VectorSubtract( tw->end, tw->sphere.offset, endp );
}
else
{
VectorAdd( tw->start, tw->sphere.offset, startp );
VectorAdd( tw->end, tw->sphere.offset, endp );
}
}
else {
// NOTE: this works even though the plane might be flipped because the bbox is centered
offset = DotProduct( tw->offsets[ planes->signbits ], plane);
plane[3] += fabs(offset);
VectorCopy( tw->start, startp );
VectorCopy( tw->end, endp );
}
//
if (!CM_CheckFacetPlane(plane, startp, endp, &enterFrac, &leaveFrac, &hit))
break;
if (hit) {
hitnum = j;
Vector4Copy(plane, bestplane);
}
}
if (j < facet->numBorders) continue;
//never clip against the back side
if (hitnum == facet->numBorders - 1) continue;
//
if (enterFrac < leaveFrac && enterFrac >= 0) {
if (enterFrac < trace.fraction) {
if (enterFrac < 0) {
enterFrac = 0;
}
#ifndef BSPC
if (!cv) {
cv = Cvar_Get( "r_debugSurfaceUpdate", "1", 0 );
}
if (cv && cv->integer) {
debugPatchCollide = pc;
debugFacet = facet;
}
#endif // BSPC
trace.fraction = enterFrac;
VectorCopy( bestplane, trace.plane.normal );
trace.plane.dist = bestplane[3];
}
}
}
}
/*
=======================================================================
POSITION DETECTION
=======================================================================
*/
/*
====================
CM_PositionTestInPatchCollide
Modifies tr->tr if any of the facets effect the trace
====================
*/
qboolean CM_PositionTestInPatchCollide( traceWork_t *tw, const struct patchCollide_s *pc ) {
int i, j;
float offset, t;
patchPlane_t *planes;
facet_t *facet;
float plane[4];
vec3_t startp;
if (tw->isPoint) {
return qfalse;
}
//
facet = pc->facets;
for ( i = 0 ; i < pc->numFacets ; i++, facet++ ) {
planes = &pc->planes[ facet->surfacePlane ];
VectorCopy(planes->plane, plane);
plane[3] = planes->plane[3];
if ( tw->sphere.use ) {
// adjust the plane distance apropriately for radius
plane[3] += tw->sphere.radius;
// find the closest point on the capsule to the plane
t = DotProduct( plane, tw->sphere.offset );
if ( t > 0 ) {
VectorSubtract( tw->start, tw->sphere.offset, startp );
}
else {
VectorAdd( tw->start, tw->sphere.offset, startp );
}
}
else {
offset = DotProduct( tw->offsets[ planes->signbits ], plane);
plane[3] -= offset;
VectorCopy( tw->start, startp );
}
if ( DotProduct( plane, startp ) - plane[3] > 0.0f ) {
continue;
}
for ( j = 0; j < facet->numBorders; j++ ) {
planes = &pc->planes[ facet->borderPlanes[j] ];
if (facet->borderInward[j]) {
VectorNegate(planes->plane, plane);
plane[3] = -planes->plane[3];
}
else {
VectorCopy(planes->plane, plane);
plane[3] = planes->plane[3];
}
if ( tw->sphere.use ) {
// adjust the plane distance apropriately for radius
plane[3] += tw->sphere.radius;
// find the closest point on the capsule to the plane
t = DotProduct( plane, tw->sphere.offset );
if ( t > 0.0f ) {
VectorSubtract( tw->start, tw->sphere.offset, startp );
}
else {
VectorAdd( tw->start, tw->sphere.offset, startp );
}
}
else {
// NOTE: this works even though the plane might be flipped because the bbox is centered
offset = DotProduct( tw->offsets[ planes->signbits ], plane);
plane[3] += fabs(offset);
VectorCopy( tw->start, startp );
}
if ( DotProduct( plane, startp ) - plane[3] > 0.0f ) {
break;
}
}
if (j < facet->numBorders) {
continue;
}
// inside this patch facet
return qtrue;
}
return qfalse;
}
/*
=======================================================================
DEBUGGING
=======================================================================
*/
/*
==================
CM_DrawDebugSurface
Called from the renderer
==================
*/
#ifndef BSPC
void BotDrawDebugPolygons(void (*drawPoly)(int color, int numPoints, float *points), int value);
#endif
void CM_DrawDebugSurface( void (*drawPoly)(int color, int numPoints, float *points) ) {
static cvar_t *cv;
#ifndef BSPC
static cvar_t *cv2;
#endif
const patchCollide_t *pc;
facet_t *facet;
winding_t *w;
int i, j, k, n;
int curplanenum, planenum, curinward, inward;
float plane[4];
vec3_t mins = {-15, -15, -28}, maxs = {15, 15, 28};
//vec3_t mins = {0, 0, 0}, maxs = {0, 0, 0};
vec3_t v1, v2;
#ifndef BSPC
if ( !cv2 )
{
cv2 = Cvar_Get( "r_debugSurface", "0", 0 );
}
if (cv2->integer != 1)
{
BotDrawDebugPolygons(drawPoly, cv2->integer);
return;
}
#endif
if ( !debugPatchCollide ) {
return;
}
#ifndef BSPC
if ( !cv ) {
cv = Cvar_Get( "cm_debugSize", "2", 0 );
}
#endif
pc = debugPatchCollide;
for ( i = 0, facet = pc->facets ; i < pc->numFacets ; i++, facet++ ) {
for ( k = 0 ; k < facet->numBorders + 1; k++ ) {
//
if (k < facet->numBorders) {
planenum = facet->borderPlanes[k];
inward = facet->borderInward[k];
}
else {
planenum = facet->surfacePlane;
inward = qfalse;
//continue;
}
Vector4Copy( pc->planes[ planenum ].plane, plane );
//planenum = facet->surfacePlane;
if ( inward ) {
VectorSubtract( vec3_origin, plane, plane );
plane[3] = -plane[3];
}
plane[3] += cv->value;
//*
for (n = 0; n < 3; n++)
{
if (plane[n] > 0) v1[n] = maxs[n];
else v1[n] = mins[n];
} //end for
VectorNegate(plane, v2);
plane[3] += fabs(DotProduct(v1, v2));
//*/
w = BaseWindingForPlane( plane, plane[3] );
for ( j = 0 ; j < facet->numBorders + 1 && w; j++ ) {
//
if (j < facet->numBorders) {
curplanenum = facet->borderPlanes[j];
curinward = facet->borderInward[j];
}
else {
curplanenum = facet->surfacePlane;
curinward = qfalse;
//continue;
}
//
if (curplanenum == planenum) continue;
Vector4Copy( pc->planes[ curplanenum ].plane, plane );
if ( !curinward ) {
VectorSubtract( vec3_origin, plane, plane );
plane[3] = -plane[3];
}
// if ( !facet->borderNoAdjust[j] ) {
plane[3] -= cv->value;
// }
for (n = 0; n < 3; n++)
{
if (plane[n] > 0) v1[n] = maxs[n];
else v1[n] = mins[n];
} //end for
VectorNegate(plane, v2);
plane[3] -= fabs(DotProduct(v1, v2));
ChopWindingInPlace( &w, plane, plane[3], 0.1f );
}
if ( w ) {
if ( facet == debugFacet ) {
drawPoly( 4, w->numpoints, w->p[0] );
//Com_Printf("blue facet has %d border planes\n", facet->numBorders);
} else {
drawPoly( 1, w->numpoints, w->p[0] );
}
FreeWinding( w );
}
else
Com_Printf("winding chopped away by border planes\n");
}
}
// draw the debug block
{
vec3_t v[3];
VectorCopy( debugBlockPoints[0], v[0] );
VectorCopy( debugBlockPoints[1], v[1] );
VectorCopy( debugBlockPoints[2], v[2] );
drawPoly( 2, 3, v[0] );
VectorCopy( debugBlockPoints[2], v[0] );
VectorCopy( debugBlockPoints[3], v[1] );
VectorCopy( debugBlockPoints[0], v[2] );
drawPoly( 2, 3, v[0] );
}
#if 0
vec3_t v[4];
v[0][0] = pc->bounds[1][0];
v[0][1] = pc->bounds[1][1];
v[0][2] = pc->bounds[1][2];
v[1][0] = pc->bounds[1][0];
v[1][1] = pc->bounds[0][1];
v[1][2] = pc->bounds[1][2];
v[2][0] = pc->bounds[0][0];
v[2][1] = pc->bounds[0][1];
v[2][2] = pc->bounds[1][2];
v[3][0] = pc->bounds[0][0];
v[3][1] = pc->bounds[1][1];
v[3][2] = pc->bounds[1][2];
drawPoly( 4, v[0] );
#endif
}